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Abstract

The problem of predicting links in large networks is an important task in a variety of
practical applications, including social sciences, biology and computer security. In this
paper, statistical techniques for link prediction based on the popular random dot prod-
uct graph model are carefully presented, analysed and extended to dynamic settings.
Motivated by a practical application in cyber-security, this paper demonstrates that
random dot product graphs not only represent a powerful tool for inferring differences
between multiple networks, but are also efficient for prediction purposes and for under-
standing the temporal evolution of the network. The probabilities of links are obtained
by fusing information at two stages: spectral methods provide estimates of latent posi-
tions for each node, and time series models are used to capture temporal dynamics.
In this way, traditional link prediction methods, usually based on decompositions of
the entire network adjacency matrix, are extended using temporal information. The
methods presented in this article are applied to a number of simulated and real-world
graphs, showing promising results.
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1 Introduction

Link prediction is defined as the task of predicting the presence of an edge between
two nodes in a network, based on latent characteristics of the graph (Liben-Nowell
and Kleinberg 2007). The problem has been widely studied in the literature (Lü and
Zhou 2011; Menon and Elkan 2011), and has relevant applications in a variety of
different fields. In this paper, the discussion about link prediction is motivated by
applications in cyber-security and computer network monitoring (Jeske et al. 2018).
The ability to correctly predict and associate anomaly scores with the connections in a
network is valuable for the cyber-defence of enterprises. In cyber settings, adversaries
may introduce changes in the structure of an enterprise network in the course of
their attack. Therefore, predicting links in order to identify significant deviations in
expected behaviour could lead to the detection of an otherwise extremely damaging
network breach. In particular, it is necessary to correctly score new links (Metelli and
Heard 2019), representing previously unobserved connections. The task is particularly
important since it is common to observe malicious activity associated with new links
(Neil et al. 2013), and it is therefore crucial to understand the normal process of link
formation in order to detect a cyber-attack.

In this article, it is assumed that snapshots of a dynamic network are observed at
discrete time points t = 1, . . . , T , obtaining a sequence of graphs Gt = (V , Et ).
The set V represents the set of nodes, which is invariant over time, whereas the set
Et is a time dependent edge set, where (i, j) ∈ Et for i, j ∈ V , if i connected
to j at least once during the time period (t − 1, t]. Each snapshot of the graph can
be characterised by the adjacency matrix At ∈ {0, 1}n×n , where n = |V | and for
1 ≤ i, j ≤ n, Ai j t = 1Et {(i, j)}, such that Ai j t = 1 if a link between the nodes i and
j exists in (t − 1, t], and Ai j t = 0 otherwise. The graph is said to be undirected if
(i, j) ∈ Et ⇐⇒ ( j, i) ∈ Et , implying that At is symmetric; otherwise, the graph is
said to be directed. It will be assumed that the graph has no self-edges, implying At

is a hollow matrix. Similarly, bipartite graphs Gt = (V1, V2, Et ) can be represented
using two node sets V1 and V2, and rectangular adjacency matrices At ∈ {0, 1}n1×n2 ,
n1 = |V1| , n2 = |V2|, where Ai j t = 1 if i ∈ V1 connects to j ∈ V2 in (t − 1, t].

This paper discusses methods for temporal link prediction (Dunlavy et al. 2011):
given a sequence of adjacency matrices A1, . . . , AT observed over time, the main
objective is to reliably predict AT +1. In this article, temporal link prediction techniques
based on random dot product graphs (RDPG, Young and Scheinerman 2007) are
discussed and compared. RDPGs are a class of latent position models (Hoff et al. 2002),
and have been extensively studied because of their analytical tractability (Athreya et al.
2018). Each node i is given a latent position xi in a d-dimensional latent space X such
that x⊤x′ ∈ [0, 1] ∀ x, x′ ∈ X. The edges between pairs of nodes are generated
independently, with probability of a link between nodes i and j obtained through the
inner product P(Ai j = 1) = x⊤

i x j . In matrix notation, the latent position can be
arranged in a n × d matrix X = [x1, . . . , xn]⊤ ∈ X

n , and the expected value of a
single realised adjacency matrix A is expressed as E(A) = XX⊤.

Random dot product graph models and spectral embedding methods are often the
first step in the analysis of a graph, because of their simplicity and ease of implemen-
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tation, since intensive hyperparameter tuning is not required. RDPGs are extensively
applied in neuroscience (see, for example, Priebe et al. 2017). Furthermore, they have
appealing theoretical statistical properties in terms of consistency of the estimated
latent positions. Therefore, it is of interest to understand their performance for link
prediction purposes.

RDPGs models for multiple heterogeneous graphs on the same node set have
recently been proposed in the literature, but these models have not been formally
extended to a dynamic setting for link prediction purposes. Early examples discuss
methods for clustering and community detection with multiple graphs (Tang et al.
2009; Shiga and Mamitsuka 2012; Dong et al. 2014). More recently, the focus has
been on testing for differences in brain connectivity networks (Arroyo-Relión et al.
2019; Ginestet et al. 2017; Durante and Dunson 2018; Kim and Levina 2019). Levin
et al. (2017) propose an omnibus embedding in which the different graphs are jointly
embedded into a common latent space, providing distinct representations for each
graph and for each node. Wang et al. (2021) propose the multiple random eigen graph

(MREG) model, where a common set of d-dimensional latent features X is shared
between the graphs, and the inner product between the latent positions is weighted
differently across the networks, obtaining E(At ) = XRt X

⊤, where Rt is a d × d

diagonal matrix. Nielsen and Witten (2018) propose the multiple random dot prod-

uct graph (multi-RDPG), which more naturally extends the RDPG to the multi-graph
setting. Their formulation is similar to the MREG of Wang et al. (2021), but X is
modelled as an orthogonal matrix, and Rt is constrained to be positive semi-definite.
The model is further extended in common subspace independent edge (COSIE) graphs
(Arroyo-Relión et al. 2020), in which Rt does not need to be a diagonal matrix. More
recently, Jones and Rubin-Delanchy (2021) proposed the Unfolded Adjacency Spectral
Embedding (UASE) for the multilayer random dot product graph (MRDPG), which
is also applied to a link prediction example within a cyber-security context. In this
work, existing methods for RDPG-based inference, for example omnibus embeddings
(Levin et al. 2017) and COSIE graphs (Arroyo-Relión et al. 2020), will be analysed for
link prediction purposes, and compared to standard spectral embedding techniques.

The main contribution of this work is to adapt the existing methods for multiple
RDPG graph inference for temporal link prediction. Furthermore, this article pro-
poses methods to combine the information obtained via spectral methods with time
series models, to capture the temporal dynamics of the observed graphs. The proposed
methodologies will be extensively compared on real world and simulated networks. It
will be shown that this approach significantly improves the predictive performance of
multiple RDPG models, especially when the network presents a seasonal or temporal
evolution. Overall, this article provides insights into the predictive capability of ran-
dom dot product graphs, and gives guidelines for practitioners on the optimal choice
of the embedding for temporal link prediction.

Importantly, the strategies for combination of individual embeddings, and their
time series extensions, can in principle be applied to any embedding method for static
graphs, despite the main focus on RDPGs of this article. This article primarily focuses
on RDPGs because of the wide variety of embedding techniques which have been
suggested in the literature under this model, but that so far have not been compared
for link prediction purposes.
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The article is organised as follows: Sect. 2 discusses related literature around link
prediction, and Sect. 3 introduces background on the generalised random dot product
graph and adjacency spectral embeddings, the main statistical tools used in this paper.
Methods for link prediction based on random dot product graphs are discussed in
Sect. 4. Section 5 presents techniques to improve the predictive performance of the
RDPG models, based on time series models. Results and applications on simulated
and real world networks are finally discussed in Sect. 6.

2 Related literature

Many other models other than RDPGs have been proposed in the literature for link
prediction. Traditionally, the temporal link prediction task is tackled using tensor
decompositions (Dunlavy et al. 2011). Dynamic models have also been proposed in
the literature of Poisson matrix factorisation and recommender systems (Charlin et al.
2015; Hosseini et al. 2020), and extended to Bayesian tensor decompositions (Schein
et al. 2015). In general, including time has been shown to significantly improve the
predictive performance in a variety of model settings, for example stochastic block-
models (Ishiguro et al. 2010; Xu and Hero III 2014; Xing et al. 2010). More generic
latent feature models for dynamic networks have also been extensively discussed in
the literature (Sarkar and Moore 2006; Krivitsky and Handcock 2014; Sewell and
Chen 2015).

