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1. INTRODUCTION

Linkage disequilibrium between two segregating loci may be built up in a popula-
tion by two causes. One is epistatic interaction in fitness between the two loci and
the other is random drift due to small population size. The former was studied by
Kimura (1956), Lewontin & Kojima (1960), and many more recent investigators.
They showed that at equilibrium permanent linkage disequilibrium may be main-
tained in an infinitely large population due to epistatic interaction in fitness. On the
other hand, the latter, i.e. linkage disequilibrium due to random drift has not been
investigated until quite recently. Hill & Robertson (1968) have shown its importance
in small populations by demonstrating that the variance of disequilibrium coefficient
D may become fairly large although its mean is zero.

In this report, some extension of their results will be presented with the use of an
entirely different method of approach; Hill & Robertson used a moment generating
matrix which was derived by taking expectations over the multinomial distribution
of gametic frequencies. They obtained an exact analytical solution for the case of no
recombination and no selection. Also, they made numerical studies which include
some recombination and selection.

Here, we will make use of the method of the Kolmogorov backward equation as
developed by Kimura (1957, 1962, 1964) and we will derive the analytical solution
of the variance of linkage disequilibrium for the case of general value of recombina-
tion fraction when there is no selection.

2. BASIC THEORY AND RESULTS

Let us assume two loci in which pairs of alleles A, a and B, b are segregating and
let the frequencies of the four types of gametes AB, Ab, aB and ab be respectively
9i> 6r2> 9z a n ( i 9\ (9i + a2 + 9z + 9i = !)• We will denote by Ne the variance effective
number of the population as defined by Kimura & Crow (1963). Now, let

be the probability density that the frequencies of AB, Ab and aB become respec-
tively Xv X2 and Xs at time t (measured with one generation as unit), given that
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their initial frequencies are respectively gx, gr2, g3. Note here that we denote the
relative frequencies of the four gamete types at the t-th generation by letter X with
subscript 1, 2, 3 or 4 (X1 + X2 + X3 + Xi = 1).

Unless Ne is extremely small, 0 satisfies the following Kolmogorov backward
equation (1). An equivalent formula was given by Hill & Robertson (1966) in the
form of the forward equation and by Ohta (1968) as the backward equation at steady
state.

80 80 80
- 0i - 0s) ̂  - fc(0i + 0s) ̂  + 0s(! - »i" 9s) -^

In the above equation, T = tjNe and c is the recombination fraction between the two
loci {A and B). Also, sx and s2 are the additive selection coefficients at these loci, each
defined as the difference in fitness between the two homozygotes at A and B loci
respectively.

In order to treat equation (1), we will transform the independent random variables
from glt g2 and ga into p, q and D such that

P = 01 + 02.

2 = 01 + 03*
D = 0104-0203 = 01-01-0102-0103-0203.

where p is the frequency of gene A, q is the frequency of gene B and D is the measure
of linkage disequilibrium, all denned at ( = 0. Then, equation (1) becomes as follows:

. (2)

In the above equation 0 s= <p(p,q,D,x,y,z; T) stands for the probability density
that the gene frequencies and the disequilibrium coefficient become x, y and z at
time T given that they are respectively p, q and D at T = 0. In the following, we
will use letter z to represent the linkage disequilibrium at time T so that

z = X1Xi — X2X3 = Xx(l — Xx — X2 — X3) — X2X3.
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Note also that
X,= (l-x)y-z,

Now, let us define three functions as follows:

x){l-y)<j> dXx dX2 dX3, (3)

1 = J J 7 o Z{ 1 ~ 2X) (* ~ 2y) * dXl dX*dXs' (4)

J = f f f z^ dXx dX2 dX3. (5)

Here the triple integrals are over the open interval 0 for which

0 < Xx < X

Notice here that H, I and J represent the expectations of

x){l-y), z(l-2x)(l-2y) and

respectively at time T. These three functions satisfy the same type of equation as (2),
as may be seen, for example, by multiplying each of the terms of equation (2) by z2

followed by integrating them over 0 thus changing <f> into J.
Next, we seek the solution of equation (2) for H, I and J for the case of no

selection, i.e. s1 = s2 = 0. Let

W, (6)

I=[AIpq(l-P)(l-q)+BI(l-2p)(l-2q)D + CID*]e*T, (7)

J = [AjPq(l-p)(l-q)+BJ(l-2p)(l-2q)D + CJ

where, A's, B'B, G'S and A are constants.
If we substitute H for <f> in equation (2) in which we assume s1 = s2 = 0, right-hand

side becomes

where R = Nec. The left-hand side of equation (2) becomes

X[l>q(l-p)(l-q)An + D(l-2p)(l-2q)BH + D*CB]e™. (10)

By equating the two expressions (9) and (10), we have

(11)

2BH - CH{% + 2R) = XCH.

