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Linkages between stratospheric ozone, UV radiation and climate change
and their implications for terrestrial ecosystems

Abstract

Exposure of plants and animals to ultraviolet-B radiation (UV-B; 280-315 nm) is modified by stratospheric
ozone dynamics and climate change. Even though stabilisation and projected recovery of stratospheric ozone
is expected to curtail future increases in UV-B radiation at the Earth's surface, on-going changes in climate are
increasingly exposing plants and animals to novel combinations of UV-B radiation and other climate change
factors (e.g., ultraviolet-A and visible radiation, water availability, temperature and elevated carbon dioxide).
Climate change is also shifting vegetation cover, geographic ranges of species, and seasonal timing of
development, which further modifies exposure to UV-B radiation. Since our last assessment, there has been
increased understanding of the underlying mechanisms by which plants perceive UV-B radiation, eliciting
changes in growth, development and tolerances of abiotic and biotic factors. However, major questions
remain on how UV-B radiation is interacting with other climate change factors to modify the production and
quality of crops, as well as important ecosystem processes such as plant and animal competition, pest-
pathogen interactions, and the decomposition of dead plant matter (litter). In addition, stratospheric ozone
depletion is directly contributing to climate change in the southern hemisphere, such that terrestrial
ecosystems in this region are being exposed to altered patterns of precipitation, temperature and fire regimes
as well as UV-B radiation. These ozone-driven changes in climate have been implicated in both increases and
reductions in the growth, survival and reproduction of plants and animals in Antarctica, South America and
New Zealand. In this assessment, we summarise advances in our knowledge of these and other linkages and
effects, and identify uncertainties and knowledge gaps that limit our ability to fully evaluate the ecological
consequences of these environmental changes on terrestrial ecosystems.
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Summary  

Exposure of plants and animals to ultraviolet-B radiation (UV-B; 280-315 nm) is modified by 

stratospheric ozone dynamics and climate change. Even though stabilisation and projected 

recovery of stratospheric ozone is expected to curtail future increases in UV-B radiation at 

the Earth’s surface, on-going changes in climate are increasingly exposing plants and animals 

to novel combinations of UV-B radiation and other climate change factors (e.g., ultraviolet-A 

and visible radiation, water availability, temperature and elevated carbon dioxide). Climate 

change is also shifting vegetation cover, geographic ranges of species, and seasonal timing of 

development, which further modifies exposure to UV-B radiation. Since our last assessment, 

there is increased understanding of the underlying mechanisms by which plants perceive UV-

B radiation, eliciting changes in growth, development and tolerances of abiotic and biotic fac-

tors. However, major questions remain on how UV-B radiation is interacting with other cli-

mate change factors to modify the production and quality of crops, as well as important eco-

system processes such as plant and animal competition, pest-pathogen interactions, and the 

decomposition of dead plant matter (litter). In addition, stratospheric ozone depletion is di-

rectly contributing to climate change in the southern hemisphere, such that terrestrial ecosys-

tems in this region are being exposed to altered patterns of precipitation, temperature and fire 

regimes as well as UV-B radiation. These ozone-driven changes in climate have been impli-

cated in both increases and reductions in the growth, survival and reproduction of plants and 

animals in Antarctica, South America and New Zealand. In this assessment, we summarise 

advances in our knowledge of these and other linkages and effects, and identify uncertainties 

and knowledge gaps that limit our ability to fully evaluate the ecological consequences of 

these environmental changes on terrestrial ecosystems. 
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1 Introduction 

The structure, function and diversity of terrestrial ecosystems are being modifed by 

ongoing changes in the Earth’s climate, and these complex changes are becoming 

increasingly evident with time.
149, 257, 319

 An assessment of the effects of depletion and 

recovery of stratospheric ozone and associated changes in ultraviolet-B radiation (UV-B, 

280-315 nm) on the terrestrial biota must, therefore, consider the role of climate change in the 

response of these organisms and ecosystems. In some regions, stratospheric ozone depletion 

is itself contributing to climate change with the result that ecosystems are being affected by 

the consequent ozone-driven changes in temperature and precipitation (see Chapter 1 and 

ref.
273

). Prior assessments have considered the effects of stratospheric ozone depletion in the 

context of climate change and have reported on some of the ways in which climate change 

can potentially interact with ozone depletion and UV-B radiation to modify terrestrial 

ecosystem function and composition.
26, 50, 61

 Here, we report on progress made since the last 

Assessment.
50

 and examine and further explore recent findings that document interactive 

effects of ozone depletion, UV-B radiation and climate change on terrestrial organisms and 

ecosystems, including cultivated species and highly managed ecosystems (e.g., agro-

ecosystems). We emphasise effects that have, at least to some degree, been demonstrated to 

occur in nature, but also identify areas where potential effects on terrestrial ecosystems could 

occur in the future. Where possible, areas of uncertainty are addressed, and the significance 

of findings is placed in a context relevant to policy makers. 
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Ecologically significant linkages between stratospheric ozone depletion, climate change and 

UV radiation are diverse, sometimes bi-directional, and, in certain cases, exhibit important 

feedbacks to the climate system (Fig. 1). However, climate change is increasingly 

contributing to changes in the timing and duration of UV-B radiation exposure, independent 
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of changes in stratospheric ozone. These changes can occur in a number of ways (see section 

7). One avenue involves climate change-driven shifts in cloud cover, which is increasing in 

some regions (usually wetter areas), while decreasing in others (usually drier regions) see 

Chapter 1 and ref.
149

 Similarly, climate change-driven effects on vegetation (e.g., forest die-
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back or shrub invasions) can increase or decrease the UV exposure conditions of understory 

plants and animals. As a result of warmer growth conditions and altered timing of seasons, 

many plants are initiating growth and flowering earlier in the year,
74, 170

 while certain animals 

are adjusting their timing of breeding and migration.
53, 311

 As UV-B radiation varies 
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seasonally (Section 7.2), a change in the timing of important life-cycle events can easily 

affect their exposure to UV-B radiation. In addition, the geographic ranges of many plants 

and animals, including wild and domesticated species, are shifting to higher elevations and 

latitudes in response to climate change.
149, 253, 257, 291, 299

 Because of existing natural altitudinal 
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and latitudinal gradients in solar UV radiation (see Chapter 1 and refs
48, 62, 226

) these changes 

in geographic ranges can potentially increase (at high elevations) or decrease (at high 

latitudes) the amount of UV-B radiation received by organisms. Unlike ozone depletion, all 

of the above climate change-driven effects are modifying exposure of organisms to the full 
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solar radiation spectrum at the Earth’s surface, including UV-B as well as UV-A (315-400 

nm) and visible (400-700 nm) radiation. At the same time, plants and animals are being ex-

posed to novel combinations of UV radiation with other abiotic (e.g., changing day length, 

and fluctuating temperatures) and biotic factors (e.g., competitors, pests, and pollinators). 
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Because of these complexities, it is necessary to consider how responses of organisms and 

ecosystems to UV-B radiation are modified by concomitant changes in other regions of the 

solar spectrum (i.e., UV-A and visible radiation) as well as simultaneous changes in a diverse 

range of abiotic and biotic factors. 

 

Fig. 1 Conceptual diagram illustrating known linkages between stratospheric ozone depletion, UV radiation and 

climate change on terrestrial organisms and ecosystems. Stratospheric ozone depletion alters UV radiation 

(primarily UV-B; arrow 1), which in turn directly affects plants and other organisms (arrow 2). The effects on 

organisms can then alter the function and structure of ecosystems (arrow 3). Ozone depletion can alter the climate, 

and climate change can affect ozone depletion via several avenues (arrow 4). Certain ozone-depleting substances 

(e.g., hydrofluorocarbons (HFCs) and others) are potent greenhouse gases that can enhance global warming. 

Stratospheric ozone depletion in the southern hemisphere is directly altering climate via changes in the Southern 

Annular Mode (SAM) in addition to other climate changes. Resultant shifts in climate zones alter regional rainfall 

and drought and thereby change cloud cover; in turn, the changing cloud cover can increase or decrease exposures 

of organisms to UV radiation (arrow 5). Climate-related changes in weather patterns (arrow 6) alter temperature 

and precipitation patterns, which can directly modify plant growth and development, and the way in which plants 

respond to UV-B radiation (arrow 7). Climate change (including altered UV-B exposure) is also changing the 

seasonal timing of development (e.g., phenology of flowering or bud break; arrow 8), such that wild plants and 

crops develop at times of the year when UV radiation can be either greater or less than prior to current rapid 

climate change (arrow 9). These phenological changes further expose plants to novel combinations of UV 

radiation and other abiotic and biotic factors (arrow 10). In response to climate change many organisms are 

shifting their ranges to higher elevations and latitudes (arrow 11). As with phenological shifts, these changes in 

geographic ranges can potentially increase (elevation) or decrease (latitude) exposures to UV radiation (arrow 12), 

as well as subjecting organisms to new combinations of UV radiation and other abiotic factors (arrow 13). As 

species migrate to different environments they also encounter new combinations of competitors, pests and 

pollinators that may alter important ecosystem processes such as herbivory and competition (arrow 14). 

Alterations in certain ecosystem processes, such as decomposition, can modify soil carbon storage and emissions 

of carbon dioxide and other greenhouse gases to the atmosphere (arrow 15). Image of stratospheric ozone shows 

total ozone over Antarctica (October 2017, Source: https://ozonewatch.gsfc.nasa.gov/). Climate change map 

indicates surface temperature anomalies for February 2017 compared to the base-period of 1951-1980 (Source: 

https://data.giss.nasa.gov/). Sonoran desert ecosystem photograph by P.W. Barnes. 

https://data.giss.nasa.gov/
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Solar UV radiation (UV-B and UV-A) is known to affect the growth and performance of 

terrestrial plants and animals (see sections 3 and 4). The shorter wavelengths of UV radiation 

(mostly in the UV-B range) may cause cellular damage, which can lead to changes in the 

morphology, physiology, and biochemistry of the organism. However, concurrent exposure to 

longer wavelengths (e.g., UV-A and/or visible radiation), can often reduce the negative 

effects of UV-B radiation.
322

 In addition, both UV-B and UV-A radiation are important 

sources of information for plants and animals. This radiation is perceived by specific 

photoreceptors, which trigger a range of responses. Many animals sense UV radiation and 

avoid exposure to prolonged periods of high UV-B radiation.
81, 222

 These behavioural re-

sponses together with physiological mechanisms can mitigate some of the negative outcomes 

of high UV-B radiation. In some animal species (e.g., insects and birds), UV radiation is used 

as a visual cue that enhances foraging, mate selection, or other behavioural activities.
81

 By 

comparison, land plants are sessile (rooted to their growth medium) and require sunlight for 

photosynthesis and growth. Their primary response to changing UV radiation conditions 

typically involves acclimating or adapting to these changes using biochemical and 

physiological mechanisms. However, like animals, plants can sense UV radiation in their 

surroundings, which has adaptive value.
159

 

Following the discovery of the Antarctic ozone hole, many initial studies (as reviewed in 

refs
11, 32, 46

) emphasised the direct detrimental effects of increased UV-B radiation on plants, 

especially important food crops. However, most evidence to date indicates that, under 

realistic exposures, the direct, damaging effects of high UV-B radiation on photosynthesis, 

plant productivity and crop yield, are relatively minor.
26, 110, 155, 240, 283, 336

 More recent studies 

have focused on understanding how plants a) respond to UV radiation against the backdrop of 

a rapidly changing climate in conjunction with current and projected stratospheric ozone 

dynamics; and b) perceive the UV-B radiation and what role this radiation plays in regulating 

growth and development.
44, 160, 162, 356

 At present, it is widely accepted that UV-B radiation 

can have beneficial as well as unfavourable effects on plants.
156, 208, 239, 336

 In some cases, 

reduced exposure to UV-B radiation can even have negative consequences for plant growth, 

defence against pests,
27

 and food quality.
20

 Thus, projected recovery of stratospheric ozone to 

levels that may exceed those in the recent past (i.e., 1970’s; Chapter 1 and ref.
256

), means that 

there is a need to fully evaluate how organisms and ecosystems will respond to the increases 

and decreases in solar UV-B radiation that occur in conjunction with a rapidly changing 

climate.  

Climate change alters regional weather patterns, including temperature and precipitation, and 

these changes can directly affect plants and ecosystems by altering moisture availability and 

critical thermal conditions for growth, reproduction, and survival. Of interest in this 

assessment, however, is how plant responses to climate change are modified by UV radiation 

(see section 3). Exposure to UV-B radiation can enhance plant tolerance  to some abiotic 

factors (e.g., water and temperature stress),
275

 while other factors may alter the sensitivity of 

plants to UV radiation. However, these effects are complex and often dependent upon 

specific growth conditions.
217

 Understanding how plants respond to changes in UV radiation 

against this backdrop of changes in multiple environmental variables is thus challenging but 

necessary in the context of future environments (e.g., ref.
326

). These UV-climate change 

interactions are particularly relevant for agroecosystems, where changes in crop yield, food 

quality, resistance to pests and diseases, and overall vulnerability of plants to climate change 

can have significant impacts on food security (see section 5). 

The effects of changes in incident solar UV radiation (UV-B and UV-A) on ecological 

communities and ecosystems are largely a consequence of impacts on primary producers (i.e, 

plants).
25, 63, 335

 These higher-level ecological effects include changes in plant-plant 
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interactions (competition), herbivory, pest-pathogen interactions and the decomposition of 

dead plant matter (litter) (see section 6). Although initially minor, some of these community- 

and ecosystem-effects may accumulate over time (e.g., ref.
276

) or be amplified by processes 

such as competition.
37

 For certain crop species, exposure to UV radiation can elicit changes 

in pest/pathogen defence that may have positive consequences for the productivity and 

sustainability of agroecosystems.
25, 27, 335

 

One important ecoystem-level effect of changes in UV radiation and climate is the altered 

decomposition of plant litter, which can result in a positive feedback to the climate system, 

thereby contributing to climate change. Photodegradation is the process whereby UV 

radiation, together with shorter wavelengths of visible radiation, drives the photochemical 

break-down of plant litter, and this results in the release of carbon dioxide and other gases to 

the atmosphere (see section 6.3, Chapter 5 and refs
54, 181

). Photodegradation can also modify 

the chemical make-up of litter, thereby promoting or facilitating the activities of microbial 

decomposers (bacteria and fungi; i.e., photo-facilitation). This results in increased microbial 

and soil respiration, and contributes additional carbon dioxide to the atmosphere.
17, 22, 279

 At 

present, considerable uncertainty remains regarding the quantitative significance of 

photodegradation of terrestrial plant litter, and its effects on storage of carbon in soil and 

concentrations of atmospheric CO2. However, it is clear that this process is an important 

driver of decomposition in many ecosystems, especially drylands (grasslands, deserts, and 

savannas).
3, 17

 In some of these dryland ecosystems, the relative importance of UV-driven 

photodegradation may increase with climate change as precipitation decreases and 

temperature increases.
5
 Changes in climate and land-use may also affect photodegradation 

and litter decomposition indirectly via changes in the structure and species composition of 

vegetation, and occurrence of fire and soil erosion (see section 6.3 and Chapter 5). 

There are several linkages between ozone depletion and climate change that are ecologically 

important but which do not directly involve changes in UV radiation. On the one hand, 

climate change can modify stratospheric ozone depletion by perturbing temperature dynamics 

between the stratosphere and troposphere.
13

 Conversely, it is now apparent that stratospheric 

ozone depletion in the southern hemisphere is directly contributing to climate change (Fig. 2) 

(see Chapter 1) Specifically, ozone depletion appears to be changing patterns of regional 

atmospheric circulation in the southern hemisphere which, in turn, affect weather conditions, 

sea surface temperatures, and frequency of wildfires.
75, 143, 171, 188, 248

 These changes together 

with changes in UV-B radiation can have several consequences for terrestrial ecosystems (see 

section 2, Table 1, and ref.
273

) While ozone depletion in the northern hemisphere may be 

associated with similar, but smaller, climate shifts (Chapter 1), to our knowledge, there are no 

reports linking this to ecological impacts. 