Latent features are usually obtained via matrix factorisation, considering constant
and time-varying components within the decomposition (Deng et al. 2016; Yu et al.
2017a, b). Usually, a Markov assumption is placed on the evolution of the latent posi-
tions (Zhu et al. 2016; Chen and Li 2018). Gao et al. (2011) propose to combine node
features into a temporal link prediction framework based on matrix factorisation. Non-
parametric (Sarkar et al. 2014; Durante and Dunson 2014) and deep learning (Li et al.
2014) approaches have also been considered.

More recently, advancements have been made in the application of deep learning
to graph-valued data. In particular, deep learning methods on graphs are classified
by Zhang et al. (2020) into five categories: graph recurrent neural networks, graph
convolutional networks, graph autoencoders, graph reinforcement learning, graph
adversarial methods. A comprehensive survey of existing static network embedding
methods, including deep learning techniques, is provided in Cai et al. (2018). Com-
monly used static embedding methods in machine learning are DeepWalk (Perozzi
et al. 2014), SDNE (Wang et al. 2016), node2vec (Grover and Leskovec 2016), Graph-
SAGE (Hamilton et al. 2017), graph convolutional networks (GCN, Kipf and Welling
2017), and Watch Your Step with Graph Attention (WYS-GA, Abu-El-Haija et al.
2018). Many of such methods could be unified under a matrix factorisation framework
(Qiu et al. 2018). A systematic comparison of some of the aforementioned method-
ologies for unsupervised network embedding is provided in Khosla et al. (2021).
Methodologies have also been recently proposed in the dynamic network setting,
within the context of representation learning (for example, Nguyen et al. 2018; Kumar
et al. 2019; Liu et al. 2019; Qu et al. 2020), and deep generative models (for example,
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Zhou et al. 2020). The interested reader is referred to the survey of Kazemi et al.
(2020) and references therein.

Again, it is emphasised that the objective of this paper is not to claim that the
RDPG is superior to competing models, but to provide guidelines for practitioners
using RDPGs in their application domains, offering insights on the performance of
these models for link prediction purposes.

3 Random dot product graphs and adjacency spectral embedding

In this section, the generalised random dot product graph (Rubin-Delanchy et al. 2017)
and methods for estimation of the latent positions are formally introduced. Suppose
A ∈ {0, 1}n×n is a symmetric adjacency matrix of an undirected graph with n nodes.

Definition 1 (Generalised random dot product graph – GRDPG) Let d+ and d− be
non-negative integers such that d = d+ + d−. Let X ⊆ R

d such that ∀ x, x′ ∈ X,
0 ≤ x⊤I(d+, d−)x′ ≤ 1, where

I(p, q) = diag(1, . . . , 1,−1, . . . ,−1) (1)

with p ones and q minus ones. Let F be a probability measure on X, A ∈ {0, 1}n×n be
a symmetric matrix and X = (x1, . . . , xn)⊤ ∈ X

n . Then (A, X) ∼ GRDPGd+,d−(F)

if x1, . . . , xn
iid
∼ F and for i < j , P(Ai j = 1) = x⊤

i I(d+, d−)x j independently.

The adjacency spectral embedding (ASE) provides consistent estimates of the latent
positions in GRDPGs (Rubin-Delanchy et al. 2017), up to indefinite orthogonal trans-
formations.

Definition 2 (Adjacency spectral embedding – ASE) For d ∈ {1, . . . , n}, consider the

spectral decomposition A = Ŵ̂�̂Ŵ̂
⊤

+ Ŵ̂⊥�̂⊥Ŵ̂
⊤

⊥, where �̂ is a d ×d diagonal matrix

containing the top d eigenvalues in magnitude, in decreasing order, Ŵ̂ is a n ×d matrix
containing the corresponding orthonormal eigenvectors, and the matrices �̂⊥ and Ŵ̂⊥

contain the remaining n − d eigenvalues and eigenvectors. The adjacency spectral
embedding X̂ = [x̂1, . . . , x̂n]⊤ of A in R

d is

X̂ = Ŵ̂|�̂|1/2 ∈ R
n×d , (2)

where the operator | · | applied to a matrix returns the absolute value of its entries.

If the graph is directed, and the adjacency matrix is not symmetric, it could be
implicitly assumed that the generating model is P(Ai j = 1) = x⊤

i y j , xi , y j ∈ X,
where each node is given two different latent positions, representing the behaviour
of the node as source or destination of the link. In this case, the embeddings can be
estimated using the singular value decomposition (SVD).
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Definition 3 (Adjacency embedding of the directed graph – DASE) Given a directed
graph with adjacency matrix A ∈ {0, 1}n×n , and a positive integer d, 1 ≤ d ≤ n,
consider the singular value decomposition

A =
[

Û Û⊥

]

[

D̂ 0

0 D̂⊥

] [

V̂⊤

V̂⊤
⊥

]

= ÛD̂V̂⊤ + Û⊥D̂⊥V̂⊤
⊥, (3)

where D̂ ∈ R
d×d
+ is diagonal matrix containing the top d singular values in decreasing

order, Û ∈ R
n×d and V̂ ∈ R

n×d contain the corresponding left and right singular
vectors, and the matrices D̂⊥, Û⊥, and V̂⊥ contain the remaining n −d singular values
and vectors. The d-dimensional directed adjacency embedding of A in R

d , is defined
as the pair

X̂ = ÛD̂1/2, Ŷ = V̂D̂1/2. (4)

The DASE can be also naturally extended to bipartite graphs.

4 Dynamic link prediction in random dot product graphs

Given a time series of network adjacency matrices A1, A2, . . . , AT , the objective is
to correctly predict AT +1. The most common approach in the literature (Sharan and
Neville 2008; Scheinerman and Tucker 2010; Dunlavy et al. 2011) is to analyse a
collapsed version Ã of the adjacency matrices:

Ã =

T
∑

t=1

ψT −t+1At , (5)

where ψ1, . . . , ψT ∈ R is a sequence of weights. Scheinerman and Tucker (2010)
propose to consider an average adjacency matrix, setting ψt = 1/T ∀ t = 1, . . . , T ,
which corresponds to the maximum likelihood estimate of E(At ) if A1, . . . , AT are
sampled independently from the same Bernoulli(XX⊤) distribution. The main limita-
tion of such a model is that it is assumed that the graphs do not display any temporal
evolution. Furthermore, if (5) is used, it is assumed that all the possible edges of the
adjacency matrix follow the same dynamics. Obtaining the ASE X̂ = [x̂1, . . . , x̂n] of
Ã leads to an estimate the scores:

S = X̂X̂⊤. (6)

For simplicity, the inner product (6) is not weighted by the matrix I(d+, d−), implicitly
assuming d+ = d and d− = 0. The estimation approaches in (5) and (6) will be used
as baselines for comparison with alternative methods for temporal link prediction
techniques using RDPGs, which will be proposed and discussed in the remainder of
this section. The proposed methods will be classified in the following two categories:
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– averages of inner products of embeddings (AIP),
– inner products of an average of embeddings (IPA).

First, it is possible to consider the individual ASE for each adjacency matrix At ,
and calculate an AIP score:

SAIP =
1

T

T
∑

t=1

X̂t X̂
⊤
t . (7)

A second option is to obtain an averaged embedding X̄ from X̂1, X̂2, . . . , X̂T , and
use this for predicting the link probabilities. This procedure is slightly more com-
plex than (7), since the embeddings are invariant to orthogonal transformations: given
an orthogonal matrix �t ∈ R

d×d , E(At ) = Xt X
⊤
t = (Xt�t )(Xt�t )

⊤. Therefore,

the embeddings X̂1, . . . , X̂T only provide estimates of the corresponding latent posi-
tions up to an orthogonal transformation, which could vary for different values of t .
Consequently, the embeddings must be suitably aligned or registered, before a direct
comparison can be carried out. Discussion of a technique to align the embeddings is
deferred to Appendix A. Assuming that an averaged embedding X̄ is obtained, the
matrix of IPA scores for prediction of AT +1 is:

SIPA = X̄X̄⊤. (8)

Similar scoring mechanisms can be derived for the techniques of multiple graph
inference described in Sect. 1, such as the omnibus embedding (Levin et al. 2017),
based on the the omnibus matrix:

Ã =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A1
A1 + A2

2
· · ·

A1 + AT

2
A2 + A1

2
A2 · · ·

A2 + AT

2
...

