
LINKAGE DISEQUILIBRIUM BETWEEN TWO SEGREGATING 

MUTATIONS IN A FINITE POPULATION1 
NUCLEOTIDE SITES UNDER THE STEADY FLUX OF 

TOMOKO OHTA AND MOT00 K I M U R A  

National Institute of Genetics, Mishima, Japan 

Received July 31, 1970 

N our previous reports (OHTA and KIMURA 1969a, b, 1970), we have studied I linkage disequilibrium, that is, nonrandom association of genes between loci, 
caused by random frequency drift in finite populations. We have considered the 
situation in which a stationary distribution is reached under recurrent mutation 
or overdominance. We have also considered the case in which genetic variability 
decays each generation due to random sampling of gametes. 

The present paper is an extension of the work of KIMURA (1969a) who studied 
the number of heterozygous nucleotide sites under the steady flux of molecular 
mutations in a finite population. Here, we intend to study the amount of linkage 
disequilibrium between two segregating sites using the same model; it assumes 
that the total number of nucleotide sites making up the genome is so large and 
the mutation rate per site is so low that whenever a mutant appears, it represents 
a mutation at a previously homoallelic site, that is, a site in which no mutants 
are currently segregating in the population. 

BASIC THEORY 

Consider a random mating diploid population of actual size N and effective 
size N,.  We assume that each generation mutations occur in vm sites distributed 
throughout the population. 

Since each mutant becomes fixed in the population or lost from it within a 
finite length of time, if mutations continue to occur at a constant rate over many 
generations, a steady state will be reached with respect to the frequency distribu- 
tion of mutants among different sites, provided that we restrict our consideration 
to only those sites in which mutant forms are segregating. 

In the following treatment, we shall consider two segregating nucleotide sites 
with the recombination fraction c between them. Let X ,  be the frequency of 
chromosomes having no mutants at both sites, X ,  and X ,  be the frequencies of 
chromosomes having a mutant at the first and the second sites, respectively, and 
X ,  be the frequency of chromosomes having mutants at both sites. Then, 
z=X,+X, is the frequency of the mutant at the first site, y=X,+X, is that at the 
second site, and D=X,X,-X,X, is the index of linkage disequilibrium. 
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Let @(z,y,D) be the steady flux distribution involving two nucleotide sites 
such that Q, (z,y,D) dzdydD is the expected number of the pairs of sites having 
mutant frequencies and the disequilibrium index within the intervals (z,x+dx) , 
(y,y+dy), and (D,D+dD). This includes all pairs whose distance apart cor- 
responds to a recombination fraction c. We assume that mutants are simultane- 
ouslysegregatingat both sites (O<z<l, O<y<l). 

As shown in the APPENDIX, if f(x,y,D) is a function (polynomial) of z,y, and 
D, we have, with a steady flux of mutations, 

E { J 3 f )  1 + A m u t E (  f )  = 0. (1) 

In  this equation L is the differential operator for the diffusion process involving 
the two sites, and if we assume that the molecular mutants are selectively neutral, 

D a* D(1-2z) 3' +--+--- ~ ( 1 - 5 )  a' y(1-y) a* L= 
4N, ax2 + 4Ne ay' 2Ne axay 2 ~ ,  axaD 

D(1-2y) 3' 1 a 2  +- [~~(l-~)(l-~)+D(1-2~)(1-2~)-D*] 7 
2N, ayaD 4N, GD' 

+ 

This operator is equivalent to L, in formula (12) of OHTA and KIMURA (1 969b) 
except that L here does not contain terms involving the effect of mutation. In the 
present model, considering nucleotide sites rather than conventional genetic loci, 
mutation is essentially irreversible and the effect of mutation is represented by the 
term A,,,&(f) in equation (1 ) . Specifically, AmUtE( f )  represents the contribution 
made each generation by new mutations to E ( f ) ,  where E is the operator for tak- 
ing the expectation with respect to the steady flux distribution, that is, 

in which the integral is over O<x<l, O<y<l, - %SDS+%. 
In choosing f we must keep in mind that equation (1) is valid only for f such 

that f(x,y,D)@((z,y,D) vanishes at z=O, x=1, y=O, and y = l ;  in other words, 
f@ must be zero on the periphery of the square 0 5 5 1 ,  OSySl.  Note that on 
the periphery D is also zero. 

