
Link Prediction via Matrix Factorization

Aditya Krishna Menon and Charles Elkan

University of California, San Diego
La Jolla, CA 92093

{akmenon,elkan}@cs.ucsd.edu

Abstract. We propose to solve the link prediction problem in graphs us-
ing a supervised matrix factorization approach. The model learns latent
features from the topological structure of a (possibly directed) graph, and
is shown to make better predictions than popular unsupervised scores.
We show how these latent features may be combined with optional ex-
plicit features for nodes or edges, which yields better performance than
using either type of feature exclusively. Finally, we propose a novel ap-
proach to address the class imbalance problem which is common in link
prediction by directly optimizing for a ranking loss. Our model is opti-
mized with stochastic gradient descent and scales to large graphs. Results
on several datasets show the efficacy of our approach.

Keywords: Link prediction, matrix factorization, side information,
ranking loss.

1 The Link Prediction Problem

Link prediction is the problem of predicting the presence or absence of edges
between nodes of a graph. There are two types of link prediction: (i) structural,
where the input is a partially observed graph, and we wish to predict the sta-
tus of edges for unobserved pairs of nodes, and (ii) temporal, where we have a
sequence of fully observed graphs at various time steps as input, and our goal is
to predict the graph state at the next time step. Both problems have important
practical applications, such as predicting interactions between pairs of proteins
and recommending friends in social networks respectively. This document will
focus on the structural link prediction problem, and henceforth, we will use the
term “link prediction” to refer to the structural version of the problem.

Link prediction is closely related to the problem of collaborative filtering,
where the input is a partially observed matrix of (user, item) preference scores,
and the goal is to recommend new items to a user. Collaborative filtering can
be seen as a bipartite weighted link prediction problem, where users and items
are represented by nodes, and edges between nodes are weighted according to
the preference score. More generally, both problems are instances of dyadic pre-
diction, which is the problem of predicting a label for the interaction between
pairs of entities (or dyads) [17]. Despite this connection, there has been limited
interaction between the link prediction and collaborative filtering literatures,
aside from a few papers that propose to solve one problem using models from
the other [7,23].

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 437–452, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

438 A.K. Menon and C. Elkan

1.1 Challenges in Link Prediction

We point out three challenges in link prediction that a model should ideally
address. First, in addition to the topological information of the graph, we some-
times have extra side information or covariates for the nodes. For example, in a
graph of interaction between pairs of proteins, we might have features describing
the biological properties of each protein. This information can be useful in pre-
dicting links, especially when a node is only sparsely connected. Since the graph
topology and the side information potentially encode different types of informa-
tion, combining them is expected to give the best performance. However, it is
not obvious how best to do this in general. Further, to be flexible, we would like
to make the side information only an optional component of a model.

Second, link prediction datasets are characterized by extreme imbalance: the
number of edges known to be present is often significantly less than the number
of edges known to be absent. This issue has motivated the use of area under the
ROC curve (AUC) as the de facto performance measure for link prediction tasks,
as, unlike standard 0-1 accuracy, AUC is not influenced by the distribution of
the classes. However, the class imbalance still hampers the effectiveness of many
models that would otherwise be suitable on balanced data.

Third, it is imperative that models be computationally efficient if they are
to scale to graphs with a large number of nodes and/or edges. Such large-scale
graphs are characteristic of many real-world applications of link prediction, such
as the aforementioned friend-recommendation in social networks.

1.2 Our Contributions

This paper studies the effectiveness of matrix factorization techniques for the
structural link prediction problem, inspired by their success in collaborative fil-
tering [20]. We first make a case for matrix factorization to serve as a foundation
for a general purpose link prediction model. We explain how it may be thought
of as learning latent features from the data, and why it can be expected to be
more predictive than popular unsupervised scores. We show how latent features
may be combined with explicit features for nodes and edges, and in particular
how the factorization can be combined with the outputs of other models. Fur-
ther, we propose a novel mechanism to allow factorization models to overcome
the imbalance problem, based on the idea of optimizing for a ranking loss. Ex-
perimentally, we first show that factorization significantly outperforms several
popular unsupervised scores. Next, we demonstrate that while explicit features
are usually able to provide better estimates of linking behaviour than implicit
features, combining the two can further improve performance. Finally, we show
that optimizing for a ranking loss can improve AUC by up to 10%.

Before proceeding, we define the link prediction problem more formally and
fix the notation used in this paper.

1.3 Problem Definition and Notation

Formally, structural link prediction has as input a partially observed graph G ∈
{0, 1, ?}n×n, where 0 denotes a known absent link, 1 denotes a known present

Link Prediction via Matrix Factorization 439

link, and ? denotes an unknown status link. Our goal is to make predictions for
the ? entries. The set of observed dyads is denoted by O = {(i, j) : Gij �=?}, and
we use Oi to mean the observed dyads involving the ith node. In some cases, we
may have additional features (or covariates) for dyads and/or individual nodes.
We call such features side information.

We will use capital variables (e.g. X) to denote matrices and lower-case vari-
ables (e.g. x) to denote vectors. We will use xi to mean the ith row of the matrix
X . The Frobenius norm of the matrix X is denoted by ||X ||2F =

∑
i ||xi||22.