...
. . .

...
AT + A1

2

AT + A2

2
· · · AT

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (9)

The ASE X̂ of Ã gives T latent positions for each node. The individual estimates X̂t =

[x̂1t , . . . , x̂nt ] of the latent positions for the t-th adjacency matrix are represented by
the submatrix formed by the estimates between the ((t−1)n+1)-th and tn-th row of X̂.
Then, from the time series X̂1, X̂2, . . . , X̂T of omnibus embeddings, a matrix of scores
can be obtained using either AIP (7) or IPA (8). In this case, the individual embeddings
are directly comparable and an alignment step is not required. On the other hand, the
omnibus embedding cannot easily be updated when new graphs AT +1, AT +2, . . .

become available, since Ã and the embedding must be recomputed for each new
snapshot. The idea of an omnibus embedding can be also easily extended to directed
and bipartite graphs, constructing the matrix Ã analogously and then calculating the
DASE.
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Embeddings generated using the more parsimonious COSIE model (Arroyo-Relión
et al. 2020) are also considered. In COSIE networks, the latent positions are assumed
to be common across the T snapshots of the graph, but the link probabilities are scaled
by a time-varying matrix Rt ∈ R

d×d : E(At ) = XRt X
⊤. The common latent positions

X and the time series of weighting matrices R1, . . . , RT can be estimated via multiple
adjacency spectral embedding (MASE, Arroyo-Relión et al. 2020).

Definition 4 (Multiple adjacency spectral embedding – MASE) Given a sequence
of network adjacency matrices A1, . . . , AT , and an integer d ∈ {1, . . . , n}, obtain
the individual ASEs X̂t = Ŵ̂t |�̂t |

1/2 ∈ R
n×d . Then, construct the n × T d matrix

Ŵ̃ = [Ŵ̂1, . . . , Ŵ̂T ] ∈ R
n×T d , and consider its singular value decomposition Ŵ̃ =

ÛD̂V̂⊤+Û⊥D̂⊥V̂⊤
⊥, where D̂ ∈ R

d×d
+ is a diagonal matrix containing the top d singular

values in decreasing order, Û ∈ R
n×d and V̂ ∈ R

T d×d contain the corresponding left
and right singular vectors, and the matrices D̂⊥, Û⊥, and V̂⊥ contain the remaining
singular values and vectors. The d-dimensional multiple adjacency embedding of
A1, . . . , AT in R

d is given by X̂ = Û, which provides an estimate of X, and the
sequence R̂1, . . . , R̂T , where

R̂t = X̂⊤At X̂. (10)

For prediction, the matrix of AIP scores could be obtained from the time series of
estimated link probabilities X̂R̂1X̂⊤, . . . , X̂R̂T X̂⊤:

SAIP =
1

T

T
∑

t=1

X̂R̂t X̂
⊤. (11)

Alternatively, an averaged R̄ could be equivalently obtained from the time series of
estimates R̂1, . . . , R̂T . Combining R̄ with the estimate of the latent positions X̂ yields
the IPA scores:

SIPA = X̂R̄X̂⊤. (12)

The COSIE model can also be extended to directed and bipartite graphs assuming
E(At ) = XRt Y

⊤. This construction leads to estimates R̂t = Û⊤At V̂, where Û and V̂

are estimates of X and Y obtained from MASE on the DASE embeddings X̂1, . . . , X̂T

and Ŷ1, . . . , ŶT , based on two matrices Ŵ̃ constructed from the left and right singular
vectors (cf. Definition 4).

In summary, several link prediction schemes based on random dot product graph
models have been proposed, corresponding to three different types of spectral embed-
ding:

– scores based on individual embeddings, cf. (7) and (8),
– omnibus scores, cf. (7) and (8), based on the matrix representation in (9),
– COSIE scores, cf. (11) and (12).

Two scores, denoted AIP and IPA, are calculated for each embedding type. All methods
will be compared to the popular collapsed adjacency matrix method in (6).
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The methods described in this section are all based on truncated eigendecom-
positions of some form of the adjacency matrix. The full eigendecomposition of a
n × n dense matrix requires a cubic computational cost O(n3), but only d eigen-
vectors and eigenvalues, where d is in general O(1), are required in the algorithms
presented in this section. This reduces the computational effort to O(n2) (Yang et al.
2021). Also, graph adjacency matrices are binary and normally highly sparse. In this
setting, efficient algorithms based on the power method calculate the required decom-
position of a matrix A in O{nnz(A)P(1/ε)} (Ghashami et al. 2016), where nnz(·)
denotes the number of non-zero entries of the matrix, P(·) is a polynomial function
and ε ∈ (0, 1) is an approximation error parameter. This allows the methodologies
in this section to be scalable to large networks with the support of modern computer
libraries. For example, calculating the individual embeddings X̂1, . . . , X̂T only has
complexity O{P(1/ε)

∑T
t=1 nnz(At )}. COSIE adds a further SVD decomposition in

the MASE algorithm, which requires further O(nd2) operations. On the other hand,
calculating the omnibus embedding for large graphs might quickly become cumber-
some, especially if T is large, since up to O(n2T 2) operations are required.

5 Improving prediction using time series models

The collapsed matrix used in (5) assumes that the underlying dynamics of each link are
the same across the entire graph. This assumption is particularly limiting in real world
applications, where different behaviours might be associated with different nodes or
links. Instead, edge specific matrix parameters �1, . . . ,�T ∈ R

n×n might be able
to more reliably capture the behaviour of each edge. A modification of the collapsed
matrix Ã in (5) is therefore proposed:

Ã =

T
∑

t=1

(�T −t+1 ⊙ At ) , (13)

where �1, . . . ,�T ∈ R
n×n is a sequence of weighting matrices, and ⊙ is the

Hadamard element-wise product. The matrix in (13) is denoted predicted adjacency

matrix. Note that in (13), the weights can only be estimated for those entries such that
Ai j t = 1 for at least one t ∈ {1, . . . , T }, but the ASE of Ã still allows to estimate
non-zero link probabilities even for those edges such that Ai j t = 0 ∀t .

The idea could be easily extended to all the other prediction settings proposed
in Sect. 4, replacing the average link probability or average embedding with an
autoregressive combination. For example, from the sequence of standard embeddings
X̂1, X̂2, . . . , X̂T , it could be possible to obtain the scores as:

SPIP =

T
∑

t=1

(

�T −t+1 ⊙ X̂t X̂
⊤
t

)

. (14)

Alternatively, it could be possible to use a similar technique to obtain an estimate
X̃T +1 =

∑T
t=1(�T −t+1⊙X̂t ) of the embedding XT +1, where in this case � t ∈ R

n×d .
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The scores are then obtained as:

SIPP = X̃T +1X̃⊤
T +1. (15)

Similarly, for COSIE, the scores could be based on a linear combination of R̂1, . . . , R̂T

to estimate RT +1.
The equations (14) and (15) define two different methodologies to extend multiple

RDPG inference models to a dynamic setting. Following the same nomenclature used
in Sect. 4, the scores based on time series models have been respectively denoted as PIP
for the predicted inner product (14), and IPP for the inner product of the prediction (15).
The PIP scores have a particularly interesting property: the node-specific embeddings
are combined with time series models at the edge levels, fusing information at two
different network resolutions.

Note that, for COSIE scores, SAIP = SIPA from (11) and (12), but SPIP = SIPP. This
is because for SPIP, the scores are obtained directly from a prediction based on the
estimated link probabilities, whereas for SIPA, the prediction is based on an estimate
of RT +1 from R̂1, . . . , R̂T .

