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Currently, we are experiencing a rapid growth of the number of social-based online systems.	e availability of the vast amounts of
data gathered in those systems brings new challenges that we face when trying to analyse it. One of the intensively researched topics
is the prediction of social connections between users. Although a lot of e�ort has been made to develop new prediction approaches,
the existing methods are not comprehensively analysed. In this paper we investigate the correlation between network metrics and
accuracy of di�erent prediction methods. We selected six time-stamped real-world social networks and ten most widely used link
prediction methods. 	e results of the experiments show that the performance of some methods has a strong correlation with
certain network metrics. We managed to distinguish “prediction friendly” networks, for which most of the prediction methods
give good performance, as well as “prediction unfriendly” networks, for which most of the methods result in high prediction error.
Correlation analysis between networkmetrics and prediction accuracy of predictionmethodsmay form the basis of a metalearning
system where based on network characteristics it will be able to recommend the right prediction method for a given network.

1. Introduction

Network structures have been studied for many years. First
research in this area can be traced back to 1736 when Euler
de�ned and solved the Seven Bridges problem of Königsberg
[1]. Since then, for a long time, networks have been mainly
studied by mathematicians and this resulted in a very promi-
nent research �eld known today as the graph theory. 	ere
was not much ground breaking development in the complex
network research area until 1960s, when the Erdos-Renyi
random graph model (ER-model) was introduced [2, 3]. 	is
is the simplestmodel of complex network. Due to the fact that
there was a lack of large real-world data, most of the work had
been done on theoretical analysis of phenomena existing in
networked structures (e.g., phase transition).

Over the years data collection techniques have signi�-
cantly improved our ability to store massive and heteroge-
nous network data. During the time when ER-model was
introduced, progress has also been made by sociologists in
researching real-world human relationships [4, 5]. A new
wave of research was set o� by Watts and Strogatz who
published a paper about the small-world e�ect in 1998 [6] and

introduction of the scale-free networkmodel by Barabási and
Albert one year later [7].

As the accessibility of database systems and Internet is
growing, more and more real-world network datasets are
available. 	e available information about people and their
activities is much richer and more complex than ever before.
	e complex network concept is an abstract form of various
real-world networks, for example, biological networks such
as protein-protein interaction networks, metabolic networks
[8, 9], human networks and disease spread [10–13], scienti�c
collaboration networks [14, 15], and online social networks
[16–19].

Link prediction in complex network is one of the popular
research topics. Most of the researchers focus on the link
prediction problem [20] which is very valuable for solving
real-world problems. Generally, the prediction problem is
mainly studied from two angles: (i) network structure and
(ii) attributes of nodes and connections. Structure refers
to the way in which nodes that compose the network are
interconnected. It re�ects the information about network
topology. Majority of the progress in the area of structure
based prediction has been made by mathematicians and
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physicists. Some of the well-known structure based pre-
diction methods are Common Neighbour, Jaccard’s Index,
Adamic/Adar Index, Katz, and so forth (for a review of the
methods please see [21]).

	e link prediction problem also has been studied from
the angle of the network attribute information. 	e attribute
information refers to description of the features of nodes.
Such information is di�cult to show directly in the network
graph. It can be for example, done by labelling nodes; for
example, 1 depicts node that represents woman and 2 means
that node represents man. 	e majority of attribute-based
predictionmethods follow amachine learning approach; that
is, they use classi�cation-based methods to make predic-
tions. Widely used methods include Decision Tree, Support
Vector Machine (SVM), and Naı̈ve Bayes [22, 23]. In [24–
26], authors report that the performance of link prediction
improves when machine learning approaches are used. How-
ever, this is done using additional network information that
is not always available. We would like to emphasize that, in
our work, we are interested in the methods that only require
the basic network structure information and thus we do not
include machine learning methods in our study.

However, although much e�ort has been made, there is
still no prominent prediction method that could provide a
satisfactory performance. 	us, there is still a huge research
gap that needs to be addressed.

1.1. Research Motivation. In the realm of network prediction,
many e�orts have been done on exploring new prediction
methods that could provide better performance. However,
the methods presented in most of the studies only improve
the prediction result signi�cantly for the network used in the
study.	ere is a lack of systematic research that would enable
to reveal the reason why the methods are good predictors
when it comes to some of the networks but very bad when
other networks are considered.

	is paper addresses this problem, by exploring the cor-
relation between network metrics and prediction accuracy of
di�erent methods. We expect that such approach will enable
to �nd the reasons why methods performance varies on dif-
ferent networks. Apart from having a further understanding
of the prediction methods, the study is also important as a
theoretical base for developing new predictionmethods.	is
could be relevant to many subjects. 	e prediction methods
could help to �nd the relationships between proteins which
might not be easily observed directly due to the interaction
complexity. For example, new interactions can be inferred
from the existing known interaction networks [27, 28] which
shows a much better performance than prediction purely
by chance. Online market targeting might also bene�t from
the network prediction which has already been applied in
real-world industries. For example, Google and Amazon
recommend customers the potential goods and services that
they might be interested in which is a kind of link prediction
that predicts the link between customers and products.

