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order to understand the genetic architecture of Mendelian populations, we 
'2ave to know, in addition to gene frequencies, the degree of linkage disequi- 
librium between loci, namely, the extent to which combinations of genes at linked 
loci deviate from randomness. 

In panmictic populations, two factors are mainly responsible for the produc- 
tion of linkage disequilibrium. They are epistatic interaction in fitness and ran- 
dom sampling of gametes in reproduction. 

Although a number of papers have been published since the work of KIMURA 
(1956), treating the problem of epistasis and linkage in an infinite population, 
it was only last year that the first systematic treatment of linkage disequilibrium 
due to random drift was presented by HILL and ROBERTSON (1968). Using the 
method of moment-generating matrix, they obtained the variance of the linkage 
disequilibrium coefficient as a function of time and initial gametic frequencies 
for the case of no recombination, assuming that mutation and selection are absent. 
In addition, they studied numerically several cases of recombination by multi- 
plying the moment-generating matrix and also by carrying out simulation experi- 
ments. They demonstrated that significant linkage disequilibrium may result 
from random drift under tight linkage and small population number. Their re- 
sults were extended by OHTA and KIMURA (1969) who obtained, by the method 
of Kolmogorov backward equation, the formula for the variance of linkage dis- 
equilibrium in which recombination is incorporated. 

In natural populations, however, it is expected that random drift and recurrent 
mutation balance each other so that a steady state is reached with respect to link- 
age disequilibrium. SVED (1968) studied this problem assuming that all gene fre- 
quencies are held at 50% by strong overdominance while mutation is so rare as 
to be negligible. Presumably, his treatment is applicable to a certain transient 
state but not necessarily to the equilibrium state. 

In the present paper we intend to present a theoretical foundation for the treat- 
ment of linkage disequilibrium at steady state determined by random drift and 
mutation (or more generally, linear evolutionary pressure). The problem of link- 
age disequilibrium will become particularly important when we consider two 
neighboring nucleotide sites within a cistron for which the recombination fraction 
may be much smaller than the reciprocal of the population number. It will also 
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be important in relation to the occurrence of pseudo-overdominance due to link- 
age disequilibrium. 

BASIC THEORY 

Let us consider two linked loci and assume that a pair of alleles, A, and A,, are 
segregating in the first locus, and B, and B, in the second. Let the mutation rates 
be as follows: 

We will denote by N e  the effective population number and by c the recombina- 
tion fraction between the 2 loci. Though we assume no selection, the treatment 
in the present paper may be extended to cover some cases of selection when se- 
lection pressure is approximated by a linear function of gene frequencies. 

We shall derive the formula for the variance of linkage disequilibrium at steady 
state first by using the method of moment-generating matrix as developed by 
HILL and ROBERTSON (1968)  and then, by a more convenient method based on 
diffusion models. 

Treatment by the method of moment-generating matrix: Let us denote the fre- 
quencies of 4 types of gametes, A,B,, A,B,, A,B, and A,B, by P,, P,, P ,  and P,, 
respectively (Pl+P2+P3+P,=1). Let p=Pl+p3, q=Pl+P, and D=PlP,-P,P3, 
where p is the frequency of A , ,  q is the frequency of B,, and D is the coefficient of 
linkage disequilibrium. The change of these quantities in one generation consists 
of changes due to mutation, crossing over and random sampling of gametes. Let 
p.2, qn$ and D, be the gene frequencies and linkage disequilibrium after mutation. 
Then the amounts of change in these quantities, neglecting higher order terms of 
U and U ,  are 

p m - p = = l -  ( ~ i + v l ) p  
q, - q = U 2  - (u,+v,)q 
D, --D = - (U1+U,+U,+U*)D 

( 1 )  

NOW, let us consider the following 3 quantities; 

x =: pq(1-p)  (1-q) 
Y = D( 1-2p) (1-2q) 
Z = D ,  

We will denote the values of these quantities after mutation by Xm, Y ,  and 2,. 
Then, neglecting higher order terms involving U and U ,  the amount of their 
change by mutation can be shown to be as follows; 

X ,  - X = - 2 k X + ~ , q (  1-9) +u2p( l -p)  + ( ~ l - ~ , ) p q (  1-q) 
+ ( u 2 - z  1 p q  ( 1 7 )  , 

Y ,  - Y 1 -2kY+ ( u ~ - u ~ ) D  ( 1 - - 2 g )  + (uZ-V~)D( 1--2p), 
Z, - Z == -2kZ, 

k = U ,  + u1 + u2 + u2. 

