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ABSTRACT Compared with traditional wavelength division optical network, elastic optical network (EON)

divides the network spectrum into smaller spectrum slots to improve the spectrum utilization, but the high-

quality spectrum division also complicates the routing and spectrum allocation (RSA) problem. Various

strategies are proposed for reducing the RSA complexity and improving system traffic bearing capacity.

However, previous RSA strategies do not consider the changing physical layer impairments that will also

impact signal quality and even lead to violation of quality of transmission (QoT), the data cannot be

transmitted correctly if the link state is degraded. Therefore, cross-layer optimization is desired, whichmeans

that different layer information is taken into account in the RSA strategy. In this paper, we propose a new

link state-aware (LSA) RSA strategy to guarantee the QoT requirements under different link states. At first,

the link state is evaluated based on chromatic dispersion (CD) and optical signal-to-noise ratio (OSNR),

and a LightGBM model is exploited for CD and OSNR estimation. In LSA-RSA strategy, the link state is

considered as a metric for qualified routing paths finding, and the link capacity is calculated based on the link

state and used in spectrum allocation. Simulation results show that the average CD and OSNR estimation

errors of the LightGBMmodel are 0.28ps/nm and 0.68dB, respectively. Under different link states and traffic

loads, the LSA-RSA strategy can reduce traffic failure probability by more than 20%, and traffic load can

increase 40Erlang when the bandwidth blocking probability equals 10%.

INDEX TERMS Cross-layer optimization, elastic optical network, machine learning, optical performance

monitoring, routing and spectrum allocation.

I. INTRODUCTION

The continuous growth of network traffic volume requires

higher network capacity and more flexible network man-

agement. The optical networks which carry the most traffic

data are supposed to provide various bandwidth resources

to meet current traffic requirements. Suitable network

management allocates available resources in an optimal

method, reduces the wastage of the resources and increases

actual network throughput [1]. Nevertheless, the traditional

wavelength division multiplexing (WDM) networks use

fixed-sized spectrum grid as minimum resource granularity

(usually 50GHz or 100GHz), it is hard to adapt differ-

ent granularity service requests, an entire wavelength is

required in WDM networks even the traffic request has a
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low bit rate, so the spectrum resource utilization is limited.

To overcome the problem mentioned above, elastic optical

network (EON) which is based on orthogonal frequency-

division multiplexing (OFDM) is proposed [2], [3]. EON

divides spectrum resources into finer spectrum slots with the

bandwidth of 12.5GHz or smaller, narrower spectrum slots

could be allocated to lower bit rate traffic, thereby improving

the spectrum resource utilization. In the meantime, to reduce

the cost of the wavelength conversion devices, the data

transmitted from the source node to the destination node in

EON should use same spectrum slots, which is also referred to

as the spectral continuity constraint. Correspondingly, routing

and spectrum allocation (RSA) becomes the core problem

in EON, which is responsible to establish the lightpath for

traffic bearing, where the lightpath refers to a combination

of the routing path and spectrum slots assigned to the traffic

request.
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TABLE 1. The main variables and parameters.

At present, most existing works on RSA mainly focus

on improving the spectrum utilization [4]– [6]. However,

the absence of optical-electrical-optical in EON results

in the accumulation of the optical impairments, that is

to say, the optical signal is more susceptible to physical

layer impairments, such as dispersion, amplifier noise, and

crosstalk. Some traffic interruptions even start with link qual-

ity degradation caused by serious physical impairments [7].

Therefore, the lightpath establishment and the quality of

transmission (QoT) depend not only on sufficient spectrum

slots assigned by RSA strategy but also on the link or network

quality [8]–[10]. At this point, to improve resource utilization

and actual data throughput, it is desired to exploit dynamic

cross-layer network optimization in EON, which considers

information from different network layers. Related research

about cross-layer optimization has been carried out in optical

networks recently [11]–[13]. In EON, the cross-layer RSA

strategy should be adjusted based on physical layer infor-

mation to meet the QoT requirements, the links with poor

quality are limited for less traffic bearing, thereby avoiding

adverse effects on network reliability. Furthermore, load bal-

ancing in networks could be realized if spectrum occupancy

information in the physical layer is considered. Therefore,

for the implementation of cross-layer optimization, physical

layer impairments and states should be monitored firstly,

which is also known as optical performance monitoring

(OPM) technique [14], [15]. Recently, artificial intelligence

(AI) technique gets lots of attention in optical networks and

provides a prospective method for OPM [16], [17], several

parameters can be derived by analyzing physical signal

features through AI-based models. Then if the link state is

evaluated based on OPM results and treated as a reference

in RSA, cross-layer optimization could be implemented.

However, research work combining OPM and cross-layer

optimization is still relatively rare, and further research is

needed for better network management.

Based on the above mentioned considerations, we inves-

tigate the impacts of different link states on physical layer

signals in this paper. Then the link state is represented by

optical parameters, including chromatic dispersion (CD) and

optical signal to noise ratio (OSNR) which are estimated

via the LightGBM model. Based on the link state evaluation

results, we proposed a link state-aware (LSA) RSA strategy to

mitigate the adverse effects of link state degradations. In the

routing phase, LSA routing algorithm is proposed to search

qualified routing paths that satisfy the QoT requirements.

Traffic carried by the link is restricted when the link state

is degraded. The load balancing issue is also considered in

the routing phase. In the spectrum allocation process, frag-

mentation reducing (FR) algorithm is proposed to allocate

suitable spectrum resources for traffic. The effectiveness of

the proposed LSA-RSA strategy is validated by simulation,

and results show that the LSA-RSA strategy improves the

network throughput with the QoT requirements, especially

when the link state is degraded.