Finally, a better understanding of how terrestrial organisms and ecosystems might respond to 

changes in UV radiation in the context of modern climate change is coming from studies 

examining how plants and animals have adapted to changing UV radiation and climate 

conditions in the past. These historical studies, however, require some knowledge of how UV 

radiation has changed over geological time periods. In the absence of satellite or ground-

based measurements of UV radiation, some investigators have attempted to reconstruct past 

UV radiation climates using biological indicators as proxies for ground-level UV radiation. 

Section 8 evaluates progress made in the development of pollen grains and spores as 

bioindicators of past UV conditions. 
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2 Ecological effects of ozone depletion on climate in the south-
ern hemisphere 

Stratospheric ozone depletion has led to large changes in the climate of the southern 

hemisphere (as detailed in Chapter 1 and refs
50, 273

). These are manifested in a mode of at-

mospheric variability, the Southern Annular Mode (SAM or Antarctic oscillation), which de-

scribes the difference in pressure between 60° and 45° S. The SAM describes the strength 

and latitudinal position of the westerly wind belt (i.e., jet stream) around Antarctica (see also 

refs
50, 273

). Ozone depletion is linked to a highly positive phase of the SAM,
2, 135

 correspond-

ing to an increased pressure difference between mid- and high latitudes and a contraction of 

the westerly wind belt towards Antarctica (Fig. 2). The effects of this change in atmospheric 

circulation, which extend across the southern hemisphere, are summarised in the following 

sections. The sections emphasise how these changes in climate link to stratospheric ozone 

 

Fig. 2 The Antarctic ozone hole (inset) and its impact on southern hemisphere atmospheric circulation. 

Stratospheric ozone depletion and resultant cooling over Antarctica has caused the tropopause to lift, allow-

ing the Hadley Cell (dark red arrow) and the westerly jet stream to tighten and shift towards the South (blue 

arrow). The speed of the jet has also increased (see ref.
273

 for details). The polar shift in the jet and its in-

creased strength changes atmospheric and oceanic circulation throughout the southern hemisphere consistent 

with a more positive phase of the Southern Annular Mode (SAM; see text for explanation). Over the past 

century, increasing greenhouse gases and then ozone depletion over Antarctica have both pushed the SAM 

towards a more positive phase, and the SAM index is now at its highest level for at least 1000 years.
2
 As a 

result, high latitude precipitation has increased and the mid-latitude dry zone has moved south (orange ar-

row). As the ozone layer recovers, increased greenhouse gas forcing will likely take over and the position of 

the jet is thus predicted to remain in this more southerly location. Figure adapted from refs
258, 273

, with ozone 

‘hole' over Antarctica, 17th
 September 2006, reproduced from NASA Ozone Watch.

236
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depletion (see also Chapter 1), affect abiotic drivers (e.g., wildfires) and the contingent re-

sponses of southern hemisphere ecosystems. The implications of these climate shifts for ma-

rine and aquatic ecosystems are described in Chapter 4. 

Changing concentrations of stratospheric ozone have been linked to changing surface tem-

peratures, altered wind and ocean circulation patterns and changing precipitation patterns, 

causing increased rainfall or drought, the latter leading to increased risk of wildfires. As pre-

sented in our last assessment, terrestrial
50

 and aquatic ecosystems
273

 including biogeochemi-

cal cycling
103

 have been affected by these changes across the southern hemisphere. Sections 

2.1 and 2.2 give a brief summary of the climate changes ascribed to ozone depletion and then 

address the implications of these changes for ecosystems in the southern hemisphere.  

The UNEP Science Assessment Panel (SAP)
346

 notes that since their last assessment,
345

 fur-

ther research has confirmed the impact of changes in stratospheric ozone on the tropospheric 

and surface climate of the southern hemisphere and has, in some cases, allowed better quanti-

fication and attribution of the changes. Stratospheric ozone depletion is assessed to have been 

the dominant driver of changes in atmospheric circulation across the southern hemisphere 

from the mid-latitudes to the tropics during austral summer (December-February) over the 

period 1960 to 2000 when stratospheric ozone was decreasing; while in other seasons, green-

house gas emissions play a comparable role to stratospheric ozone depletion. As stratospheric 

ozone recovers, its effect on circulation should diminish; however, climate change is predict-

ed to increasingly contribute to changes in atmospheric circulation Chapter 1 and refs.
93, 294

 

The major changes in mid-latitude and tropical circulations driven by stratospheric ozone de-

pletion include the poleward shift of the mid-latitude jet (Fig. 2), the shift to an increasingly 

positive phase of the Southern Annular Mode (SAM) and the poleward shift of the sub-

tropical Hadley Cell (Fig. 2).
20, 306, 346

 Between 1980 and 2000, the westerly jet shifted south 

during summer by approximately one degree of latitude. Since 2000, the jet has shifted north 

in summer, although this reverse trend is not statistically significant.
151, 346

 A meta-analysis
338

 

supports stratospheric ozone depletion as the dominant driver of the Hadley Cell summertime 

expansion over the period 1979 to late 1990s. 

2.1 Changes to southern hemisphere regional rainfall related to stratospher-
ic ozone depletion, and ecosystem responses to fluctuating availability 
of water, extreme rain, drought and fires 

Changes in both extratropical and sub-tropical austral summer rainfall have previous-

ly been linked to the position of the mid-latitude jet and thus to stratospheric ozone depletion 

(Figs 2, 3 and see Chapter 1 and refs
50, 69, 131, 273, 345

). South-East South America (northern 

Argentina, Uruguay, southern Brazil and Paraguay) has experienced one of the largest in-

creases in rainfall worldwide (Fig. 3; Table 1A)
121

 with a 30% increase in summer rainfall 

over the past 50 to 100 years. While this increased rainfall appears to be the result of anthro-

pogenic emissions of greenhouse gases,
96, 320

 the relative contributions from greenhouse gases 

and ozone depletion to these changes have not yet been resolved (see also refs
352, 359

). 

The SAM has been identified as the leading cause of changes in summer rainfall, surface 

temperature, and the diurnal temperature range in East Africa
206, 207

, and these authors high-

lighted the effects of stratospheric ozone depletion. Over the period 1961-1996, the position 

for the South Pacific Convergence Zone (a region of abundant precipitation, stretching from 

New Guinea towards southern hemisphere mid-latitudes) has changed, with increasing rain-

fall on the northern edge and decreases to the south.
58

 This shift in precipitation appears relat-

ed to concentrations of stratospheric ozone, with models suggesting a reversal of these effects 
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as stratospheric ozone recovers.
58

 These shifts in rainfall patterns can have negative and posi-

tive effects on ecosystems, populations and individual species.  

 

Table 1 Summary of how stratospheric ozone depletion affects the climate and environment 

(A) likely consequences, (B) the effects of these abiotic changes on terrestrial ecosystems, 

and (C) populations across the southern hemisphere. Regions affected, and references are 

provided. Numbers (C) refer to locations in Fig. 3. 

A.  

Changes in southern 

hemisphere climate 

driven by stratospheric 

ozone depletion 

Regional examples References 

Changing regional  

precipitation 

 Chapter 1 and refs
19, 93

 

Wetter South East South America (Northern Ar-

gentina, Uruguay, southern Brazil and 

Paraguay) 

Refs
121, 165

 

Wetter/Drier New Guinea, southern hemisphere mid-

latitudes wetter in the north and drier to 

the south 

Hydroclimatic variability over the Amazon 

Basin 

Refs
58, 199

 

Drier Chile, declining stream flows, consequenc-

es for ecosystem health and hydroelec-

tric power 

Ref.
235

 

More extreme precipitation South-eastern South America extreme 

Summer rainfall 

Refs
121, 164, 187, 265, 352

 

 

Fig. 3 Map of the southern hemisphere showing how stratospheric ozone depletion affects the climate and 

environment, and the effects of these abiotic changes on terrestrial ecosystems and populations. Symbols 

show types of organism, ecosystem or entity affected (see legend), with numbers referring to Table 1C, 

which provide species and location details. Arrows indicate direction of effects on biodiversity, up = posi-

tive, down = negative effects, two-way arrows indicate changed biodiversity. 
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A.  

Changes in southern 

hemisphere climate 

driven by stratospheric 

ozone depletion 

Regional examples References 

Heavy rain events in Madagascar 

Changing ocean and at-

mospheric circulation 

 Chapter 1 and ref.
93

 

Shifting location of wet and 

dry zones 

Shifts in summer rainfall patterns, 

Australian summer - increased rainfall on 

mainland south east coast and decreased 

rainfall in western Tasmania. 

Sub-tropical dry zone also shifted towards 

the South Pole  

Refs
30, 132, 150, 206, 265, 287, 

306
 

Increasing surface wind-

stress  

Southern Ocean  

Leads to year-round stronger surface ocean 

warming  

Could enhance loss of Antarctic sea ice but 

see Chapter 1. 

Alters mixed layer depth affecting nutrients  

Chapter 4 and refs
94, 141, 

295
 

Temperature  Chapter 1 and ref.
93

 

Lower temperatures Decrease in summer temperatures over 

East Antarctica, southeast and south-

central Australia and inland areas of the 

tip of southern Africa.  

Eastern Tropical Pacific cooler  

Refs
30, 75

 

Warmer temperatures Much of Southern Africa warmer 

Warmer surface temperature and changed 

diurnal temperature range in East Africa 

Summer extreme temperatures, Australia, 

South America, Southern Africa 

Refs
30, 206

  

 

 

B.  

Likely indirect conse-

quences of changes in 

southern hemisphere cli-

mate 

Resulting from References 

Changing cloud patterns Latitudinal shifts in the Hadley and Polar 

Cells mean that cloud cover has also 

shifted southward with ozone depletion 

Ref.
287

 See Chapter 1 

for implications for ex-

posure to UV radiation  

Fire Changes in precipitation can alter fire re-

gimes; e.g., central and southern Chile 

See Chapter 5 and 

refs
143, 144, 210

  

Dissolved organic matter 

(DOM) 

Changes in precipitation affect run off and 

quantity of DOM in water bodies 

See Chapter 4 for de-

tails 

Breakdown of litter Changes in precipitation and temperature 

influence breakdown rates of litter 

See Chapter 5 for de-

tails 

Air quality Weather [temperature, wind (transporting 

pollutants), rain and cloudiness] affects 

air quality with consequences for health 

See Chapter 6 for de-

tails 
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B.  

Likely indirect conse-

quences of changes in 

southern hemisphere cli-

mate 

Resulting from References 

of humans, other animals and plants 

Weathering of materials Increased ambient temperature shortens the 

life of plastics and wood exposed to UV 

radiation, and their outdoor service life-

times. Changing moisture also affects 

these processes 

See Chapter 7 for 

modes of action 

 

 

C.  

Drivers of change 

for terrestrial plants 

and ecosystems 
(number of marker on 

Fig. 3) 

Biological effects Location References 

Decreased water availability 

1 Less precipitation associated with 

decreasing growth of trees and 

restricted forest distribution 

West New 

Zealand, 

South West 

S. America 

Refs
82, 325

 

2 

 

 

 

3 

East Antarctic drying. Moss beds 

exhibit changing species composi-

tion. Reduced growth, more plant 

stress and death.  

 Lakes are becoming more saline 

leading to biodiversity changes 

Windmill 

Islands, East 

Antarctica 

Refs
73, 140, 274

  

4 Drying caused more than 80% 

dieback of cushion plant and moss 

fellfield communities  

Macquarie 

Island 

Refs
41

 

Increased water availability  

5 Less salinity causes changes in 

lake fauna 

Eastern side 

of the Andes 

Ref.
80

 

6 More precipitation associated with 

increasing growth of trees 

East New 

Zealand, 

Eastern 

South Amer-

ica 

Ref.
325

 

7 Expansion of agricultural zones 

with more precipitation 

South East S. 

America 

Refs
121, 124

 

8 Moss beds and other biodiversity 

more productive due to warmer 

wetter conditions and more land  

Antarctic 

Peninsula 

Refs
8, 277, 357

 

Increased wind speeds 

9 Risk of increased dust and poten-

tial propagule inputs into Antarc-

tica (negative if introduces non-

native species) 

West Antarc-

tic, Antarctic 

Peninsula 

Refs
68, 116, 219, 223
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2.1.1 Ecosystem responses to fluctuating water availability 

Shifting atmospheric circulation cells (Hadley, Ferrel, and Polar cells, see Fig. 2) al-

ters regional precipitation across the southern hemisphere, causing some areas to receive 

more moisture and others to become drier. In Patagonia, declines in tree growth have been 

linked to reduced water availability (Fig. 3; Table 1B).
325

 In the extreme south of South 

America extending into Antarctica, lichens are an increasingly-dominant component of the 

terrestrial biota.
78

 Lichens are extremely tolerant of desiccation, but nevertheless the combi-

nation of high wind speeds and high irradiance, including increased UV-B radiation due to 

ozone depletion, have been shown to affect their colonisation on trees in Patagonia.
313

 How-

ever, lichens grow very slowly,
79

 so responses to specific climatic changes can take a long 

time to detect. Less seasonal precipitation and a reduced diurnal temperature range were the 

dominant factors driving aridity and limiting the distribution of high-elevation woodlands of 

Polylepis tarapacana (a rose-family species of tree of high conservation value, found in the 

South American Altiplano). Models predict that by the end of this century almost half of the 

potential range of this species will be lost due to increased aridity.
82

  

Decreased precipitation in this region of South America has led to reduced stream flows in 

Chile, with adverse effects on aquatic and terrestrial ecosystems as well as the production of 

hydroelectric power.
235

 Since the 1960s, warming and associated drying at mid- and high-

latitudes to the west of the Andes have resulted in increased forest fires (measured from fire 

scars in tree ring records).
143

 During the 2016–2017 fire season, more than 500,000 hectares 

burned in central and southern Chile (between ∼29°S and 40°S), driven by a long-lasting 

drought linked to the positive SAM that was amplified by conditions resulting from the El 

Niño–Southern Oscillation (ENSO). Given that the positive phase of SAM is predicted to 

continue, it is likely that the increased frequency of wildfires in southern South America will 

continue throughout the 21
st
 century.

143
  

Several other regions of the southern hemisphere have experienced wetter summers (Chapter 

1), leading to increased tree growth in eastern New Zealand
325

 and expansion of agriculture in 

south-eastern South America (Fig. 3; Table 1B).
121

 The eastern side of the Andes has experi-

enced wetter conditions with associated changes in biodiversity. For example, changes in 

fauna (ostracods and chironomids) from lake sediments in El Toro Lake (40˚S, 70˚W) indi-

cate that the lake has become fresher (less salty) as a result of increased precipitation since 

the middle of the 20
th

 century, associated with the positive phase of SAM.
80

 

Increasing extremes of precipitation have also been linked to SAM-related changes. Rainfall 

patterns in the southern Amazon Basin have been reconstructed from tree rings of Centrolo-

bium microchaete
199

 and the findings suggest that the fluctuations between drought and ex-

tremely wet seasons seen from 1950 to the present day may be unmatched since 1799. 