Beyond that, analysis of the link prediction problem in
a time series approach could help researchers gain a better
understanding of the evolution of the networks. Many works
have been done to study the dynamics of complex network

[29–31]. 	e achievement of network prediction analysis
could help explain the mechanism of the network evolution.

1.2. Contributions. 	e main contribution of our study is
that we look at the link prediction as a time series problem
and systematically analysed the correlation between net-
work metrics and methods accuracy. In addition, in our
experiments, we also �nd that for some networks, most of
the prediction methods could provide a good performance
while for some other networks, most methods are relatively
powerless.Wename them “prediction friendly” networks and
“prediction unfriendly” networks, respectively.

	e paper is structured as follows. Section 2 presents
the prediction methods and performance metrics used in
our experiments. Section 3 presents how the dataset were
selected and processed. In Sections 4 and 5 we introduce
the experimental design and present obtained results. We
conclude the paper in Section 6.

2. Link Prediction Problem

Link prediction problem has been extensively studied by
members of the complex network community. Liben-Nowell
andKleinberg have formalised the link prediction problem in
[20] in the following way.

Let�(�, �) be a network within the time period of�[�, �1]
where � represents the set of nodes and � represents the set
of links. For the next time period�(�1, �2], the networkmight
change. 	e link prediction focuses on how to predict the
evolution of links, that is, how � [�,�1] will di�er from � (�1 ,�2].

Researcherswith background in physics andmathematics
usually deal with the problem by focusing on the topology
information of the networks. Researchers with machine
learning and data mining background favour to solve the
problem with considering the nodes’ attribute information.
	ere are three types of link prediction problems as shown in
Figure 1: we can consider (i) only adding links to the existing
network, (ii) only removing links from the existing structure,
and (iii) both, adding and removing links at the same time.

Adding Links. Adding links (Figure 1(a)) means that in the
next time window a new link will be created between existing
nodes. 	ere can be one or more newly created links.

Removing Links. Removing links (Figure 1(b)) means that the
link will disappear in the next time window. Similar to the
situation when new links are added, one or more links can be
removed in one time step.

Adding and Removing Links.	is problem is the combination
of two previously described problems. It means that from one
time window to another both appearance and disappearance
of links can be predicted (Figure 1(c)).

In this research, we will only focus on the �rst type of
link prediction problem which only aims at predicting the
appearance of links. 	e main reason for this is that the vast
majority of existingmethods for real-world data focus on this
problem, so itmeans that we have big enough base to perform
correlation analysis.
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(a) Adding links

(b) Removing links

(c) Adding and removing links

Figure 1: Link prediction problems.

2.1. PredictionMethods. Weselect andpresent a brief descrip-
tion of ten commonly used prediction methods that use
topology information about networks in the prediction pro-
cess. 	roughout this section the symbols �, � denote nodes,
� denotes number of nodes in the network, and 	 is the
average degree. Γ(�) and Γ(�) denote the neighbour sets of
these nodes and 	� and 	� denote the degree number of node
� and �, respectively.
Common Neighbours. 	is method is based on the assump-
tion that two nodes with many common neighbours will be
connected in the future. 	e more common neighbours the
two users have, the higher the probability that a relationship
between them will emerge. As a basic and intuitive method,
Common Neighbours approach is usually used as a baseline
to judge the performance of other methods [17, 20, 21, 40].
	e complexity of this method, as introduced in [41], is

�(�	2).
����Γ (�) ∩ Γ (�)���� . (1)

Jaccard’s Coe�cient. 	e Jaccard Coe�cient, also known as
Jaccard index or Jaccard similarity coe�cient, is a statistic
measure used for comparing similarity of sample sets. It
is usually denoted as �(�, �) where � and � represent two
di�erent nodes in a network. In link prediction, all the
neighbours of a node are treated as a set and the prediction
is done by computing and ranking the similarity of the

neighbour set of each node pair. 	is method is based on
Common Neighbours method and its complexity is also

�(�	2). 	e mathematical expression of this method is as
follows [20]:

���������
Γ (�) ∩ Γ (�)
Γ (�) ∪ Γ (�)

��������� . (2)