( 3 )  

(4) 
where 

We then consider the change of X ,  Y and Z by crossing over and sampling. 
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Under the assumption that the moments do not change from one generation 
to the next, the following relationship holds for the expected values of X ,  Y and 2 
at steady state; 

E(2) =- A B 

where E denotes the operator of taking expectation and [aij] is the moment-gen- 
?rating matrix of HILL and ROBERTSON (1968), namely 

A 

a,, (1-2k)-I a,, (1-2k) -a11 

0 azz (I-2k) -1 0 

a13 (I-%) a23( I-%) -a13 7 

in which n=2Ne. 

By solving equation ( 5 ) ,  we obtain 

B =  
' all (1-2k) -1 azl ( 1 -2k) CL31 ( I-%) 

0 a 2 2  (1-2k) -1 a32 (I-%) I (9) 
ai3 (I-%) a23 (1 -2k) a33 (1-2k)-I . 
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Treatment by the diffusion models: Under the assumption of reversible muta- 
tion, the stationary distributions of p and q can be obtained separately by using 
WRIGHT’S formula for the gene frequency distribution (WRIGHT 1938), but not 
their joint distribution, unless recombination between the 2 loci is frequent 
enough to make their combination independent. However, the moments of distri- 
bution involving p ,  q and D at steady state can be obtained by the following 
method based on the diffusion models. 

As demonstrated in the APPENDIX for the special cases of one and two inde- 
pendent random variables, we have in general, at stationary state 

In this equation, L, denotes the differential operator such that = LE(+) 
represents the Kolmogorov backward equation (cf. KIMURA 1964), and f is a 
continuous function of independent random variables. For two linked loci, the 
appropriate Kolmogorov backward equation was given by OHTA and KIMURA 
(1969). For the present model, by taking account of mutation, but neglecting 
selection, (1 1 )  becomes, 

E { L B ( f ) )  = O  ( 1 1 )  

- D(- 1 + N e d ) - }  af = 0 2 ZD 
where c‘ = c 4 k. 

Now, in order to obtain the expected values of 3 quantities, X = p q (  1 - p )  
( I - q ) , Y = D ( l  - 2 p ) ( l  - 2 q )  andZ=D?,wefirs t le t f=pq(l  - p ) ( 1  - 4 )  
in the above equation. Then, 

E{-(1 + 2 N e k ) X + ( 1 / 2 ) Y  + N , Z J , ~ ( ~  - - ) + N , ~ z p ( l  - p )  
+Ne(ul-Uv,)p?(l --q)+Ne(uz--u,)pq(l  -P I}  10 (13)  

+N, (u1-uu , )D(1  - 2 q ) )  = o  (14)  

Next, let f = D ( l  - 2 p )  ( 1  - 2q) ,  then 
E(2Z  -(5/2 + Npc‘ + N,k)Y + N,(uz - u,)D(I - 2p) 

Finally, let f = Dz, then 

Thus we obtain the following simultaneous equation for the expected values of 
X ,  Y and 2: 

E{ (1 /2)X -k (1 /2)  Y - (3 /2  +2Nec’) Z }  = 0 (15)  

( 1  + 2N,k)E(X)-(1/2)E(Y)=E{Neulq(1 - q)+ N,v,p(l - p )  
+ N e ( u i - ~ v , ) w ( l  - q ) + N e ( u , - ~ z ) p q ( l  - p ) } ~  NeA 