2.2 Changes in surface temperatures because of stratospheric ozone deple-
tion and implications for terrestrial ecosystems  

Recent studies
72, 292

 suggest that warming of West Antarctica and the Antarctic Penin-

sula may fall within the range of natural climate variability.
161

 This warming had previously 

been linked to anthropogenic emissions of greenhouse gases and stratospheric ozone deple-

tion.
50, 273

 Stratospheric ozone depletion could account for between a quarter and one third of 

summer and autumn cooling over the rest of the Antarctic continent (see ref.
273

). However, 

our confidence in any attribution or projections of climate warming over this region is limited 

by the large biases inherent in the models used. Depletion of Antarctic stratospheric ozone 

has possibly offset a substantial portion of the summer warming that would otherwise have 

occurred (due to increasing greenhouse gases) in eastern Australia, southern Africa and South 
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America (Fig. 3).
30

 These changes in temperature are likely to have affected (positively and 

negatively) life cycles of plants and animals, potentially leading to mismatches between 

plants and their pollinators (see section 7.3). Cooler temperatures over East Antarctica have 

likely slowed the melting of ice sheets. As stratospheric ozone recovers, the extent of this 

amelioration may be reduced with potential implications for the climate and populations of 

these regions as well as further afield.  

In western Antarctica, along the Antarctic Peninsula and on nearby islands, increasing tem-

peratures
75

 were associated with increased productivity of terrestrial ecosystems (microbial 

productivity, plant growth rates and carbon accumulation in moss beds) from the 1950s to the 

turn of the century.
8
 There is some evidence that the direction of these changes has reversed 

since 2000, consistent with recent cooling in this region.
8, 247, 315

 However, as noted above, 

the relative contributions of stratospheric ozone depletion vs increasing greenhouse gases to 

temperature changes is still unresolved because recent studies suggest they are not beyond the 

range of natural variability (see above and Chapter 1). 

In the Windmill Islands of East Antarctica, decreased water availability since the 1960s, 

linked to decreasing temperatures and increasing wind,
73

 has resulted in changes in biodiver-

sity in Antarctic moss beds
274

 and lakes,
140

 with species composition changing to reflect the 

newly drier moss beds and more saline lakes. In addition, these East Antarctic plant commu-

nities are becoming more stressed as a result of drying, resulting in increasingly moribund 

moss.
204, 205, 274

 This is one of the first studies
274

 to document ecosystem-level changes in 

Antarctic terrestrial plant communities, which are correlated with the SAM and potentially 

linked to stratospheric ozone depletion and climate change. Further north, widespread (> 

80%) dieback of cushion plants (Azorella macquariensis) and mosses, on sub-Antarctic, 

Macquarie Island, was primarily attributed to reduced water availability because of higher 

wind speeds, more sunshine hours and therefore higher evapotranspiration since the 1970s. 

The authors estimated that, from 1992 to 2008, these plant communities suffered accumulated 

water deficit for 17 years.
41

 This dieback of Antarctic and sub-Antarctic vegetation is similar 

to the “Arctic browning” observed in the Arctic in response to extreme climate events.
102, 261

 

2.2.1 Interannual variability 

Two studies have linked interannual variability of springtime Antarctic ozone to summer 

changes in surface temperature and rainfall in the southern hemisphere.
30, 296

 The SAP 2018 

report
346

 concludes that interannual variability in springtime ozone at both Poles may be im-

portant for surface climate, but the extent of this connection is not fully understood.  

Stratospheric ozone-driven climate change has widespread and far-reaching effects on terres-

trial and marine ecosystems (see Chapter 4) across the southern hemisphere. A better under-

standing is needed of the relative contributions of stratospheric ozone, greenhouse gases and 

interannual variability to determine the ecological or biological change attributable to strato-

spheric ozone depletion vs that due to these other climate factors. Nevertheless, we have only 

included studies in this section where a strong signal of ozone depletion or summer SAM has 

been associated with an ecological effect.  

3 Plant response to UV radiation and interactions with climate 
change 

There is now a basic understanding of UV-sensing and UV-signalling in plants, as 

well as the consequences for gene-expression, physiology, biochemistry, plant growth, fitness 

and nutritional quality. Potentially, UV-B radiation can damage plants through effects on 

DNA, the photosynthetic machinery, and other cellular targets. However, UV-B-induced 
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plant defence responses, including up-regulation of photorepair processes, antioxidant capaci-

ty, and UV-screening, are thought to be effective in the prevention of damage to plants by 

UV-B radiation under most natural conditions. Nevertheless, effective prevention and repair 

do not imply that UV radiation has no effect on plants. Acclimation to UV radiation and cli-

mate change factors can modify plant growth and development, which, in turn, has conse-

quences for ecosystem functioning (section 6), nutritional quality and food security (section 

5). Thus, understanding plant response to UV radiation and some of the interactive effects of 

climate, is of fundamental importance for evaluating effects of UV-B radiation on terrestrial 

ecosystems. 

3.1 Limitations to current studies investigating interactive effects 

Much of our understanding of plant responses to UV radiation began with single-factor ex-

periments in laboratories, greenhouses, and controlled environment chambers that did not ac-

count for interactive effects from multiple climatic variables. Overall there is evidence that 

conditions in artificial environments may unrealistically accentuate the negative effects of 

UV-B radiation on plant growth. For instance, such studies are often conducted in growth 

chambers or greenhouses where lamps are used as the principle source of UV-B radiation and 

the ratio of UV-B radiation to photosynthetically active radiation (PAR, 400-700 nm) is far 

above that generally 

found in field condi-

tions. We illustrate 

these limitations for 

some recent con-

trolled-environment 

studies (Fig. 4). Note 

that only 16 of the 49 

studies surveyed pro-

vided enough UV and 

PAR data to be repre-

sented as data points 

in the figure. 

It is important to use 

the knowledge from 

these studies to de-

sign experiments for 

testing the results at 

more expansive 

scales of space and 

time. Laboratory re-

sults may be scaled 

up by progressively 

moving to more real-

istic conditions in 

controlled environ-

ments and then to 

field experiments 

(e.g., ref.
111

). Another 

scaling approach is to 

design experiments 

 

Fig. 4 Studies conducted in growth chambers (blue) are still using unrealistic 

ratios of photosynthetically active radiation (PAR, 400-700 nm) to biologically 

effective UV-B radiation (UV-BBE; data were reported using the generalized 

plant action spectrum of Caldwell et al.
60

 (more commonly used in these studies 

than the action spectrum of Flint et al.
113

) compared with natural sunlight (yel-

low). Growth chamber experiments are represented by black circles within the 

blue shading. Solar irradiances within the yellow shading represent the summer 

solstice (red triangles) and spring equinox (green squares). Ambient PAR is 

from 
270

 and ambient UV-BBE was computed with the TUV calculator: 

http://cprm.acom.ucar.edu/Models/TUV/Interactive_TUV/. Latitudinal loca-

tions are indicated by numerals: 1. Equator (0°), 2. Tropic of Cancer (23°N), 

and 3. 55°N. A total of 49 peer-reviewed papers on growth chamber studies 

from the years 2011-2017 were surveyed; 16 are represented as data points in 

this figure and 33 could not be represented, because they either lacked radiation 

data or it was not measured in a manner comparable to the other studies. 
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moving from our common organism-centered methodology to a community or ecosystem 

perspective, where interactions, feedbacks, and their relative magnitudes under realistic con-

ditions are examined.
108

 Some recent studies have investigated the effects of UV-B radiation 

in combination with other variables related to climate change, such as drought, temperature, 

carbon dioxide, and tropospheric ozone (e.g., refs
209, 216, 342

). For this assessment, we evaluat-

ed the experimental studies and methodological protocols,
10

 resulting in the exclusion of 

some studies in our summary findings. 

3.2 The UV-B photoreceptor and signalling pathways 

The existence and nature of a specific UV-B photoreceptor in plants, the protein, 

UVR8, initially came to light in 2011.
271

 Since this discovery, a basic understanding of UV-

sensing, signalling and function has emerged that has improved our knowledge of the molec-

ular mechanisms underlying UV defence and acclimation in plants.
159, 271, 356

  

UVR8-mediated perception of UV-B radiation contributes to up-regulation of the expression 

of genes that encode components of the phenylpropanoid biosynthesis pathway, photorepair 

of DNA damage, and enhanced antioxidant capacity.
159

 Penetration of UV-B radiation into 

leaves depends on the concentration of flavonoids and other phenolics in the epidermis, as 

well as plant anatomical and morphological characteristics that vary among species. Most of 

the UV-B radiation is strongly attenuated as it passes through the epidermis, although it has 

been measured in some herbaceous plant species in deeper-lying tissues (mesophyll layers), 

with 18-41% epidermal transmittance.
51, 86

 Given that the UVR8 protein has been detected in 

most plant tissues investigated, including roots, it is currently difficult to pinpoint in which 

plant tissues perception of UV-B radiation takes place in plants growing in sunlight. Tissue-

specific analysis of UVR8 activity has revealed that the UV-B-induced UVR8 signalling 

pathway in epidermal and mesophyll cells is involved in hypocotyl elongation, while UVR8 

expression in the epidermis contributes to cotyledon expansion.
42

 Thus, the UV-B-induced 

response appears to be partly mediated by tissue-autonomous signalling, although inter-tissue 

signalling may also be involved.
42

 The role of UVR8 is not simply limited to protection from 

UV-B radiation. There is now strong evidence that UVR8-mediated signalling extends to 

processes such as stomatal function, de-etiolation (greening response of plants), entrainment 

(alignment with) the circadian clock, phototropism, and defence against pathogens.
356

 These 

findings, mainly on the model plant, Arabidopsis thaliana (a type of cress), provide a frame 

of reference for the study of the multifaceted role of UV-B perception through photorecep-

tor(s) in the regulation of plant growth and development in the much more complex natural 

environment. This frame of reference can also be used for other plant species that are likely 

to follow a variety of strategies to acclimate and adapt to their habitats.  

While much attention has been given to elucidating UVR8-mediated processes, UVR8 is not 

the only UV-B sensing mechanism in plants. There are also UVR8-independent signalling 

pathways,
185

 for example, arising from oxidative stress and via UV-B-mediated DNA dam-

age,
43

 including generation of cyclobutane pyrimidine dimers (CPD, one of the main types of 

DNA damage). However, CPD photolyase, which repairs the damage, is predominantly regu-

lated in a UVR8-dependent manner in plants exposed to UV-B radiation. There is evidence 

that the UVR8-mediated signalling pathway regulates the scavenging capacity of reactive ox-

ygen species (ROS),
138

 and the production of nitric oxide in response to UV-B-induced 

stress.
312

 These latter molecules may themselves play a role in signalling.
312

  

Thus, plant response to UV-B radiation likely involves multiple UV-signalling pathways. 

Moreover, components of these UV-mediated signalling pathways interact with other stress-
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induced signalling pathways, such as those activated by other wavelengths of light, exposure 

to drought, extreme temperatures, and other factors associated with climate change. 

3.3 UV-B-mediated signalling, crosstalk and cross-tolerance 

There is still a lack of information and understanding concerning the effects of UV-B 

radiation in a complex environment where plants are simultaneously or sequentially exposed 

to multiple environmental factors that can modify plant growth and development. 

In principle, the simultaneous application of treatments involving changes in two environ-

mental factors can lead to additive, synergistic, antagonistic, or no effect. It is particularly 

relevant from an agronomic perspective that acclimation responses induced by changes in one 

environmental factor can confer cross-tolerance (including priming responses) or cross-

sensitivity to another factor. Exchange of information between distinct plant-signalling path-

ways can broaden the spectrum of responses to one environmental factor. For example, high 

levels of PAR and UV-B radiation generally increase the accumulation of flavonoids, with 

synergistic effects occurring in some cases when plants are exposed to a combination of both 

variables.
35, 234

 Such increases of protective pigments with antioxidant activity potentially en-

hance the tolerance of a plant to a variety of unfavourable conditions.  

Cross-talk also occurs when UV-B-mediated signalling cascades interact with signalling 

pathways induced by biotic variables, e.g., bacteria. This cross-talk can sometimes lead to a 

shift in other plant defences at the expense of the UV-induction of protective mechanisms, 

such as the accumulation of flavonoids.
15

 In this case, the UV-B-induced genes of the flavo-

noid pathway are suppressed by the bacterial elicitor, flg22 (a peptide), which, in turn, drives 

the immune response against the bacterium
361

 by stimulating pathogen-protective compounds 

called phytoalexins. In other cases, UV-B radiation can increase plant resistance against 

pathogens and pests, by increasing the accumulation of metabolites involved in plant defence 

against multiple stress factors (reviewed in ref.
24

). Other examples of cross-talk where UV-B 

radiation is implicated in plant stress responses include changes in some plant hormones, 

such as auxin, cytokinin, gibberellic acid, brassinosteroids, and jasmonic acid.
109, 186, 281

 UV-

cross-talk involving the hormone abscisic acid can result in increased plant tolerance to water 

stress, extreme temperatures, or salinity. Some of these aspects are evaluated in the next sec-

tion. 

The interactions between UV-signalling and other signalling pathways imply that subtle mo-

lecular effects of UV-B radiation may potentially extend to many aspects of growth and de-

velopment, with implications for ecosystems including agricultural systems under conditions 

of current and future climate change. 

3.4 Plant and ecosystem response to potential interactive effects of UV-B 
radiation and climate change factors 

Exposure to changing environmental conditions can directly affect plant growth and 

may also drive changes in phenology (section 7.3) and shifts in the distribution ranges of spe-

cies (section 7.1). Here we will specifically explore interactions between UV-B radiation and 

certain key abiotic climate variables. In comparison to studies on interactive effects of UV-B 

radiation and drought and/or temperature, far less is known about interactive effects of UV-B 

radiation and elevated CO2 on plants. 

3.4.1 UV radiation and drought 

The potential for plant responses to UV radiation and drought to reinforce each other 

has been the subject of research because seasonal droughts are usually coincident with, or 
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follow, periods of prolonged sunny weather, implying high exposure to UV radiation. An ex-

ample of such synergies comes from an experiment with seedlings of silver birch (Betula 

pendula L.) subjected to treatments combining solar UV-B radiation and water stress out-

doors in southern Finland. In this investigation, leaf and whole plant water potential respond-

ed to the combination of ambient UV-B radiation, conferring resistance to drought, which 

was visible through reduced wilting and lower mortality beyond that of UV-B radiation or 

water stress alone.
275

 Plant response to the combinations of UV-B radiation and drought 

should be considered when selecting agricultural crops because of potential consequences for 

crop quality.
215

  

Additional research provides evidence for synergies in response to drought and UV-B radia-

tion.
134, 172

 However, both the mechanisms and outcome of response to combinations of water 

stress and UV-B radiation are often inconsistent. To some extent, the seemingly contradictory 

results reflect differences among studies in the timing and levels of drought and UV-B radia-

tion applied to the plants. Sequential exposure to two environmental variables can allow the 

first to elicit a response that primes the plant for the second, resulting in cross-protection. In 

contrast, simultaneous exposure may weaken plant defences.
31

 In this context, it should be 

noted that few, if any existing studies have adequately reproduced natural combinations of 

exposure to UV-B radiation and drought as well as their relative timing, and therefore results 

from these studies need to be carefully evaluated for their relevance (see Fig. 4).  

Reduced cloudiness is expected to lead to increases in UV-B radiation and future seasonal 

droughts in Mediterranean ecosystems.
21, 280

 A study where solar UV radiation was filtered in 

a Mediterranean ecosystem under normal and reduced rainfall, showed plants to be tolerant of 

UV-B radiation independently of the rainfall regime and seasonal climatic conditions. In this 

case, the species tested were evergreen Mediterranean shrubs with tough thick leaves high in 

phenolics.
321

 Thus, life history, together with exposure protocols, choice of species, and dose-

dependency will all determine the outcome of the interactive effects of drought and UV-B 

radiation.  

Perhaps the most important complication in attempting to understand the interactive effects of 

drought and UV-B radiation, is that both variables alone induce complex responses, and any 

simultaneous exposure to both variables will result in an amplification of that complexity. 