The rest of this paper is organized as follows: related

works are presented in Section II. In Section III, we intro-

duce the system model, which enables cross-layer network

optimization. Our link state evaluation method is presented

in Section IV, and the LSA-RSA strategy is presented in

Section V. Simulation results are given in Section VI. In the

end, we briefly summarize this paper in Section VII.

For the convenience of presentation, we summarize the

main variables and parameters used in this paper in Table 1.

II. RELATED WORKS

Cross-layer optimization in EON has recently attracted lots of

research to improve network performance, researchers con-

sider information from different network layers when making

network resource allocation. The joint optimization of delay-

bandwidth and fragmentation is proposed for RSA when

the physical layer impairments are considered [18], and the

extension work considers the bit loading and guarantees

the end-to-end BER for spectrum allocation [19]. However,

the above works are carried out under static traffic scenario

and exploit off-line RSA strategy. In real network operation,

the requests will arrive and tear down in randomness. To solve

the dynamic RSA problem, several spectrum allocation

schemes are proposed, such as first-fit (FF) [20], subcarrier-

slot partition with first-last-fit (FLF) [21], spectrum parti-

tion policy with FLF [22], traffic-based fragmentation-aware

spectrum allocation (TFSA) [23], and access blocking prob-

ability (ABP) based algorithm [24]. The performance of FF

is compared with random fit and exact fit [25], and last fit
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scheme is also included as a benchmark [26]. Based on these

strategies, dynamic and cross-layer optimization works in

EON are studied. Beyranvand et al. analyze the impairments

and nonlinear effects of fibers in the physical layer to esti-

mate the OSNR and the transmission distance under different

modulation formats [27]. To reduce the dispersion effect,

a dispersion-adaptive spectrum allocation scheme is proposed

to decrease the traffic blocking probability, the spectrum slots

with lower dispersion are assigned to longer lightpath [28].

Dharmaweera et al. propose an impairment-driven guard-

band allocation scheme to ensures the transmission quality

and improves the network throughput [29]. Fontinele et al.

consider QoT degradation caused by new establishing traffic,

then select suitable routing path, modulation format and spec-

trum resources for request aiming to reduce traffic blocking

probability [30].

However, these existing works only consider the theo-

retical impairments existing in the physical layer, without

considering the more significant real-time optical impair-

ments. These changing impairments may cause link state

degradation and could be represented by optical parameters.

Therefore, the parameter estimation is the basis to achieve

real-time cross-layer optimization. Dedicated equipment

could monitor several physical layer parameters, besides,

the development of machine learning (ML) in recent years

provides another promising and cost-effective way. Exten-

sive works are carried out via various ML techniques for

CD and OSNR estimation, since these two parameters are

directly related to signal transmission quality. Thrane et al.

exploit neural network (NN) to estimate OSNR values under

different modulation formats [31]. For multiple parameters

estimation, Huang et al. investigate an artificial neural net-

work (ANN) model for OSNR and CD estimation [32].

Wang et al. [33] use constellation data and convolution

neural network (CNN) to estimate OSNR, but the estima-

tion accuracy varies under different OSNR values. How-

ever, accurate clock synchronization is required in previous

works since the eye or constellation diagram is involved.

To extract signal features more effectively, asynchronous

amplitude histograms (AHs) is introduced [34]. Sun et al.

select AH as input data, and combine particle swarm opti-

mization and deep neural network (DNN) to implement

OSNR estimation [35]. Besides, asynchronous sampling

is used to preprocess the data, then the data is inputted

to the convolutional neural network (CNN) for OSNR

estimation [36], [37]. To improve the robustness of parameter

estimation, Tanimura et al. propose an OSNR estimation

model based on DNN, while assessing the current accu-

racy and providing the uncertainty information [38]. Besides

these various neural network models, LightGBM [39] and

XGBoost [40] models can also achieve the parameters esti-

mation. These two models are both based on gradient boost-

ing decision treewhich combinesmanyweak decision trees to

form a complicated and accurate decision tree. As mentioned

above, some works about parameters monitoring have been

studied, but the work about link state evaluation based on

FIGURE 1. Link state-aware system model based on EON.

monitoring results and regarding results as indicators in

network management is relatively less and still needs further

research, it is self-evident that the combination of cross-layer

and dynamic RSA can provide better performance when the

link state is degraded.

Based on existing research works, in this paper, we exploit

the LightGBM model for both CD and OSNR estimation,

then evaluate the link state for RSA and cross-layer opti-

mization. The network throughput with different link state

conditions is measured to validate the effectiveness of our

proposed strategy.

III. SYSTEM MODEL

The LSA-RSA strategy enables the cross-layer optimization,

routing path and spectrum resources are allocated according

to the evaluated link state, and the system model is shown

in Fig. 1. The model includes three planes: physical plane of

EON, IP network plane and control plane. The physical plane

is based on EON that provides spectrum resources and link

state information for lightpath establishment and link state

evaluation, respectively, it consists of two main components:

bandwidth variable transponder (BVT) and bandwidth vari-

able wavelength selective switch (BV-WSS). BVT assigns

traffic to the suitable central frequency with enough spectrum

resources, and BV-WSS performs cross-connect in EON,

the incoming signal at particular central frequency is switched

to specified destination fiber or node. The IP network plane

is responsible for traffic access and collects the request infor-

mation. Firstly, it receives traffic requests and aggregates the

data from different clients. Then, the request information,

including the source, destination node addresses, and the

required bandwidth, is forwarded to the control plane. The

IP network plane coordinates with the physical plane for

data transmission, the traffic is accessed by the IP network

plane and carried in the physical plane of EON. On the other

hand, the IP network plane coordinates with control plane for

network management, the system is controlled by the control

plane through the particular protocol, such as OpenFlow. And

the control plane can be seen as the brain of the entire system,

which is responsible for controlling the network, evaluating
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FIGURE 2. Schematic diagram of parameters estimation model.

the link state, routing traffic requests, and allocating spectrum

resources. To make the resource allocation decision, the con-

trol plane works with the other two planes and performs

two key processes: link state evaluation process and network

configuration process. In the link state evaluation process,

the physical signal is collected periodically and then used

to estimate optical domain parameters, including CD and

OSNR, then the optical link state is evaluated according to

these two parameters. For the network configuration process,

the controller module allocates routing path and spectrum

resources based on link state, then the network configuration

information including routing and spectrum allocation results

are provided to the IP network plane and EON for traffic

bearing. Two processes compose an evaluation-action cycle,

and then the link state based resource allocation in EON could

be triggered.