Preferential Attachment. Due to the assumption that the node
with high degree is more likely to get new links [42], pref-
erential attachment was introduced as a prediction method.
	e degree of both nodes in a pair needs to be considered
for the prediction. Same as common neighbours, this is also a
basic predictionmethodwhich is usually used as a baseline to
measure the performance of other prediction methods. 	is
method will calculate similarity score for each pair of nodes
within the network rather than only the neighbour of nodes;

thus the complexity of preferential attachment is �(�2	2).
	is method can be expressed as

|Γ (�)| ∗ ����Γ (�)���� . (3)

Adamic/Adar Index. It was initially designed to measure the
relation between personal home pages. As shown in (4),
the more friends � has, the lower score it will be assigned
to. 	us, the common neighbour of a pair of nodes with
few neighbours contributes more to the Adamic/Adar score
(AA) value than this with large number of relationships.
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In real-world social network, it can be interpreted as follows:
if a common acquaintance of two people has more friends,
then it is less likely that he will introduce the two people to
each other than in the case when he has only few friends.
It shows good results in predicting the friendship according
to personal homepage and Wikipedia Collaboration Graph,
but in the experiment of predicting author collaboration, it
shows a poor accuracy prediction [16]. It is another method
that is based on common neighbour; the complexity is also

the �(�	2). It is calculated as

∑
�∈Γ(�)∩Γ(�)

1
log |Γ (�)| , (4)

where � is a common neighbour of node � and node �.
����	. 	is method takes lengths of all paths between each
pair of nodes into consideration [43]. According to (5), the
number of paths between node � and node � with length �
(written as |paths⟨�⟩��|) is calculated and then multiplied by a

factor ��. By summing up all the results for the given two
nodes with path length from 1 to ∞, a prediction score
for the pair of nodes (�, �) is obtained. Katz is a prediction
method based on the topology of whole network and thus
its calculation is more complex than other methods in this
section. 	e complexity is mainly determined by the matrix

inversion operator, which is �(�3) [41, 44]:
∞∑
�=1
�� ⋅ �����paths⟨�⟩������� . (5)

	e parameter �, as shown in (5), is used to adjust the
weight of pathwith di�erent length.When an extremely small
� is chosen, the longer paths will contribute less to the score
in comparison to shorter ones so that the result will be close
to the common neighbours.

It is one of the prediction methods that, as it will be
shown in further sections, achieves high prediction accuracy
in many experiments.

Cosine Similarity. 	e idea of this method is based on the dot
product of two vectors. It is o�en used to compare documents
in text mining [21]. In network prediction problem, this
method is expressed as

|Γ (�)| ����Γ (�)����
‖Γ (�)‖ ∗ ����Γ (�)���� . (6)

For each pair of nodeswith commonneighbours, thismethod
will perform a vector multiplication and thus the complexity

is �(�	3).
Sørensen Index. 	is index [45] is designed for comparing
the similarity of two samples and originally used in analysis

plant sociology. 	e complexity of this method is �(�	2). It
is de�ned as

2 ����Γ (�) ∩ Γ (�)����	� + 	� . (7)

HubPromoted Index. HPI is proposed for analysingmetabolic
networks as shown in [46]. 	e property of this index is
that the links adjacent to hubs are likely to obtain a higher

similarity score. 	e complexity of the method is �(�	2). It
is expressed as

����Γ (�) ∩ Γ (�)����
min {	�, 	�} . (8)

Hub Depressed Index. Approach that uses the idea of hub in
totally di�erent manner than HPI is Hub Depressed Index
(HDI). It gives links adjacent to hub a lower score. Its

complexity is the same as Hub Promoted Index, �(�	2). It
is de�ned as

����Γ (�) ∩ Γ (�)����
max {	�, 	�} . (9)

Leicht-Holme-Newman Index. LHNI [47] was proposed to
quantify the similarity of nodes in networks. It is based on
the concept that two nodes are similar if their immediate
neighbours in the network are themselves similar. As another

common neighbour based method, its complexity is�(�	2).
It is de�ned as

����Γ (�) ∩ Γ (�)����	� ∗ 	� . (10)

All of the methods presented in this section are following
similar approach. 	e required input for each method is the
adjacency matrix that represents a network in which there
are only 0 and 1 (0 when there is no link between two given
nodes and 1 when the links between two given nodes exist).
	e output of each method is a similarity matrix in which
each element represents the similarity score of a pair of nodes
within the network and it is calculated according to the
equation used in a given method.