Cross-protection is multifaceted and likely to involve decreases in leaf area and possibly sto-

matal gas exchange, increases in leaf and cuticle thickness, as well as enhanced concentra-

tions of antioxidants, flavonoids and potentially a range of other secondary metabolites such 

as proline and volatile terpenes.
7
 Osmotic stress-induced upregulation of the UVR8 transcript 

and protein levels might also contribute to interactive effects of drought and UV-B 

radiation.
105

 This complexity can also be observed in a study where drought, in the presence 

of a background of UV radiation, increased canopy temperature in a grassland ecosystem, 

resulting in decreased accumulation of above-ground biomass.
244

 Thus, interactive effects of 

drought and UV-B radiation need to be considered in the context of prevailing and future 

conditions, particularly warming temperatures. 

3.4.2 UV radiation and temperature 

On balance, rising average air temperatures associated with climate change are ex-

pected to affect the growth and survival of many plant species and animals, and perturb many 

ecosystem processes. In addition to changes in average temperatures, extremes in temperature 

have increased in frequency and magnitude,
286

 which can have severe local and regional con-

sequences. Changes in seasonal weather patterns and sky conditions are bringing periods of 

high temperatures, which are often accompanied by high solar radiation including UV-B ra-

diation to many regions. However, extreme cold temperatures can also be accompanied by 
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high UV-B radiation, particularly at high elevations and latitudes in springtime where UV-B 

radiation reflected by the snowpack
259

 often supplements the irradiance received by organ-

isms exposed to the sun.
168

 The combinations of UV-B radiation and temperature can affect 

acclimation processes in plants (see below), which are important in terms of understanding 

the response of ecosystems to climate change, how future agroecosystems will be managed, 

as well as how vegetation itself affects air quality and climate (see Chapter 6). 

Exposure to high UV-B radiation and elevated temperatures elicits a variety of chemical re-

sponses in plants. For example, UV-B radiation can induce production of volatile hydrocar-

bons, such as the isoprenes,
194

 and this has been associated with heat tolerance mediated by 

membrane stabilisation. Typically, emissions of isoprene occur in woody plants, contributing 

to air pollution and global carbon. Global annual emissions of isoprene are estimated to be 

equivalent to 300 Tg carbon yr
−1

 (= 300 x 10
12

 g C yr
-1

) with changes depending on climate 

change and land-use.
127

 Isoprenes, as well as other plant-produced biogenic volatile organic 

compounds such as monoterpenes, have an important effect on atmospheric composition, and 

ultimately climate. Exposure to elevated temperature combined with UV-B radiation can 

cause more isoprenes to be emitted than under elevated temperature alone, as was found for 

European aspen.
203

 UV-induced isoprene production is synergistically enhanced in response 

to higher temperatures, and this has significant implications for both plant thermotolerance 

and plant-herbivore interactions.
104

  

An outdoor field experiment in Finland found that supplemental UV-B radiation enhanced 

accumulation of condensed tannins in aspen, but this increase was negated by a temperature 

treatment of 2°C above ambient in the spring and summer.
266

 This process may directly im-

pinge on herbivory, given that tannins act as defence compounds that inhibit digestion (also 

see section 6). In willow, the same combination of UV-B radiation and temperature produced 

a similar pattern of effects on the accumulation of phenolic compounds.
245

   

It is well known that the total content and composition of flavonoid compounds in plant 

leaves can be modified by a number of environmental factors including UV radiation, and 

high and low temperatures.
76, 238, 249, 260, 349

 For example, kale (Brassica oleracea var. sabelli-

ca) exposed to a low temperature of 5˚C accumulates almost twice as much of the polyphe-

nol, kaempferol-3-O-sophoroside-7-O-glucoside, as plants at 15˚C. Such stimulatory effects 
may also completely mask UV-B-induced accumulation of flavonoids, as was seen in an out-

door study where plants under low temperatures accumulated high concentrations of UV-

screening pigments, and this response was unaffected by the UV-exposure regime.
76

 Howev-

er, the profile (or composition) of the polyphenols is also modified, whereby kale plants at 

15˚C accumulate ca 25% more kaempferol-3-O-caffeoyl-sophoroside-7-O-glucoside but 30% 

less kaempferol-3-O-sophoroside-7-O-glucoside.
238

 At present, the function of these changes 

in phenolic profiles are not clear, although some of the compositional changes result in com-

pounds with higher antioxidant activity. Since flavonoids are considered desirable by the 

food and nutrition industries (see also sections 5.2 and 5.3), an understanding is needed of 

changing phenolic profiles under different environmental conditions. 

4 Perception of and response to UV radiation in animals 

UV-B radiation has the potential to damage tissues in animals, but many animals, like 

humans (Chapter 2), have mechanisms that protect against the potentially deleterious effects 

of UV-B radiation. Nonetheless, there are reported cases of UV-induced injury in animals 

(see section 4.1; and ref.
50

). Apart from UV damage, many animals perceive UV radiation 

and can use these cues to lessen exposure to intense UV radiation. Also, some animals use 

UV radiation as a source of information for mate selection, foraging, predator avoidance, and 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

176                                                EEAP 2018 Quadrennial Assessment  

 

other behaviours. Traditionally, an anthropocentric or human-centric perspective has resulted 

in a narrow definition of “visible light,” appropriate only for human vision. However, it has 

long been known that many species have vision that encompasses different wavelengths of 

the spectrum, sometimes including the UV region. Animals known to have UV vision include 

species of insects, amphibians, reptiles, birds and mammals.
81

 While advances have been 

made in understanding the mechanism of UV vision in animals, it is unclear how changes in 

the UV environment, as a consequence of changes in stratospheric ozone and climate change, 

might alter the UV sensory responses of these organisms (see section 4.2).  

4.1 UV radiation damage to animals 

Ultraviolet-B radiation is known to be potentially deleterious to a wide variety of 

terrestrial animals. Under controlled conditions, it has been shown that UV-A and UV-B 

radiation can damage the skin and eyes of various amphibian species (e.g., newts, frogs, 

bullfrogs, treefrogs), with the potential to negatively affect their foraging ability and fitness 

(reviewed by refs
29, 47

). For example, in South America, there are indications that land-use 

and climate change may lead to increased exposure to UV radiation in the habitats of frog 

species, e.g., Hypsiboas curupi and Hypsiboas pulchellus.
193, 198, 254

 However, while UV 

radiation may impair vision and cause DNA damage to frogs, it is not considered at present to 

be among the most important environmental factors contributing to the reduced fitness and 

abundance of several frog species in this region.
66

 

4.2 UV vision in animals and ecological implications in changing 
environments 

The eyes of insects and mites have specific rhodopsin photoreceptors that perceive 

UV radiation,
225

 which may be important in avoiding excessive UV radiation.
222

 In other 

insects, such as damselflies, UV-reflecting wings appear to play a direct role in mate 

recognition by creating visual signals of sex and age.
125

 

Birds have UV-A vision and photoreceptor UVS-cones (sensitive to wavelengths longer than 

355 nm), which may assist in foraging and mate choice.
81

 For instance, woodpeckers use 

visual cues in the UV-A region to forage on decaying wood, which differs in UV-absorption 

according to the extent of its fungal colonisation. Changes in the amount of UV radiation in 

the environment (e.g., due to changing weather patterns or forest cover) may affect visibility 

of these fungi and hence alter the behaviour of woodpeckers foraging for them. Changes in 

mutualisms of this sort have broad consequences for ecosystem function.
246

 In other birds, 

UV-absorbing melanin in their feathers has been linked with sexual selection, UV-protection 

and thermoregulation, and UV protection over wide geographic gradients.
118

 Many species of 

bird display strong sexual differentiation (dichromatism), creating specific patterns through 

both accumulation of melanin and UV-reflectance of feathers.
87

 UV patterning
233

, including 

UV-absorbance and reflectance, are not limited to feathers and their putative role in mate 

selection, but are also used in a much broader range of visual recognition processes. For 

example, UV-reflection of bird eggs attracts aerial predators.
233, 354

 Conversely, UV-

absorbing melanin in egg shells may protect eggs from UV-B radiation directly and reduce 

their visibility to predators, although the dark pigmented colour may cause overheating in 

some environments. Across a variety of species, including a palmate newt (Lissotriton 

helveticus), the expression of SWS1 opsin, a UV-photoreceptor in the eyes of animals, is UV-

dependent
191, 214

; furthermore, plasticity in expression of the photoreceptor depends on the 

habitat of origin of the population. This suggests that changes in the amount of UV radiation 

in the environment during the development of these newts could affect visual sensitivity in 

the UV region.
114, 284
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The role of UV-B radiation has been relatively well-studied in the case of lizards. Lizards 

kept in captivity are routinely exposed to low background levels of UV-B radiation to 

enhance vitamin D synthesis and their overall health.
97

 UV-reflectance of lateral blue spots in 

male lizards has a clear role in male-male interactions, including the processes of mutual 

assessment.
213

 If two males have an equal signal from their UV-reflecting throat patch, their 

behaviour towards each other is more aggressive.
212

  

At present, evidence for an ecological role of UV vision in animals is steadily increasing, but 

detailed information of the functional role of UV-absorbing or reflecting tissues often 

remains a matter of speculation. There is also a lack of information on the dose-response of 

UV-visual recognition processes. Thus, it is not known how changes in stratospheric ozone 

and climate change-driven alterations in exposures to UV radiation will influence visual cues 

in animals or whether altitudinal or latitudinal gradients in UV radiation might affect 

migration or range shifts in these animals. Nevertheless, understanding of UV vision in 

animals is of direct relevance in the context of food security and specifically plant-pest and 

plant-pollinator interactions. 

5 Food security and agricultural ecosystems 

At mid-latitudes and the tropics, there are indications of recovery of ozone in the 

upper stratosphere. However, the total ozone column, which is the metric of greatest 

relevance for terrestrial ecosystems, has not yet started to recover. Because of increasing 

concentrations of greenhouse gases, the total ozone column over mid-latitudes will be larger 

by the second half of the 21
st
 century compared to the time prior to the release of the ozone 

depleting substances into the atmosphere. Changes in total ozone over the tropics will be 

relatively small and will depend on emission scenarios and climate change-related 

phenomena (Chapter 1 and ref.
20

) Nevertheless, the relatively high levels of UV radiation that 

occur in the tropics and at high elevations, together with ozone-independent, location-specific 

factors such as decreasing concentrations of aerosols, less cloud cover, and changes in land-

use (Chapter 1), mean that crops may still be subject to significant changes in exposure to UV 

radiation. Some areas will also receive less UV radiation where pollution levels continue to 

be high, including increasing frequencies of smoke from forest fires (Chapter 4). These levels 

of complexity can affect agroecosystems with respect to growth, development and survival. It 

is in this context that crop plant and agricultural responses to UV radiation and climate 

change will be assessed here. Particular attention is given to defence mechanisms of plants, 

implications of genotype, and changes in crop quality mediated through changes in their 

biochemistry.  

5.1 Linking UV radiation and climate effects to food security 

The interactive effects of UV radiation, climate change, and changes in land-use and 

management practices are likely to have consequences for agriculture and food security. For 

example, these factors can modify yield and crop quality, pest and disease resistance, and 

overall vulnerability or adaptation to the environmental changes (Fig. 5). From the human 

intervention perspective, clearing of land for increased agricultural production to cope with 

growing populations, leads not only to increased exposure of agroecosystems to UV 

radiation, but also to poorer quality of soils and soil erosion. In areas receiving increased UV 

radiation, plants may more readily express acclimative mechanisms against disease, 

herbivores, and other environmental stresses. Farmers and growers are also becoming 

increasingly interested in the advantage of UV-induced stimulation of desirable secondary 

metabolites, such as the polyphenolics, in order to achieve improved crop response to stress 

conditions, including drought, pests and diseases.
1, 100, 142, 146, 334, 335
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5.2 Effect of genotype and environment on crop yield and quality 

The degree of acclimation of plants to stress conditions is often dependent on cultivar 

or genotype,
201, 314, 349

 as well as location and growth conditions.
95, 349-351

 Environmental 

conditions and genotype have been shown to be key factors that determine plant response and 

yield, and are indicative of the general phenotypic plasticity of plants (changes in 

morphological, physiological and metabolic attributes). The roles of both the environment 

and genotype are especially important when assessing current and future plant acclimation to 

stressful environments, including locations exposed to high levels of UV-B radiation, low 

rainfall, and extremes of temperature (e.g., Andean Altiplano and Tibetan Plateaux). Thus, 

research investigating the ‘environment x genotype’ response of crop plants is important for 

selection of genotypes suitable to particular environments and levels of UV-B radiation. The 

composition, concentration and antioxidant activity of polyphenolics change according to 

exposure of plants to elevated UV-B radiation and vary strongly with plant genotype.
250, 349

 

Because of the potential benefits of antioxidants (conferring free radical scavenging 

 

Fig. 5   Examples of current and evolving drivers of change on food security, showing the effects of linkages 

between changes in stratospheric ozone and climate. 
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capability) and other plant components, the selection of responsive genotypes or cultivars can 

be used to improve the nutritional status of a crop,.
242

 These benefits may include the 

potential for reducing the risk of health-related diseases such as cardiovascular disease and 

Type 2 diabetes.
268, 316, 341

 

5.3 Importance of secondary metabolites in agro-ecosystems  

Ultraviolet-B radiation regulates the accumulation of numerous secondary metabo-

lites, including flavonoids and other compounds derived from the phenylpropanoid pathway. 

These metabolites are important for plant growth and development, as antioxidants, UV-

screening pigments, herbivore and pathogen deterrents, as well as serving as pollinator at-

tractants and improving nutritional quality,
310, 328

 flavour, visual appeal, and desirability of 

many foods (see refs.
50, 65, 163, 218, 288, 298, 302, 335

 and references therein). However, exposure to 

UV-B radiation may cause both desirable and less desirable changes in nutritive properties. 