In the control plane, three modules work together to

implement link state evaluation and network control pro-

cesses. Signals in the physical plane are affected by phys-

ical layer impairments, and the impairments information is

also reserved due to the usage of high-speed sampling rate

devices in receiver. Therefore, it is possible to estimate related

parameters from physical layer signal. The controller module

evaluates the link state based on the CD andOSNR estimation

results and performs LSA-RSA strategy. The CD & OSNR

estimation module receives physical layer signals and imple-

ments parameters estimation. The virtual network topology

manager and path computation element (VNTM & PCE)

model is invoked to perform routing and resources allocation

process. The main function of VNTM is to maintain network

topology, VNTM can simplify the routing problem in optical

networks since it ignores connection details in lower planes.

Also, the spectrum occupancy status of EON is recorded in

VNTM. PCE is used to find routing paths and assign spectrum

resources for requests based on link state information. While

the controller getting routing path and resources allocation

scheme, the network configuration is triggered, then the cor-

responding lightpath is established in EON for traffic bearing.

VNTM&PCEmodel avoids the excessive workload of nodes

and centralized controller, which only need to focus on data

transmission and making decisions, respectively. Therefore,

the overall performance of the network can be improved.

The network states, including both the resource utilization

state and link state, are changing over time and are essential

for network management. Taking lower plane information

into account in network management, performance decreas-

ing introduced by link state degradation could be compen-

sated. We evaluate the link state based on CD and OSNR, and

then perform LSA-RSA strategy in the controller for better

network performance. The controller connects the different

planes and makes the global decisions, both link state and

spectrum resource information are considered. Through the

LSA-RSA strategy, almost all established lightpaths in EON

could meet the quality requirements, the transmission quality

is guaranteed and the network resource utilization is also

improved.

IV. LINK STATE EVALUATION

In this section, we propose a link state evaluation method

based on CD and OSNR estimation values. In optical com-

munication systems, the accumulation of link impairments,

including CD and amplified spontaneous emission (ASE)

noise, degrade the signal transmission quality. CD leads to

ISI and ASE reduces the signal OSNR, both of them lead the

signal degradation and severe bit errors at the receiver. In our

experiment, the link impairments are presented as CD and

OSNR pairs. The OSNR can be used to represent the link

noise level and is intuitive to indicate the link state, so we

regard the OSNR as one link parameter. Under different CD

and OSNR pair configurations, we first collect the received

signal and then estimate CD and OSNR values. Two key pro-

cesses are invoked in this section: CD and OSNR estimation

process and link state evaluation process.

In CD and OSNR estimation process, we build a model

consisting of an optical communication system [41] and

a data processing system, as shown in Fig. 2. In the

optical communication system, various link state condi-

tions can be configured and the signal can be transmitted.

Pseudo-random bit sequence (PRBS) is generated as an infor-

mation source, then the PRBS is modulated to a specified

format and converted to optical signal. During signal trans-

mission, the dispersion compensation fiber (DCF) compen-

sates the dispersion effect caused by singlemode fiber (SMF),

so the transmission distance can be extended. The erbium-

doped fiber amplifier (EDFA) amplifies the attenuated optical

signal, but ASE noise is also introduced into signal and

reduces the OSNR. At the receiver, the optical signal is

converted into electrical signal after photodiode (PD) and low
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FIGURE 3. AHs under different CD and OSNR pairs, interval number of AH
is equal to 150, and the CD value is residual dispersion that has been
compensated by DCF.

pass filter (LPF). In addition to the signal decision, part of

electrical signal is forwarded to the data processing system,

whose main role is to estimate the CD and OSNR values.

The key of estimation is to obtain the probability distribution

characteristics of the signal, so the received continuous signal

is sampled as discrete signal firstly, and the amplitude range

of the signal is divided into several intervals. Then each

sampled signal will fall into a specific amplitude interval.

We count the number of each amplitude interval, and the

probability distribution characteristics of signal amplitude

can be obtained and shown as amplitude histogram (AH).

In our experiment, we adjust the dispersion coefficient of

SMF and the noise figure of EDFA to configure CD and

received OSNR, respectively. Under different CD and OSNR

pair configurations, AHs have significantly different char-

acteristics, which are shown in Fig. 3. It can be seen that

the AH of the better quality signal has sharper and more

independent peaks than the degraded quality signal. Due to

different distribution characteristics of AHs containing CD

and OSNR information, it can be used to estimate the two

parameters by the LightGBM model.

The LightGBM model in the data processing system is

trained to learn the relationship between AHs and CD as well

as that between AHs and OSNR. In our experiment, several

sets of signal are collected under different CD and OSNR pair

configurations to construct the training set. The ith training

sample is expressed as xi = [h(i),max(s(i))], h(i) is the

AH result, and max(s(i)) is the maximum value of received

signal s(i). Then the training set can be expressed as X =

[x1; x2; . . . ; xm]. Correspondingly, the training set is labeled

as Y = [yCD1
, yOSNR1; yCD2

, yOSNR2; . . . ; yCDm , yOSNRm ].