2.2. Prediction Performance Metrics. In order to measure
the performance of a prediction method, we need to use
historical network data. Link prediction is a time related
activity; therefore, we should use time-stamped dataset, and
according to the time stamp, separate the data into two
sets, ��,�1(�, �1) as training set for prediction methods and
��1 ,�2(�, �2) as unknown future network for testing where
� < �1 < �2. 	ose two networks must consist of the same set
of nodes�.	e number of possible links that is denoted by�
is |�| ∗ (|�| − 1)/2. 	e link prediction method, in principle,
provides a similarity score for each nonexisting link (�− �1)
and formostmethods, a higher scoremeans higher likelihood
that the link will appear in the future. Final prediction is done
by ordering this score list and selecting top � links with the
highest score.

In our work, AUC is used for quantifying the accuracy of
prediction method. It is the area under the receiver operating
characteristic curve [48]. In the context of network link
prediction, AUC can be interpreted as the probability that a
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Table 1: Original dataset information.

Dataset name Time range Vertices Edges

Enron E-mail Communicationa 1998/11–2002/07 87,273 1,148,072

Facebook Wall Postsb 2008/01–2009/01 63,731 1,269,502

Flickr Friendshipc 2006/11–2007/05 2,302,925 33,140,018

PWr E-mail Communicationd 2008/11–2009/05 14,316 49,950

UC Irvine Messagese 2004/03–2004/10 1,899 59,835

YouTube Friendshipf 2006/12–2007/07 3,223,589 12,223,774

	is table shows the original information about the datasets used in the experiments.
a	e Email network among employees of Enron. Nodes in the network are individual employees and edges are individual emails [32].
b	e wall posts from the Facebook New Orleans networks [33].
c	e social network of Flickr users and their friendship connections. It is collected by taking a snapshot of the network on November 2, 2006, and recording
it daily until December 3, 2006, and then again daily between February 3, 2007, and May 18, 2007 [34, 35].
d	e Email Communication of Wrocław University of Technology [36].
e	e network contains messages sent between the users of an online community of students from the University of California, Irvine. A node represents a user.
An edge represents sent message. Multiple edges denote multiple messages [37].
f	e social network of YouTube users and their friendship connections between December 10, 2006, and January 15, 2007, and again daily between February
8, 2007, and July 23, 2007 [38, 39].

randomly chosenmissing link (�1∪�2−�1) is given a higher
similarity score than a randomly chosen pair of unconnected
links (� − (�1 ∪ �2)) [49]. 	e algorithmic implementation
of AUC follows the approach in [21]. It is calculated as

 � + 0.5 ��
 , (11)

where  is the number of times that we randomly pick a pair
of links from missing links set and unconnected links set;
 � is the number of times that the missing link got a higher
score than unconnected link, while  �� is the number of times
when they are equal. 	e AUC value will be 0.5 if the score
is generated from an independent and identical distribution.
	us, the degree to which the AUC exceeds 0.5 indicates how
much better the predictions are when compared to prediction
by chance.

3. Data Preparation

All six datasets used in experiments are real-world social
networks, �ve of them come from Koblenz Network Col-
lection (KONECT [50]) and another one from the Wrocław
University of Technology (see Table 1).

3.1. Dataset Selection. Datasets for the experiments have to
meet certain requirements: (i) they have to represent data
about users’ interactions or any other type of activity that
enables to de�ne connections between users and (ii) those
activities have to be time stamped. As described in Section 2,
the link prediction problem is a time series problem that looks
into the evolution of networks in time. Time-stamp is thus
necessary. Table 1 shows the original dataset information that
was selected based on these two criteria.

3.2. Data Processing. Tomake the data suitable for the experi-
ments, �rst the preprocessing of datasets has been performed.
It consists of the following three steps.

(1) Select Data Samples. For each dataset, we �rst ran-
domly select 6000–8000 user records (8000 samples
are selected due to the calculation capacity. As for
some dense networks, 8000 nodes are also too big,
so we choose 6000) from the original dataset as the
sample user data. AsUC IrvineMessages only contain
1899 users, so we leave them as they are. 	e speci�c
sample numbers are shown in Table 2.

(2) Split the Data into Training and Testing Sets. Predic-
tion in a time series problemmeans the dataset should
be divided into train and test sets based on time
stamps available. As the dataset of Flickr andYouTube
are collected by taking snapshot of the network which
is di�erent from other four datasets, we take the �rst
day snapshot as the training set and the remaining
data as the test set. 	e other four networks are split
according to the time scalewith a ratio of approximate
training time: test time = 80% : 20% as shown in
Table 2.

(3) Extract Connected Network. Dividing data into train-
ing and testing sets can cause the isolation of some
nodes or cliques. 	is, in turn, generates noise for
measuring the accuracy of prediction methods as the
methods we selected can not predict unconnected
nodes. To eliminate the impact of this noise, we
extract the giant component from training dataset
as our �nal training set ��,�1(�, �1). 	e �nal test
set ��1 ,�2(�, �2) is obtained by extracting the network
with all the nodes that exist in ��,�1(�, �1) from the
original test set obtained from step (2). For nodes
existing in the �nal training set but not present in the
original test set, we just keep and leave them isolated
in the �nal test set as it is formed by link disappearing.