For example, UV-B radiation can decrease protein content in some crops or increase essential 

fatty acids not synthesised by humans and other animals (i.e., polyunsaturated linoleic and 

linolenic acids), while decreasing other beneficial fatty acids, such as the monounsaturated 

oleic acid, as was found in a study on soybean seeds.
269

 

The UV-B-induced regulation of phenolic compounds can occur under low levels of UV-B 

radiation in many plant species, including in a range of economically important crops in 

which these metabolites contribute to food quality and/or value. For instance, UV-B radiation 

mediates increased accumulation of the potentially nutritionally-valuable flavonoid com-

pounds, quercetin and kaempferol, in skins of grapes.
195

 The phenolic composition of grape-

skins can also change along latitudinal gradients. This was shown in a study where these fla-

vonoid compounds were favoured in the south compared with the north (from 36.7°N Jerez, 

Spain to 50°N Geisenheim, Germany), a change which positively correlated with overall so-

lar radiation across multiple European sites.
88

 This finding suggests that field manipulation of 

the exposure of grapes to UV-B radiation and other fruit crops could be exploited to enhance 

desirable characteristics. Such field manipulations are already in development.
126, 133, 255, 335

   

Although UV-B radiation can affect food quality, this does not only involve phenolics, but a 

much broader range of metabolite classes including UV-regulated terpenoids, aromatic esters 

and others.
297

 In peaches exposed to UV-B radiation, levels of the flavour-related monoter-

pene, linalool, decrease, while concentrations of sesquiterpene (E,E)-α-farnesene increase.
194

 

Volatile isoprenes have also been associated with thermotolerance (see section 3.4). Specific 

glucosinolate compounds may also accumulate in plants exposed to UV-B radiation,
130

 and 

may lead to the production of certain defence compounds against herbivory, creating another 

link with observations of reduced herbivory in plants exposed to UV-B radiation (see section 

6.2), although the degree of resistance to herbivory under UV-B radiation may also be de-

pendent on the type of herbivore.(see refs 
104

; and section 5.4)  

Decreases in UV-B radiation in southern South America and Australasia as the stratospheric 

ozone layer recovers (Chapter 1), may have negative effects for plants and agricultural crops 

in some cases. For example, as noted above, since UV radiation generally enhances 

production of plant secondary metabolites that deter many plant herbivores
104

, a decreased 

induction of these polyphenolics may result in increased herbivory and plant disease. It 

follows that from an environmental and food safety perspective, reduced cross-protection 

against herbivores, resulting from decreased UV-induced accumulation of phenolic 

compounds in crop plants under projected lower future UV-B radiation exposures, may result 

in increased pesticide use.
27

 There is also evidence that UV radiation can promote the 

breakdown of many pesticides (e.g., fenitrothion
340

, triazophos
180, 267

). 
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5.4 Potential effect of UV radiation on the visibility of crops to insect pests 
and pollinators 

As well as being herbivores, insect pests are the main carriers of plant viruses, which 

are a major cause of plant disease and restrict yields through decreased plant vigour.
9
 In 

agricultural and horticultural environments, reductions in UV radiation, whether through 

climate change (e.g., cloudiness, aerosols, forest fires) or deliberate intervention (e.g., the use 

of UV-attenuating screens, plastic films or nets), can reduce visibility of crops for some 

insect pests. However, certain pests, such as whitefly, aphids, and thrips may be more 

damaging to crops in environments with UV radiation compared with environments where 

UV radiation has been attenuated or reflected,
9, 179

, although exceptions have been reported.
26, 

176
 On the other hand, some beneficial insects such as pollinators, are more effective in 

environments containing UV radiation, allowing them to use floral cues such as UV-

absorbing/reflecting nectar guides (reviewed in ref.
196

). The floral patterns produced by 

nectar guides can be species-specific as found in the genus Potentilla where flowers of 

species from different regions of its distribution appear similar in the visible spectrum but 

differ in their UV nectar guides, presumably as an adaptation to attract different pollinators 

(Fig. 6). 

These effects of UV 

radiation on insects 

have implications 

for crop yields and 

the use of agro-

chemicals to control 

pests. However, in 

controlled environ-

ments, growers 

must balance the 

benefits of UV 

radiation for plants 

providing higher 

food quality
178, 211

 

against any 

potential costs in 

terms of the 

visibility of the 

plants to pests such 

as fruit flies 

(Drosophila 

suzukii
180

) thrips 

and aphids.
1, 148

 

Thus, the interplay 

of changing levels 

of UV-B radiation 

and increased fre-

quency of extreme 

weather events is 

likely to add to the 

current and pro-

jected vulnerability 

 

Fig. 6 The three Potentilla species with different origins growing together in Hel-

sinki Finland: Potentilla atrosanguinea var. argyrophylla (Himalayan cinquefoil) 

originates at high elevations; Potentilla megalanthea is from Japan; and Potentil-

la aurea is European. While looking similar in the visible spectrum their flowers 

have very different UV-absorbing and reflecting nectar guides that are visible to 

insect pollinators. UV photographs were taken with a filter blocking visible radia-

tion but transmitting in the UV-A as far as 325 nm. Photographs by T.M. Robson 

and P.J. Aphalo. 
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of agriculture with consequences for food security (Fig. 5). The key climate drivers together 

with UV-B radiation that modify plant development and yield are usually temperature and 

water availability.
241, 289, 290

 Consequently, the capacity of plant acclimative mechanisms to 

adjust to the rapidly changing conditions will become increasingly important. 

6 Ecosystem functioning 

Terrestrial ecosystems can be modified in several ways by the interactive effects of ozone 

depletion, UV radiation and climate change. Below, we consider recent findings that address 

the impacts of these interactions between plants (plant-plant), plant-herbivore, pest-pathogen, 

and litter decomposition. Some of these processes, particularly litter decomposition, are 

important in biogeochemical cycles. The consequences of alterations in these ecosystem 

processes for nutrient cycling and climate change are addressed more fully in Chapter 5. 

6.1 Plant-plant interactions 

Plants interact with one another in positive (facilitation) and negative (competition) 

ways and these interactions can ultimately change the composition of plant communities and 

their development following disturbance (succession). Competition between crops and weeds 

is also an important process affecting agricultural productivity and can require considerable 

labour and economic investment in weed control. Past studies have shown that enhanced UV-

B radiation can shift the balance of competition between crop and weed species, and that 

these changes are linked to differential effects of UV-B radiation on plant morphology, which 

then alters competition for light within plant canopies (reviewed in ref.
37

). Similarly, 

exposure to ambient UV-B radiation has been shown to change species composition in alpine 

plant communities, and these changes were also associated with differential effects of UV-B 

radiation on plant height and leaf area.
355

 Modelling studies confirm that these differential 

effects of UV-B radiation on plant growth and morphology can lead to shifts in competitive 

relationships among species.
301

 At least some modifications to shoot morphology are likely 

mediated by the UV-B photoreceptor, UVR8.
159, 271

 Plants appear to use UVR8, along with 

other photoreceptor proteins (e.g., phytochromes), to sense changes in the light environment 

caused by the proximity of other plants.
129, 220

 Conditions of low light (shade) inactivate 

UVR8, which then results in plant resources being redirected from defence to rapid 

growth.
220

 However, while this strategy helps the plant to compete for light with its 

neighbours, it also makes it more vulnerable to the attack of pathogens and pests (reviewed in 

refs
24, 28

; see section 6.2 below).  

6.2 Herbivory and plant-pathogen interactions  

Plant responses to UV-B radiation have consequences for organisms at various trophic levels 

or positions along the ecological food chain from producer to consumer. Solar UV-B 

radiation-induced reductions in herbivory have been well-documented in the field, and when 

this occurs, may be proportionally much larger than the effects of UV-B radiation on 

inhibiting plant growth (reviewed in ref.
26

). However, there are also instances where 

herbivory increases with UV-B radiation (see section 5.4). Herbivorous insects can perceive 

solar UV-B radiation,
221

 although many of the inhibitory effects of UV-B radiation on insect 

herbivory and pathogens are thought to be indirect (i.e., mediated by changes in host-plant 

chemistry; reviewed in ref.
24

). More limited evidence indicates that solar UV-B radiation can 

reduce infection by some plant pathogens. This increased pathogen resistance was observed 

in experiments where plants were pretreated with different amounts of UV-B radiation before 

inoculation with a pathogen.
91
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Shade-intolerant plants often down-regulate or decrease their defences against pathogens and 

pests in those leaves that are exposed to shade or shade signals (such as a low red to far-red 

ratio, R:FR),
68, 152, 183, 231

 presumably allowing for resources to be redirected into growth 

responses to avoid shade. According to this interpretation, plants growing in patchy canopies 

use solar UV-B radiation as a “gap” signal to adaptively regulate their growth and defence 
phenotypes. The interplay between shade signals (such as low R:FR perceived by 

phytochromes) and gap signals (such as high levels of UV-B radiation) may optimise the 

allocation of resources between growth and defence (see ref.
90

 and reviews 
24, 220

). 

Some of the changes in plant chemistry elicited by natural levels of solar UV-B radiation 

involve compounds known to be important for plant interactions with other organisms 

(reviewed in refs
104, 343

). Known defence-related compounds regulated by UV-B radiation 

include phenylpropanoid compounds,
153

 isoflavonoids,
98, 358

 conjugated polyamines,
90

 

cuticular waxes,
177

 proteinase inhibitors,
154, 300

 and jasmonates,
99

 among others. These effects 

of solar UV-B radiation on defensive chemistry can be considered as specific, presumably 

mediated by specific UV-B photoreceptors. However, the role of UVR8 in mediating effects 

of UV-B radiation on secondary compounds has so far been demonstrated only for flavonoids 

and other soluble phenolic compounds.
91, 230

 

In spite of the effects of UV-B radiation on plant defence against several herbivores and 

certain pathogens, the connections between UV-B radiation and the key hormonal pathways 

that regulate plant defence (i.e., the salicylic acid (SA) and jasmonic acid (JA) pathways), 

require further research. Early reports of effects of UV radiation on SA and expression of 

marker genes for SA should be interpreted cautiously, as many of those experiments used 

doses or wavelengths of UV radiation not present in the terrestrial environment (such as UV-

C, < 280 nm), or unbalanced UV-B radiation treatments (high UV-B radiation delivered 

against low PAR; see Fig. 4). Similar limitations apply to early studies of effects of UV 

radiation on JA activity (reviewed in ref.
24

). 

Some well-characterised effects of UV-B radiation on plant defence come from experiments 

that tested plant resistance to herbivorous insects, and necrotrophic pathogens (pathogens that 

kill their host cells). This has led to follow-up work focusing on interactions with JA-

signalling. A few studies have shown that genetic perturbations impairing synthesis of JA can 

effectively cancel out some anti-herbivore effects of solar UV-B radiation, leading to the 

suggestion that JA-signalling is required for those effects of solar UV-B radiation that 

increase plant resistance to herbivory.
64, 90, 263

 However, UV-B radiation can also affect plant 

defence against herbivores and pathogens via mechanisms that are not mediated by JA.
91

 The 

positive effects of UV-B radiation on JA-signalling have been attributed to increased 

biosynthesis of JA
99

 or sensitivity,
90

 but the molecular mechanisms linking perception of UV-

B radiation and JA- signalling remain to be elucidated. 

6.3 Decomposition of litter 

The decomposition of dead plant material (i.e., litter) drives the rate at which nutrients are 

recycled and is a strong determinant of carbon storage and soil fertility in terrestrial 

ecosystems. In general, the overall rate of decomposition is dependent on the temperature and 

moisture availability, which affects the activity of decomposing micro-organisms (bacteria 

and fungi), as well as the type of plant litter inputs (e.g., leaf vs woody tissue; evergreen vs 

deciduous leaves). Substantial evidence now indicates that solar radiation (UV and short 

wavelength visible radiation) can also drive litter decomposition via several mechanisms, 

with the net effect of these processes either accelerating or retarding decomposition, 

depending on quality of the litter and environmental conditions. Climate change will likely 
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alter the importance of UV radiation in decomposition and in regulating cycling of carbon in 

a number of terrestrial ecosystems.  

Solar radiation in the UV and short-wavelength visible regions (blue and green light) can 

directly break down the biochemical components of plant tissue, including relatively stable 

compounds, such as lignin, which absorb UV radiation, through a process called 

photochemical mineralisation (Fig. 7; refs
25, 38, 166

). These light-driven modifications in litter 

chemistry can, in turn, increase the ease with which microbes can decompose litter.
17, 22

 This 

latter process is often called photo-facilitation or photopriming (see Chapter 5). However, 

solar UV radiation, especially shorter wavelength UV-B radiation, may also inhibit the 

activity of microbes and change the composition of the microbial community, which then 

works in opposition to photo-facilitation.
38, 190

 The net effect of these mechanisms is modified 

by environmental conditions (e.g., availability of moisture) and the spectral quality of 

sunlight, which varies depending on stratospheric ozone depletion, cloud cover, pollution, 

and plant canopy. 

Recent studies have shown that photodegradation (photochemical mineralisation plus photo-

facilitation) occurs in a variety of environments,
17

 but the mechanisms and quantitative 

importance of this process in driving the overall decomposition of litter remains unclear in 

many cases. Since UV radiation can also inhibit microbial activity, a shift in spectral 

composition (i.e., UV-B:PAR ratios) would likely change the balance between photo-

facilitation and microbial inhibition. This may be one reason why some experimental and 

modelling studies fail to detect a relationship between photodegradation and lignin content of 

 

Fig. 7  Conceptual model of the effects of solar radiation on litter degradation and microbial decomposition 

in terrestrial ecosystems. UV radiation and blue-green light cause the direct breakdown of lignin, cellulose 

and other plant cell wall components (CWCs), forming non-volatile and volatile compounds, such as carbon 

dioxide (CO2), the latter being released to the atmosphere. This abiotic process is often referred to as 

photomineralisation. The changes in litter substrate resulting from photodegradation enhance the microbial 

breakdown of litter through a process called photo-facilitation. UV photons in sunlight may also directly 

inhibit the activity of decomposing microbes. Figure adapted from ref.
25

. 
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litter.
3, 190

 Long-term studies indicate that increased rates of decomposition due to 

photodegradation become evident only in later stages of decomposition, as was found after 

four months for savanna litter in a controlled experiment,
189

 and after 12 months in a semi-

arid ecosystem.
331

 This suggests that the availability of substrates to microbes is only 

noticeably increased by photo-facilitation once readily-available substrates in fresh litter have 

been depleted. A diel time period (i.e., 24 h) appears to allow microbes to benefit from 

daytime photo-facilitation, possibly recovering during darkness, as well as utilising the extra 

humidity at night.
120, 189

 

Field studies continue to show that photodegradation contributes most to the acceleration of 

litter decomposition in hyper-arid (annual precipitation < 150 mm), arid, and semi-arid eco-

systems.
145, 330

 In two contrasting locations on the Mediterranean steppe, UV radiation 

increased the decomposition rate of grass and shrub litter in a continental climate, but not in a 

high rainfall maritime climate.
6, 120

 These findings suggest that, in drylands, photochemical 

mineralisation dominates under the driest conditions, whereas photo-facilitation tends to 

dominate under slightly moister conditions. The acceleration of decomposition attributable to 

photo-facilitation can even be detected in sub-tropical and temperate environments in both 

litter and coarse woody debris.
348

 However, when moisture levels are favourable enough to 

support high microbial activity, UV radiation can have negative effects on decomposition, 

presumably because of direct inhibitory effects of solar radiation on the microbial 

populations.
252

  

The majority of field photodegradation studies to date have been conducted in ecosystems 

occurring in dry (arid and semi-arid) rather than moist (mesic) climates.
38

 However, the 

interaction of moisture and photodegradation has recently been garnering attention.
120, 293, 330

 

In moist, forested ecosystems, the amount of solar radiation reaching litter through the 

canopy can alter decomposition rates.
202

 Different types and densities of canopy affect both 

the amount of radiation reaching ground level and its spectral composition.
112

 This implies 

that shifts in type of vegetation occurring because of changes in land-use and climate are 

likely to affect decomposition rates through photodegradation interacting with concomitant 

changes in temperature and moisture.
12, 55, 262

 Typically, the encroachment of woody plants 

leading to conversion of grasslands to shrublands driven by climate change and/or land 

abandonment, will alter litter composition and chemistry. This will shift C:N ratios in litter, 

affecting not only microbial activity but also photo-facilitation of litter and direct 

photodegradation.
12, 52, 137

 In addition to shifts in type of vegetation, the exposure of litter to 

solar radiation will be determined by plant morphology and functional strategy. In habitats 

where standing dead litter remains on the plant, this will present a greater surface area 

exposed to sunlight than situations where litter falls to the ground becoming easily mixed 

with soil which then reduces photodegradation.
39, 136, 251, 330, 331

 

The structure and biochemical composition of litter produced by different plant forms plays a 

significant role in determining the underlying rate of decomposition. Hence litter with high 

lignin content may decompose slowly and be most affected by direct photochemical 

degradation.
16, 103

 However, variations in photodegradation among species independently of 

their lignin content,
166

 suggest that other traits of litter are also important (see ref.
20

 for 

additional discussion). The UV radiation received by plants during growth can affect leaf 

morphology and the amount and composition of phenolic compounds that accumulate in the 

leaf epidermis,
50

 as well as affecting the rate at which leaves will break down. These traits 

may continue to modify the optical properties of the leaf and hence the extent to which solar 

radiation penetrates the leaf during the early stages of decomposition.
85

 Likewise, the depth 

and density of litter, its physical movement (e.g., by wind, rain), and the degree to which 
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litter mixes with soil will determine the surface area exposed to sunlight, factors that are 

likely to be highly important for photodegradation.
38, 166

 

The insight that recent research brings into the role of UV radiation and short-wavelength 

visible light in photodegradation in humid temperate as well as arid biomes,
5, 70

 means that 

photodegradation has the potential to modify processes such as carbon cycling across many 

biomes. This broader relevance compared with our past knowledge of photodegradation 

extends its scope to affect the biogeochemistry of terrestrial ecosystems under climate change 

and with future stratospheric ozone recovery (Chapter 5).  