2 Existing Link Prediction Models

At a high level, existing link prediction models fall into two classes: unsupervised
and supervised. Unsupervised models compute scores for pairs of nodes based
on topological properties of the graph. For example, one such score is the num-
ber of common neighbours that two nodes share. Other popular scores are the
Adamic-Adar [1] and Katz score [22]. These models use predefined scores that
are invariant to the specific structure of the input graph, and thus do not in-
volve any learning. Supervised models, on the other hand, attempt to be directly
predictive of link behaviour by learning a parameter vector θ via

min
θ

1
|O|

∑

(i,j)∈O
�(Gij , Ĝij(θ)) + Ω(θ), (1)

where Ĝij(θ) is the model’s predicted score for the dyad (i, j), �(·, ·) is a loss
function, and Ω(·) is a regularization term that prevents overfitting. The choice
of these terms depends on the type of model. We list some popular approaches:

1. Feature-based models. Suppose each node i in the graph has an associated
feature vector xi ∈ R

d. Suppose further that each dyad (i, j) has a feature
vector zij ∈ R

D. Then, we may instantiate Equation 1 via

Ĝij(w, v) = L(fD(zij ; w) + fM (xi, xj ; v)) (2)

for appropriate fD(·), fM (·, ·) acting on dyadic and monadic features respec-
tively, and a link function L(·). Both linear [33] and nonlinear [14,5] choices
of fD(·), fM (·, ·) have been considered. In the linear case, it is standard to
let fD(zij ; w) = wT zij and fM (xi, xj ; v) = (v(1))T xi + (v(2))T xj , where
v(1) = v(2) iff the graph is undirected. The loss is typically either square- or
log-loss, and the regularizer typically λw

2 ||w||22 + λv

2 ||v||22. Note also that we
can compute multiple unsupervised scores between pairs of nodes (i, j), and
treat these as comprising a feature vector zij .

2. Graph regularization models. Here, we assume the existence of node
features xi ∈ R

d, based on which we construct a kernel Kii′jj′ that compares
the node pairs (i, j) and (i′, j′). We compute the predicted adjacency matrix
Ĝ by constraining that values in this matrix should vary smoothly according

440 A.K. Menon and C. Elkan

to K. Thus K acts as a graph regularizer, a popular approach in semi-
supervised learning [39]. In the framework of Equation 1, we have

Ω(Ĝ) =
λ

2

∑

i,i′,j,j′
Kii′jj′ (Ĝij − Ĝi′j′)2 +

μ

2

∑

(i,j)/∈O
Ĝ2

ij

The above is called link propagation [19,26]. The performance of such meth-
ods depends on the choice of kernel K, which is pre-specified and not learned
from the data.

3. Latent class models. These models assign each node of the graph to a
class, and use the classes to predict the link structure. [4] assumes that nodes
interact solely through their class memberships. It is possible to extend this
to allow nodes to have membership in multiple classes [3]. These models
are largely Bayesian, and so are not directly expressible in the empirical loss
framework of Equation 1. Nonetheless, they do learn a matrix of probabilities
P ∈ {0, 1}C×C, where C is the number of classes, and this is done by placing
appropriate priors on P , which may be viewed as a form of regularization.

4. Latent feature models. Here, we treat link prediction as a matrix comple-
tion problem, and factorize G ≈ L(UΛUT) for some U ∈ R

n×k, Λ ∈ R
k×k

and link function L(·). Each node i thus has a corresponding latent vector
ui ∈ R

k, where k is the number of latent features. In the setup of Equation
1, we have

Ĝij(U, Λ) = L(uT
i Λuj).

The regularizer Ω(U, Λ) = λU

2 ||U ||2F + λL

2 ||Λ||2F usually. Such models have
been successful in other dyadic prediction tasks such as collaborative filtering
[20]. This approach has not been studied as extensively in the link prediction
literature as it has in the collaborative filtering literature. Bayesian versions
of these methods using a sigmoidal link function have been studied in statis-
tics [16] and political science [34], where they are sometimes referred to as bi-
linear random effects models. These fields have focussed more on qualitative
analysis of link behaviour than predictive performance and scalability. In the
machine learning literature, computationally efficient frequentist versions of
these latent feature models have been studied in [23,37], and Bayesian mod-
els have also been extended to allow for an infinite number of latent features
[24,25].

2.1 Do Existing Methods Meet the Challenges in Link Prediction?

We recall the three challenges in link prediction from Section 1.1, and study how
they are handled by current models.

– Incorporating topological and side information. Existing models typ-
ically use a nonlinear classifier such as a kernel SVM [14] or decision tree
[21] to combine topological and explicit features. However, the topological
structure is exploited by just learning weights on unsupervised scores. We
will show that this is potentially limiting, since unsupervised scores have

Link Prediction via Matrix Factorization 441

limited expressivity. Latent feature methods like [16] do incorporate side
information, but we will subsequently describe a limitation of this approach.

– Overcoming imbalance. Relatively little attention has been paid to mod-
ifying models so as to account for the class imbalance. One solution is un-
dersampling the set of training dyads [14,21], but this has the disadvantage
of necessarily throwing away information. [9] addresses imbalance by casting
the problem as being cost-sensitive with unknown costs, and tunes the costs
via cross-validation.

– Scaling to large graphs. Methods based on topological scores generally
scale to large graphs, by virtue of mostly requiring only simple operations
on the adjacency matrix. Some scores that look at long-range relationships
between node pairs, such as the Katz measure, can be approximated in
order to run on large graphs [10]. For methods based on explicit features,
undersampling to overcome imbalance also reduces the number of training
examples [21]. Latent class and latent feature methods based on Bayesian
models do not scale to large graphs due to the cost of MCMC sampling.