A�er all, we get the train set ��,�1(�, �1) and test set
��1 ,�2(�, �2) as described in Section 2.2 where both sets have
the same nodes �.
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Table 2: Dataset details.

Dataset name Train time range Test time range
Sample
nodes

Final
nodes

Enron E-mail Communication 1998/11–2001/12 2002/01–2002/07 8000 5208

Facebook Wall Posts 2008/01–2008/11 2008/12–2009/01 8000 5784

Flickr Friendship Snapshot on 2006/11/02
2006/11/03–2006/12/03 &
2007/02/03–2007/05/18

6000 5949

PWr E-mail Communication 2008/11–2009/04 2009/04-2009/05 8000 5208

UC Irvine Messages 2004/03–2004/08 2004/08–2004/10 1899 1666

YouTube Friendship Snapshot on 2006/12/10
2006/12/11–2007/01/15 &
2007/02/08–2007/07/23

6000 6000

	e time range of train and test set, the number of sample nodes selected from the original dataset and number of nodes in the giant component which are
used as the �nal nodes set for the experiment are presented in the table.

4. Experimental Design

In order to be able to apply all selected methods and taking
into account the types of datasets available, the network is
represented as a binary unweighted network. 	is enables
us to reach a consistent and comprehensive review of the
existing methods.

First, the prediction methods described in Section 2.1
will be applied to each of the processed training sets to get
the similarity matrix as the prediction result. 	e prediction
results will be then evaluated using the testing set and the
AUC for each method will be calculated.

For the implementation of those methods, we applied the
toolbox that is presented in [21] and all the experiments were
implemented in Matlab.

As stated before, the main goal of the research is to
explore the correlations between the accuracy of di�erent
prediction methods and network metrics. For the training
set of each network, the network metrics are calculated with
toolboxes provided by KONECT [50] and MIT Strategic
Engineering research group.	emetrics we calculate include
the following.

Global Clustering Coe�cient. It is de�ned in [51] as

GCC = 3 ∗ number of triangles in the network

Number of connected triples of vertices
. (12)

It shows the transitivity of the network as a whole. 	e
coe�cient range is between 0 and 1.

Average Clustering Coe�cient [6]. It is based on local cluster-
ing !�. For each vertex �, its local clustering coe�cient can be
calculated by

!� = Number of triples connected to vertex �
Number of triples centered on vertex � (13)

and then the ACC can be calculated as

ACC = 1
V

∑
�
!�, (14)

where V is the number of nodes in a network.

Network Density. 	e ratio between number of existing links
and number all possible links within a given network.

Network Density = Number of Existing Links

Number of all possible links
, (15)

where

Number of all possible links = V ∗ (V − 1)
2 , (16)

where V is the number of nodes in the network.

Gini Coe�cient [52]. I the network theory Gini coe�cient is
de�ned as

� = 2∑��−1 #$�
 ∑��−1 $� −

 + 1
 , (17)

where $1 ≤ $2 ≤ $3 ≤ ⋅ ⋅ ⋅ ≤ $� is the sorted list of degrees
in the network and  is the number of nodes in a network.
Its value is between 0 and 1, where 0 denotes total equality
between degrees and 1 denotes dominance of single node.

Diameter. It is the longest path out of the set of all shortest
paths in the network.

Diameter = max
�,�

$ (#, &) , (18)

where $(#, &) is the shortest path between node # and &.
Average Shortest Path. 	e average number of the shortest
paths between each pair of vertices is

ASP = 1
V ⋅ (V − 1) ⋅ ∑�!=�$ (#, &) . (19)

Once the accuracy of prediction for each method and the
metrics for each network are calculated, the correlation
between them will be analysed. 	e Pearson’s Coe�cient
[53] is used to measure the correlation between accuracy of
network prediction method and selected network metrics. It
is a widely used statisticmethod tomeasure linear correlation
between two variables, say' and *. It is calculated as

∑��=1 (' −') (* − *)
√∑��=1 ('� −')2√∑��=1 (* − *)2

. (20)
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Table 3: 	eoretical GCC and ASP of random, real, and regular
network.