To obtain a better LightGBM model and estimate CD and

OSNR values more accurately, the training process aims to

minimize the objective function, which is calculated as

Obj(2) = L(2)+�(2)

=

n
∑

i=1

1

2
(yi − ŷi)

2 +

K
∑

k=1

(γTk +
1

2

Tk
∑

j=1

w2
j ). (1)

where L(2) is loss function and can be represented as a

mean square error, yi and ŷi are the true and estimation

values of CD or OSNR, respectively. �(2) represents the

regularization term which is used to prevent overfitting. The

regularization term includes constraint on the number of

leaves Tk , and L2 norm of the leaf weight w2
j . Compared with

XGBoost model [40], LightGBM uses histogram optimiza-

tion to convert the feature values into histogram data before

training, thereby accelerating the split point finding. In our

work, the kth feature of training samples is the kth column

of training set X [:, k], and it can be seen as a m × 1 vector,

then the vector is converted into a n × 1vector through his-

togram technique, where n is the number of bins in histogram.

The training set dimension changes from m rows to n rows,

denoted by XH . During the training process, the decision tree

will split at the point which has the largest variance gain, and

variance gain of kth feature at split point d is defined as

Vk (d)=
1

n





(

∑

{xi∈XH :xi,k≤d}
gi

)

2

nkl (d)
+

(

∑

{xi∈XH :xi,k>d}
gi

)

2

nkr (d)



.

(2)

where gi is negative gradient of loss function and calculated

as − ∂L(2)

∂ ŷi
=
(

yi − ŷi
)

, it is also known as residual error.

xi,k is the kth feature of the ith training sample in processed

training set XH . n
k
l (d) =

∑

I (xi ∈ XH : xi,k < d) and I ()

is the indicator function. In one iteration, feature values of

all samples are traversed to split decision tree at d∗k , where

d∗k = argmax(Vk (d)). In the later iteration, the next decision

tree is generated to fit residual errors until the model accuracy

meets requirements or the number of iterations reaches preset

maximum number. In the end, the output of the LightGBM

model is expressed as ŷi =
∑LT

l=1 fl(x), where LT is total

number of iteration, i.e., the number of decision trees, and

fl(x) is the output of the lth decision tree. Once we get a

trained LightGBM model, CD and OSNR can be inferred

from AH data by the model.

In the link state evaluation process, the state is evalu-

ated according to CD and OSNR estimation results. Links

with different link states should offer acceptable transmission

quality for traffic bearing. Dispersion will cause ISI, to meet

the QoT requirement, the maximum allowed dispersion 1τ

should be less than one-fourth of the symbol pulse dura-

tion [8], which can be calculated as

1τ <
TS

4
, 1τ = LD1λ. (3)

where TS is the duration time of one symbol, L and D are the

fiber length and dispersion coefficient, respectively.1λ is the

spectral width of the laser. For example, the pulse duration

of one symbol equals 50ps at 20GSymbol/s (40Gbit/s at

4-PAM modulation format), so the dispersion delay must be

less than 12.5ps. In this case, if a laser with 0.1nm spectral

width, CD of the link cannot exceed 125ps/nm for the QoT

requirement. OSNR is the other important parameter that has

a direct relationship with bit error rate (BER) [9]. To ensure
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TABLE 2. Required parameters at different bit rates.

the data transmission quality, we should keep OSNR above

the threshold, and OSNR can be derived from BER. There-

fore, we set the BER threshold firstly and then calculate

the corresponding OSNR threshold. For M-PAM modulation

formats, the BER can be calculated as

BER =
M − 1

M log2M
erfc

(√

3 log2M

k
(

M2 − 1
)

Eb

No

)

. (4)

Eb

No

∣

∣

∣

∣

dB

= OSNR|dB − 10log10
Rslog2M

Bref
. (5)

where Eb and No represent energy per bit and spectral noise

density, respectively. The variance k indicates the detection

method used in receiver, k=1 means that coherent detection

is used and k=2 means direct detection is used. erfc() is the

complementary error function. Rs corresponds to the symbol

rate, and Bref means the optical measurement bandwidth and

is usually equal to 12.5GHz. In light of the above, different bit

rates require different CD and OSNR pairs. We take 40Gbps

bit rate with 4PAMmodulation format and coherent detection

as an example. When the OSNR equals 22dB, Eb/No equals

16.9dB, then BER can be derived as 2 × 10−10. With 1dB

OSNR redundancy and ensuring BER is below 10−9, we cal-

culate several CD and OSNR requirements based on [8], [9],

and the results are listed in Table 2.

The CD may change due to the variation of fiber aging

and other external environments. OSNR may vary due to

changes in signal power and noise levels.We evaluate the link

state based on CD and OSNR pairs. Once the CD or OSNR

cannotmeet the requirements, the data transmission should be

stopped due to QoT violation. The maximum traffic bit rate in

EON should also be restricted according to the link state, and

the number of available contiguous spectrum slots, i.e., the

maximum bandwidth is restricted accordingly. In optical net-

works, a lightpath may contain several links or spans, so the

total CD should be the accumulated value of multiple links,

and OSNR can be expressed as

OSNR|dB=PL−Loss−NF−10log10NS+58. (6)

where PL is launch power at the transmitter, Loss and NF are

the loss and noise figure of each span, NS is the number of

spans. To represent the worst case, we use the largest Loss

and NF among the lightpath to calculate OSNR.