7 Climate change is altering the exposure of organisms to UV 
radiation 

Previous assessments have focused on the effects of ozone-driven changes in UV-B 

radiation.
50

 However, climate change is increasingly exerting a stronger control on UV-B and 

UV-A radiation received by organisms as a result of changing cloud cover, vegetative cover, 

shifting of geographic ranges of species, changing of seasonal timing of growth and repro-

duction, and migration. Some of the potential implications of these climate-driven changes in 

exposure to UV radiation for terrestrial organisms and ecosystems are addressed below. 

7.1 Species migration, UV radiation, and climate change 

Plants and animals are shifting their ranges to higher latitudes and elevations in re-

sponse to climate change and additional changes in distributions are expected to occur in the 

future.
83, 149, 257

 However, species vary in their potential rates of migration. For plants, short-

lived, herbaceous species (grasses and forbs) generally shift geographic ranges more rapidly 

than long-lived, woody species (trees and shrubs).
149

 Non-native (i.e., introduced) species of 

plants also appear to exhibit higher migration potentials than native (i.e., indigenous) spe-

cies.
83, 347

 These climate change-driven shifts in geographic ranges will likely alter the expo-

sure of plants to UV-B radiation, since UV-B irradiances generally increase with increasing 

elevation and decrease with increasing latitude
21, 48, 62

. However, these changes in plant expo-

sure to UV-B radiation will not occur in isolation of other environmental factors, since a 

number of abiotic (e.g., temperature and moisture) and biotic (e.g., associated pests, patho-

gens, and competitors) factors change with the migration of organisms to higher latitude and 

elevation.
149, 169

 Consequently, these shifts in geographical range will likely expose organisms 

to unique combinations of UV radiation and co-occurring environmental factors. To what ex-

tent UV radiation plays a role in influencing migration patterns and how plants and animals 

respond to different conditions of UV radiation in the context of these other environmental 

changes as they migrate, has received little attention to date (but see section 3). However, cer-

tain insights into these effects can be gleaned from studies comparing plant populations or 

ecotypes whose distribution naturally spans a range of latitudes or elevations.  

Plants that are adapted to grow in high elevation environments (i.e., alpine) often accumulate 

more UV-screening compounds (e.g., flavonoids) and have other UV-protective mechanisms 

compared with those plants occurring at lower elevations.
117, 227, 304, 333, 360

 These differences 

are likely the result of the combined effects of elevational changes in UV radiation, tempera-

ture and other factors.
4
 As discussed in section 3.4, low temperatures induce the production 

and accumulation of flavonoids. This may then increase levels of UV-screening and protec-

tion against oxidative stress.
167, 182, 337

 High- and low-elevation plant populations may also 

differ their abilities to acclimate to changes in UV radiation.
332

 In wild potatoes (Solanum 

kurtzianum), populations grown at low elevation have relatively low constitutive (base-line) 

levels of leaf flavonoids but a high capacity for induction of flavonoids when UV radiation 
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increases. In contrast, plants at high elevations have high constitutive flavonoid levels, but do 

not necessarily increase their UV-screening in response to supplemental UV-B radiation in 

experimental studies.
147

 Differential sensitivity to UV radiation of high vs low-elevation pop-

ulations may also be due, in part, to population differences in DNA damage and repair, as has 

been shown for Arabidopsis.
332

 

Whether there are differences in tolerance to UV radiation between native vs introduced spe-

cies is unclear at present. For example, introduced populations of Chinese tallow tree (Tri-

adaca sebifera), taken from south-eastern USA where the species was introduced in the 

1700s, were shown to be more sensitive to UV-B radiation than native Chinese 

populations.
329

 By comparison, no differences were found in the sensitivity of seed germina-

tion to UV-B radiation in native vs introduced populations of Verbascum and Echium in New 

Zealand.
139

 Similarly, native and non-native species showed similar levels of UV-screening 

when growing in a high UV, tropical alpine location.
36

 However, UV-screening increased 

with increasing elevation and UV-B radiation in a non-native species (Verbascum thapsus 

(mullein)) but did not vary with elevation in the native Vaccinium reticulatum (`ohelo). In 

contrast, similar levels of phenotypic plasticity (acclimation potential) between native (Ger-

man) and non-native (New Zealand) populations of Hieracium pilosella with respect to mor-

phological and growth response to UV-B radiation under growth chamber conditions have 

been found.
40

 Thus, while it is generally assumed that non-native species can acclimate more 

readily to environmental change than native species,
84

 it is unclear whether this generalisation 

applies to tolerance to UV-B radiation. Plants expanding their distribution into higher lati-

tudes, would be expected to experience less exposure to UV-B radiation. As already noted, 

this may then lead to a decline in UV-screening compounds, antioxidants and other metabo-

lites involved in photo-protection.
67

 

To date, relatively little research has exploited remote sensing to make quantitative assess-

ments of plant responses to elevation and climate change. However, the potential to use this 

approach is apparent from remote sensing images of a 1-hectare area (from the Carnegie Air-

borne Observatory-2), using a high-fidelity visible-to-shortwave infrared (VSWIR) imaging 

spectrometer and dual laser waveform (LiDAR), which was calibrated against spectrophoto-

metric measurements of leaf extracts.
14

 This allowed a trend to be identified for increased 

phenolics with elevation (excluding the upper-most measurement point) using LiDAR images 

at the landscape scale in the Peruvian Andean rainforest. As this approach becomes more 

widely adopted, it will enable the resolution of large-scale relationships with topography and 

climate, allowing patterns in response to UV radiation and climate change to be mapped us-

ing remote sensing of large areas. Unmanned aerial vehicles (drones) are also increasingly 

being used to bridge the gap between satellites and ground measurements and to measure 

spectral reflectance at high resolution and under clouds.
204

 

Ecosystems, and populations of plant species, including native species, have responded over 

the eons to changing environmental conditions. However, the recent rapid rate of climate 

change, in particular increasing temperatures and more frequent extreme weather events, are 

of concern in terms of the conservation of species and habitats.
257

 Understanding the role of 

UV radiation in shifting distribution patterns and how readily plant populations can adjust 

physiologically and genetically to new UV radiation environments is therefore relevant to the 

conservation of biodiversity and the services that these natural ecosystems provide to hu-

mans.  
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7.2 Clouds, canopies, and plant response to fluctuating UV radiation  

Climate change is altering cloud cover with some regions experiencing increased and 

other regions decreased cloud cover 

(Chapter 1 and ref.
149

). The effect of 

clouds on UV radiation also depends 

on the type of clouds 
200

 as well as their 

position relative to the sun.
106

 These 

changes in cloud cover alter the long-

term (days to weeks) exposure of plants 

to UV radiation and they can also 

change the short-term (seconds to 

hours) dynamics of UV radiation re-

ceived by plants. (Fig. 8; ref.
106

) 

Whereas considerable attention has 

been given to understanding plant re-

sponses to changes in average UV radi-

ation conditions that occur over long 

time periods (see section 3.3, refs,
46, 50

 

and references therein), far less is 

known about plant response to rapid 

fluctuations in solar UV radiation. A 

number of studies have, however, 

demonstrated that concentrations of 

UV-screening compounds in mature 

leaves can vary over the growing sea-

son
237

, from one day to the next,
303

 

over the course of an individual day,
33

 

and in response to rapid changes in 

clouds.
36

 The changes in UV-screening 

that occur over the day are rapid (with-

in minutes), reversible, and have been 

shown to be linked to changes in the 

content and composition of UV-

absorbing compounds (flavonoids and 

related phenolics).
36

 At present, the un-

derlying mechanisms responsible for 

these rapid changes in UV-radiation 

protection are unclear, as is the signifi-

cance of these changes for plant growth 

and function. These findings do; how-

ever, indicate that many, but not all, 

plant species can rapidly adjust their 

UV-screening in response to fluctua-

tions in UV irradiances.
34

  

The disruption of plant canopy structure (e.g., due to fire or drought-induced mortality of 

trees) alters the amount and spectral composition of sunlight penetrating canopies (i.e., ratios 

of UV-B:UV-A:PAR), but the specific changes depend on the type of canopy and vertical 

position (e.g., crown vs understorey).
23

 Recent studies using array spectrometers have cap-

tured rapid changes in the sun-shade environment under canopies by recording multiple spec-

 

Fig. 8   Variability in ground-level UV-B radiation over 

multiple time scales in the Sonoran Desert, USA.  Panel A 

shows incident daily plant effective UV-B radiation over 

one year (January-December; months 1-12) with the annu-

al summer monsoon (rainy and cloudy weather) indicated.  

Panel B shows instantaneous plant effective UV-B radia-

tion over a single summer day measured above (blue line) 

and beneath (red line) a velvet mesquite (Prosopis veluti-

na) canopy.  Fluctuations in UV-B radiation in the under-

story result from changing cloud cover and the penetration 

of direct solar radiation through gaps in the canopy (sun-

flecks).  Unpublished data from P.Barnes. 
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tra every second.
128

 These measurements at high temporal resolution have confirmed findings 

from earlier studies
59, 112, 122

 that the spectral composition as well as total irradiance differs 

between sun flecks and understorey shade in forests and crop canopies. The importance of 

this fine-scale temporal and spatial variation in UV radiation in understorey environments for 

plant growth and development is not entirely clear at present (but see refs
173, 174

). There is ev-

idence, however, that plants use the total irradiance received or modulated as cues,
192

 which 

can prime them for seasonal or periodic changes. This may therefore be an important aspect 

of UV acclimation in understorey species that could lead to better adjustment to conditions of 

variable UV radiation resulting from modified overstorey canopies brought about by climate 

change. 

Light tends to penetrate canopies more effectively under overcast or hazy sky conditions 

when the ratio of diffuse to direct radiation is higher, than under clear sky conditions.
71, 92, 184

 

Thus, cloudy conditions produce short-term increases in photosynthesis at the whole canopy 

level.
228, 317, 318

 However, because leaves that develop in the sun are more efficient in using 

direct than diffuse radiation, and efficiency of leaves that develop in the shade does not differ 

significantly under changing sky conditions
57

, caution must be exercised in generalising from 

these results. Conclusions that plant productivity will be enhanced by projected increases in 

diffuse solar radiation resulting from manipulating aerosol levels in the atmosphere to reduce 

climate change (i.e., geoengineering, see Chapter 1) must be viewed with a high degree of 

uncertainty because they will depend on the geographic location, on the extent of the reduc-

tion in incident irradiance, and whether the increased canopy light-use efficiency from diffuse 

radiation is sufficient to offset this and persist in the long term.
346

 

Remote sensing of vegetation using satellites is routinely used to measure primary productivi-

ty and leaf pigments involved in photosynthesis; this technique has been used extensively for 

the scaling of ecosystem processes related to the carbon cycle.
353

 Most of these ecosystem 

process models have been developed for use in combining leaf-level and remotely-sensed da-

ta, but new possibilities to better understand canopy reflectance of UV radiation are being 

made possible by the capacity to extend these remotely captured images and spectral data into 

the UV range of the spectrum.  

Radiative transfer models used to model canopy optical properties and determine the fate of 

solar radiation have not yet been extended into the UV range, e.g., the discrete anisotropic 

radiative transfer model.(DART
119

) These models can incorporate sub-models for leaf optical 

properties (e.g., PROSPECT-D
107

 and Fluspect-CX
323

), which previously have been applied 

for optical estimation of chlorophyll and carotenoids but if extended into the blue light and 

UV-A regions could include estimation of anthocyanins
324

 and flavonoids. This may be fa-

cilitated by the new generation of those satellites designed for monitoring vegetation, which 

include the capacity to detect wavelengths spanning into the UV portion of the spectrum 

(from the European Space Agency, 270-370 nm for Sentinel-5 Satellite and Sentinel-5-

precusor satellite). An alternative approach is to extend atmospheric radiative transfer mod-

els, such as libRadtran (Chapter 1 and ref.
101

) and the tropospheric and visible solar UV ra-

diation model (http://cprm.acom.ucar.edu/Models/TUV/Interactive_TUV/), to include radia-

tive transfer through plant canopies or even greenhouse structures in the same way that 

DART and other radiative transfer models (RTMs) are being applied for the visible spectrum, 

or even coupling these two model types together. At the leaf level, commercial sensors (e.g., 

Ocean Optics Jaz123) and custom-made devices (e.g., 
272

) have the capacity to measure leaf 

reflectance in the UV range in both broadleaved and needle-leaved plants. 

In crop canopies, planting distance and crop species, or even the cultivar or variety planted, 

will dictate the canopy architecture and affect the spectral composition and total irradiance 
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reaching the lower leaves. These decisions also have implications for how UV-B radiation 

affects plant growth and defence at the canopy level in agricultural crops (see ref.
24

 and sec-

tion 5.3). With a better understanding of the mechanisms by which plants in canopies respond 

to UV radiation as a part of the incident spectral irradiance over vertical profiles, we can 

make better-informed management decisions on species and cultivar selection for specific 

locations.  

7.3 Phenology and UV radiation 

The implications of warmer winters for the seasonal timing of development or 

phenology have been extensively studied, with findings consistently showing both the early 

emergence of animals
77, 307

 and the earlier onset of plant growth.
74, 170

 Although the molecular 

mechanisms controlling phenology are not fully understood
305

, it is known that organisms 

often use a variety of environmental cues to safeguard against mis-timing of development.
175, 

282, 362
 Differences among life forms in their rate of response to temperature, which is usually 

the predominant cue, create the potential for a disruption of ecosystem processes through a 

mismatch in the timing of phenology among co-existing organisms such as plants and 

pollinators.
243, 264

 It is likely that warmer temperatures will bring overwintering trees out of 

dormancy prematurely. This will produce an earlier spring bud-burst, possibly so early in the 

year that at high latitudes new leaves receive insufficient sunlight (and by definition less UV-

B radiation) to develop as they normally would do later in the year.
45, 232

 This forward 

displacement of phenology due to warming may also heighten the role of alternative 

phenological cues (e.g., daylength and spectral quality).
56, 339

 In particular, more research is 

required to better understand interactions between daylength (photoperiod) and cues related 

to spectral quality (i.e., changes in UV-B, UV-A, blue and red light), both of which are de-

tected by plant photoreceptors. Alterations in the timing of spring phenology, particularly at 

high latitudes, may expose understorey plants to new light environments in early spring when 

freezing temperatures may limit their physiological acclimation capacity.  

8 Tracking changes in past UV radiation over geological 
timescales using the biochemical signatures of plants 

The long-term ecological effects of UV-B radiation over geological timescales are 

studied by palaeoecologists interested in retrospectively reconstructing solar UV-B radiation. 