E ( f )  = s s  s f(z,y,D) @ (S,Y,D) dxdydD, 

First, let f=xy(  1-z) (I-y) in equation ( I ) ,  then we have 

E { L ( f )  1 = 2N, (-2X+Y) , (3) 

where X=E{zy ( 1-5) ( 1 -y)  } and Y=E{D ( 1-21) (1 -2y) }. To determine amutE 
( f )  in equation ( l ) ,  let v s  be the number of pairs of nucleotide sites that start 
segregating simultaneously in the entire population each generation, considering 
only those pairs of sites that are separated by a distance corresponding to a re- 
combination fraction c. We assume that simultaneous segregation always starts 
from the situation in which one of the sites is already segregating while a new 
mutant is just added to the other site. Thus for f=z(l--s)y(l-y), we have 

~,,&f> = ~ d - - z ) p ( l - - p ) ,  
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where x ( 1 -x) is the average value of x ( 1 -x) among segregating sites, and p is 
the frequency of mutants at the time of occurrence. 

If we denote by I ,  ( p )  the total number of segregating sites in the population 
and by E { z (  1-x) } the sum of x( 1 -x) over all these sites, then 

and as shown by KIMURA ( 1969a), 

and 

x ( 1 - x )  = E { x (  1-x) } / I 1  ( p ) ,  

E { z ( l - x ) }  = 2Nev,p(l-p) (4 )  

Ii(p) = -4Nev,{plogep+(l-p) lOge(1-P)) 
An independent derivation of (4) is given in the APPENDIX (see formula AT). 
We note here that we may put p= 1 J  ( 2 N )  in the above expressions because, in 

our model, the mutation rate per site is so low that each mutant is likely to be 
represented only once at the moment of appearance. Thus, if we write 

A,t&(f) = K 
for f=x ( 1-2) y ( 1  - y )  , we have 

K =z v s ~ ( 1 - ~ ) / ( 2 N )  = v S / [ 4 N ( l ~ e 2 N + 1 ) ]  ( 5 )  
approximately. 

Next, letting f=D ( 1 -2x)  ( 1  - 2 y )  in ( 1  ), we obtain 
1 

2Ne 
E { L ( f ) }  =-- { ( 5 ' + 2 N e c ) Y - 4 2 ) ,  

where 2 = E { D 2 } .  In determining n,,,E(f) for this case, we note that when a 
mutant is just introduced into the second site, the mutant appears either on a 
chromosome carrying a niutant in the first site in which case X ,  = 1/2N,  X ,  = 0, 
X ,  = 5 - 1 / ( 2 N ) ,  X ,  = 1 - x, or on a chromosome carrying a nonmutant in the 
first site in which case X ,  = 0, X ,  = 1/2N, X ,  = x, X I  = 1 - x - 1/2N, where 
xis  the frequency of the mutant in the first site. 

The frequencies of these alternative events are x and 1 - x, respectively. 
Therefore, 

X 2 
2N + ( 1 3 )  (- -) (1-22) (1-  m) ] = 0. 

Finally, let f = Dz in ( 1  ), then we get 

1 
2N,  

E { L ( f ) }  =---{X + Y - (38+4N,c)Z}, 

and 
A m u t E ( f )  = v s ~  ( 1 - X )  / ( 2 N )  'ZKJ ( 2 N )  

because for a particular value of x, the contribution of a new mutant to E ( D 2 )  is 

l-x 
) 2  + ( 1 - 2 )  (?).I = v g X ( 1 - x ) / ( 2 N ) 2 .  2N 
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Therefore, we have a set of equations for X ,  Y ,  and 2. 
- 2 X f Y  = -2NeK 
- ( 5+2N,c) Y S 4 Z  = 0 
X+Y-(3+4Nec)Z = -2NeK/(2N) 

( 6 )  

Solving this we find 
X = E { x (  l - - ~ ) y ( l - y ) }  = N,K(11+26R+8R2f2/N)/(9f26RS8RZ) 

2 = E{Dz}=N,K(l+l/N) (5+2R)/(9+26R+8R2), 
Y E{D(  1-22) (1-2y) }=4NeK ( l + l / N )  /( 9+26Rf8RZ) ( 7 )  

where R = Nec. 

sites, we use the quantity, 
To express the degree of linkage disequilibrium between the two nucleotide 

where ud is the standard linkage deviation (OHTA and KIMURA 1969b). The 
quantity D2/ [ z  ( 1 -z) y (1-y)  ] has been used by statisticians as a measure of 
degree of association and is called the mean square contingency coefficient (see 
KENDALL 1948). Our u d 2  is closely related, being the ratio of the expected value of 
the numerator to that of the denominator. Unless the mutant frequencies at one 
or both sites take the extreme values near 0 or 1 ,  a d 2  is approximately equal to the 
expected value of the mean square contingency coefficient. 