For estimation of the weighting matrices �1, . . . ,�T , the time series of link prob-
abilities or node embeddings will be modelled independently. Seasonal autoregressive
integrated (SARI) processes represent a flexible modelling assumption. A univariate
time series Z1, . . . , ZT ∈ R, is a SARI(p, b)(P, B)s with period s if the series is a
causal autoregressive process defined by the equation

φ(L)�(Ls)(1 − L)b(1 − Ls)B Z t = εt , εt
i id
∼ N(0, σ 2), (16)

where φ(v) = 1 − φ1v − . . . − φpv
p, �(v) = 1 − �1v − . . . − �PvP , and L is

the lag operator Lk Z t = Z t−k (Brockwell and Davis 1987). For example, consider a
process SARI(1, 0)(0, 1)s . The model equation (16) becomes Z̃ t = φ1 Z̃ t−1 + εt with
Z̃ t = Z t − Z t−s . The process is causal if and only if φ(v) = 0 and �(v) = 0 for
|v| ≤ 1. The parameters of the process p, b, P, B and s are all integer-valued, and can
be interpreted as follows: s is the seasonal periodicity; b corresponds to the differencing
required to make the process stationary in mean, variance, and autocorrelations, and B

refers to the seasonal differencing; p is to the number of autoregressive terms appearing
in the equation, and similarly P refers to the number of seasonal autoregressive terms.
More details about SARI models and their interpretation are given in Brockwell and
Davis (1987).

The value of s usually depends on the application domain. For example, in com-
puter networks with daily network snapshots, it is reasonable to assume s = 7, which
represents a periodicity of one week. The remaining parameters, p, b, P and B, could
be estimated using information criteria. For small values of T , the corrected Akaike
information criterion (AICc) is preferred. The corresponding coefficients of the poly-
nomials φ(v) and �(v), and the variance σ 2, can be estimated via maximum likelihood
(Brockwell and Davis 1987). For a discussion on automatic selection of the parameters
in SARI models, see Hyndman and Khandakar (2008).
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For prediction of future values Z t+1 conditional on Z1, . . . , Z t , the general fore-
casting equation is obtained from (16), setting εt+1 to its expected value E(εt+1) = 0,
and obtaining an estimate Ẑ t+1 solving from the known terms of the equation. Anal-
ogously, k-steps ahead forecasts for Z t+k can also be obtained.

In this article, the univariate time series Z1, . . . , ZT modelled using SARI are of
four different types:

– Time series of estimated link probabilities obtained from any embedding method:
for example x̂

⊤
i1x̂ j1, . . . , x̂

⊤
iT x̂ jT for the standard ASE, representing the sequence

of estimated scores for the edge (i, j). This type of time series is used to obtain
PIP scores, see (14);

– Time series of node embeddings on a given embedding dimension: for example
x̂ir1, . . . , x̂irT , obtained considering only the i-th node embedding on the r -th
dimension from X̂1, . . . , X̂T . Such values are used for the IPP scores, see (15);

– Time series of entries of the COSIE matrix, used to obtain IPP scores, see (15). For
example: R̂kh1, . . . , R̂khT , corresponding to the (k, h)-th entry in R̂1, . . . , R̂T ;

– Times series of binary entries of the network adjacency matrices: for example
Ai j1, . . . , Ai jT for the edge (i, j), used for (13).

The coefficients for each entry of the weighting matrices �1, . . . ,�T are obtained by
matching (13), (14) and (15) with the model equation (16).

In this work, the binary time series A1, A2, . . . , AT is also modelled using indipen-
dent SARI models for estimation of (13). Such a modelling approach might not be
entirely technically suited for binary-valued time series, but this choice has relevant
practical advantages: most programming languages have packages for automatic esti-
mation of the parameters in SARI models, whereas the choice of initial values and
estimation of the parameters in most generalised process for binary time series (Mac-
Donald and Zucchini 1997; Kauppi and Saikkonen 2008; Benjamin et al. 2003) is
notoriously difficult, which is not desirable when the estimation task should be per-
formed automatically and in parallel over a large set of time series.

The time series modelling extensions presented in this section are computationally
expensive, since up to n2 or nd time series model are fitted, each with complexity
O(T k), where k is the number of models compared for the purpose of model selec-
tion using AICc. This results in a computational cost of O(n2T k) for PIP scores or
O(ndT k) for IPP scores, difficult to manage for large networks. Therefore, with the
exception of the IPP COSIE scores, the methodologies proposed in this section do not
scale well to large networks, unlike the techniques proposed in Sect. 4. In the case
of the IPP COSIE score (12), the cost for prediction of future values of Rt is only
O(d2T k), independent of n.

The methodologies for constructing link prediction scores discussed in this work
are summarised in Fig. 1 in a flowchart. In summary, three choices must be made:

– embedding method (collapsed adjacency matrix, standard ASE, omnibus ASE,
COSIE embedding);

– combination method (average, cf. Sect. 4, or prediction, cf. Sect. 5);
– inner product (combination of inner products or inner product of a combination).

Clearly, the same methodology could be applied to any embedding method, not nec-
essarily based on the RDPG. Some examples will be given in Sect. 6.2.2.
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Fig. 1 Flowchart summarising the construction of a link prediction method using the techniques in Sects. 4
and 5

6 Results

The proposed methods were tested on synthetic data and on real world dynamic net-
works from different application domains: transportation systems, cyber-security, and
co-authorship networks. For all examples, the parameter d was selected using the pro-
file likelihood elbow criterion of Zhu and Ghodsi (2006), unless otherwise specified.

6.1 Simulated data

6.1.1 Seasonal stochastic blockmodel

The performance of the rival link prediction techniques discussed in this article
is initially compared on simulated data from stochastic blockmodels. The stochas-
tic blockmodel (Holland et al. 1983) can be interpreted as a special case of a
GRDPG (Rubin-Delanchy et al. 2017): each node i is assigned a latent community
zi ∈ {1, . . . , K }, with corresponding latent position μzi

∈ R
d ; the probability of a

link (i, j) only depends on the community allocation of the two nodes: P(Ai j = 1) =

μ⊤
zi

I(d+, d−)μz j
. To simulate a stochastic blockmodel, a within-community proba-

bility matrix B = {Bi j } ∈ [0, 1]K×K was generated, where Bi j ∼ Beta(1.2, 1.2) is
the probability of a link between two nodes in communities i and j , and K is the
number of communities. The matrix has full rank with probability 1, hence K = d. In
the simulation, T = 100 graph snapshots with n = 100 and K = 5 were generated.
The community allocations were chosen to be time dependent, assuming a seasonality
of one week. For each node, community allocations zi,u, u = 0, . . . , s − 1, with
s = 7, were sampled uniformly from {1, . . . , K }. Then, the adjacency matrices were
obtained as:

P(Ai j t = 1) = Bzi,t mod s ,z j,t mod s
, t = 1, . . . , T . (17)

Therefore, the link probabilities change over time, with a periodicity of 7 days. The
models presented in Sect. 4 were fitted using the first T ′ = 80 snapshots of the graph,
with the objective of predicting the remaining T −T ′ adjacency matrices. The methods
that are initially compared are:

– ASE of the averaged adjacency matrix, cf. (5) and (6),
– AIP and IPA scores calculated from the standard ASE, cf. (7) and (8),
– AIP and IPA scores calculated from the omnibus embedding, cf. (9),
– AIP and IPA scores calculated from COSIE, cf. (11) and (12).
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Fig. 2 Results of the link prediction procedure on the simulated seasonal SBM

The link prediction problem can be framed as a binary classification task. Hence,
the performances of the methods presented in this article are evaluated using the area
under the receiver operating characteristic (ROC) curve, commonly known as AUC
scores. The results are plotted in Fig. 2. The best performance is achieved by the AIP
score based on the standard ASE, which outperforms the commonly used method of
the collapsed adjacency matrix (5).

It is anticipated that the predictions should be improved upon by the PIP and IPP
extensions presented in Sect. 5, since the simulated network has clear dynamics which
are not explicitly taken into account using the techniques from Sect. 4. In particular,
four methods are discussed:

– ASE of the predicted adjacency matrix, cf. (13), with weights obtained from inde-
pendent seasonal SARI(p, b)(P, B)7 processes fitted on each binary sequence
Ai j1, Ai j2, . . . , Ai jT ′ such that at least one Ai j t = 1;

– PIP scores calculated from the standard ASE, cf. (14), based on the edge time
series x̂

⊤
i1x̂ j1, x̂

⊤
i2x̂ j2, . . . , x̂

⊤
iT ′ x̂ jT ′ obtained from the individual ASEs on each

A1, A2, . . . , AT ′ ;
– IPP scores calculated from the standard ASE, cf. (15), based on prediction of

the subsequent embeddings X̃T ′+1, X̃T ′+2, . . . from the time series of aligned1

individual ASEs X̂1, . . . , X̂T ′ ;
– IPP scores calculated from COSIE, based on prediction of correction matrices

R̃T ′+1, R̃T ′+2, . . . from the time series R̂1, . . . , R̂T ′ , where independent models
are fitted to the d × d time series corresponding to each entry.