V. LINK STATE-AWARE ROUTING AND SPECTRUM

ALLOCATION

Based on the link state evaluation results, we propose LSA

routing and FR spectrum allocation algorithms. For the

dynamic network operation, the source node, destination

node, and duration time of the request are unpredictable,

so the routing path and corresponding spectrum should

be allocated based on the current network state and the

information of the coming traffic request. In the routing

phase, the LSA algorithm guarantees that the traffic can

be transmitted with required QoT. Load balancing is also

taking into account in LSA. In the spectrum allocation

phase, the spectrum block and link capacity are calculated

based on link state, and then the proposed FR algorithm

allocates spectrum resources to carry traffic with minimum

link capacity loss. In this section, we present the link capac-

ity calculation method, then the details of LSA and FR

algorithms are designed. For convenience, we first intro-

duce several notations and variables used to represent EON.

V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em} represent

nodes and links in the network, respectively, then EON can

be represented as G(V ,E). The number of spectrum slots

in one link is represented as N , and the occupancy of slots

in EON is represented as a matrix M , where M (e, j) = 1

indicates that the jth slot in link e has been occupied, and

0 otherwise. T (vs, vd , bw) means that a traffic request starts

at node vs and ends at vd with requirement of bandwidth bw.

PT and SST represent the routing path and allocated spectrum

for traffic T , respectively.

A. LINK STATE BASED CAPACITY CALCULATION

The changing link state and spectrum slot occupancy both

lead to the link capacity changing, so the capacity calculation

should be as simple as possible to achieve rapid capacity

update. In this part, we utilize theory of the compositions of

number to calculate spectrum block capacity Csb(k), where

k means the number of adjacent and unoccupied spectrum

slots in one spectrum block. Link capacity is expressed as

Clink=
∑

Csb, and Csb(k) is calculated as

Csb (k)=

k
∑

i=1

P (k, i) · i. (7)

where P(k, i) means the probability that only i slots can be

used in a spectrum block which has k slots, that is to say,

the next traffic request needs more than k − i slots while i

spectrum slots have been occupied. For example, if k=4 and

i = 3, there are 4 cases, as shown in Fig. 4. i). One request

with 3 slots. ii). Two requests and the first one requires 1 slot,

the second requires 2 slots. iii).Two requests and first requires

2 slots, second requires 1 slots, this case is different from the

ii) case. iv). Three requests and each requires 1 slot. Then

next traffic request needs more than one slots, so P(4, 3) can

be expressed as

P(4, 3)= (pr (3)+pr (1)pr (2)+pr (2)pr (1)+p
3
r (1)) · pr (>1).

(8)

where pr (i) means the probability that a traffic needs i slots,

and pr (> 1) means that a traffic needs more than one slot.

In the network operation, different traffic requests require

different bandwidths, we consider that the required band-

width follows a uniform distribution, that is to say, the proba-
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FIGURE 4. The example of P(4, 3) calculation.

bility of requiring different number of slots is equal. For one

spectrum block which has i spectrum slots, we can find that if

Tn traffic requests occupy the block, it is equivalent to divide

spectrum block into Tn sub blocks, there are total
(i−1)!

(Tn−1)!(i−Tn)!
cases. Therefore, the capacity of the spectrum block can be

calculated as

Csb(k)=

k
∑

i=1

i
∑

j=1

(i− 1)!

(j− 1)!(i− j)!
· pjr · pr (> k−i) · i. (9)

Currently, the highest line rate in EON is generally

100Gbps, and a maximum bandwidth of 100GHz is required,

so we limit the maximum number of slots that traffic required

to 8 when a slot bandwidth is 12.5GHz. If one spectrum

block has more than 8 slots, we divided it into multiple

sub blocks, and the capacity is calculated separately. For

example, Csb(17) = 2×Csb(8) + Csb(1). Besides, the link

capacity is determined by the link state, if the link state is

degraded, the maximum number of continuous slots in the

link is reduced. Taking the CD increasing as an example, if the

CD value is more than 125ps/nm, the link can only carry

traffic with the maximum bit rate of 40Gbps. At that time,

the link capacity is decreasing even if the link has enough

unoccupied spectrum slots, the maximum number of contin-

uous slots is limited at 4 (i.e., 50GHz), a spectrum block will

be divided into several smaller blocks, and the block capacity

changes correspondingly. For example, Csb(17) is calculated

as 4×Csb(4)+ Csb(1).

B. LINK STATE-AWARE ROUTING ALGORITHM

In this subsection, we present the details of the LSA routing

algorithm in Alg. 1, which is designed to search k-available

routing paths (k-ASP) when a traffic request arrives. LSA

ensures that all the found paths are competent to carry arriving

traffic, which means that the CD and OSNR of the paths

could meet the requirements and the paths can transmit data

with QoT provisioning. As shown in Alg. 1, the link state

is evaluated after CD and OSNR estimation, then the con-

troller obtains CD and OSNR values of each link, which

are represented as LSD and LSO, respectively. Link weight is

determined by link capacity as weight=N/Clink , where N is

the total number of spectrum slots in one link, and the involve-

ment of link weight can achieve load balancing in the routing

phase. One link has a small weight if it has a larger free capac-

ity, and the lower weight path is the preferred routing path for

traffic bearing. After finding a path, the weight coefficients of

all links in this path is multiplied by a factor α (line7). The

total routing path CD value is calculated as the cumulative

value of all links (line9), the final OSNR is determined by

the worst link state (line10), CD and OSNR requirements are

presented in section IV. The available spectrum slots in the

path are searched (line12-17), the available slot means this

slot is unoccupied in all links among the path. Then whether

the path pt meets the requirements is determined. Only when

there are enough available slots in the path, the CD andOSNR

meet the requirements, the path can be recorded as a qualified

path (line18-22). All the qualified paths are represented by

PT . SST indicates the index of unoccupied spectrum blocks

in all paths. The number of iterations which is defined as

Iteration is used to avoid endless loop in the path searching

phase, and the LSA algorithm return an empty PT if none

suitable path can be found after several iterations.