Random network YouTube Regular network

Nodes 6,000 6,000 6,000

Links 54,596 54,596 54,596

GCC 0.0030 0.0286 0.7064

ASP 2.9983 3.0709 164.8500

UC Irvine

Nodes 1,666 1,666 1,666

Links 11,582 11,582 11,582

GCC 0.00835 0.0197 0.6919

ASP 2.8186 3.0463 59.9108

PWr

Nodes 6,335 6,335 6,335

Links 15,334 15,334 15,334

GCC 0.0008 0.0048 0.5547

ASP 5.5499 4.0162 654.3060

Flickr

Nodes 5,949 5,949 5,949

Links 387,719 387,719 387,719

GCC 0.0219 0.0658 0.7442

ASP 1.7845 2.3447 22.8198

Facebook

Nodes 5,784 5,784 5,784

Links 14,507 14,507 14,507

GCC 0.0009 0.0341 0.5633

ASP 5.3717 5.7235 576.5205

Enron

Nodes 5208 5208 5208

Links 23977 23977 23977

GCC 0.0018 0.0290 0.6586

ASP 3.8548 3.6818 282.8037

	e coe�cient value is between −1 and 1where −1means
that two variables are negatively linearly correlated and 1
means that they are positively linearly correlated.

5. Experiment Result

5.1. Network Pro�les. 	e values of network metrics for each
of the extracted social networks are presented in Table 5. As
it is much easier to set up relationship between people in
online social network than in real-world network, the average
shortest paths in our experiments are all smaller than six,
the number suggested by the six degrees of separation theory
[54]. 	e average shortest path of the six selected networks is
3.65. 	is re�ects the small-world property of the networks.
People are closer to each other in online social networks than
in face-to-face networks. 	is phenomenon was also pointed
out in [55] where authors established that the average shortest
path of Twitter is 3.43.

	e degree distributions of the six networks, shown in
Figure 3, indicate that they are scale-free networks as the
distributions follow the power law.

Table 4: Analytical formulas for GCC and ASP in random and
regular networks.

Random network Regular network

GCC
	
V

3(	 − 2)
4(	 − 1)

ASP
log V

log 	
V

2	
� is the average degree and V is the number of nodes in the network.
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Figure 2:GCCandASP calculated for six analysed networks (circle)
and corresponding random (square) and regular (triangle) networks
generated using the same number of nodes and connections as
in real-world networks. Di�erent colours depict di�erent networks
and corresponding random and regular networks—see legend. For
example green circle is a datapoint for Facebook network, green
square is a datapoint for random network corresponding to Face-
book network and green triangle is a datapoint for regular network
corresponding to Facebook network.

We also compared the GCC and ASP metrics of the real
network with the theoretical metrics of random network and
regular network that have the same number of nodes and
links. 	e analytical formulas for GCC and ASP in random
and regular networks with a given number of nodes and
links are given in Table 4. 	e results of calculations for each
analysed network are presented in Table 3.

Figure 2 plots the metrics of six analysed networks
and related theoretical networks, respectively. It shows that
the clustering coe�cients of the analysed networks are all
between random and regular networks. Meanwhile, the
average shortest paths of real-world networks are all very
close to the random networks. 	is two phenomena indicate
the small-world property of analysed structures. Taking into
account both metrics and node degree distribution, it can be
concluded that those networks are a combination of small-
world and scale-free networks.

5.2. Prediction Results. 	e prediction results are sum-
marised in Table 6. Katz method achieved the best average
performance and the overall performance is ranked as Katz >
Preferential Attachment > Adamic-Adar > Common Neigh-
bours > Cosine Similarity > Jaccard Index > Hub Depressed
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Figure 3: 	e Degree distributions. 	e degree distributions are all following the power law with exponent of aEnron, 8 = 1.85; bFacebook, 8
= 1.82; cFlickr, 8 = 1.25; dPWr, 8 = 2.19; eUC Irvine, 8 = 1.56; fYouTube, 8 = 1.56.
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Table 5: Network metrics results.

Datasets GCC ACC Network density Gini Coe�cient Diameter Ave. shortest path

Facebook 0.0341 0.1176 0.0008674 0.473 16 5.7235

Flickr 0.0658 0.3294 0.0219 0.5931 6 2.3447

UC Irvine 0.0197 0.1075 0.0084 0.6394 7 3.0463

PWr 0.0048 0.2666 0.00076 0.6407 16 4.0162

Enron 0.029 0.1946 0.0018 0.7172 10 3.6818

YouTube 0.0286 0.2838 0.003 0.7222 5 3.0709

Table 6: Prediction methods accuracy result (AUC).