1 The indefinite Procrustes alignment step, described in Appendix A, has been implemented in python using
rpy2 and the R codebase developed by Joshua Agterberg, available online at https://github.com/jagterberg/
indefinite_procrustes and https://jagterberg.github.io/assets/procrustes_simulation.html.
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(a) (b)

Fig. 3 Comparison between four of the link prediction models in Fig. 2, and their extensions using the
methods in Sect. 5, on the synthetic SBM data

The time series models were fit using the function auto_arima in the statistical python

library pmdarima, using the corrected AIC criterion to estimate the number of param-
eters. The results are presented in Fig. 3.

The AIP method (7) which had the best performance in Fig. 2, is significantly
improved by the PIP score (14) using time series modelling, and it is overall the only
method that reaches values of the AUC well above 0.8. Remarkably, the performance
of the predicted adjacency matrix method in (13) outperforms the results based on
most of the other methods, despite the issues related to the modelling of binary time
series pointed out in Sect. 5. On the other hand, the improvements obtained using the
COSIE-based scores and the IPP score (15) seem to be less significant compared to
the two other methods. This aspect will also be confirmed on real data examples in
the next section. In general, it is clear from the plots in Fig. 3 that adding temporal
dynamics to the network via time series modelling is beneficial for link prediction
purposes. In particular, including edge specific information from the time series of
estimated link probabilities, or from the binary time series of links, has significantly
improved link prediction.

6.1.2 Logistic dynamic network model

Next, the effect of the dynamic component on the prediction is evaluated. A directed
dynamic graph with n = 100 and T = 100 is simulated, assuming Ai j t ∼

Bernoulli(vi j t ), t = 1, . . . , T , where

logit(vi j t ) = bi j + ci jθ(t − 1), (18)

where bi j is a baseline, such that bi j ∼ Uniform(−6.9, 0) independently for all pairs
(i, j), implying vi j1 ∈ (0.001, 0.5). Furthermore, θ ∈ R is a trend parameter common
to all the possible edges, and ci j ∈ {−1, 1} is the sign of the trend on each edge, such
that P(ci j = 1) = P(ci j = −1) = 1/2. Note that if θ = 0, the graph does not have
any dynamics, whereas if |θ | increases, the graph dynamics also increases. Note that,
asymptotically for t → ∞, vi j t → 0 if ci jθ → −∞, and vi j t → 1 if ci jθ → ∞.
Dynamic graphs are simulated for θ ∈ {0, 0.025, 0.05, 0.075}, and the AIP and PIP

scores obtained from standard ASE trained on the first T ′ adjacency matrices are
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(a) (b)

Fig. 4 Difference between sequential AIP scores and (a) non-sequential AIP scores, (b) non-sequential
PIP scores, calculated from standard ASE, for θ ∈ {0, 0.025, 0.05, 0.075} in the logistic dynamic network
model (18)

calculated for prediction of the last T − T ′ network snapshots. The results are then
compared with the AIP scores with standard ASE, sequentially updated when new
network snapshots become available, used for a 1-step ahead prediction of the next
snapshot. If the network has a relevant dynamic component, the difference between
the AUC obtained from the sequential and non-sequential AIP scores increases over
time, because the network structure changes and the non-sequential scores cannot
capture such evolution. On the other hand, the difference between the sequential AIP
scores and the PIP scores should not show an increasing trend over time, since the
time dynamics is taken into account via time series modelling.

Figure 4 plots the time series of differences between the sequential AIP scores
and the corresponding non-sequential scores (Fig. 4a), and the difference between
the sequential AIP scores and the PIP scores (Fig. 4b), for four different values of θ .
The plot demonstrates that in presence of a strong dynamic component, the sequential
scores outperform non-sequential scores over time, as expected. On the other hand, the
PIP scores perform similarly to the sequential scores, and the trend in the differences
seem to disappear, up to fluctuations: this is overall remarkable, since the PIP scores
are used for up to (T − T ′)-steps ahead predictions of matrices of scores based only
on the initial T ′ adjacency matrices, whereas the sequential scores also use the last
T − T ′ adjacency matrices sequentially for 1-step ahead predictions.

6.2 Santander bikes

Santander Cycles is a self-service cycle hire scheme operated in central London. Data
about usage of the bikes are periodically released by Transport for London.2 In this
example, data from 7 March, 2018 to 19 March, 2019 were used, for a total of T = 378
days. Each bike sharing station is considered as a node, and an undirected edge (i, j, t)

is drawn if at least one journey between the stations i and j is completed on day t . The
total number of docking stations in London is n = 840. The daily graphs are fairly

2 The data are freely available at https://cycling.data.tfl.gov.uk/, powered by TfL Open Data.
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Fig. 5 Results of the link prediction procedure on the Santander Cycles network for different RDPG-based
link prediction methods

dense, with an average edge density of approximately 10% across the T networks.
The first T ′ = 250 graphs are used as training set.

6.2.1 Averaged scores

Initially, the methods compared are four of the techniques used to produce Fig. 2:

– ASE of the averaged adjacency matrix,
– AIP and IPA scores calculated from the standard ASE,
– IPA scores calculated from COSIE.

For the Santander Cycles network, the results are reported in Fig. 5 for d = 10.
In Fig. 5, the performance of the classification procedure drops around day 294. This
corresponds to Christmas day, which has a different behaviour compared to non-festive
days. It is also interesting to point out that COSIE methods tends to perform better
on weekdays than weekends, whereas the other methods more accurately predict the
links on weekends compared to weekdays. The results of the link prediction procedure
in Fig. 5 suggest that the data might not have a long term trend, but only a seasonal
component, since the performance does not significantly decrease over time, and the
parameters obtained using a training set of size T ′ = 250 seem to reliably predict
the structure of the adjacency matrix even at T = 378. Overall, this example seems
to confirm that the method of AIP scores (7) based on standard ASE has the best
performance for link prediction purposes when time dynamics are not included.

6.2.2 Comparison with alternative methods

To provide further comparison, the methods proposed in Sect. 4 are also compared in
Fig. 6 to other methods used for link prediction in the literature. In order to demonstrate
that the proposed methodology could be readily extended to any embedding technique,
the embeddings were calculated from each of the adjacency matrices A1, . . . , AT , and
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prediction scores were obtained using the AIP methodology, akin to (7). The alternative
methods considered in this section are:

– AIP scores calculated from the Adamic-Adar (AA) and Jaccard coefficients (used,
for example, in Güneş et al. 2016),

– AIP scores calculated from non-negative matrix factorisation (NMF; see, for exam-
ple, Chen et al. 2017; Yu et al. 2017a) with d = 10,

– AIP scores calculated from unsupervised GraphSAGE (Hamilton et al. 2017),
GCN (Kipf and Welling 2017) with Deep Graph Infomax (DGI, Velickovic et al.
2019), and Watch Your Step with Graph Attention (WYS-GA, Abu-El-Haija et al.
2018).3 Unsupervised network embeddings x̂i t ∈ R

d are obtained independently
for each of the T ′ graphs in the training set, using one of the aforementioned
methods with one-hot indicator vectors as node features (when required). For the
unsupervised GraphSAGE, a two-layer model with sizes 50 and d = 10 is fitted,
with 10 walks of length 10 per node, batch size 512 and 10 iterations in each
encoder; Adam (Kingma and Ba 2015) is used for learning the embeddings, with
learning rate 10−2. Note that the embedding dimension has been chosen to match
the dimension of the RDGP-based embeddings. For the GCN, a one-layer network
is trained, with layer size d = 10 and ReLU activation, optimised by Adam with
learning rate 10−2. For WYS-GS, 100 walks per node are used, with β = 0.1 and
C = 10 (for the definition of such parameters, see Abu-El-Haija et al. 2018), with
embedding dimension d = 10; the model is then trained with Adam with learning
rate 10−3. For each of the methods, edge features are obtained from the Hadamard
product x̂i t ⊙ x̂ j t between the estimated node embeddings (see, for example,
Grover and Leskovec 2016). The link probabilities for each time window are then
estimated from T ′ independent logistic regression models with response Ai j t and
d predictors of the form x̂i t ⊙ x̂ j t . The link probabilities are then combined using
the AIP method (7), and used to predict connections in the last T − T ′ observed
graphs.