Algorithm 1 LSA Routing Algorithm

Input: Network G(V ,E); Traffic request T (vs, vd , bw); Slot

state M ; Link State LS(LSD,LSO); Link Weight weight;

CD Requirement RD(T ); OSNR Requirement RO(T )

Output: Routing Path PT ; Assigned Slot SST for traffic T

1: function findpath(G,T ,M , k,LS)

2: Iteration← 1; sumM ← 0; i← 1

3: disps← 0; osnr ←∞

4: while i < k and Iteration < 2× k do

5: pt ← shortestpath(G, vs, vd ,weight)

6: for each link e in pt do

7: weight(e)← weight(e)× α

8: sumM ← sumM +M (e, :)

9: disps← disps+ LSD(e)

10: osnr ← min{osnr,LSO(e)− 10log(||pt ||)}

11: end for

12: fs← find(sumM == 0)

13: for j = 1 to length(fs)− bw+ 1 do

14: if fs(j+ bw− 1) == fs(j)+ bw− 1 then

15: avaslot ← avaslot .append(fs(j))

16: end if

17: end for

18: if avaslot 6= ∅ and disps ≤ RD and osnr ≥ RO
then

19: PT (i, :)← pt
20: SST (i, :)← avaslot

21: i← i+ 1

22: end if

23: Iteration← Iteration+ 1

24: end while

25: return PT , SST
26: end function

C. FRAGMENTATION REDUCING SPECTRUM ALLOCATION

ALGORITHM

Spectrum slots are allocated for lightpath establishment once

routing paths are obtained. The spectrum allocation algorithm

is implemented to select spectrum slots for traffic bearing.
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In our work, we use link capacity reduction as a metric to

evaluate the performance of different spectrum allocation

solutions. The solution with the lowest capacity reduction

will be selected as the final RSA solution to carry traffic.

The link capacity calculation method has been shown in

Section V-A. And the detail of our LSA-RSA strategy is

designed as Alg. 2, which contains the details of the LSA

routing algorithm and FR spectrum allocation algorithm.

While a traffic request arrives, routing paths are allocated

by Alg. 1 (line2-3). The capacity of each link is calculated

under the current network state and spectrum occupation

state. Then, for each routing path, all the spectrum allocation

schemes will cause link capacity reduction, and all the reduc-

tion values are calculated (line7-12), the scheme which owns

minimum capacity reduction is reserved as the final scheme

to allocate spectrum resources (line13-16). Once spectrum

slots are occupied or the traffic is released, the spectrum state

matrix is updated accordingly (line23-25). If the LSA routing

algorithm cannot find any available routing path, the traffic

request is blocked (line21).

Algorithm 2 LSA-RSA Strategy

Input: Same as Alg. 1

Output: Path Matrix Record PM ; Spectrum Slot Matrix

Record SSM for each traffic

1: Get the state of all links LS in network G(V ,E)

2: For incoming traffic T (vs, vd , bw)

3: [PT , SST ] =FINDPATH(G,T ,M ,LS)

4: LCbefore← LinkCapacity(G,M ,LS)

5: 1LC ←∞

6: if Pt 6= ∅ then

7: for each PT (i) in PT do

8: for each SST (i, j) in SST (i, :) do

9: M ′← M

10: M ′(PT (i), SST (i, j))← 1

11: LCafter ← LinkCapacity(G,M ′,QL)

12: 1Ctem← LCbefore − LCafter
13: if 1Ctem < 1LC then

14: 1LC ← 1Ctem
15: PM ← PT (i)

16: SSM ← SST (i, j)

17: end if

18: end for

19: end for

20: else

21: traffic T is blocking

22: end if

23: M (PM , SSM )← 1

24: while traffic T is releasing

25: M (PM , SSM )← 0

The time complexity of LSA-RSA strategy can be divided

into two parts, the LSA routing algorithm finds k routing

paths, the complexity can be determined as O(k×n2), where

n is the number of nodes in the network. In the FR algorithm,

TABLE 3. Simulation parameters of communication system shown
in Fig. 2.

all available spectrum blocks in k routing paths are detected,

the complexity isO(k×N ). Then, the capacity of each block is

calculated, and all spectrum allocation schemes are compared

with each other, the complexity isO(s), where s is the number

of spectrum blocks. Obviously, s is smaller than N , so the

complexity of spectrum allocation process can be determined

as O(k×N ).

VI. SIMULATION AND ANALYSIS

To evaluate the performance of the parameter estimation

model and LSA-RSA strategy, simulations are carried out in

this section with Intel i5 CPU@3.30GHz and 8GB memory.

In the part of the optical parameter estimation, we build the

LightGBM model by using the Python programming lan-

guage, then compare its performance with XGBoost model.

The simulation of the proposed LSA-RSA strategy is carried

out by MATLAB. Then the performance of the proposed

LSA-RSA strategy is compared with several existing RSA

strategies.

A. CD AND OSNR ESTIMATION RESULTS

In the part of CD and OSNR estimation, we first evaluate

the impact of the training set size on estimation accuracy.

The parameters of the optical communication system (shown

in Fig. 2) are listed in Table 3. The CD values are between

990ps/nm and 1260ps/nm with the interval of 30ps/nm,

and DCF could provide 990ps/nm dispersion compensation,

so the residual CD ranges from 0ps/nm to 270ps/nm. OSNR

values are between 30dB and 39dB, and the interval is 1dB.

The training sample s(i) is sampled as a 1×32768 vector and

converted to AH record with 150 interval bins. In the end,

each training sample consists of the AH and the maximum

value of s(i), expressed as a 1 × 151 vector. We collect

4000 training samples under different CD and OSNR pairs.