We summarize representative link prediction methods in Table 1, and note
whether they meet the three challenges. We would like a model that has the
same expressiveness as existing methods, while directly addressing the above
challenges. Our proposal is to extend matrix factorization to this end. The next
section proposes the model, and argues why it is an suitable foundation for a
link prediction model.

Table 1. A comparison of various link prediction methods. The ∗’s for “Large graphs?”
indicate methods that perform some pre-processing on the data.

Class Method side information? Imbalance? Large graphs?

Unsupervised Adamic-Adar [22] No No Yes
Katz [22] No No Yes

Toplogical feats [14] Optional No Yes
Feature-based CCP [9] Optional Yes Yes∗

HPLP [21] Optional Yes Yes∗

Graph regularizer LP [19] Required No No
ELP [26] Required No Yes

MMSB [3] No No No
Latent class IBP [24] Optional No No

IMRM [25] Optional No No

Random effects [16] Optional No No
Latent feature LFL [23] Optional No Yes

Our model Optional Yes Yes

3 Extending Matrix Factorization for Link Prediction

A basic matrix factorization model for link prediction involves optimizing

min
U,Λ,b

1
|O|

∑

(i,j)∈O
�(Gij , L(uT

i Λuj + bi + bj)) + Ω(U, Λ) (3)

442 A.K. Menon and C. Elkan

for some appropriate link function L(·), loss function �(·) and regularizer Ω(·, ·).
As explained in the previous section, we interpret each ui ∈ R

k as being a latent
vector for each node, and so this is also called a latent feature approach. The
bi and bj terms are node-specific biases, which are analogous to the intercept
term in standard supervised learning. If the graph is undirected, then we can
absorb Λ into the U matrix. For directed graphs, we can let Λ be an arbitrary
asymmetric matrix, following [38,23].

3.1 Why is the Factorization Approach Appealing?

One nice property of the above model is that it can be trained using stochastic
gradient descent, where we repeatedly draw a random (i, j) ∈ O and update ui

and uj based on the corresponding gradients. A sweep over all observed (i, j)
is known as an epoch, and often only a small constant number of epochs is
needed for convergence. Training is thus linear in the number of observed dyads.
As noted earlier, latent feature models for link prediction have been considered
previously [16,34], but are typically trained with MCMC sampling, thus limiting
analysis to small graphs. By contrast, with stochastic gradient descent we can
handle graphs with several thousands of nodes and millions of edges.

Of course, scalability would be useless if the model were insufficiently rich. In
fact, latent feature models can be seen as a generalization of latent class models,
which may be thought of as learning a binary matrix U ∈ {0, 1}n×C, where C
is the number of classes, and predicting UWUT for a matrix W of inter-class
link scores. Latent features can also be viewed as a much richer way of ex-
ploiting topological information than popular unsupervised measures described
in the previous section. By construction, the latent feature approach exploits
the graph topology so as to be maximally predictive of link behaviour. Thus in
general, one would expect its scores to be more accurate than any single un-
supervised method. A further conceptual advantage over unsupervised scores is
that the learned ui’s let us make qualitative analyses of the nodes in the graph;
for example, they may be used to visualize the structure of the graph.

Note that basic latent feature models are not the same as just computing the
singular value decomposition (SVD) of the adjacency matrix with unknown sta-
tus and known absent edges collapsed into a single class. Latent feature methods
only attempt to model the known present and known absent edges in the graph,
with regularization to prevent overfitting; no effort is spent in modelling the
unknown status edges. The solutions of the two models are thus very different.

The other appealing property about matrix factorization is that there are
intuitive ways to extend the model to incorporate side information and overcome
the imbalance problem. We now describe these extensions in turn.

3.2 How Do We Combine Explicit and Latent Features?

Suppose we have explicit features xi ∈ R
d for the ith row (or column) of the

data, and features zij ∈ R
D for each dyad. A standard way to incorporate these

features with the latent features is via a linear combination:

Link Prediction via Matrix Factorization 443

min
U,Λ,w,v,b

1

|O|
∑

(i,j)∈O
�(Gij , L(uT

i Λuj +bi+bj +fD(zij ; w)+fM (xi, xj ; v)))+Ω(U, Λ, w, v),

(4)

where fD(zij ; w) = wT zij and fM (xi, xj ; v) = vT xi + vT xj . This underpins the
approaches of [24,16,15,23]. There is a subtle point regarding the choice of fM .
For the monadic features xi, choosing fM (xi, xj ; v) = vT xi + vT xj corresponds
to forming a vector xij =

[
xi xj

]
for the pair (i, j), and using a standard linear

model. However, a drawback of this approach is that it only learns the propensity
of i and j for the outcome Gij [32]. Specifically, if we did not have the latent and
dyadic features, for a fixed user i, the model would produce an identical ranking
of link scores to every other user. This is obviously very restrictive.

An alternative is to use the prediction function fM (xi, xj ; V) = xT
i V xj , where

V ∈ R
d×d. This does not suffer from the propensity issue, and is known as a

bilinear regression model [11]. (To contrast, we will refer to the previous model as
unilinear regression.) We let V be symmetric iff the graph G is. In a collaborative
filtering context, such bilinear models have been used in [8,37]. Note that we need
to learn d2 parameters, which may be prohibitive. In such cases, we can either
perform dimensionality reduction on the xi’s, or constrain V to be a diagonal
plus low-rank matrix, V = D + AT B, and learn the factors A, B, D.