Datasets
AUC

CN JI PA AA Katz	
a Cosin Sor HPI HDI LHN

Facebook 0.6688 0.6758 0.6803 0.6753 0.8369 0.6738 0.6715 0.6708 0.6694 0.6694

Flickr 0.89 0.8702 0.841 0.8922 0.8839 0.8812 0.865 0.844 0.8511 0.6944

UC Irvine 0.6625 0.6421 0.8412 0.6738 0.8048 0.6414 0.6359 0.6303 0.6427 0.6322

PWr 0.6815 0.6466 0.7924 0.6913 0.7979 0.651 0.6514 0.6422 0.6491 0.6382

Enron 0.8157 0.7937 0.9015 0.8196 0.9312 0.7921 0.7995 0.794 0.7977 0.7881

YouTube 0.8525 0.7957 0.9109 0.8571 0.9157 0.7938 0.7503 0.8017 0.7984 0.7587

Average 0.7618 0.7374 0.8279 0.7682 0.8617 0.7389 0.7289 0.7305 0.7374 0.6968

Variance 0.0105 0.0091 0.0071 0.0099 0.0032 0.0095 0.0084 0.0087 0.0083 0.0041

	e accuracy of selected prediction methods measured by AUC.	e average performance and the variance for each method are also listed.
aIn our experiment, we choose 	 = 0.0005.

Index > Hub Promoted Index > Sørensen > Leicht-Holme-
Newman Index. By comparing the variance of each method,
we �nd that the Katz also provides the most stable prediction
performance among those methods while Common Neigh-
bours is the worst performing approach. Overall, we �nd that
Katz and preferential attachment provide good prediction
accuracy together with a relative stability.

To study the prediction results from the perspective of
each network please see Figure 4. 	e prediction results
of di�erent methods align on the vertical lines for each
network, respectively. From this �gure, we �nd that, for some
networks, most of the prediction methods could provide a
good prediction result. Such networks include Flickr, Enron,
and YouTube. We call this type of networks the “prediction
friendly” network. Apart from this type of network, there
are also some networks for which most of the prediction
approaches provide fairly low accuracy, such as Facebook,UC
Irvine, and PWr. Similarly, we call those networks “prediction
unfriendly” networks. Please note that, in the experiments,
for both prediction friendly and unfriendly networks, Katz	
always provides a good performance level.

5.3. Correlation between Prediction Accuracy and Network
Metrics. Table 7 shows Pearson’s linear correlation coe�cient
of prediction accuracy and network metrics. 	e closer
the absolute value to 1, the higher the correlation between
analysed factors. Figure 5 presents a heat-map plot to show
the degree of linear relation between the two factors where we
use the absolute value of Pearson’s Coe�cient. 	e brighter
the colour in the heat-map is, the stronger a given network
metric and the accuracy of prediction method are correlated.

Facebook Flickr UCI PWr Enron Youtube
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Figure 4: 	e AUC prediction results for each network.

In Figure 5, we can see that the preferential attachment
and Gini Coe�cient provide the highest correlation coe�-
cient (0.94) which indicates that they generally follow a linear
relationship. 	is is not a surprise. For a network with a high
Gini Coe�cient, there exist some nodes with dominant high
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Figure 5: Heat-map of network metrics and prediction methods correlation. As for the Pearson Coe�cient, both 1 and −1 stand for linear
relationship (positive and negative); we use the absolute value of correlation coe�cient in this �gure to indicate whether the two factors are
linearly correlated.

Table 7: Pearson Correlation of prediction methods accuracy and network metrics.

CN JI PA AA Katz	 Cosine Sor HPI HDI LHN Average

GCC 0.68 0.79 0.05 0.68 0.47 0.80 0.81 0.73 0.74 0.27 0.60

ACC 0.75 0.68 0.43 0.76 0.39 0.70 0.65 0.67 0.68 0.30 0.60

Network Density 0.52 0.58 0.18 0.52 0.09 0.61 0.61 0.48 0.52 −0.12 0.40

Gini 0.45 0.30 0.94 0.46 0.49 0.29 0.25 0.36 0.37 0.57 0.45

Diameter −0.67 −0.61 −0.77 −0.68 −0.51 −0.61 −0.52 −0.61 −0.63 −0.39 −0.60
ASP −0.63 −0.55 −0.79 −0.65 −0.29 −0.57 −0.52 −0.52 −0.56 −0.18 −0.53
	is table shows the correlation between predictionmethods accuracy and networkmetrics calculated with Pearson’s linear correlation coe�cient.	e number
is within the range of [−1, 1] where 1 is completely positive correlation, 0 is no correlation, and −1 is completely negative correlation.

Table 8: Metrics rank of networks.

Dataset GCC ACC Diameter ASP Ave. rank

PWr 6 3 5 5 4.75

Facebook 2 5 5 6 4.5

UC Irvine 5 6 3 2 4

Enron 3 4 4 4 3.75

YouTube 4 2 1 3 2.5

Flickr 1 1 2 1 1.25

degrees. It just re�ects the phenomenon of “rich get richer”
which is also the assumption of preferential attachment
method. Sowe can say that preferential attachment could lead
to a high Gini Coe�cient and thus Preferential Attachment,
on the other hand, could also describe how a network with
high Gini Coe�cient evolves by giving a better prediction
result.