From (7)  we obtain 

(5+2R) (1+1/N) 5 + 2 R  
1 1+26R+8R2+2/N - 1 1+26R+8R2 a d 2  = ( 9 )  

where R = Nee. 
Thus if N,c is large, u d 2  is approximately equal to 1/(4N,c) ,  while if Nec is 

much smaller than unity. adz is approximately 5 / 1 1 .  
Note that E ( D )  = 0, namely, D has the mean zero, as may be seen by setting 

f D and AnlutE ( f )  = 0 in ( 1 ) .  However, for any finite population, D is likely to 
deviate from this theoretical mean, and a d  is a more appropriate measure of the 
amount of linkage disequilibrium. 

MONTE CARLO EXPERIMENTS 

In order to check the validity of these theoretical predictions, several Monte 
Carlo experiments were performed. It is desirable to simulate as closely as possible 
a natural population of organisms having a very large number of nucleotide sites 
in its genome with a steady flux of mutations occurring over many generations. 
However. we used a simpler model having only two sites, corresponding to the 
two sites treated by the method of this paper. Each site is supplied with a new 
mutant as soon as it becomes homoallelic. In this model we cannot control muta- 
tion rate, although for the present purpose, the simulation may be used for check- 
ing formula ( 9 )  giving the squared standard linkage deviation. Also, it may be 
used to compare u d  with the contingency coefficient between the two nucleotide 
sites. 
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TABLE 1 

Monte Carlo results 
Theoretical value 

(formula 9) N,=100 N,=200 Mean 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

0.4546 
0.3824 
0.3273 
0.2872 
0.2557 
0.2308 
0.2102 
0.1932 
0.1788 
0.1663 
0.1555 
0.0947 
0.0683 
0.0535 
0.044'0 
0.0374 
0.0325 
0.0287 
0.0258 
0.0233 

0.7380 
0.7056 
0.4671 
0.3903 
0.45% 
0.1890 
0.2008 
0.1823 
0.1700 
0.1273 
0.1334 
0.1208 
0.0622 
0.0391 
0.0444 
0.0319 
0.0313 
0.0263 
0.0238 
0.0197 

0.2933 
0.6888 
0.4637 
0.2930 
0.2989 
0.2532 
0.1197 
0.1348 
0.2606 
0.0053 
0.2554 
0.0858 
0.0768 
0.0380 
0.0506 
0.0310 
0.0273 
0.0231 
0.021 1 
0.0192 

0.5157 
0.6972 
0.3922 
0.341 4 
0.3758 
0.221 1 
0.1603 
0.1586 
0.2153 
0.0663 
0.1944 
0.1033 
0.0695 
0.0386 
0.0475 
0.0315 
0.0293 
0.0247 
0.0225 
0.0195 

~ ~~~ ~ 

Results of Monte Carlo experiments performed to check equation (9) on the squared standard 
linkage deviation between two segregating sites under the steady flux of molecular mutations in a 
finite population. Each experimental value is the average over 10,000 generations. N ,  stands for 
the effective population number and c the recombination fraction between the two segregating 
nucleotide sites. 

The procedure of the experiment was as follows. In the first generation, each 
site contains one mutant; crossing over and zygote formation are performed de- 
terministically; sampling of N zygotes for the parents of the next generation are 
carried out as follows using pseudorandom numbers with uniform distribution in 
the interval [O, l ]  (RAND 20 in TOSBAC 3400). Let f i  be the frequency of the ith 
genotype (i = 1,2, . . ., 10). Then we pick out an individual of the ith genotype 

i-1 i 

i=o j = o  
if a random number happens to lie between z f j  and z f j ,  where we set 

f o  = 0. The procedure used here is essentially the same as the one used by OHTA 
(1968) except for mutation production. A new mutation is supplied whenever a 
locus becomes homoallelic, regardless of whether the previous mutant was lost or 
fixed. In Table 1, values of ad2 obtained from the experiment are compared with 
the corresponding theoretical values derived from equation (9). The experiments 
were performed assuming two levels of the effective population number, Ne = 100 
and 200. The recombination fraction ranges from 0 to N,c = 10. The values listed 
are the averages over 10;000 generations. 