The ability to augment latent with explicit features has a pleasant conse-
quence, namely that we can combine latent features with the results of any
other link prediction model. Suppose another model returns scores Ĝij for the
dyad (i, j). Then, we can treat this as being a dyadic feature zij in the above
framework, and learn latent features that fit the residual of these scores. In gen-
eral then, the latent feature approach has a natural mechanism by which any
predictive signal can be incorporated, whether it is an explicit feature vector or
model predictions. However, a caveat is in order: it is not necessary that combin-
ing latent features with another model will improve performance on test data.
If the latent features learn similar structure to the other model, then combining
the two cannot be expected to yield better results.

As a final remark, we note that the linear combination of latent and explicit
features is not the only way to incorporate side information. This issue has been
studied in the context of the cold-start problem [29] in collaborative filtering.
Recent advances in this literature are based on inferring reasonable values of
latent features by falling back to the side information as a prior [2,12]. However,
unlike most collaborative filtering applications, in link prediction we are mostly
interested in using side information to improve predictions, rather than dealing
with cold-start nodes. Therefore, we expect it to be most useful to directly
augment the latent feature prediction with one based on side information.

3.3 How Do We Overcome Imbalance?

Imbalanced classes pose a problem for at least two reasons: (i) with fewer exam-
ples of one class, it is more difficult to infer reliable patterns (ii) it is standard
to train models to optimize for 0-1 accuracy, which can be made very high

444 A.K. Menon and C. Elkan

by trivially predicting everything to belong to the dominant class; hence, most
models are prone to yield biased results. Our matrix factorization model is not
immune to these problems when trained with square- or log-loss, which may
be seen as convex approximations to the 0-1 loss. Therefore, we must consider
how to modify the model to account for imbalance. A standard strategy to over-
come imbalance in supervised learning is undersampling [6], where we randomly
throw out examples from the dominant class till the classes are more reason-
ably balanced. A disadvantage of undersampling is that it necessarily throws
out information in the training set. Further, it is not clear to what ratio we can
undersample without compromising the variance of our learned model.

An alternative is based on the following observation: in imbalanced classifi-
cation problems, we often measure performance using AUC, which is agnostic
to the distribution of classes. Intuitively, to get good test set AUC, it makes
sense to directly optimize for AUC on the training set. This implicitly overcomes
the imbalance problem, while simultaneously attempting to get the best AUC
score on test data. This idea appears under-explored in the supervised learn-
ing literature, possibly due to the perceived complexity of optimizing for AUC.
However, it is possible to optimize for AUC even on very large datasets [30]. To
do this, we begin with the pairwise SVMRank framework [18]. Consider a binary
classification scenario with training set {(xi, yi)}, and let P = {i : yi = 1} and
N = {i : yi = 0}. The empirical AUC of a linear classifier with weight w is

Â =
1

|N ||P |
∑

i∈P

∑

j∈N

1[wT xi > wT xj].

The problem of maximizing AUC can be cast as

min
w

1
|N ||P |

∑

i∈P

∑

j∈N

1[wT (xi − xj) < 0].

The above is a binary classification task on {(xi − xj , 1)}(i,j)∈Q, where Q =
{(i, j) : yi = 1, yj = 0}. Thus, to maximize the AUC, we can replace the indicator
function above with a regularized loss function:

min
w

1
|N ||P |

∑

(i,j)∈Q
�(wT (xi − xj), 1) + Ω(w).

The above can be optimized efficiently using stochastic gradient descent, where
at each iteration we randomly pick a pair of examples and compute the gradient
with respect to them [30]. We can directly translate this idea to matrix factor-
ization for link prediction. However, there is a subtlety in how we decide what
pairs of examples to consider. Suppose O+,O− are the sets of known present
and known absent dyads respectively. Then, there are two ways in which we can
construct pairs of nodes.
Per-node pairs. Here, we consider (known present, known absent) pairs that
share one node in common. This can be thought as applying the AUC loss for
every row of the G matrix. The optimization is

Link Prediction via Matrix Factorization 445

min
U,Λ

1
|D|

n∑

i=1

1
|O+

i ||O−
i |

∑

j∈O+
i ,k∈O−

i

�(uT
i Λ(uj − uk), 1) + Ω(U),

where D is set of all (i, j, k) triplets where j ∈ O+
i , k ∈ O−

j . In the case of logistic
loss, the above model is similar to BPR [27], although the motivations of the
two models are different: BPR was proposed to deal with implicit feedback (or
positive only) collaborative filtering datasets. In the above, we are treating the
known present links as the “positive feedback”, and only links in O−

i as being
“unspecified feedback”. Further, we combine the learned latent features with
side information via bilinear regression.

All pairs. Here, we consider (known present, known absent) pairs that need not
share a node in common. This can be thought as applying the AUC loss globally
on every dyad in G. The optimization is

min
U,Λ

1
|O+||O−|

∑

(i,j)∈O+,(i′,j′)∈O−
�(uT

i Λuj − uT
i′Λuj′ , 1) + Ω(U).

The choice between the two schemes depends on whether we ultimately evaluate
AUC on a per-node or global basis. This choice in turn is largely problem spe-
cific; for example, in a social network we would like each individual user to have
a good ranking, whereas in a protein-protein interaction network, our interest is
in which unobserved dyads are worth performing further analysis on. Regardless
of the choice of scheme, we are faced with the problem of having to learn from
a large number of examples, one that is superlinear in the number of observed
dyads. However, in practice, only a fraction of a single epoch of stochastic gra-
dient descent is needed to achieve good results; we will discuss this more in our
experiments.