Cosine-GCC and Sor-GCC also provide a correlation
coe�cient above 0.8.We can draw the conclusion that Cosine
Similarity and Sorensen Index method perform better in a
network with higher GCC than they do in networks with
smaller GCC.

	e diameter and average shortest path shows a negative
linear relation to almost all of the prediction methods
(excluding Katz and LHN where the negative correlation
is weak). Both the average shortest path and the network

diameter re�ect how easy it is to get from one node in
a network to another one. Shorter path as well as smaller
diameter means a higher probability that a pair of randomly
picked nodeswill be connected.Negative correlation between
those two metrics and prediction accuracies of di�erent
methods means that most of the methods work well in
the situations where networks feature short ASP and in
consequence small Diameter. 	is is additionally supported
by the fact that global clustering coe�cient is positively
correlated with those of the predictionmethodsmeaning that
these methods work well with networks with high clustering
coe�cient. Based on the above we can say that prediction
methods positively correlated with GCC and negatively with
ASP and diameter will work well in the situation where
analysed network is of small-world type. In the same time
they will work neither in random networks where GCC is
very low nor in regular networks where ASP is very long.

It should be clear that the Pearson’s Coe�cient does not
indicate the accuracy of the method. For example, although
the prediction method Katz does not show strong correlation
to any of the networkmetrics, it still provides the best result in
our experiments.	e reason can be found in Table 6, where it
is shown that Katz always provides a high prediction accuracy
regardless of the tested network metrics.

	e most important value of our correlation study lies in
the variety of prediction methods used in the experiments.
	e prediction with methods combination could be a way to
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improve accuracy and this will be investigated in the future.
	e correlation betweenmethods and network metrics could
be used to determine the weight of di�erent prediction
methods in the combination process.

5.4. Prediction Friendly and Unfriendly Networks. Table 7
also shows the average correlation of network metrics and
prediction accuracy. As we know the closer the absolute
value of correlation to 1, the stronger the linear relation.
Here we take 0.5 as a threshold for strong correlation.
According to this, we �nd that there are four metrics strongly
correlated with the prediction accuracy which includes GCC,
ACC, Diameter, and ASP. So it is reasonable to assume
that these metrics could be used to classify the prediction
friendly and unfriendly networks. We ranked each of the
analysed networks according to the metrics that have strong
correlation with prediction accuracy and based on this for
each network we calculate the average ranking (Table 8).
Top three ranked networks (with the small average ranks)
are the prediction friendly networks and the other three
are prediction unfriendly networks. It can be seen that the
prediction friendly networks usually have large global and
local clustering coe�cient, a short average shortest path, and
small diameter. It suggests that networks with the structural
pro�le similar to small-world network are easier to predict
than networks similar to random structures.

6. Conclusions

In this research, we look into the correlation between ten
prediction methods and di�erent network metrics in six
time-stamped social networks. 	e study of network metrics
con�rmed that the node degree distribution of real-world
social networks follows a power law distribution. We also
found that the average shortest path of online social network
is much smaller than six. 	is might be due to the fact that
online relationships are much easier to setup. 	e results of
the prediction accuracy show that the best method among
the tested ones is Katz	. It is also the most stable technique
from all tested ones. preferential attachment is the second
best method that also provides a good prediction accuracy.
In addition, for some “prediction friendly” networks, most of
prediction methods could provide a good performance while
for some others, called in here as “prediction unfriendly”
networks, most prediction methods are lack of power.

	e Pearson correlation coe�cient enabled us to investi-
gate the relationship between networkmetrics and prediction
accuracy. Our research showed that somemethods are highly
correlated with certain network metrics (e.g., PA-Gini, Sor-
GCC, and Cosine-Gcc).

	ere are several further directions of the presented study.
As discovered, for some networks, most prediction methods
could provide a good performance which we name them as
“prediction friendly networks.” Similarly, we also �nd the
existence of “prediction unfriendly” networks. Section 5.4
explores the prediction friendly and unfriendly network
classi�cation according to the metrics ranking. 	e problem
is that it does not provide an exact threshold that could be
used to classify networks. It is out of scope of this research

but is a very interesting topic for another study that we plan
to conduct.

Based on the results of correlation between network
metrics and the prediction accuracy, another possible work
is to develop a new prediction approach which combines
several existing methods. We can also extend this research to
many other networks, not only social ones, which might be
good for �nding some more general relations.
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[23] Z. Liu, Q.-M. Zhang, L. Lü, and T. Zhou, “Link prediction
in complex networks: a local näıve Bayes model,” Europhysics
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