GRH 13
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From the above relation (11), we obtain the following cubic equation (12) which
gives the three eigenvalues (Alt A2, A3) for H. I and J have the same eigenvalues.

In order to solve (12), we transform the equation into the following form:

Y3-^(19 + &B+12R^)Y + T^{2S + 63R-90R2) = 0, (13)

where Y = A + J(5 + 3R). Then, the three solutions are,

(14)= i V(19 + &R + 12R2)cos

I 28 + 63i?-9(XR2 \

~ C°S ( (19 + 6.R + 12R2)l)'

In terms of these solutions, the three eigenvalues (0 > Ax > A2 > A3) are,

(15)

The values of \ l t A2 and A3 are all negative and their absolute values are tabulated in
Table 1 for various values of R = Nec from 0 to 5. Figure 1 shows the relationship
between A's and R.

Table 1. The absolute values of three eigenvalues (Als A2, A3)
for various values of Ne c from Nec = 0 to Nec = 5

R = Nec \Xj\ |A2| |A,|

0-0
0-2
0-4
0-6
0-8
1-0
2-0
3 0
4-0
5 0

0-500
0-668
0-776
0-843
0-885
0-912
0-967
0-982
0-989
0-993

1-500
1-663
1-878
2-128
2-393
2-664
3-960
5129
6-224
7-282

3000
3-269
3-545
3-829
4122
4-424
6-073
7-888
9-787

11-726

Now let us obtain the constants, .4's, J5's and C's, in the formulas (6), (7) and (8).
They can be determined by the initial conditions as follows: from the relation (11),
we have

A - Gm
JiHi~ 2(1+A,)

(16)
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Fig. 1. The relationship between Nec and three eigenvalues (A1; A2, A3). The value of
Ax (solid line) is given by the scale in the left ordinate, while the values of A2 and A3
(broken lines) are given by the scale in the right ordinate.

where the subscript i indicates that the subscripted quantity corresponds to
eigenvalue Â . Therefore, the following relations hold for H, I and J.

JHi = 1,

3

s
3

s
1 = 1

(

i 2(1

= 0;

+ A,)

(17)

= 0,

S C« = 0;

(18)

4-Z
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4

= 1.

From the above relations, (17), (18) and (19), we get

\.1)(1 + A2)(1 + A.
(A3-A1)(A2-A1) '

/3

(A1-A3)(A2-A3)

= 2(1 +Ax)
(A2-A1)(A3-A1))

2(1+ A2)
(A,-A2)(A3-A2)'

2(1+ A3) ,
(A1-A3)(A2-A3)' J

(A2-A1)(A3-A1)'

x —A2)(A3-A2)

Finally, the general solutions for #, J and J are

1

(19)

(20)

(21)

(22)

(23)

(24)

(25)

where H(, /, and Jt represent the values of H, I and J at the <-th generation. In the
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special case of R = 0 (no crossing over) and D — 0 (initial linkage equilibrium),
Ht and Jt are reduced as follows:

H, = &pq( 1 -p) (1 - q) [6 exp { - i/(2IVr)} + 10 exp { - 3tj{2Ne)} - exp { - 3«/IVe}], (26)

J,=*lspq(l-p)(l-q)[(iexp{-tl(2Ne)}-5exv{-3tl(2Ne)}-exV{-3tlNe}]. (27)

Thus, our results agree with those of Hill & Robertson (1968).

3. IMPLICATIONS OF THE RESULTS

The expected value of linkage disequilibrium (z in our terminology) has been
worked out for two loci small populations for the case of no selection by Kimura
(1963), Hill & Robertson (1966), and Karlin & McGregor (1968). If we denote the
expected value of z at the t-th generation by Dt such that

then, with the continuous time model that we are using,

Dt = exV{-(2Nec+l)tl(2Ne)}D0, (28)

where Do = D. However, the distribution of z is unknown. Even its variance has
not been studied until very recently. As Hill & Robertson (1968) emphasize, the
actually observed value of disequilibrium may be quite different from the expected
value because of random drift. The mean of disequilibrium is permanently zero
when there is no epistasis and if there is initial linkage equilibrium, but its variance
may get quite large and may give large observed values of disequilibrium when the
population size is small.