3.4 The Final Model

Our final model optimizes for AUC directly, with regularization to prevent over-
fitting. We linearly combine side information via a bilinear regression model.
Assuming we follow the per-node ranking scheme, and assuming per-node and
per-dyad side information xi and zij respectively, the objective is:

min
U,Λ,V,w,b

1
|O|

n∑

i=1

∑

j∈O+
i ,k∈O−

i

�(L(uT
i Λ(uj − uk) + bi + bj + xT

i V xj + wT zij), 1)+

λU

2
||U ||2F +

λΛ

2
||Λ||2F +

λV

2
||V ||2F +

λw

2
||w||22, (5)

where the link function L(·) and loss �(·, ·) are user-specified, and Λ = I if
the graph is symmetric. Further, if required, we factorize the bilinear weights
V = D + AT B for diagonal D and arbitrary A, B, and learn A, B, D.

446 A.K. Menon and C. Elkan

4 Experimental Design

We present an experimental comparison of our model to other link prediction
methods. We used datasets from a range of applications of link prediction:

– Computational biology
• Protein-protein interaction data from [31], denoted “Prot-Prot”. Each

protein has a 76 dimensional feature vector.
• Metabolic pathway interaction data for S. cerevisiae provided in the

KEGG/PATHWAY database [36], denoted “Metabolic”. Each node has
three sets of features: a 157 dimensional vector of phylogenetic informa-
tion, a 145 dimensional vector of gene expression information, and a 23
dimensional vector of gene location information.

– Bibliographic networks
• The co-author network of authors at the NIPS conference [28], denoted

“NIPS”. Each node has a 14035 dimensional bag-of-words feature vector,
being the words used by the author in her publications. We performed
latent semantic indexing (LSI) to reduce the number of features to 100.

• The co-author network of condensed-matter physicists [21], denoted
“Condmat”. Following [21], we consider node-pairs that are 2 hops away
in the first five years of the data. There is no side information in this
problem.

– Other networks
• A network of military disputes between countries [13], denoted “Con-

flict”. Following [34], we considered all disputes in the period 1990–2000.
The graph is directed, with an edge originating from the conflict initia-
tor. Due to time constraints, we only report results on the symmetrized
version of the data, whether two countries have a link if either initi-
ated conflict with the other. Each node has 3 features, comprising the
country’s population, GDP and polity, and additionally each dyad has 6
features, including e.g. the countries’ geographic distance.

• The US electric powergrid network [35], denoted “PowerGrid”. There is
no side information in this problem. This dataset is challenging because
of the extreme imbalance (1 link for every 1850 non-links), and the nature
of its linking behaviour: we expect two nodes to be linked if they are
nearby geographically, which is a latent feature that may be difficult to
infer.

To evaluate the models, we kept aside a fixed fraction of the observed dyads
O for training various models, and evaluated AUC on a test set comprising
the remaining dyads. This process was repeated 10 times, and we report the
average test set AUC. We used two training split ratios: for the datasets with
side information (Prot-Prot, Metabolic, NIPS and Conflict), we used 10% of
dyads for training, and for the others (Condmat, PowerGrid), we used 90% of
dyads for training. On the latter two datasets a 10% split would cause most
nodes to have no known present links in the training set, making it difficult to
make predictions based solely on the topological structure.

Link Prediction via Matrix Factorization 447

Table 2. Properties of datasets used in experimental comparison

Dataset Nodes |O+| |O−| +ve:−ve ratio Average degree

Prot-Prot 2617 23710 6,824,979 1 : 300 9.1

Metabolic 668 5564 440,660 1 : 80 8.3

NIPS 2865 9466 8,198,759 1 : 866 3.3

Condmat 14230 2392 429,232 1 : 179 0.17

Conflict 130 320 16580 1 : 52 2.5

PowerGrid 4941 13188 24,400,293 1 : 1850 2.7

We swept over a grid of regularization parameters and learning rates for
stochastic gradient descent, and evaluated the average AUC across the 10 splits.
We report results for the parameters selected by the grid search. The number
of latent features, k, was informally picked to be 30 for all datasets except Con-
flict, where only k = 5 were needed to achieve good performance. Our MATLAB
scripts are available for download at http://cseweb.ucsd.edu/~akmenon/code.

Table 2 summarizes the dataset sizes in terms of number of nodes and known
present/known absent dyads. Condmat is the only dataset where some edges
have genuinely missing status even at test time (corresponding to node pairs
more than 2 hops away). Note that we do not undersample any of the datasets.
We see that PowerGrid is the most imbalanced dataset, while also having a small
average degree.

5 Experimental Results

We divide the experimental results into three parts, each considering a different
type of method. Methods with scores in bold have the highest score amongst
methods being compared in that table. Methods that additionally have a star
∗ are the best performing across all tables. In both cases, we only consider
differences in AUC that are greater than the standard deviation across the splits.

Do latent features improve on unsupervised scores? We first report re-
sults on the following methods, which only exploit topological information:

– Unsupervised scores. We used Adamic-Adar (AA), Preferential Attachment
(PA), Shortest-Path (SHP) and Katz, which are popular scores that perform
well on a range of graphs [22]. We also ran linear regression on all unsuper-
vised scores (Sup-Top), which attempts to find a weighted combination of
the scores with better performance.

– Raw SVD. We computed the raw SVD on the adjacency matrix, treating
known absent and unknown status edges as being one and the same.