Then different numbers of training samples are selected

randomly to form training sets. After the training process,

another 200 samples are used as the test set. Estimation

accuracy is evaluated by the coefficient of determination [42],

which is determined by R2 and calculated as

R2 = 1−

∑K
i=1

(

yi − ŷi
)2

∑K
i=1 (yi − y)

2
. (10)
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TABLE 4. Training time with different numbers of training samples (Unit: Second).

FIGURE 5. R2 values under different numbers of training samples, where
‘LightGBM_CD’ indicates that CD is estimated by LightGBM model.
Correspondingly, ‘XGBoost_OSNR’ indicates that OSNR value is estimated
by XGBoost model.

where K is the number of test samples, yi and ŷi represent

true and estimated CD or OSNR values of the ith sample,

respectively, and y is mean value of all samples in the test set.

To evaluate the estimation accuracy of the LightGBM

model, we select XGBoost as a baseline, since it outper-

forms the other gradient boosting decision tree based mod-

els [40]. The models’ parameter settings are introduced as

follows. The numbers of estimators of two models are set

to 400, the leaves number of LightGBM equals 63, while

the maximum depth of the decision tree in the XGBoost

model equals 6. The R2 values with different numbers of

training samples are shown in Fig. 5. As the number of

training samples increases, the R2 value increases, which

means that the parameter estimation accuracy improves. The

LightGBM model outperforms the XGBoost model in both

CD and OSNR estimation. Under 4000 training samples, R2

of the LightGBMmodel for CD and OSNR estimations equal

0.99 and 0.89, respectively. Besides, the results of R2 show

that LightGBM model converges faster, it remains stable

when the number of sample size reaches 3500.

To show the estimation results more intuitively, the CD

and OSNR estimation errors of the LightGBM model are

plotted as Fig. 6, the error bar (plotted in solid line) shows

the mean values and standard deviation values of estimated

results, and grey circles represent the estimated values. It can

be seen that the estimation error of CD is smaller than OSNR,

the maximum average errors of CD and OSNR estimation are

FIGURE 6. Errors of CD and OSNR estimation, grey circles represent
estimated results of all test samples, and the error bar shows the mean
values and the standard deviation values.

0.28ps/nm (at 270ps/nm) and 0.68dB (at 30dB), respectively,

where the average error is calculated as
∑K

i=1

∣

∣yi − ŷi
∣

∣/K .

The training time of LightGBM and XGBoost models are

listed in Table 4, we disable the early stopping of two models

in the training process. The results indicate that the training

speed of the LightGBM model is 3-4 times faster than the

XGBoost model under different numbers of samples. Based

on the above simulation results, LightGBM gets higher esti-

mation accuracy with lower training time and is more suitable

for parameter estimation.

B. LSA-RSA PERFORMANCE

In this part, we evaluate the performance of proposed

LSA-RSA strategy through NSF network topology [43],

which has 14 nodes and 21 links. The traffic requests are gen-

erated where the arriving time follows the Poisson Process. λ

traffic requests arrive per time unit, and duration time of each

traffic follows a negative exponential distribution with amean

value of µ, so the traffic load can be expressed as λ·µ Erlang.

The number of required slots is denoted byNS∈{1, 2, . . . , 8},

and the required slots of different traffics follow uniform

distribution, i.e., pr (NS) = 0.125. The number of spectrum

slots of each link is set to 400. The LSA-RSA performance

is evaluated after 12000 traffic requests arrive during the

simulation. We first compare traffic failure probability (TFP)

under different link state conditions. Under normal link state

condition, which means that CD is small enough and OSNR

is large enough, bandwidth blocking probability (BBP) of
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FIGURE 7. The TFP results of different RSA strategies with different α

values.

different RSA strategies is compared. Spectrum fragmenta-

tion ratio (SFR) is measured under all link state conditions.

In the end, we use standard deviation (SD) [44] to evaluate

the performance of load balancing.

1) TFP: In EON, the prerequisite of the establishment of

a lightpath is that there must be enough available spectrum

resources and the state of all links meet the requirements.

Otherwise, the traffic request will be blocked or traffic data

cannot be transmitted correctly. In both two cases, traffic is

failed, so we defined TFP as the probability of failed traffic

transmission and calculate it as follows

TFP =

∑

T bwT × (bfT ||lsT )
∑

T bwT
. (11)

where bwT indicates the number of spectrum slots required

by the traffic request T , and bfT is traffic blocking flag,

bfT = 1 means request T is blocked because there are not

enough spectrum slots, and 0 otherwise. Similarly, lsT = 1

indicates that the routing path cannot support traffic due to

the degradation of the link state, and lsT=0 means traffic data

can be transmitted correctly on the current path. The lower

TFP means higher network throughput and more traffic can

be transmitted.

The effect of α values on TFP in different RSA strategies

is analyzed firstly, and the results are shown in Fig. 7, where

α is used in the LSA routing algorithm to find multiple

routing paths. The traffic load is set to 600Erlang, k-ASP

(k=3) are found via LSA algorithm, FF, FLF, ABP based, and

the proposed FR methods are used for spectrum allocation.

We set α to 1.5 during our simulation since all strategies could

almost obtain the best performance in this setting. The TFP

with different k values is also measured (results are not shown

in this paper), we find that TFP decreases from 0.08 (k=1) to

about 0.07 (k=3) in normal link state, and then remains stable

even if k increases. Therefore, we set k equals 3 in the LSA

routing algorithm.

We compare TFP under different link state conditions.

Firstly, the CD values of all links are set to follow normal

FIGURE 8. The TFP results under different link state conditions. (a) shows
the TFP under different CD values and (b) shows TFP under different
OSNR values. ‘w_LSA’ means LSA is used, and ‘wo_LSA’ means LSA is not
considered in the routing algorithm.

distribution with mean values ranging from 6ps/nm to

15ps/nm, the variance always equals 25, and OSNR of all

links are 37dB. Secondly, OSNR values follow normal dis-

tribution with mean values ranging from 32.5dB to 37dB,

the variance equals 4, CD of all links are less than 5ps/nm.