Identifying a reliable proxy for tracking changes in UV-B radiation based on the biochemis-

try of pollen and spores, would help interpretation of the effects of UV-B radiation on terres-

trial ecosystems. However, even then an additional calibration would be required to separate 

changes in total solar radiation from those of UV-B radiation, and it would be difficult to dis-

tinguish whether these changes resulted mainly from stratospheric ozone depletion or other 

environmental or astronomical factors. Improvements in analytical techniques have reduced 

the uncertainty associated with reconstructions of solar radiation based on the biochemistry of 

pollen from ice cores and lake sediments that track changes in past UV radiation over geolog-

ical time scales.
115, 224

 These reconstructions may provide a better understanding of the evolu-

tion of the stratospheric ozone layer and its interaction with climate change.
158, 278

 However, 

the extent to which UV-absorbing compounds in pollen can be considered reliable indicators 

of the past UV-B radiation and reflect changes at high temporal resolutions, depends upon the 

causative temporally-stable relationship between the accumulation of these compounds in 

pollen and exposure to solar UV-B radiation being experimentally verified.
308

 

The preserved outer walls of fossilised spores and pollen grains are made from sporopollenin, 

which is highly resistant to degradation over geological time scales and contains the phenolic 
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compounds, para-coumaric acid and ferulic acid. Experiments using supplemental UV-B ra-

diation have found the concentrations of these compounds to be proportional to the incident 

solar UV-B radiation received by the pollen.
89, 278

 Exploiting this relationship has enabled the 

reconstruction of UV irradiance at Lake Bosumtwi, in modern-day Ghana.
158

 This work has 

shown that over a 140-thousand-year period, fluctuations in the concentration of phenolics 

from grass pollen contained in sediments corresponded with patterns of solar UV irradiance 

derived from changes in the Earth’s orbit over cycles of 19-21 thousand years.
158

 The correla-

tion between reconstructed UV-irradiance and phenolic concentration is also evident from 

pine pollen
344

 and spores of the ubiquitous clubmoss Lycopodium
197

 over broad latitudinal 

gradients, although this correlation is more robust across local elevational gradients.
308

 This is 

because seasonal and environmental variability and differences in UV-B radiation related to 

weather patterns (temperature and cloudiness) and canopy shade can confound the relation-

ship.  

The lack of standardisation and inter-comparability of samples and sampling techniques is 

one impediment to the wider use of the above techniques. Improvements in the two analytical 

approaches used to detect phenolic compounds, i.e., Fourier-Transform (FT) high-throughput 

infra-red spectroscopy and thermally-assisted hydrolysis methylation (THM) with pyrolysis–
gas chromatography mass spectrometry (THM–GC/MS), should allow researchers to obtain 

more detailed information from pollen samples.
18, 157, 285

 In the latter case, precision should 

also be improved by calibration of changes in phenolic compounds against a known concen-

tration of a compound added to the sample as a standard or against another compound within 

the pollen that does not respond to changes in solar radiation.
285

 When used in conjunction 

with radiative transfer modelling,
309

 these approaches show promise in distinguishing past 

environmental gradients in UV radiation, such as that at the end of the Permian period (ca 

250 million years ago),
49, 327

 from other climate changes across geographical gradients, and 

long time-scales. This has the potential to improve our knowledge of the causes and conse-

quences of stratospheric ozone depletion. 

9 Key gaps in knowledge 

Current gaps in our knowledge of the linkages between stratospheric ozone, UV ra-

diation and climate change and their implications for terrestrial ecosystems are a direct con-

sequence of the complexity of systems characterised by interactive loops that link climatolo-

gy, meteorology and biology (Fig. 1). The challenge lies in developing integrated approaches 

to assess the effects of UV radiation against a complex background of rapidly evolving envi-

ronmental conditions and increasing human interventions. The way in which ecosystems re-

spond to the often-interactive effects UV radiation and other climate change dynamics can 

have important consequences for the functionality and/or productivity of agricultural and nat-

ural ecosystems, but currently leave many unknowns. This emphasises the importance of 

studying combinations of those environmental factors that often change with UV radiation 

and which may modify the response of organisms to UV radiation in terms of acclimation 

and productive growth. Thus far, most research has concentrated on potential interactive ef-

fects of UV radiation with temperature and/or drought. Since climate warming continues to 

increase, a better understanding is needed of the effects of UV-B radiation and rising carbon 

dioxide together with other climate variables on natural and agricultural systems. This will 

then facilitate assessments of future outcomes for ecosystem functioning, conservation of 

species, and selection of environmentally suitable agricultural crops. While growth chamber 

studies can make valuable contributions to understanding some of the fundamental mecha-

nisms of plant response to UV radiation, there is still a strong need for many growth chamber 
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studies to be validated in the field for a realistic perspective of how organisms will respond in 

a more natural environment. 

The balance between negative and beneficial effects on organisms will determine the current 

and future adaptation and sustainability of terrestrial ecosystems. Changing exposure to UV 

radiation and climate change factors will affect plant resistance to pests and diseases, food 

quality and nutritional quality, as well as potentially modifying the behaviour of terrestrial 

animals. These changes may also affect visual cues contributed by UV radiation for certain 

animals. However, more information is required to evaluate the possible implications in the 

context of animal response to future environments and in plant-pest and plant-pollinator in-

teractions, which will have a bearing on food security. 

While qualitative analysis of responses to UV radiation and other variables is usually possi-

ble, quantitative analyses are often lacking due, in part, to the complexity of diverse and con-

stantly changing biological systems. For example, it is difficult to quantify the importance of 

processes such as photodegradation and microbial breakdown of terrestrial plant litter for soil 

carbon storage and emissions at regional and global scales, and their potential contribution to 

global warming and nutrient cycling.  

Climate change together with changes in land-use will very likely continue to have strong 

impacts on the exposure to UV radiation of ecosystems and terrestrial organisms, including 

human populations. On a global scale, there is currently insufficient information on the rela-

tive contribution and implications of stratospheric ozone depletion to climate change in the 

southern hemisphere, and how much can be attributed to natural variability. These interactive 

effects need to be evaluated for the way in which they may continue to modify ecosystem re-

sponse in a future with a recovering stratospheric ozone layer. In addition, emerging findings 

from monitoring of stratospheric ozone need to be taken into account for evaluating the pos-

sible implications of any sudden change towards the projected path of ozone recovery. This 

was recently illustrated in a report
229

 suggesting that there are unexpected indications that 

emissions of the banned ozone-depleting compound, chlorofluorocarbon-11 (CFC-11), have 

increased. The magnitude and future significance of the responses of terrestrial ecosystems to 

increasing or decreasing UV radiation, either dependent or independent of stratospheric 

ozone depletion, and in the context of climate change, remain largely unknown. 
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correlated with the metabolite profile of Vitis vinifera cv. Pinot Noir berry skins 
along a European latitudinal gradient, J. Agric. Food. Chem., 64, 8722-8734. 

89 Demchik SM and Day TA, 1996, Effect of enhanced UV-B radiation on pollen 
quantity, quality, and seed yield in Brassica rapa (Brassicaceae), Am. J. Bot., 83, 
573-579. 

90 Demkura PV, Abdala G, Baldwin IT and Ballaré CL, 2010, Jasmonate-dependent 
and -independent pathways mediate specific effects of solar ultraviolet B 
radiation on leaf phenolics and antiherbivore defense, Plant Physiol., 152, 1084-
1095. 

91 Demkura PV and Ballaré CL, 2012, UVR8 mediates UV-B-induced Arabidopsis 
defense responses against Botrytis cinerea by controlling sinapate accumulation, 
Molecular Plant, 5, 642-52. 

92 Dengel S, Grace J, Aakala T, Hari P, Newberry SL and Mizunuma T, 2013, Spectral 
characteristics of pine needles at the limit of tree growth in subarctic Finland, 
Plant Ecol. Divers., 6, 31-44. 

93 Dennison FW, McDonald A and Morgenstern O, 2016, The influence of ozone 
forcing on blocking in the Southern Hemisphere, J. Geophys. Res. Atmos., 121, 
14,358-14,371. 

94 Deppeler SL and Davidson AT, 2017, Southern ocean phytoplankton in a 
changing climate, Front Mar Sci, 4, 40. 

95 Di Ferdinando M, Brunetti C, Agati G and Tattini M, 2014, Multiple functions of 
polyphenols in plants inhabiting unfavorable Mediterranean areas, Environ. Exp. 

Bot., 103, 107-116. 

96 Díaz LB and Vera CS, 2017, Austral summer precipitation interannual variability 
and trends over Southeastern South America in CMIP5 models, Int. J. Climatol., 
37, 681-695. 

97 Diehl JJE, Baines FM, Heijboer AC, Leeuwen JP, Kik M, Hendriks WH and Oonincx 
DGAB, 2018, A comparison of UVb compact lamps in enabling cutaneous vitamin 
D synthesis in growing bearded dragons, J. Anim. Physiol. Anim. Nutr., 102, 308-
316. 

98 Dillon FM, Tejedor MD, Ilina N, Chludil HD, Mithöfer A, Pagano EA and Zavala JA, 
2018, Solar UV-B radiation and ethylene play a key role in modulating effective 
defenses against Anticarsia gemmatalis larvae in field-grown soybean, Plant Cell 

Environ., 41, 383-394. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

EEAP 2018 Quadrennial Assessment  199 

 

99 Đinh ST, Gális I and Baldwin IT, 2013, UVB radiation and 17-
hydroxygeranyllinalool diterpene glycosides provide durable resistance against 
mirid (Tupiocoris notatus) attack in field-grown Nicotiana attenuata plants, Plant 

Cell Environ., 36, 590-606. 

100 Elfadly E, Abd El-Aal H, Rizk A and Sobeih W, 2016, Ambient UV manipulation in 
greenhouses: plant responses and insect pest management in cucumber, 1134 
ed., International Society for Horticultural Science (ISHS), Leuven, Belgium, pp. 
343-350. 

101 Emde C, Buras-Schnell R, Kylling A, Mayer B, Gasteiger J, Hamann U, Kylling J, 
Richter B, Pause C, Dowling T and Bugliaro L, 2016, The libRadtran software 
package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev., 9, 
1647-1672. 

102 Epstein HE and Bhatt US, 2015, Tundra Greenness, NOAA, 
http://www.arctic.noaa.gov/reportcard/, accessed December 18, 2015,  

103 Erickson DJ, Sulzberger B, Zepp RG and Austin AT, 2015, Effects of stratospheric 
ozone depletion, solar UV radiation, and climate change on biogeochemical 
cycling: interactions and feedbacks, Photochem. Photobiol. Sci., 14, 127-148. 

104 Escobar-Bravo R, Klinkhamer PGL and Leiss KA, 2017, Interactive effects of UV-B 
light with abiotic factors on plant growth and chemistry, and their consequences 
for defense against arthropod herbivores, Front. Plant. Sci., 8, 278. 

105 Fasano R, Gonzalez N, Tosco A, Dal Piaz F, Docimo T, Serrano R, Grillo S, Leone A 
and Inze D, 2014, Role of Arabidopsis UV RESISTANCE LOCUS 8 in Plant Growth 
Reduction under Osmotic Stress and Low Levels of UV-B, Molecular Plant, 7, 773-
791. 

106 Feister U, Cabrol N and Hader D, 2015, UV irradiance enhancements by 
scattering of solar radiation from clouds, Atmosphere, 6, 1211-1228. 

107 Féret JB, Gitelson AA, Noble SD and Jacquemoud S, 2017, PROSPECT-D: Towards 
modeling leaf optical properties through a complete lifecycle, Rem. Sens. Environ., 
193, 204-215. 

108 Field CB and Ehleringer JR, 1993, Introduction: questions of scale, in Scaling 

Physiological Processes, Elsevier, pp. 1-4. 

109 Fina J, Casadevall R, AbdElgawad H, Prinsen E, Markakis MN, Beemster GTS and 
Casati P, 2017, UV-B inhibits leaf growth through changes in growth regulating 
factors and gibberellin levels, Plant Physiol., 174, 1110. 

110 Fiscus EL and Booker FL, 1995, Is increased UV-B a threat to crop photosynthesis 
and productivity?, Photosyn. Res., 43, 81-92. 

111 Flint SD and Caldwell MM, 1996, Scaling plant ultraviolet spectral responses 
from laboratory action spectra to field spectral weighting factors, J. Plant Physiol., 
148, 107-114. 

112 Flint SD and Caldwell MM, 1998, Solar UV-B and visible radiation in tropical 
forest gaps: measurements partitioning direct and diffuse radiation, Glob. Change 

Biol., 4, 863-870. 

http://www.arctic.noaa.gov/reportcard/


Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

200                                                EEAP 2018 Quadrennial Assessment  

 

113 Flint SD and Caldwell MM, 2003, A biological spectral weighting function for 
ozone depletion research with higher plants, Physiol Plant, 117, 137-144. 

114 Franco-Belussi L, Fanali LZ and De Oliveira C, 2018, UV-B affects the immune 
system and promotes nuclear abnormalities in pigmented and non-pigmented 
bullfrog tadpoles, J Photochem Photobiol B, 180, 109-117. 

115 Fraser WT, Lomax BH, Jardine PE, Gosling WD and Sephton MA, 2014, Pollen and 
spores as a passive monitor of ultraviolet radiation, Front. Ecol. Evolut., 2. 

116 Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M and Bergstrom 
DM, 2005, Biological invasions in the Antarctic: extent, impacts and implications, 
Biol. Rev., 80, 45-72  

117 Fu G and Shen Z-X, 2017, Effects of enhanced UV-B radiation on plant physiology 
and growth on the Tibetan Plateau: a meta-analysis, Acta Physiol. Plant., 39, 85. 

118 Galván I, Jorge A, Pacheco C, Spencer D, Halley DJ, Itty C, Kornan J, Nielsen JT, 
Ollila T, Sein G, Stój M and Negro JJ, 2018, Solar and terrestrial radiations explain 
continental-scale variation in bird pigmentation, Oecologia, 188, 683–693. 

119 Gastellu-Etchegorry JP, Lauret N, Yin T, Landier L, Kallel A, Malenovský Z, Bitar 
AA, Aval J, Benhmida S, Qi J, Medjdoub G, Guilleux J, Chavanon E, Cook B, Morton 
D, Chrysoulakis N and Mitraka Z, 2017, DART: Recent Advances in Remote 
Sensing Data Modeling With Atmosphere, Polarization, and Chlorophyll 
Fluorescence, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 10, 2640-2649. 

120 Gliksman D, Rey A, Seligmann R, Dumbur R, Sperling O, Navon Y, Haenel S, De 
Angelis P, Arnone John A and Grünzweig José M, 2017, Biotic degradation at 
night, abiotic degradation at day: positive feedbacks on litter decomposition in 
drylands, Glob. Change Biol., 23, 1564-1574. 

121 Gonzalez PLM, Polvani LM, Seager R and Correa GJP, 2014, Stratospheric ozone 
depletion: a key driver of recent precipitation trends in South Eastern South 
America, Clim. Dyn., 42, 1775-1792. 

122 Grant RH, Apostol K and Gao W, 2005, Biologically effective UV-B exposures of an 
oak-hickory forest understory during leaf-out, Agric. Forest Meteorol., 132, 28-
43. 

123 Grašič M, Budak V, Klančnik K and Gaberščik A, 2017, Optical properties of 
halophyte leaves are affected by the presence of salt on the leaf surface, Biologia, 
72, 1131. 

124 Greene AM, Goddard L, Gonzalez PLM, Ines AVM and Chryssanthacopoulos J, 
2015, A climate generator for agricultural planning in southeastern South 
America, Agric. Forest Meteorol., 203, 217-228. 

125 Guillermo-Ferreira R, Therézio EM, Gehlen MH, Bispo PC and Marletta A, 2014, 
The role of wing pigmentation, UV and fluorescence as signals in a neotropical 
damselfly, J. Insect Behav., 27, 67-80. 