– Predictive scores calculated from three methods specifically developed for repre-
sentation learning of dynamic graphs: the Deep Embedding Auto-Encoder Method

for Dynamic Graphs (DynGEM, Goyal et al. 2017), the dynamic graph2vec

autoencoder recurrent neural network model (DyG2V-AERNN, Goyal et al.
2020),4 and the Dynamic Self-Attention Network (DySAT, Sankar et al. 2020).5

The methods were run using the default implementation of the software packages,
setting the output embedding dimension to d = 10 and the batch size to 100. Link
probabilities for the T − T ′ graphs in the test set were calculated using the same
procedure described for GraphSAGE, GCN-DGI and WYS-GA.

The best performance among the alternative methods is achieved by the NMF
scores, which achieve an almost equivalent performance to the AIP scores obtained
from standard ASE. Slightly inferior performance is achieved by DyG2V-AERNN
and DySAT, despite consistently exceeding 0.85 in AUC. GCN, Jaccard, WYS-GA

3 The models were fitted using the implementation in the python library stellargraph (CSIRO’s Data61
2018).
4 The models were fitted using the implementation in the python library DynamicGEM (Goyal et al. 2018).
5 The model was fitted using the code in the GitHub repository https://github.com/aravindsankar28/DySAT.
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Fig. 6 Results of the link prediction procedure on the Santander Cycles network for different link prediction
methods

and GraphSAGE have a slightly worse performance, but still consistently achieve
AUC scores exceeding 0.8. All of the proposed methodologies perform better than
the Adamic-Adar and DynGEM, which seem to be largely outperformed by spectral
embedding methods. Note that representation learning methods shine in particular
when applied to large graphs with rich node features (for example, Hamilton et al.
2017), which is clearly not the case for the Santander cycles network. Furthermore,
hyperparameter tuning is necessary to obtain a good link prediction performance,
whereas RDGP-based methods only require the embedding dimension as input, and
no further tuning is required.

As discussed in Sect. 1, it should be noted that the methodologies of AIP and IPA
scores proposed in Sect. 4, and the corresponding PIP and IPP extensions in Sect. 5,
could be applied to any sequence of individual embeddings, not necessarily obtained
using ASE, but also with other embedding methods for static networks, for example
NMF, as demonstrated in this section. Since one of the main objectives of this paper
is comparing different embedding methods based on RDPGs, the focus in subsequent
examples will be only on RDPG-based techniques.

6.2.3 Sequential scores

So far, the embeddings learned using the initial T ′ snapshots have been used to predict
all the remaining T − T ′ adjacency matrices. In practical applications, it would be
necessary to sequentially update the scores when new snapshots become available over
time, improving the predictive performance. This is demonstrated in Fig. 7, where the
AIP scores for standard ASE and the average adjacency matrix scores from Fig. 5 are
compared with their sequential counterparts, obtained when the model is updated using
each new observation At in the test set. Clearly, updating the scores sequentially is
beneficial, especially towards the end of the test set, whereas the difference between the
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Fig. 7 Results for the AIP scores (7) and averaged adjacency matrix scores for the Santander Cycles network,
with and without sequential updates

methodologies is negligible in the initial snapshots of the test set. Both methods seem to
reliably predict even k-steps ahead network snapshots, since the non-sequential curves
in Fig. 7 are fairly close to their sequential counterparts. The method of AIP scores
based on standard ASE outperforms the scores based on the averaged adjacency matrix,
commonly used in the literature, including sequential settings. Furthermore, the non-

sequential AIP scores (7) also outperform the sequential averaged adjacency matrix.
This result is quite remarkable, since the former only use the initial T ′ snapshots of
the network for training, whereas the latter is sequentially updated with the snapshots
in the test set.

6.2.4 Predicted scores

The performance of the classifiers can be improved using some of the time series
model in Sect. 5. Figure 8a show the results obtained from the prediction of subse-
quent COSIE correction matrices. The predictive performance is slightly improved by
the extended time series models. Again, it is empirically confirmed that adding tem-
poral dynamics is beneficial for the performance of random dot product graph based
classifiers.

On the other hand, predicting the subsequent adjacency spectral embeddings from
the time series of aligned embeddings X̂1, X̂2, . . . , X̂T ′ does not seem to improve
the predictive performance. The results are presented in Figure 8b, and confirms the
findings in Figure 3b, where the improvements on the simulated network were less
significant compared to other methods. In this case, the time series models are not able
to capture the dynamics of the aligned embeddings, and the predictive performance
does not improve in AUC.

The limited improvements in the results seem to suggest that the network does not
have a strong dynamic component. The tradeoff between performance and the compu-
tational effort required to fit multiple independent time series simultaneously, would
suggest use of the AIP scores (7) based on standard ASE in practical applications.
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(a) (b)

Fig. 8 Comparison between two of the link prediction models in Figure 5, and their extensions using the
methods in Sect. 5, on the Santander Cycles network

6.3 Los Alamos National Laboratory dataset

The unified host and network dataset (Turcotte et al. 2018) released by the Los Alamos
National Laboratory (LANL) consists of a collection of network flow and host event
logs generated from their machines running Microsoft Windows. From the host event
logs, 90 daily user-authentication bipartite graphs have been constructed, writing
Ai j t = 1 if the user i initiates a connection authenticating to computer j , on day
t . This graph is known as the user – destination IP graph. A total of n1 = 12, 222
users, n2 = 5047 hosts, and 85, 020 pairs (i, j) are observed, corresponding to approx-
imately 0.137% of all possible links.

6.3.1 Averaged scores and subsampling

The first T ′ = 56 matrices are used as training set. Note that it is computationally
difficult to calculate n1 × n2 scores for each adjacency matrix, and storing such large
dense matrices in memory is also not efficient. Therefore, an estimate of the AUC can
be obtained by subsampling the negative class at random from the zeroes in the test set
adjacency matrices. Two subsampling techniques are used to construct the negative
class for prediction of At :

(1) the negative class is constructed by sampling pairs (i, j) such that Ai j t = 0,
(2) the negative class contains randomly selected pairs (i, j) such that Ai j t = 0, and all

pairs (i, j) such that Ai j t = 0 and Ai j t ′ = 1 for at least 1 value of t ′ ∈ {1, . . . , T }.

For simplicity, the two techniques are denoted with the numbers (1) and (2) in Fig. 9,
which reports the results for the 6 methods considered in Fig. 2 in Sect. 6.1. The former
subsampling technique provides an estimate of the ROC curve for the entire matrix,
since the scores are sampled at random from the distribution of all scores. On the
other hand, the latter method includes in the negative class more elements that tend
to have associated high scores, represented by the pairs (i, j, t) such that Ai j t = 0
and Ai j t ′ = 1 for at least 1 value of t ′ ∈ {1, . . . , T }, giving an unbalanced sampling
procedure and therefore a biased estimate of the ROC curve. Clearly, higher AUC
scores are obtained using the first subsampling procedure.

Interestingly, in Fig. 9a, the COSIE-based AIP scores seem to have the best pre-
dictive performance across the different methods. In particular, COSIE scores tend
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(a) (b)

Fig. 9 Results of the link prediction procedure on the LANL network. AUCs are calculated from ≈ 150, 000
links per graph

to largely outperform the other methods during weekdays, whereas the performance
during weekends seems almost equivalent, and sometimes inferior, to the AIP scores
(7) based on the standard ASE. On the other hand, in Fig. 9b, COSIE scores have
the worst performance among the methods, except a spike on day 62. In Fig. 9b, AIP
scores (7) based on the standard ASE once again give the best predictive performance.
The results of Fig. 9b are of particular interest since these allow for a comparison of
the classifiers on a more challenging negative class compared to Fig. 9a. Therefore,
it is reasonable to conclude that the AIP scores (7) emerge again as the most suitable
method for link prediction based on random dot product graphs.