– Factorization. We used the factorization model of Equation 3 using square-
loss and identity link (Fact-Sq), and log-loss with sigmoid link (Fact-Log).

– Unsupervised scores as input to factorization. Here, we used all the unsu-
pervised scores as features for each dyad, and fed them into a factorization
model trained with square-loss (Fact+Scores).

http://cseweb.ucsd.edu/~akmenon/code

448 A.K. Menon and C. Elkan

Table 3. Test AUC scores for methods based on topological features alone

Dataset AA PA SHP Katz Sup-Top

Prot-Prot 0.564 ± 0.005 0.750 ± 0.003 0.726 ± 0.005 0.727 ± 0.005 0.754 ± 0.003

Metabolic 0.524 ± 0.005 0.524 ± 0.005 0.626 ± 0.004 0.608 ± 0.007 0.628 ± 0.001

NIPS 0.512 ± 0.002 0.543 ± 0.005 0.517 ± 0.003 0.517 ± 0.003 0.542 ± 0.007

Condmat 0.567 ± 0.014 0.716 ± 0.026 0.673 ± 0.018 0.673 ± 0.017 0.720 ± 0.020

Conflict 0.507 ± 0.008 0.546 ± 0.024 0.512 ± 0.014 0.512 ± 0.014 0.695 ± 0.076

PowerGrid 0.589 ± 0.003 0.442 ± 0.010 0.659 ± 0.015 0.655 ± 0.016 0.708 ± 0.062∗

Dataset SVD Fact-Sq Fact-Log Fact+Scores

Prot-Prot 0.635 ± 0.003 0.795 ± 0.005 0.793 ± 0.002 0.793 ± 0.005

Metabolic 0.538 ± 0.017 0.696 ± 0.001 0.695 ± 0.001 0.696 ± 0.002

NIPS 0.512 ± 0.031 0.612 ± 0.007 0.610 ± 0.008 0.613 ± 0.019

Condmat 0.629 ± 0.051 0.810 ± 0.020∗ 0.822 ± 0.025∗ 0.812± 0.020∗

Conflict 0.541 ± 0.094 0.692 ± 0.040 0.692 ± 0.039 0.689 ± 0.042

PowerGrid 0.691 ± 0.026 0.637 ± 0.012 0.675 ± 0.017 0.751± 0.020∗

Our results are given in Table 3. (The table is split into two halves for visual
clarity.) We make the following observations:

– Individual unsupervised scores are always outperformed by factorization
methods by around 5%–25%. In most cases, factorization also outperforms a
supervised combination of such scores. This suggests that in general, latent
features better exploit topological information by virtue of directly optimiz-
ing to be predictive of link behaviour.

– In some cases, combining multiple topological features worsens test set AUC.
The reason is likely twofold: first, a linear combination of weights may be too
simplistic to leverage their combined power. Second, linear regression may
underperform due to the imbalance of the data, as noted in Section 3.3.

– In most cases, combining latent features and unsupervised scores does not
improve performance. This indicates that the unsupervised scores do not
capture sufficiently complementary information to the latent features.

– As conjectured in Section 3.1, raw SVD performs much worse than the fac-
torization methods on the datasets using 10% of dyads for training, as it
treats all missing edges as being known absent.

– Amongst the two factorization approaches, the choice of loss function gener-
ally does not influence results significantly. For both losses, we required no
more than 10 epochs to converge on any dataset.

How predictive is side information? Next, we tried several methods that
use side information xi ∈ R

d for each node i:

– Raw similarity. As a baseline, we use the cosine similarity xT
i xj

||xi||||xj|| as the
predicted score for the node-pair (i, j).

– Link propagation. We use Link Propagation (LP) with the “sum kernel” as
defined in [19], using cosine similarity as our base measure. We specifically
use a special case of LP described in [19] that can be efficiently implemented
in MATLAB using Lyapunov functions. We also tried an approximation to
this method, Exact Link Propagation (ELP) [26].

Link Prediction via Matrix Factorization 449

Table 4. Test AUC scores for methods based on explicit features. Condmat and Pow-
erGrid are not included because they do not have side information.

Dataset Similarity LP ELP ULR BLR Fact+LP Fact+BLR

Prot-Prot 0.680 ± 0.002 0.771 ± 0.002 0.740 ± 0.003 0.670 ± 0.002 0.776 ± 0.006 0.789 ± 0.003 0.813 ± 0.002∗

Metabolic 0.605 ± 0.002 0.719 ± 0.001 0.659 ± 0.010 0.694 ± 0.007 0.725 ± 0.012 0.701 ± 0.002 0.763 ± 0.006∗

NIPS 0.953 ± 0.000 0.767 ± 0.004 0.929 ± 0.010 0.611 ± 0.007 0.951 ± 0.002 0.885 ± 0.032 0.945 ± 0.003

Conflict 0.577 ± 0.008 0.614 ± 0.016 0.648 ± 0.029 0.869 ± 0.029∗ 0.891 ± 0.017∗ 0.693 ± 0.046 0.890 ± 0.017∗

– Regression. We apply unilinear (ULR) and bilinear (BLR) regression on the
feature vectors, corresponding to Equation 4 with the two choices of predic-
tion function fM (·, ·) discussed in Section 3.2, and where the latent features
are omitted. Both methods did not use unsupervised scores as input, and
were trained with square-loss.

– Combinations. We combined the factorization model with Link Propagation
(Fact+LP) and bilinear regression (Fact+BLR), the latter being the model
given in Equation 4 for bilinear fM (·, ·).