As seen from the table, agreement between experimental and theoretical results 
appears to be satisfactory. 
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DISCUSSION 

In discussing the biological implication of the above results, we must keep in 
mind that we are here concerned with nonrandom association of mutants between 
two nucleotide sites, both of which are simultaneously segregating in the popula- 
tion. This differs from the nonrandom association reported by JOSSE, KAISER and 
KORNBERG (1961) for base composition of adjacent nucleotide sites (nearest 
neighbor). Their analysis involves the overall base composition, most of which 
is from nonsegregating sites. Furthermore, our analysis considers nonrandom 
associations between nucleotide pairs, considered as individual pairs, but with an 
average value D not differing from zero, whereas they found significant deviations 
from D = 0. 

The most likely explanation of the nearest-neighbor association is that the 
mutation rate at a nucleotide is somehow influenced by the nucleotide at the 
adjacent site. The alternative, that the nonrandomness is due to selection favor- 
ing different amino acids is more difficult to understand in view of the fact that 
the same paired nucleotide sequences occur in the codons of many amino acids 
and many different amino acids are used in each polypeptide. If a majority of 
nucleotide substitutions in evolution are the result of chance fixation of molecu- 
lar mutants through random frequency drift as suggested by KIMURA (1968, 
1969b), KING and JUKES (1969), and CROW (1969), nonrandomness of base ar- 
rangements between adjacent sites is still less likely to be caused by selection, 
increasing the strength of the evidence for neighbor-influenced mutation rates. 

Returning to the dynamic aspect, we note from equation (9) that marked 
linkage disequilibrium will arise between the segregating sites if Nec, the product 
of the effective population number and the recombination fraction, is less than 
unity. For example, if N,c = 0.5, we have ud2 = 3/13 or ua 0.48. Since Ud is 
roughly equal to the correlation coefficient, this means that roughly 50% correla- 
tion exists between the frequencies of mutants at both sites. 

According to NEI (1968), who listed the number of nucleotide pairs per unit 
map length for various organisms ranging from viruses to mammals, the re- 
combination fraction between neighboring sites is about 4 x 10+ for Drosophila 
and 4 X for the mouse. These values are about the same order of magnitude 
as the mutation rate per nucleotide (cf. KIMURA 1968a,b). 

Since the effective number (but not the actual number) of many species may 
not reach lo6 and may be much less, it is expected that N,c is usually much 
smaller than unity for two segregating nucleotide sites within a cistron. This 
means that strong linkage disequilibrium is expected to be very common between 
segregating sites within a cistron. Although four "alleles" are theoretically possi- 
ble by segregation in a single nucleotide site, it is much more likely that when 
three or more alleles are maintained in the population, two or more sites are 
involved. In such a case, polymorphism involving exactly three alleles necessarily 
means linkage disequilibrium within a cistron. 

The fact that a d 2  approaches 5/11 or roughly 1/2 rather than 1 at the limit of 
N,c = 0 may be understood by noting that under a steady flux of mutations, the 
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mutant frequencies at two segregating sites are usually different, and ad2 = 1 
cannot be attained even when there is no recombination. 

Another interesting point related to our present result is that Ud2 becomes ap- 
proximately 1/(4Nec) if 4Nec is much larger than unity. 

Ud2 1/(4Ne~) (10) 
For two segregating sites that are 0.1 map unit or more apart, this should give 

a good approximation for most natural populations. In this case, the contingency 
coefficient of mutant frequencies between the two sites is roughly equal to 

We have already shown in our previous papers that this approximation holds 
for the case of steady decay (OHTA and KIMURA 1969a). It also holds for the 
stationary state attained under recurrent mutation or overdominance ( OHTA and 
KIMURA 196913, 1970). 