General expressions for the expected values of xy( 1 — x)(l — y), z(l — 2x) (1 — 2y)
and z2 are given by (23), (24) and (25) respectively. Numerical examples of the
expected values of z2j[pq(\ — p) (1 — q)] and z2/[xy(l — x)(l — y)] in our terminology
were given by Hill & Robertson (1968) and we only emphasize that for small values
of Nec the effect of random drift is quite important for linkage disequilibrium.
Among their two statistics, the latter, i.e. the expectation of zz/[xy(l — x) (l — y)], is
quite interesting, although its general solution was not obtained here. However,
JtjHt, which is the ratio of the expectations, seems to be not much different from the
expectation of the ratio. Namely, the asymptotic value oiJi\Hl is equal to CJ1/CH1 or
-(A2 + A3 + 2i? + 2-5)/[2(l + A2)(l + A3)] and this turns out to be roughly equal to
1/(41 ,̂c) when Nec is large, as can be inferred from Table 1.

Of the three eigenvalues given in Table 1, the one with the smallest absolute value
(Ax) is of special importance. I t gives the asymptotic rate of decrease of H, I and J
when t gets sufficiently large. That is,

- 2p) (1 - 2g) +Z)^exp{\xt/Ne}

(29)
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(<->oo), (30)

(*->oo). (31)

It is well known that the heterozygosity at a single locus decreases exactly at the
rate of l/(22Ve) per generation. The above three formulas show that the simultaneous
heterozygosity at the two loci decreases asymptotically at the rate of |AX|/A^ per
generation, because the expected frequency of double heterozygotes or the expected
value of 2XX X± + 2X2 X3 at the t-th generation is equal to

Furthermore, the expected frequencies of coupling and repulsion double hetero-
zygotes may be obtained separately by noting that the expected value of

2i]L i J\. ̂  —' 2.A £ -<\ 3

is equal to 2Z), by definition. Thus the expected frequencies of coupling (AB/ab) and
repulsion (Ab/aB) double heterozygotes are

and 2Ht + , t t

respectively.
When Ne c = 0, the rate of decrease of the frequency of double heterozygotes is

l/(2JVe). It gets larger with larger Nec as shown in Fig. 1 and finally it becomes l/Ne

when Nec = oo. The figure shows how two loci interact with each other by linkage.
It should be noted here that this rate also gives the asymptotic rate of the loss of

genetic heterogeneity in one of the loci when the two loci are segregating simul-
taneously. Now, let us compare the situation with the single locus case again.
Kimura (1955) used letter O, to stand for the probability that a particular locus is
heterallelic and showed that

Jo
(32)

This means that for large t the probability that two alleles coexist in the population
decreases asymptotically at the rate of ll(2Ne), although the heterozygosity
decreases always at this rate. The rate lj(2Ne) corresponds to the smallest eigenvalue
of the Kolmogorov equation for the gene frequency distribution at a single locus.
It is also called the rate of steady decay (cf. Kimura, 1955). For two segregating loci,
the distribution function of gametic frequencies has not been obtained at present,
but three eigenvalues of the corresponding Kolmogorov equation were obtained.
Of these, the one with the smallest absolute value should give the asymptotic rate
of the loss of one of the two pairs of alleles in the two loci. That is, the probability
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that the four different gametic types coexist in the population decreases asympto-
tically with the rate | Ax | /-ZV̂. when t gets sufficiently large so that

xdX2dX3 ~ Qexp{X1 tjNe} (*-*»), (33)

where Q is a function of the initial gamete frequencies. Karlin & McGregor (1968)
obtained the value of this rate by a different approach. Namely, they used the
method of Markov chain with a model of discrete generations and listed the values
for various combinations of 2Ne and c. When Ne is small, their results may be more
exact than ours, but for 2Ne > 10 the results given here may be sufficiently accurate,
as the comparison of our results with theirs shows.

SUMMARY

The behaviour of linkage disequilibrium between two segregating loci in finite
populations has been studied as a continuous stochastic process for different inten-
sity of linkage, assuming no selection. By the method of the Kolmogorov backward
equation, the expected values of the square of linkage disequilibrium z2, and other
two quantities, xy( 1 — x) (1 — y) and z( 1 — 2x) (1 — 2y), were obtained in terms of T,
the time measured in Ne as unit, and B, the product of recombination fraction (c)
and effective population number (Ne). The rate of decrease of the simultaneous
heterozygosity at two loci and also the asymptotic rate of decrease of the probability
for the coexistence of four gamete types within a population were determined. The
eigenvalues Av A2 and A3 related to the stochastic process are tabulated for various

values of R = Nec.
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