( 5 / 2 + N e ~ ’ + N , k ) E ( Y ) - 2 2 E ( Z ) = E { N , ( u 2 -  ~ z ) D ( 1 - 2 p )  

(1 /2 )  E ( X )  + ( 1/2)E ( Y )  - (3 /2  + 2Nec’) E (2) = 0 
+ N e ( u ,  - LT1)D(l - 2 q ) }  = 0 (16)  
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Note that this relation is equivalent to equation ( 5 ) .  By solving equation (16) 
we get 

NeA E ( X )  =-- 
1 + 2N,k 

(17) 

1 
{ + ( 1  +2N,k) (3+4N,c’) (2.5+Nec’+N,k) -2( 1+2N,k) -1 

2N,A 
E ( Y )  = (l+2Nek) (3+4N,c‘) (2.5+Nec‘+Nek)-2( 1+2Nek)-l 

(2.5+N,c’-l-Nek) N,A 
(1+2N,k) (3+4N,c‘) (2.5+N,c’SNek) -2( 1+2Nek) -1 E(2) = 

in which A is given by (10). As shown in (8), A contains lower moments such 
as p (  l - p )  , q( l-q) etc., and their expected values may be obtained by putting 
f = p ( 1  -p)  , f = q ( 1-9) etc. in the basic equation (12). We note here that E (  2)  
of (7) and ( 1  7) gives the variance of linkage disequilibrium at steady state, since 
E{D} = 0 in the present case. 

DISCUSSION 

The above formulae can be applied to the cases in which genetic variability is 
maintained by recurrent mutation in a finite population. Table 1 gives numerical 
examples computed by using (7) and ( 1  7) .  There are slight differences between 
the two sets of values. They are due to the approximation involved in ( 1  7) based 
on diffusion models, but the agreement is satisfactory. 

Since E(2) depends not only on the magnitude of linkage disequilibrium but 
also very much on gene frequencies, it may be convenient to consider the quanti- 
ty, a d 2  = E(D2}/E{pq(l-p) (l-q) ) as a measure of linkage disequilibrium 
which is independent of gene frequencies. We shall call the square root of this 
quantity, i.e., a d  = [E{DZ}/E{pq(l--p) ( l -q)  )I%, the standard linkage devict- 
tion. a d 2  is slightly different from the square of the correlation of gene frequencies 
considered by HILL and ROBERTSON (1968) who designated it as T* which is equal 
to E{D2/pq ( l - p )  (1-4)). However, these 2 quantities are very close to each 
other in their actual values for the cases so far checked as pointed out by OHTA 
and KIMURA (1969). Thus, the standard linkage deviation may be understood as 
approximately equal to the correlation of gene frequencies between the 2 linked 
loci. 

From the set of formulas given in (17)  adZ is obtained as E(Z)/E(X), and, we 
have 

(18) 
1 

3+4Nec’- [C/ (2.5+N,c’fNek)] a d 2  = 

where c‘ = c + k. 
Since k is usually much smaller than c, a d 2  is not much influenced by the muta- 
tion rate but depends almost entirely on N,c‘. Now, let us compare 06’ in station- 
ary state with that in transient state. HILL and ROBERTSON (1968) and OHTA and 
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TABLE 1 

Comparison of the values of E(X), E(Y), E(Z)  and ud2 obtained by using 
two different formulae, (7)  and (17), assuming N e  = 50 

hlutation rate c Formula used E ( X )  