We present the results in Table 4. (Condmat and PowerGrid are not included
because they do not possess side information.) We observe the following:

– Bilinear regression is better than plain factorization on all datasets but Prot-
Prot, which indicates that it is difficult to infer latent structure from the
observed data that is more predictive than the given side information. This
is not surprising given the sparsity of known present edges in the datasets.

– On Prot-Prot and Metabolic, jointly learning latent features and a bilinear
regression model gives better performance than doing either individually.
This suggests that despite the general superiority of explicit over latent fea-
tures, the two can have complementary characteristics.

– The factorization model does not benefit from incorporating the output of
LP. In fact, we find the test set AUC decreases on the NIPS dataset. On
most datasets, LP had training AUC close to 1, suggesting that it is difficult
to learn latent features on top of these scores without overfitting.

– Unilinear regression is always outperformed by bilinear regression, usually by
a significant margin. This shows that the propensity problem with unilinear
regression, discussed in §3.2, has important practical implications.

– Bilinear regression always outperforms both variants of Link Propagation.

Does optimizing for a ranking loss overcome imbalance? Finally, we
check whether directly optimizing for AUC helps overcome imbalance. We apply
the model of Equation 5 using square-loss (Fact-Rank), and consider an alterna-
tive where the ranking is defined over all dyads (Fact-Rank-Global) (see Section
3.3 regarding the per-node versus global ranking). We also optimize the BLR
and Fact+BLR models of the previous section with the per-node form of rank-
ing loss (BLR-Rank and Fact+BLR-Rank). On datasets with many dyads, the
ranking losses only required a small fraction of a single epoch to converge (e.g.

450 A.K. Menon and C. Elkan

Table 5. Test AUC scores for methods optimized with ranking loss

Dataset Fact-Rank Fact-Rank-Global BLR-Rank Fact+BLR-Rank

Prot-Prot 0.798 ± 0.001 0.794 ± 0.001 0.785 ± 0.003 0.806± 0.003

Metabolic 0.705 ± 0.007 0.706 ± 0.006 0.764 ± 0.007∗ 0.765± 0.007∗

NIPS 0.609 ± 0.008 0.605 ± 0.007 0.949 ± 0.002 0.956± 0.002∗

Condmat 0.814 ± 0.019∗ 0.826 ± 0.019∗ N/A N/A

Conflict 0.690 ± 0.042 0.686 ± 0.042 0.885 ± 0.018∗ 0.886± 0.021∗

PowerGrid 0.723 ± 0.015 0.754 ± 0.014∗ N/A N/A

on PowerGrid, 1%–5% of an epoch for per-node ranking, and 0.01%–0.05% for
global ranking). From the results in Table 5, we note that:

– For factorization methods, the ranking loss is dramatically superior to the
regression losses on the PowerGrid dataset, which is the most imbalanced
and has a small average degree. On other datasets, the differences are more
modest, but the ranking loss is always competitive with the regression losses,
while requiring significantly fewer dyads for convergence.

– For bilinear regression, optimizing with a ranking loss gives better perfor-
mance than square loss on Prot-Prot and Metabolic.

– Jointly learning latent features and a bilinear regression model with a ranking
loss performs at least as well as optimizing with square loss.

6 Conclusion

In the paper, we proposed a model that extends matrix factorization to solve
structural link prediction problems in (possibly directed) graphs. Our model
combines latent features with optional explicit features for nodes and edges in
the graph. The model is trained with a ranking loss to overcome the imbalance
problem that is common in link prediction datasets. Training is performed using
stochastic gradient descent, and so the model scales to large graphs. Empirically,
we find that the latent feature approach significantly outperforms popular un-
supervised scores, such as Adamic-Adar and Katz. We find that it is possible
to learn useful latent features on top of explicit features, which can give better
performance than either model individually. Finally, we observe that optimiz-
ing with a ranking loss can improve AUC performance by around 10% over a
standard regression loss. Overall, on six datasets from widely different domains,
some possessing side information and others not, our proposed method (Fact-
BLR-Rank from Table 5 on datasets with side information, Fact-Rank on the
others) has equal or better AUC performance (within statistical error) than
previously proposed methods.

Link Prediction via Matrix Factorization 451

References

1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Social Networks 25(3),
211–230 (2003)

2. Agarwal, D., Chen, B.-C.: Regression-based latent factor models. In: KDD 2009,
pp. 19–28. ACM, New York (2009)

3. Airoldi, E., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic
blockmodels. In: NIPS, pp. 33–40 (2008)

4. Batagelj, V., Ferligoj, A., Doreian, P.: Generalized blockmodeling. Informatica
(Slovenia) 23(4) (1999)

5. Beck, N., King, G., Zeng, L.: Improving quantitative studies of international con-
flict: A conjecture. American Political Science Review 94(1), 21–36 (2000)

6. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from
imbalanced data sets. SIGKDD Explor. Newsl. 6, 1–6 (2004)

7. Chen, H., Li, X., Huang, Z.: Link prediction approach to collaborative filtering. In:
Joint Conference on Digital Libraries, vol. 7, pp. 141–142 (2005)

8. Chu, W., Park, S.-T.: Personalized recommendation on dynamic content using
predictive bilinear models. In: WWW 2009, pp. 691–700. ACM, New York (2009)

9. Doppa, J.R., Yu, J., Tadepalli, P., Getoor, L.: Learning algorithms for link predic-
tion based on chance constraints. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag,
M. (eds.) ECML PKDD 2010. LNCS, vol. 6321, pp. 344–360. Springer, Heidelberg
(2010)

10. Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and
tensor factorizations. ACM Transactions on Knowledge Discovery from Data (in
Press, 2011)

11. Ruben Gabriel, K.: Generalized bilinear regression. Biometrika 85, 689–700 (1998)
12. Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., Schmidt-Thieme, L.:

Learning attribute-to-feature mappings for cold-start recommendations. In: ICDM,
pp. 176–185 (2010)

13. Ghosn, F., Palmer, G., Bremer, S.: The MID3 data set, 1993-2001: Procedures,
coding rules, and description. Conflict Management and Peace Science 21, 133–
154 (2004)

14. Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised
learning. In: SDM Workshop on Link Analysis, Counterterrorism and Security
(2006)

15. Hoff, P.: Modeling homophily and stochastic equivalence in symmetric relational
data. In: NIPS (2007)

16. Hoff, P.D.: Bilinear mixed effects models for dyadic data. Journal of the American
Statistical Association 32, 100–286 (2003)

17. Hofmann, T., Puzicha, J., Jordan, M.I.: Learning from dyadic data. In: NIPS II,
pp. 466–472. MIT Press, Cambridge (1999)

18. Joachims, T.: Optimizing search engines using clickthrough data. In: KDD 2002,
pp. 133–142. ACM, New York (2002)

19. Kashima, H., Kato, T., Yamanishi, Y., Sugiyama, M., Tsuda, K.: Link propagation:
A fast semi-supervised learning algorithm for link prediction. In: SDM, pp. 1099–
1110 (2009)

20. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42, 30–37 (2009)

21. Lichtenwalter, R., Lussier, J.T., Chawla, N.V.: New perspectives and methods in
link prediction. In: KDD, pp. 243–252 (2010)

452 A.K. Menon and C. Elkan

22. Lu, L., Zhou, T.: Link prediction in complex networks: A survey (2010),
http://arxiv.org/abs/1010.0725

23. Menon, A.K., Elkan, C.: A log-linear model with latent features for dyadic predic-
tion. In: ICDM (2010)

24. Miller, K., Griffiths, T., Jordan, M.: Nonparametric latent feature models for link
prediction. In: NIPS, vol. 22, pp. 1276–1284 (2009)

25. Mørup, M., Schmidt, M.N., Hansen, L.K.: Infinite multiple membership relational
modeling for complex networks. In: NIPS Workshop on Networks Across Disciplines
in Theory and Application (2010)

26. Raymond, R., Kashima, H.: Fast and scalable algorithms for semi-supervised link
prediction on static and dynamic graphs. In: Balcázar, J.L., Bonchi, F., Gionis,
A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6323, pp. 131–147. Springer,
Heidelberg (2010)

27. Rendle, S., Freudenthaler, C., Gantner, Z., Lars, S.-T.: BPR: Bayesian personalized
ranking from implicit feedback. In: UAI 2009, pp. 452–461. AUAI Press, Arlington
(2009)

28. Roweis, S.: NIPS dataset (2002), http://www.cs.nyu.edu/~roweis/data.html
29. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for

cold-start recommendations. In: SIGIR 2002, pp. 253–260. ACM, New York (2002)
30. Sculley, D.: Large scale learning to rank. In: NIPS Workshop on Advances in Rank-

ing (2009)
31. Tsuda, K., Noble, W.S.: Learning kernels from biological networks by maximizing

entropy. Bioinformatics 20, 326–333 (2004)
32. Vert, J.-P., Jacob, L.: Machine learning for in silico virtual screening and chemical

genomics: New strategies. Combinatorial Chemistry & High Throughput Screen-
ing 11(8), 677–685 (2008)

33. Wang, C., Satuluri, V., Parthasarathy, S.: Local probabilistic models for link pre-
diction. In: ICDM, pp. 322–331 (2007)

34. Ward, M.D., Siverson, R.M., Cao, X.: Disputes, democracies, and dependencies: A
reexamination of the Kantian peace. American Journal of Political Science 51(3),
583–601 (2007)

35. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Na-
ture 393(6684), 440–442 (1998)

36. Yamanishi, Y., Vert, J.-P., Kanehisa, M.: Supervised enzyme network inference
from the integration of genomic data and chemical information. In: ISMB (Sup-
plement of Bioinformatics), pp. 468–477 (2005)

37. Yang, S.H., Long, B., Smola, A., Sadagopan, N., Zheng, Z., Zha, H.: Like like alike
– joint friendship and interest propagation in social networks. In: WWW (2011)

38. Zhu, S., Yu, K., Chi, Y., Gong, Y.: Combining content and link for classification
using matrix factorization. In: SIGIR 2007, pp. 487–494. ACM, New York (2007)

39. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label
propagation. Technical report, CMU (2002)

http://arxiv.org/abs/1010.0725
http://www.cs.nyu.edu/~roweis/data.html

	Link Prediction via Matrix Factorization
	The Link Prediction Problem
	Challenges in Link Prediction
	Our Contributions
	Problem Definition and Notation

	Existing Link Prediction Models
	Do Existing Methods Meet the Challenges in Link Prediction?

	Extending Matrix Factorization for Link Prediction
	Why is the Factorization Approach Appealing?
	How Do We Combine Explicit and Latent Features?
	How Do We Overcome Imbalance?
	The Final Model

	Experimental Design
	Experimental Results
	Conclusion
	References