6.3.2 Significance of the difference betweenmethods

It could be argued that the differences between the methodologies do not appear
to be significant, and might be due to the subsampling scheme. In order to assess
significance of the differences, the subsampling procedure was repeated for M = 100
times, and the corresponding AUCs were calculated. Figure 10 plots the estimated
95% confidence intervals for the difference between the AUCs obtained using different
methods. Figure 10a uses the IPA scores calculated with COSIE as reference, and the
AUCs are obtained with subsampling (1). Similarly, Fig. 10b uses subsampling (2), and
the AIP scores calculated with standard ASE are used as reference. Note that the width
of the confidence intervals in Fig. 10 is barely visible, since the standard deviations of
the AUC scores are < 10−4. This is because the number of subsamples is large enough
to obtain extremely precise estimates of the AUC. Since the confidence intervals do not
contain zero at any of the time points, the pairwise differences between the performance
of different methodologies appear to be statistically significant. Similar confidence
intervals, and corresponding p-values < 10−6 were observed for all the comparisons in
the current and next sections, suggesting that the subsampling procedure for estimation
of the AUC is robust.

6.3.3 Streaming link prediction and sequential scores

For this example, it is also demonstrated how the proposed methods can be extended
for streaming applications. For example, the method of combining inner products
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(a) (b)

Fig. 10 95% confidence intervals of the difference between AUCs obtained alternative methods, obtained
using subsampling (1) in (a) and (2) in (b). Reference method: (a) IPA scores, COSIE, (b) AIP scores,
standard ASE

of individual embeddings is particularly suitable for implementation in a streaming
fashion, since the inner products are easily updated on the run when new snapshots of
the graph are observed. A demonstration using the method of fixed forgetting factors

(Gama et al. 2013) is given here. The matrix of scores St for prediction of At+1 is
updated in streaming as follows:

wt = λwt−1 + 1,

St =

(

1 −
1

wt

)

St−1 +
1

wt

X̂t X̂
⊤
t , (19)

starting from w1 = 1 and S1 = X̂1X̂⊤
1 . The forgetting factor λ ∈ [0, 1] is usually

chosen to be close to 1 (Gama et al. 2013). Note that λ = 1 corresponds to the
sequential AIP scores in (7), calculated as in Fig. 7, whereas smaller values of λ give
more weight to recent observations. In particular, λ = 0 only gives weight to the
most recent snapshot. Schemes similar to (19) could be also implemented to update
the collapsed adjacency matrix (5), obtaining the scores from its ASE at each point
in time, or to update the matrix Rt in (4) for the COSIE embeddings, or the rotated
embeddings X̂t . The forgetting factor approach might be interpreted as a simplification
of the time series scheme proposed in Sect. 5, where the same weight is given to each
edge.

The results for the entire observation period for a range of different values of λ are
plotted in Fig. 11. The best performance is achieved with the forgetting factor approach
with λ ∈ [0.4, 0.8]. The performance for λ = 0 clearly drops around the weekends,
since the network has a seasonal component which is not accounted for in the predic-
tion. The difference between the curves for λ = 1 and λ < 1 suggests that the graph
has temporal dynamics which is captured by the forgetting factor approach, which
down-weights past observations in favour of more recent snapshots of the graph. This
impression is confirmed by Fig. 12, which shows the sequential and non-sequential
AIP scores based on the standard ASE, akin to Fig. 7. The predictive performance
slightly deteriorates for snapshots that are further away in time, whereas 1-step ahead
predictions based on the sequential scores consistently give better results.
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Fig. 11 Results for the AIP scores (7) on the LANL network with streaming updates. AUCs are calculated
from ≈ 150, 000 links, using subsampling (2)

Fig. 12 Results for the AIP scores (7) for the LANL network, with and without sequential updates. AUCs
are calculated from ≈ 150, 000 links per graph, using subsampling (1)

6.3.4 Predicted scores

The performance can be again improved using the time series models in Sect. 5.
Figure 13 shows the results obtained using the two different subsampling schemes for
three methods:

– ASE of the averaged and predicted adjacency matrix,
– AIP and PIP scores calculated from standard ASE,
– IPA and IPP scores calculated from COSIE.

From Fig. 13a, 13c and 13e, it is evident that the extensions do not improve the
performance of the classifier when the subsampling scheme (1) is used. On the other
hand, Fig. 13b, 13d and 13f show that relevant improvements (especially on day 62) are
obtained when the subsampling method (2) is used, which represents a more difficult
classification task. Again, the results confirm that the performance of RDPGs for link
prediction can be enhanced by time series models.

6.4 Imperial College network flow data

The methodologies proposed in Sect. 4 are also tested on a large computer network,
demonstrating that the spectral embedding techniques are scalable to graphs of large
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(a) (b)

(c) (d)

(e) (f)

Fig. 13 Comparison between three of the link prediction models in Fig. 9, and their extensions using the
methods in Sect. 5, on the LANL network. AUCs are calculated from ≈ 150, 000 links per graph

size. A directed graph with n = 95, 220 has been constructed using network flow
data collected at Imperial College London, limiting the connections to internal hosts
only. The data have been collected over T = 47 days, between 1st January and 16th
February 2020. An edge between a client i and a server j is drawn on day t if the
two hosts have connected at least once during the corresponding day. The number of
edges ranges from a minimum of 344, 565, observed on 1st January, to a maximum
of 912, 984 on 6th February.

The results are plotted in Fig. 14. In this case, the best performance is achieved
by the COSIE scores, similarly to the LANL network in Fig. 9a. The traditional
methodology of the averaged adjacency matrix is also outperformed by the AIP scores,
which supports the results obtained in all the previous real data examples. As pointed
out in Sect. 5, fitting the time series models on the sequence R̂1, . . . , R̂T ′ of COSIE
weighting matrices is inexpensive, and it is therefore possible to scale the time series
extension of the IPA scores to a fairly large network. The results of this procedure are
plotted in Fig. 15, which shows again that the time series extension is beneficial for
link prediction purposes.
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(a) (b)

Fig. 14 Results of the link prediction procedure on the Imperial College NetFlow network. AUCs are
calculated from 6.7 million links per graph

(a) (b)

Fig. 15 IPA and IPP scores using COSIE embeddings on the Imperial College NetFlow network. AUCs are
calculated from 6.7 million links per graph

6.5 DBLP dataset

Finally, the methodology is evaluated on a version of the DBLP co-authorship dataset6,
extensively used in the computer science literature. The DBLP network is undirected,
with n = 1, 258, 753 nodes, corresponding to authors of papers in computer science,
for a total of 7, 654, 336 undirected co-authorship edges over T = 15 years, starting
in 2000. An edge between two authors i and j is drawn if they co-authored a paper in
year t . The network is extremely sparse, with edge densities ranging from 1.90 · 10−7

in 2000 to 7.41 · 10−7 to 2015. The number of co-authorships consistently increases
over the years, corresponding to a steady increase in the number of publications in
computer science journals and conferences.

The initial T ′ = 10 graphs, from 2000 to 2009, are used as training set, whereas
the last T − T ′ graphs, from 2010 to 2014, correspond to the test set. The results are
presented in Table 1, for the same models examined in Sect. 6.4 on the Imperial College
network, for the two different subsampling schemes. Unsurprisingly, the AIP scores
with standard ASE achieve the best performance. Limited improvement is obtained
considering the time series extension on the IPA scores with COSIE.

The performance of the RDPG on the DBLP network is significantly worse than
the other examples considered in this section, suggesting that RDPG-based methods
might not be the most appropriate technique for this graph. This is because the graph is

6 The data are freely available at https://projects.csail.mit.edu/dnd/DBLP/.
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Table 1 Results of the link prediction procedure on the DBLP co-authorship network. AUCs are calculated
from approximately 17 million links per graph

Methodology Predicted graph
2010 2011 2012 2013 2014

(a) Subsampling (1)

averaged adjacency matrix 0.6912 0.6431 0.6095 0.5847 0.5777

AIP scores, standard ASE 0.7063 0.6685 0.6413 0.6235 0.6184

IPA scores, standard ASE 0.6637 0.6291 0.6066 0.5906 0.5856

IPA scores, COSIE 0.6744 0.6378 0.6123 0.5955 0.5903

IPP scores, COSIE 0.6893 0.6511 0.6252 0.6072 0.6020

(b) Subsampling (2).

averaged adjacency matrix 0.6690 0.6202 0.5857 0.5598 0.5508

AIP scores, standard ASE 0.6765 0.6369 0.6083 0.5892 0.5807

IPA scores, standard ASE 0.6416 0.6058 0.5822 0.5653 0.5577

IPA scores, COSIE 0.6502 0.6124 0.5862 0.5687 0.5612

IPP scores, COSIE 0.6629 0.6234 0.5964 0.5773 0.5690

extremely sparse, and a large number of new nodes appears in the network over time.
Such authors, before their first published paper, are represented by rows and columns
filled with zeros in the adjacency matrix, acting as disconnected components in the
graph. Therefore, learning the embedding for such nodes is particularly difficult for
the RDPG, since a limited (or null) history of co-authorships is available.