The routing algorithm without considering the link state is

selected as the baseline, in which only the sufficient spectrum

resources are considered when searching the routing path. FR

spectrum allocation algorithm is always used to allocate spec-

trum slots. The results are shown in Fig. 8.When the link state

is degraded, the LSA routing algorithm can provide better

network throughput performance. Compared with the routing

algorithm without LSA, the LSA algorithm can reduce TFP

by up to 24% under different CD settings and up to 45% under

different OSNR settings.

Then, the TFP results under different traffic loads are mea-

sured. We select three link state conditions: i). The CD values

of all links follow normal distribution with the mean value

of 20ps/nm and the variance of 25, and OSNR values are

equal to 37dB. ii). The CD of all links are less than 5ps/nm,

and OSNR values follow normal distribution with the mean

value of 33dB and the variance of 4. iii). The CD and OSNR

both follow normal distribution withmean values of 15ps/nm,

34dB and variances of 25, 4. The results are shown in Fig. 9.

It can be seen that the LSA algorithm provides a better TFP

performance, the impact of link state degradation could be

compensated and we can get a performance closer to the

normal link state. In the first two conditions, the LSA routing

algorithm decreases TFP by about 58% and 52%. For the third

link state condition, in which the link state degradation is

slighter, the LSA algorithm can still decrease TFP by around

30%.

2) BBP:When the network operates normally, i.e., all links

are qualified to bear any traffic request, the LSA algorithm

only considers whether there are available spectrum resources

when searching k-ASP. In this scenario, lsT always equals 0,

so TFP can be represented as BBP, which means the probabil-

ity of blocking traffic. To compare the performance of LSA

and FR algorithms, we select shortest path (SP), k-shortest

path (k-SP, k=3) and one-available shortest path (k-ASP, k=1)

as routing path finding algorithms, where the weight of links

are calculated based on link capacity and load balancing is

considered in all routing strategies. FF, FLF, and ABP based
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FIGURE 9. The TFP results with different traffic loads, N(m, v ) in the
legend means the normal distribution with mean value of m and
variance of v .

FIGURE 10. The BBP results of different RSA strategies with different
traffic loads.

methods are used for spectrum allocation. The BBP results

are shown in Fig. 10. The proposed RSA strategy, which is

denoted as k-ASP (k=3)+FR, performs best among all the

RSA strategies, compared to SP+FF, it can increase the traffic

load of 40Erlang while the BBP equals 10%.

3) SFR: The SFR indicates the proportion of the fragmen-

tation spectrum in the network. In our work, the fragmenta-

tion spectrum means that the number of spectrum slots is less

than 3 in a spectrum block, i.e., the bandwidth of this block

is less than 37.5GHz. The SFR is calculated as

SFR =

∑

e∈E

∑

k |SSe,k|× sfk

|E|N
. (12)

where |SSe,k | is the slots number of kth spectrum block SSk in

link e, and if the number of slots is less than 3 in SSk , we set

sfk equals 1. |E| is the number of links in the network, and

N is the total number of slots in one link. The SFR results

with different traffic loads and link state conditions are shown

as Fig. 11. Considering the normal link state at first, the FR

algorithm has a higher SFR than ABP and FLF. However,

FIGURE 11. The SFR results with different traffic loads and link state
conditions, FR algorithm is used for spectrum slots allocation.

FIGURE 12. The SD results with different traffic loads. ‘LSA_w_LB’ means
load balancing is used and ‘LSA_wo_LB’ means load balancing is not used.

we should notice that FR provides the highest throughput,

more traffic requests are established in EON, so it brings

more fragmentary spectrum blocks. Secondly, SFR is lower

when the link state is degraded, since fewer traffic requests

are established in EON to guarantee the transmission quality,

so there can be more free spectrum blocks which have more

than 3 spectrum slots, and the number of fragmentary spec-

trum blocks decreases.

4) SD: We use SD as an indicator to determine the

uniformity of traffic distribution, which can be measured

based on the uniformity of spectrum occupation status and

calculated as

SD =

√

√

√

√

√

1

|E|N 2

∑

e∈E





N
∑

j=1

M (e, j)−M





2

. (13)

M =

∑

e∈E

∑N
j=1M (e, j)

|E|
. (14)
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TABLE 5. Consuming time under different RSA strategies and traffic loads (Unit: Second).

where M (e, j) represents the occupation status of the jth slot

in link e. The SD results are shown in Fig. 12. As we can see,

our load balancing method decreases the SD in various traffic

loads, indicating that the traffic distributes more uniformly in

the network.

In the end, we measure the consuming time of differ-

ent RSA strategies and traffic loads, the results are listed

in Table 5. Under the high traffic load, the LSA-RSA strategy

consumes almost the same time under different link state

conditions, and the time is about the same as k-SP+FLF and

k-SP+ABP.

VII. CONCLUSION

To improve the network throughput performance when the

network state is degraded, resources should be allocated

based on network and link state. In this paper, we proposed

an LSA-RSA strategy. The link state was evaluated based on

CD andOSNR pairs, which were estimated by the LightGBM

model, and the link state was used as a metric in RSA. In the

routing phase, we proposed the LSA routing algorithm aim-

ing to find k-available routing paths, where the available path

means that the path has sufficient spectrum resources and is

capable to bear current traffic request. Then we proposed the

FR algorithm to allocate spectrum slots aiming to minimize

the link capacity reduction. The simulation results showed

that the LightGBM could provide accurate CD and OSNR

estimation results, and our LSA-RSA strategy could improve

the network throughput especially when the link state is

degraded.
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