/ I  
3- 

0.0 7 
17 

0.01 7 
17 

0.02 7 
17 

0.05 7 
17 

0.1093 x 10-3 
0.1107 x 1 0 - 3  

0.9816 x 10-4 
0.9958 X le4 

0.9509 x 10-4 
0.9648 X 

0.9243 x 10-4 
0.9387 X 10-1 

0.3750 x le4 
0.3804 X 10-* 

0.1455 x 10-4 
0 . 1 ~ 1  x 10-4 

0.8145 x 10-5 
0.8367 x 10-5 

0.2757 x 10-5 
0.2937 x 10-3 

E ( Z /  

0.4832 X 
0.4831 x 10-4 

0.2277 X le4 
0.2252 x le4 

0.1508 x le4 
0.1481 x le4 

0.7677 X le5 
0.7401 X 

0.4421 
0.4364 

0.2320 
0.2261 

0.1587 
0.1535 

0.0831 
0.0788 

0.0 7 
17 

0.01 7 
17 

0.02 7 
17 

0.05 7 
17 

0.5487 x 10-2 
0.5541 & I C 2  

0.5260 x 10-2 
0.5316 X IO-* 

0.5176 x 1 0 - 2  
0.5233 x 10-2 

0.5095 x 1 0 - 2  

0.5152 x 10-2 

0.1218 X 
0.1228 x 10-2 

0.5923 x 10-3 
0.6000 x 10-3 

0.3604 X 10-3 
0.3683 x 10-3 

0.1342 X 10-3 
0.1421 x 10-3 

0.1797 x 1 0 - 2  

0.1781 X le2 

0.1039 x 10-2  
0.1020 x 10-2 

0.7376 X 10-3 
0.7182 x 10-3 

0.4015 X lk3 
0.3837 x 10-3 

0.3275 
0.3215 

0.1975 
0.1919 

0.1425 
0.1372 

0.0788 
0.0745 

KIMURA (1969) studied the process of change in linkage disequilibrium due to 
random drift when initial gamete frequencies are given, and concluded that r2 
and ud2 approach to 1/(4Nec) when N,c is large. The present formula (18) shows 
that U,? in the stationary state also approaches 1/(4Nec’) for a large Net'. On the 
other hand, when Ne? is small, Ud2 may take different values at these two states. 
For example, when N,c = 0.5, U d z  at the state of steady decay is 0.403 and this is 
almost twice as large as that of stationary state given in Table 1. In  general, how- 
ever, we may say that the standard linkage deviation as well as the correlation of 
gene frequencies do not differ very much between these two states. 

In natural populations, the recombination fraction c between neighboring 
genes or cistrons i; probably of the order of N e  = IO4 and 
k = a d 2  is about 0.023 and the correlation of gene frequencies between the 
two neighboring loci may be about 0.15. Thus, linkage disequilibrium may not 
be very important for this case. If, on the other hand, c =  N e  = lo3 and 
k = we have ( ~ d  = 0.62 approximately so that linkage disequilibrium be- 
comes more important. When we consider nucleotide sites that are near to each 
other within a cistron the value of N e d  may become quite small and linkage dis- 
equilibrium will be very important, even if the sign of D, not D2, may be positive 

or IO-’. If c = 
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or negative giving the mean value of D = 0. A more extensive discussion on this 
problem, will be given elsewhere. 

The greater importance of linkage disequilibrium arises when we consider a 
region of a chromosome rather than just 2 pairs of genes. Namely, even if ud2  

between each pair of loci may be small, the total effect of linkage disequilibrium 
over a given region of a chromosome may not be negligible. SVED (1968) argued 
that an apparent overdominance might arise due to linkage disequilibrium be- 
tween a pair of neutral alleles that are linked to overdominant loci. The results 
obtained in the previous section enable us to treat this problem more fully. 

In  what follows we will discuss the application of formula (11) to the cases 
where nonepistatic selection is involved in the two linked loci. Let us assume that 
A, and A, are selectively neutral, and that B, and B, are overdominant, such that 
heterozygote BIB, has selective advantage s over both homozygotes, B,B, and 
B,B,. Then the amount of change of q (frequency of B,) in one generation by 
selection is 