6.6 Discussion and summary of results

The main methodological contribution of this article is an adaptation for temporal link
prediction of existing RDPG-based methods for joint inference on multiple graphs.
Also, this article proposes techniques to capture the temporal dynamics of the observed
graphs, combining the link probabilities and embeddings obtained via spectral methods
with time series models. As demonstrated in Sect. 6.2.2, the proposed methods for
combination of individual embeddings, and the extension based on time series modes,
can be applied on any embedding method for static graphs, not necessarily restricted
to RDPG models. The proposed methods have been applied on different synthetic
and real-world datasets of different complexity, which highlighted the strengths and
weaknesses of the proposed methodologies. In general, in most simulated and real-
world networks analysed in this work, the AIP scores (7) based on standard ASE
appear to consistently achieve a very good link prediction performance in terms of
AUC scores.

Both simulations and applications on real data demonstrated that adding temporal
dynamics to the estimated link probabilities via time series modelling is beneficial for
link prediction purposes (cf. Sects. 6.1, 6.2.4 and 6.3.4). On the other hand, the time
series extension is computationally expensive for most RDPG-based models, except
the IPP scores based on COSIE scores. The extensions provide significant benefits
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only if the network presents a strong dynamic component, as demonstrated in the
simulation on the logistic dynamic network model in Sect. 6.1.2.

The application to the Santander bikes data (cf. Sect. 6.2) highlighted that the ran-
dom dot product graphs are an excellent option for link prediction for fairly small
graphs without node or edge features. In such cases, the simplicity of RDPG-based
models appears to overcome the advantages of deep learning methods (cf. Sect. 6.2.2),
which instead shine when applied to large graphs with rich node and edge features (for
example, Hamilton et al. 2017). Furthermore, it must be remarked that RDPG-based
methods require minimal tuning (essentially, only the choice of the latent dimension d),
whereas alternative state-of-the-art models require computationally expensive hyper-
parameter tuning procedures.

The applications on the LANL, ICL and DBLP networks (cf. Sects. 6.3, 6.4 and 6.5)
demonstrated that the methodologies of AIP and IPA scores are scalable to fairly large
graphs, and a good performance is achieved when the set of nodes is stable over
time. It has also been shown that the proposed methodologies, in particular the AIP
scores, are well suited to streaming applications (cf. Sect. 6.3.3). The main limitation
of the proposed link prediction framework is its inability to easily deal with new nodes
appearing in the network, as exemplified by the application on the DBLP network in
Sect. 6.5.

7 Conclusion

In this paper, link prediction techniques based on random dot product graphs have
been presented, discussed and compared. In particular, link prediction methods based
on sequences of embeddings, COSIE models, and omnibus embeddings have been
considered. Applications on simulated and real world data have shown that one of
the most common approaches used in the literature, the decomposition of a collapsed
adjacency matrix Ã, is usually outperformed by other methods for multiple graph
inference in random dot product graphs.

Estimating link probabilities with the average of the inner products from sequences
of individual embeddings of different snapshots of the graph has given the best per-
formance in terms of AUC scores across multiple datasets. This result is particularly
appealing for practical applications: calculating the individual ASEs is computation-
ally inexpensive using algorithms for large sparse matrices, and the method seems
particularly suitable for implementation in a streaming fashion, since the average
inner product could be easily updated on the run when new snapshots of the graph are
observed, as demonstrated in Sect. 6.3.

The methods discussed in the article have then been further extended to include tem-
poral dynamics, using time series models. The extensions have shown improvements
over standard random dot product graph based link prediction techniques, especially
when the graph exhibits a strong dynamic component. The techniques presented in
this article could also be readily extended to any embedding method for static graphs,
following the framework for calculating AIP and IPA scores presented in Section 4,
and the PIP and IPP extensions in Section 5. Therefore, our methodology is not only
applicable to RDPG embeddings, particularly attractive for their theoretical proper-
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ties and ease of implementation, but also to modern static embedding methods for
graph adjacency matrices, for example graph neural network techniques like GCN or
GraphSAGE. Overall, this article provides valuable guidelines for practitioners for
using random dot product graphs as tools for link prediction in networks, providing
insights into the predictive capability of such statistical network models.
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A Generalised Procrustes alignment of individual embeddings

As discussed in Sect. 4, for prediction of the future latent positions based on individual
embeddings X̂1, . . . , X̂T , it is first necessary to align the embeddings. This section
discusses a popular method for aligning two matrices: Procrustes analysis (Dryden
and Mardia 2016) and its generalisation to T matrices (Gower 1975). The alignment
step is required because the latent positions Xt of a single graph are not identifiable
up to orthogonal transformations, which leave the inner product unchanged: for an
orthogonal matrix �t , (Xt�t )(Xt�t )

⊤ = Xt X
⊤
t . Therefore X̂1, . . . , X̂T only repre-

sent estimates of a rotation of the embeddings. Given two embeddings X̂1, X̂2 ∈ R
n×d ,

Procrustes analysis aims to find the optimal rotation of X̂2 on X̂1. The following min-
imisation criterion is utilised:

min
�

∥

∥

∥
X̂1 − X̂2�

∥

∥

∥

F
, (20)

where � is an orthogonal matrix, and ‖ · ‖F denotes the Frobenius norm. The solution
of the minimisation problem has been derived in Schönemann (1966), and is based on
the SVD decomposition X̂⊤

2 X̂1 = ŨD̃Ṽ⊤. The solution is �⋆ = ŨṼ⊤, and it follows

that the optimal rotation of X̂2 onto X̂1 is X̂2ŨṼ⊤.

Similarly, a set of T embeddings X̂t ∈ R
n×r , t = 1, . . . , T can be superimposed

using generalised Procrustes analysis (GPA, Gower 1975), which uses the minimisa-
tion criterion:

min
� j

T
∑

j=1

∥

∥

∥
X̂ j� j − X̃

∥

∥

∥

2

F
s.t.

T
∑

j=1

S2(X̂ j ) =

T
∑

j=1

S2(X̂ j� j ), (21)

where, similarly to (20), � j are orthogonal matrices. Additionally, X̃ ∈ R
n×r is a

reference matrix, shared across the T matrices, and S(·) is the centroid size S(M) =

‖(In − 1
n

1n1⊤
n )M‖F. The GPA algorithm solves (21) by iterating standard Procrustes
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analysis (Dryden and Mardia 2016), after a suitable initialisation of the reference
matrix:

1. update the embeddings X̂t , performing a standard Procrustes superimposition of
each X̂ j on X̃:

X̂ j ← X̂ j Ũ j Ṽ
⊤
j , (22)

where X̂⊤
j X̃ = Ũ j D̃ j Ṽ

⊤
j ;

2. update the reference embedding: X̃ =
∑T

t=1 X̂t/T ;
3. repeat steps 1 and 2 until the difference between two consecutive values of (21) is

within a tolerance η.

The final value of the reference embedding X̃ can be interpreted as the average of
rotations of the initial embeddings. The alignment step increases the computational
cost of the operations described in Sect. 4 by a factor of O(nd2), caused by the repeated
SVD decompositions and matrix multiplications in the GPA algorithm.

When d− = 0 in the GRDPG setting, the problem is known as indefinite Pro-

crustes problem, and does not have closed form solution (Kintzel 2005). In this setting,
the criterion (20) must be optimised numerically for � ∈ O(d+, d−), the indefinite
orthogonal group with signature (d+, d−). The optimisation routine could be applied
iteratively in the GPA algorithm to obtain an indefinite GPA.

On the other hand, for directed and bipartite graphs, the criteria (20) and (21) must
be optimised jointly for the two embeddings obtained using DASE in Definition 3. For
two embeddings (X̂1, Ŷ1) and (X̂2, Ŷ2) obtained from a directed graph, the solution is
simply given by aligning the stacked matrices [X̂⊤

1 , Ŷ⊤
1 ]⊤ ∈ R

2n×r and [X̂⊤
2 , Ŷ⊤

2 ]⊤ ∈

R
2n×r using (20). The procedure could be also iterated for more than two embeddings

to obtain a joint generalised Procrustes algorithm.
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