Thus the approximation formula (IO) seems to be applicable quite generally 
to two segregating sites as long as 4Nec is large. 

suggestions. 
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SUMMARY 

Linkage disequilibrium or nonrandom association of mutant forms between 
two segregating nucleotide sites in a finite population was studied using diffusion 
models, assuming that the number of nucleotide sites making up the genome is SO 

large while the mutation rate per site is so low that whenever a mutant appears, 
it represents a mutation at a homoallelic site, i.e., a site in which no mutant forms 
are currently segregating in a population.-It was shown that under steady flux 
of molecular mutations in a finite population, if we measure the amount of link- 
age disequilibrium between two segregating sites by 

Ud2 = E{D2}/E{s(l--z)y(l-y)}, 
where D is the ordinary coefficient of linkage disequilibrium, and x and y are the 
frequencies of mutants at the two sites, then we have 

a d 2  (5+2R)/(11+26R+8R2), 
where R=N,c in which Ne is the effective size of the population and c is the re- 
combination fraction between the two sites.-It was pointed out that if multiple 
alleles in a random mating population are generated through segregation at two 
or more nucleotide sites within a cistron, a strong linkage disequilibrium is 
usually expected between those sites, even in the absence of selection. 
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APPENDIX 

Basic equations for deriving the moments of the steady flux distribution. I .  The 
moment equations for nonequilibrium population: 

We will first consider the single-variable case. Let x t  be the frequency of a 
mutant form at a given site at time t (conveniently measured with one generation 
as the unit length of time), and let axt be the amount of change in xt during a 
short time interval between t and t f 6 t  so that 

Let f ( 5 )  be a polynomial of x and consider the expected value of this function 
with respect to the frequency distribution at time t f s t ,  i.e., 

E { f ( x  t+@ ) I*  
Substituting (AI)  in this expression, we have 

where E ,  is the operator of taking the expectation with respect to the change ax, 

and E is that of taking the expectation with respect to the frequency distribution 

at time t. 

higher-order terms containing ( axt )  etc., we get 

#J 

Expanding the right-hand side of (A2) in terms of 6xt and neglecting the 

E ( s x t )  
E { f ( x t + , t ) l  = E +  { f (x t )+E,  ( s x t ) P ( x t ) f  2! Y ( x t ) ) ,  
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where M ,  and V ,  are the mean and the variance, respectively, of the rate of 
change in mutant frequency per generation and are approximations to lim{E6 

( Sxt)/St} and lim{E, ( 6x t )2 /8 t } .  For the stationary distribution, the left-hand 

side of equation (A3) vanishes and it reduces to the equation (A2’) of OHTA and 
KIMURA ( 1969b). 

Extension of equation (A3) to the multivariable case is immediate. For n 
random variables xI, x2,. . . , xn, let f = f ( x I ,  xz,. . . , z,). Then we have 

at+ 0 

6t-t 0 

(-44) 
d 

dt - E(f) = E { L ( f )  1 7  

where L is the differential operator 

in which M ,  V ,  and W designate, respectively, the mean, the variance, and the 
covariance in the rate of change in the random variables that appear as subscripts. 

11. Steady flux case: In  the single-variable case, we assume that mutational 
input occurs at x=p and output due to extinction or fixation occurs either at st=O 

or x=l. At the state of steady flux, input and output balance each other and a 
steady state is reached with respect to the probability distribution, ( x )  , of mu- 
tants among segregating sites. Thus, writing AmutE(f) for the input by mutation 
with respect to E ( f )  , we have 

or 

It is important to note here that equation (A6) or (A6’) is valid only for f(x) 
which vanishes both at z=O and x=1, because the steady state distribution @(x) 
refers only to unfixed classes (1/2N5xSI-l/2N), and new fixations that occur 
each generation at the terminal classes s=O and z=1 should not be included in 

As an example of application of equation (A6’), consider the case of selectively 
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neutral mutations. We assume that each generation mutation occurs in the en- 
tire population at V ,  sites and that the effective population size is N e .  If we take 
f (z) =2z( 1-z) , H r E ( f )  represents the number of heterozygous nucleotide sites 
per individual as considered by KIMURA (1969a). Since for this case M,=O, 
Vsz =z ( 1 -z) / (2N,)  , and ( f )  =2v,p ( 1 -p)  ; noting f ’  (2) =2 ( 1 -2z) and 
f” (2) = -4, we obtain, from equation (A69 , 

1 
2Ne - -E{2z(I--z)} + 2vmp(l--p) = 0 

or 
(A71 

This agrees with the result obtained by KIMURA ( 1969a) using a different method. 
The above treatment may readily be extended to the multivariate case, and we 

obtain 

where L is the differential operator given by (A5). 

H = E{2z( 1 -z) } = 4N,v,p( l-p) . 

E { L ( f ) }  + A, , tE(f )  = 0, (A81 