A q  = SQ (1-q) (1-2q). 
At equilibrium, q = 1/2 and around this equilibrium point Aq may be approxi- 
mated by Aq = (s/4) (1-2q). Here we assume that the change of p by selection 
pressure at the B locus is negligible. It will be shown in the next paper of this 
series that this approximation does not introduce a serious error in the following 
derivation of the standard linkage deviation. We will also assume that the change 
of D by selection is negligible. By taking account of selection pressure in this way 
and letting u1 = U ,  = u2 = uZ E U, formula (12) becomes, 

p(1-p) a y  
+ 

q(1-q) a y  D a 2 4  o( i -2p)  a y  
2 am + 

-+- - 
4 a42 2 apaq 

af S af 1 
aP 4 a4 2 

+ N,u( 1-2p)- + N e  (- + U )  (1-2q)- - D(- + 
This gives 

(20) 
1 

3+4N,c’- [ 2/(2.5fN,d+4Neu+ %) ] Ud2 = 

This is not much different from formula ( 18) when Ned >> 1, though the value of 
A corre;ponding to (10) may become considerably different due to higher equi- 
librium gene frequencies. More generally, for any linear systematic evolutionary 
pressure involving p and q, the formula for ad2 can be obtained in the same way 
and it can be shown that Udz is determined almost entirely by N,c’ for N,c’ >> 1. 

We will now proceed to estimate the fitnesses of the homozygotes and the 
heterozygote at the A (neutral) locus. Let q, and q2 be the relative frequencies 
of B, among A,-carrying and A,-carrying chromosomes, respectively. Then the 
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mean fitnesses of A,Al, A,A, and A,A,, for a given set of values of q1 and qz are 
as follows; 

Wnln l  = 1 -s ( 1  -2ql) -2sq12 
W A l A a  I-$( 1-ql-q2)-2sqiqz 
WAzAz 1-.$(l-&l,)-2Sqz2. 

In order to evaluate their expected values, let ql=q+bl and q,=q-b,. This yields: 
Frequency of AIBl = p (q+b,) 

AIB, = ~ ( 1 - q - b ~ )  
A$, = (1-p) (q--b,) 
AZB, = (1-p) (1-qS-h) 

Then we have 
E ( W A I A l )  = 1-sE(1-2q1)--2sE(q,') = l-sE{1-2(q+b1)} 

-2sE{q2+2b1+b12}, 
E (  WA~AZ) = l-sE{ 1 -2q-b,-b2}-2sE( q"blb,}, 

and 

At the equilibrium E(ql)=E(q2)=E(q)=1/2, E(bl)=E(bz)= 0. Therefore, 
noting that bl=D/p and b,=D/ ( 1 -p )  , 

and 

E(W.4242) = l-SE{ 1-2 (q-~z)}-2sE{q~-2b,+bz~}. 

E(  W+Z) -E ( W A ~ * ~ )  = %E{ D2/ [pz  ( 1 - p )  ] } > 0 

E ( W A , A ~ ) - E ( W . ~ ~ A ~ )  = 2 s E { D 2 / [ p ( l - p ) 2 ] }  > 0 . 
Namely, pseudo-overdominance appears by linkage disequilibrium. In this case 
we can evaluate the approximate amount of pseudo-overdominance at the A locus 
by using the expected value of D2 or udz at equilibrium. The magnitude of pseudo- 
overdominance will be enhanced if many overdominant loci are linked to the A 
locus, since its magnitude would be roughly proportional to the sum of D2 values 
between A and the accompanying overdominant loci. 

Furthermore, it is possible to show that not only overdominance but also 
ordinary dominance may lend pseudo-overdominance to the linked neutral loci. 
Taking the fitnesses of BIB,, B,B, and B,B, as 1 -s, 1 -sh and 1 ,  respectively, and 
denoting by q, and q, the frequencies of Bl among A,-carrying and A?-carrying 
chromosomes as before, we have, for a given set of values of q1 and qz, 

W A i A 1  = 1-2shqi-s (1-2h) 41' 
WA1% = 1 -sh(q,+q,) -s ( 1 -2h) qlq,, 

and 
W A Z A Z  = 1-2shq,-S( 1-2h)qz2. 

Since E(q l )=E(q2) ,  and, E ( q 1 2 )  >E(qlqz)  <E(qz2)  as before, it is possible to show 
that E(Wnlkl) <E(WA,A,) > E ( W A ~ A ~ )  unless h20.5. The magnitude of pseudo- 
overdominance in such a case may be small, since equilibrium frequencies of q1 
and q, are determined by the balance between mutation and selection, and there- 
fore they are low. However, it is important to note that pseudo-overdominance 
may arise by linkage disequilibrium even if there are no overdominant loci in 
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the strict sense. This was clearly shown in the Monte Carlo experiments reported 
by MARUYAM~ and KIMURA (1968). 

Other important effects of linkage disequilibrium due to random drift include 
the increase of probability of simultaneous segregation as pointed out by HILL 
(1968). Further discussion on this and other topics relating to linkage disequilib- 
rium in finite populations will be presented elsewhere. 

SUMMARY 

Linkage disequilibrium in finite populations was investigated by the method 
of moment-generating matrix and also by the method of diffusion equations, as- 
suming that steady state is reached with respect to distribution of chromosome 
frequencies under recurrent mutation and random sampling of gametes.-It was 
shown that if we measure the amount of linkage disequilibrium by U & E { D ~ } /  
E{  p ( 1 -p) g ( 1 -p)  }, in which D is the coefficient of linkage disequilibrium and 
p and g are gene frequencies in the two loci, t h m  ~d'"1/[3+4N,c'-4/(5+2Ne~f 
2Nek) ] , where N e  is the effective size of the population, c'=c+k in which c is the 
recombination fraction, and k is the s u m  of mutation rates. The square root of this 
quantity, i.e., od, may be termed the standard linkage deviation. It i s  approxi- 
mately equal to the correlation of gene frequencies between the two loci. U d  is 
almost entirely determined by Nec' when N,c' )> 1. It was further shown that ad 
is not much influenced by nonepistatic selection.-The importance of linkage 
disequilibrium in finite populations consists mainly in its influence on the selec- 
tive values of neighboring genes. Apparent overdominance of intrinsically neu- 
tral alleles may arise by the presence of overdominant or ordinarily dominant 
loci that are tightly linked to it. The magnitude of such pseudo-overdominance 
is roughly proportional to the sum of D2 values between the neutral and the 
remaining loci. 

APPENDIX 

Basic equations for deriuing the moments of the gene frequency distribution at stationary state 
I. SingZe uariable: Let z be the gene frequency and let +(z) be the density function of the 

stationary distribution. Consider a function f (2) and let 

E J f ( 4 )  = J : f ( r ) O ( z ) d z  

be its expectation with respect to this distribution. If we denote by 6x the amount of change in 5 
for one generation such that x' = z + 6z is the frequency in the next generation, than at station- 
ary state 

where E 3 E E in which E designates an operator of taking expectation with respect to 62. 

Expanding f ( z  + Si) in terms of 8x and neglecting terms involving ( 8 2 ) s  and higher powers 
of 62 ,  we have, from (Al) ,  

E { f b  + Sz) - M} = 0, (-41) 

$ 8  8 

or 
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Substituting the mean M 

for E (Sx) and E { (62) z, we obtain 
6 6 

and the variance V 
6.2 62 

of the change of x per generation, respectively, 

To simplify the expression we may omit subscript $ in E and write the above equation as 

11. Two and more variubles: Since the principle can be explained most easily for two variables, 
we will here consider the case of two independent random variables x1 and x2. Let $(xl,x2) be 
the stationary distribution and let f(x,,x,) be a given function of x1 and xz. As in the single 
variable case. if Sz, and Sz, are respectively the amounts of change in x1 and x2 for one genera- 
tion, then we have 

(A3) 
Using the same procedure as was used to derive (A2') frsm (AI ), we obtain 

E ( ~ ( x ,  + SX,, x2  + ax,) - f ( x , , ~ )  1 = 0. 

where W is the covariance between Sx, and Sx,, and M and V (i=1,2) are the 
62,62, s x i  s x i  

mean and the variance of xi per generation. 
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