126 Gwynn-Jones D, Jones AG, Waterhouse A, Winters A, Comont D, Scullion J, Gardias 
R, Graae BJ, Lee JA and Callaghan TV, 2012, Enhanced UV-B and elevated CO2 
impacts sub-Arctic shrub berry abundance, quality and seed germination, Ambio, 
41, 256-268. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

EEAP 2018 Quadrennial Assessment  201 

 

127 Hantson S, Knorr W, Schurgers G, Pugh TAM and Arneth A, 2017, Global isoprene 
and monoterpene emissions under changing climate, vegetation, CO2 and land 
use, Atmos. Environ., 155, 35-45. 

128 Hartikainen SM, Jach A, Grané A and Robson TM, 2018, Assessing scale-wise 
similarity of curves with a thick pen: As illustrated through comparisons of 
spectral irradiance, Ecol. Evol., 8, 10206–10218. 

129 Hayes S, Velanis CN, Jenkins GI and Franklin KA, 2014, UV-B detected by the 
UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance, 
Proc. Nat. Acad. Sci. USA., 111, 11894-11899. 

130 Heinze M, Hanschen FS, Wiesner-Reinhold M, Baldermann S, Grafe J, Schreiner M 
and Neugart S, 2018, Effects of developmental stages and reduced UVB and low 
UV conditions on plant secondary metabolite profiles in pak choi (Brassica rapa 
subsp. chinensis), J Agric Food Chem, 66, 1678-1692. 

131 Hendon HH, Lim E-P, Arblaster JM and Anderson DLT, 2014, Causes and 
predictability of the record wet east Australian spring 2010, Clim. Dyn., 42, 1155-
1174. 

132 Hendon HH, Thompson DWJ and Wheeler MC, 2007, Australian rainfall and 
surface temperature variations associated with the Southern Hemisphere 
Annular Mode, J. Climate, 20, 2452–2467. 

133 Henry‐Kirk R, A., Plunkett B, Hall M, McGhie T, Allan Andrew C, Wargent Jason J 
and Espley Richard V, 2018, Solar UV light regulates flavonoid metabolism in 
apple (Malus x domestica), Plant Cell Environ., 41, 675-688. 

134 Hernández JA, Diaz-Vivancos P, Barba-Espín G and Clemente-Moreno MJ, 2017, 
On the role of salicylic acid in plant responses to environmental stresses, in 
Salicylic Acid: A Multifaceted Hormone eds.: Nazar R, Iqbal N and Khan NA, 
Springer Singapore, Singapore, pp. 17-34. 

135 Hessl A, Allen KJ, Vance T, Abram NJ and Saunders KM, 2017, Reconstructions of 
the southern annular mode (SAM) during the last millennium, Prog. Phys. Geog., 
41, 834-849. 

136 Hewins DB, Sinsabaugh RL, Archer SR and Throop HL, 2017, Soil–litter mixing 
and microbial activity mediate decomposition and soil aggregate formation in a 
sandy shrub-invaded Chihuahuan Desert grassland, Plant Ecol., 218, 459-474. 

137 Hewins DB and Throop HL, 2016, Leaf litter decomposition is rapidly enhanced 
by the co-occurrence of monsoon rainfall and soil-litter mixing across a gradient 
of coppice dune development in the Chihuahuan Desert, J. Arid. Environ., 129, 
111-118. 

138 Hideg E, Jansen MAK and Strid A, 2013, UV-B exposure, ROS, and stress: 
inseparable companions or loosely linked associates?, Trends Plant Sci., 18, 107-
115. 

139 Hock M, Beckmann M, Hofmann RW, Bruelheide H and Erfmeier A, 2015, Effects 
of UV-B radiation on germination characteristics in invasive plants in New 
Zealand, Neobiota, 26, 21-37. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

202                                                EEAP 2018 Quadrennial Assessment  

 

140 Hodgson DA, Roberts D, McMinn A, Verleyen E, Terry B, Corbett C and Vyverman 
W, 2006, Recent rapid salinity rise in three East Antarctic lakes, J. Paleolimnol., 
36, 385-406. 

141 Holland MM, Landrum L, Raphael M and Stammerjohn S, 2017, Springtime winds 
drive Ross Sea ice variability and change in the following autumn, Nat. Commun., 
8, 731. 

142 Holopainen JK, Kivimäenpää M and Julkunen-Tiitto R, 2018, New light for 
phytochemicals, Trends Biotech., 36, 7-10. 

143 Holz A, Paritsis J, Mundo IA, Veblen TT, Kitzberger T, Williamson GJ, Aráoz E, 
Bustos-Schindler C, González ME, Grau HR and Quezada JM, 2017, Southern 
Annular Mode drives multicentury wildfire activity in southern South America, 
Proc. Nat. Acad. Sci. USA., 114, 9552-9557. 

144 Holz A and Veblen TT, 2011, Variability in the Southern Annular Mode 
determines wildfire activity in Patagonia, Geophys. Res. Lett., 38. 

145 Huang G and Li Y, 2017, Photodegradation effects are related to precipitation 
amount, precipitation frequency and litter traits in a desert ecosystem, Soil Biol. 

Biochem., 115, 383-392. 

146 Huché-Thélier L, Crespel L, Gourrierec JL, Morel P, Sakr S and Leduc N, 2016, 
Light signaling and plant responses to blue and UV radiations—Perspectives for 
applications in horticulture, Environ. Exp. Bot., 121, 22-38. 

147 Ibañez VN, Berli FJ, Masuelli RW, Bottini RA and Marfil CF, 2017, Influence of 
altitude and enhanced ultraviolet-B radiation on tuber production, seed viability, 
leaf pigments and morphology in the wild potato species Solanum kurtzianum 
Bitter & Wittm collected from an elevational gradient, Plant Sci., 261, 60-68. 

148 Ilić ZS and Fallik E, 2017, Light quality manipulation improves vegetable quality 
at harvest and postharvest: A review, Environ. Exp. Bot., 139, 79-90. 

149 IPCC, 2014, Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: 

Global and Sectoral Aspects. Contribution of Working Group II to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., 

V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. 

Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. 

Mastrandrea, and L.L. White (eds.)], Cambridge University Press, Cambridge, 
United Kingdom and New York, NY, USA. 

150 Ivy DJ, Hilgenbrink C, Kinnison D, Alan Plumb R, Sheshadri A, Solomon S and 
Thompson DWJ, 2017, Observed Changes in the Southern Hemispheric 
Circulation in May, J. Climate, 30, 527-536. 

151 Ivy DJ, Solomon S, Kinnison D, Mills MJ, Schmidt A and Neely RR, 2017, The 
influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully 
coupled chemistry-climate model, Geophys. Res. Lett., 44, 2556-2561. 

152 Izaguirre MM, Mazza CA, Biondini M, Baldwin IT and Ballaré CL, 2006, Remote 
sensing of future competitors: Impacts on plant defenses, Proc. Nat. Acad. Sci. 

USA., 103, 7170-7174. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

EEAP 2018 Quadrennial Assessment  203 

 

153 Izaguirre MM, Mazza CA, Svatos A, Baldwin IT and Ballaré CL, 2007, Solar 
ultraviolet-B radiation and insect herbivory trigger partially overlapping 
phenolic responses in Nicotiana attenuata and Nicotiana longiflora, Ann. Bot., 99, 
103-109. 

154 Izaguirre MM, Scopel AL, Baldwin IT and Ballaré CL, 2003, Convergent responses 
to stress. Solar ultraviolet-B radiation and Manduca sexta herbivory elicit 
overlapping transcriptional responses in field-grown plants of Nicotiana 

longiflora, Plant Physiol, 132, 1755-1767. 

155 Jansen MAK and Bornman JF, 2012, UV-B radiation: from generic stressor to 
specific regulator, Physiol. Plant., 145, 501-504. 

156 Jansen MAK and Urban O, 2017, UV-B-induced morphological changes—an 
enigma in UV-B radiation and plant life: Molecular biology to ecology. ed.: Jordan 
BR, CABI, Oxfordshire, UK, pp. 58-71. 

157 Jardine PE, Abernethy FAJ, Lomax BH, Gosling WD and Fraser WT, 2017, 
Shedding light on sporopollenin chemistry, with reference to UV reconstructions, 
Rev. Palaeobot. Palynol., 238, 1-6. 

158 Jardine PE, Fraser WT, Lomax BH, Sephton MA, Shanahan TM, Miller CS and 
Gosling WD, 2016, Pollen and spores as biological recorders of past ultraviolet 
irradiance, Sci. Rep., 6, 39269. 

159 Jenkins GI, 2014, The UV-B Photoreceptor UVR8: From Structure to Physiology, 
Plant Cell, 26, 21-37. 

160 Jenkins GI, 2017, Photomorphogenic responses to ultraviolet-B light, Plant Cell 

Environ., 40, 2544-2557. 

161 Jones TR, Roberts WHG, Steig EJ, Cuffey KM, Markle BR and White JWC, 2018, 
Southern Hemisphere climate variability forced by Northern Hemisphere ice-
sheet topography, Nature, 554, 351-355. 

162 Jordan BR, 2017, UV-B radiation and plant life:  Molecular biology to ecology, CABI 
Press, Wallingford, UK. 

163 Julkunen-Tiitto R, Nenadis N, Neugart S, Robson M, Agati G, Vepsäläinen J, Zipoli 
G, Nybakken L, Winkler B and Jansen MAK, 2015, Assessing the response of plant 
flavonoids to UV radiation: an overview of appropriate techniques, Phytochem. 

Rev., 14, 273-297. 

164 Kang SM, Polvani LM, Fyfe JC and Sigmond M, 2011, Impact of polar ozone 
depletion on subtropical precipitation, Nat. Geosci., 332, 951-954. 

165 Kang SM, Polvani LM, Fyfe JC, Son SW, Sigmond M and Correa GJP, 2013, 
Modeling evidence that ozone depletion has impacted extreme precipitation in 
the austral summer, Geophys. Res. Lett., 40, 4054-4059. 

166 King JY, Brandt LA and Adair EC, 2012, Shedding light on plant litter 
decomposition: advances, implications and new directions in understanding the 
role of photodegradation, Biogeochemistry, 111, 57-81. 

167 Kohler H, Contreras RA, Pizarro M, Cortes-Antiquera R and Zuniga GE, 2017, 
Antioxidant responses induced by UVB radiation in Deschampsia antarctica Desv, 
Front. Plant. Sci., 8, 921. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

204                                                EEAP 2018 Quadrennial Assessment  

 

168 Körner C, 2003, Alpine Plant Life: Functional Plant Ecology of High Mountain 

Ecosystems, 2nd ed., Springer-Verlag, New York. 

169 Körner C, 2007, The use of ‘altitude’ in ecological research, Trend. Ecol. Evolut., 
22, 569-574. 

170 Körner C and Basler D, 2010, Phenology under global warming, Science, 327, 
1461. 

171 Kostov Y, Marshall J, Hausmann U, Armour KC, Ferreira D and Holland MM, 2017, 
Fast and slow responses of Southern Ocean sea surface temperature to SAM in 
coupled climate models, Clim. Dyn., 48, 1595-1609. 

172 Kovács V, Gondor OK, Szalai G, Majláth I, Janda T and Pál M, 2014, UV-B radiation 
modifies the acclimation processes to drought or cadmium in wheat, Environ. 

Exp. Bot., 100, 122-131. 

173 Krause GH, Grube E, Koroleva OY, Barth C and Winter K, 2004, Do mature shade 
leaves of tropical tree seedlings acclimate to high sunlight and UV radiation?, 
Funct. Plant Biol., 31, 743-756. 

174 Krause GH, Grube E, Virgo A and Winter K, 2003, Sudden exposure to solar UV-B 
radiation reduces net CO2 uptake and photosystem I efficiency in shade-
acclimated tropical tree seedlings, Plant Physiol., 131, 745-752. 

175 Kronfeld-Schor N, Visser ME, Salis L and van Gils JA, 2017, Chronobiology of 
interspecific interactions in a changing world, Philos. Trans. Roy. Soc. Lond. B., 
372. 

176 Kuhlmann F and Muller C, 2009, Development-dependent effects of UV radiation 
exposure on broccoli plants and interactions with herbivorous insects, J. Environ. 

Exp. Bot., 66, 61-68. 

177 Kuhlmann F and Müller C, 2010, UV-B impact on aphid performance mediated by 
plant quality and plant changes induced by aphids, Plant Biol., 12, 676-684. 

178 Kwon JK, Khoshimkhujaev B, Lee JH, Yu IH, Park KS and Choi HG, 2017, Growth 
and yield of tomato and cucumber plants in polycarbonate or glass greenhouses, 
Korean J. Hort. Sci., 35, 79-87. 

179 Lapidot M, Legg JP, Wintermantel WM and Polston JE, 2014, Management of 
whitefly-transmitted viruses in open-field production systems, Adv Virus Res, 90, 
147-206. 

180 Leach H, Wise JC and Isaacs R, 2017, Reduced ultraviolet light transmission 
increases insecticide longevity in protected culture raspberry production, 
Chemosphere, 189, 454-465. 

181 Lee H, Rahn T and Throop HL, 2012, An accounting of C-based trace gas release 
during abiotic plant litter degradation, Glob. Change Biol., 18, 1185-1195. 

182 León-Chan RG, López-Meyer M, Osuna-Enciso T, Sañudo-Barajas JA, Heredia JB 
and León-Félix J, 2017, Low temperature and ultraviolet-B radiation affect 
chlorophyll content and induce the accumulation of UV-B-absorbing and 
antioxidant compounds in bell pepper (Capsicum annuum) plants, Environ. Exp. 

Bot., 139, 143-151. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

EEAP 2018 Quadrennial Assessment  205 

 

183 Leone M, Keller MM, Cerrudo I and Ballaré CL, 2014, To grow or defend? Low 
red : far‐red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by 
promoting DELLA degradation and increasing JAZ10 stability, New. Phytol., 204, 
355-367. 

184 Leuchner M, Fabian P and Werner H, 2005, Spectral multichannel monitoring of 
radiation within a mature mixed forest, Plant Biol. (Stuttg). 7, 619-27. 

185 Li N, Teranishi M, Yamaguchi H, Matsushita T, Watahiki MK, Tsuge T, Li SS and 
Hidema J, 2015, UV-B-induced CPD photolyase gene expression is regulated by 
UVR8-dependent and -independent pathways in Arabidopsis, Plant Cell Physiol., 
56, 2014-2023. 

186 Liang T, Mei S, Shi C, Yang Y, Peng Y, Ma L, Wang F, Li X, Huang X and Yin Y, 2018, 
UVR8 interacts with BES1 and BIM1 to regulate transcription and 
photomorphogenesis in Arabidopsis, Dev. Cell, 44, 512-523. e5. 

187 Liebmann B, Vera CS, Carvalho LMV, Camilloni IA, Hoerling MP, Allured D, Barros 
VR, Báez J and Bidegain M, 2004, An observed trend in central South American 
precipitation, J. Climate, 17, 4357-4367. 

188 Lim EP, Hendon HH, Arblaster JM, Delage F, Nguyen H, Min SK and Wheeler MC, 
2016, The impact of the Southern Annular Mode on future changes in Southern 
Hemisphere rainfall, Geophys. Res. Lett., 43, 7160-7167. 

189 Lin Y, Karlen SD, Ralph J and King JY, 2018, Short-term facilitation of microbial 
litter decomposition by ultraviolet radiation, Sci. Tot. Environ., 615, 838-848. 

190 Lin Y, Scarlett RD and King JY, 2015, Effects of UV photodegradation on 
subsequent microbial decomposition of Bromus diandrus litter, Plant Soil, 395, 
263-271. 

191 Lind O, Henze MJ, Kelber A and Osorio D, 2017, Coevolution of coloration and 
colour vision?, Philos Trans R Soc Lond B Biol Sci, 372. 

192 Linkosalo T and Lechowicz MJ, 2006, Twilight far-red treatment advances leaf 
bud burst of silver birch (Betula pendula), Tree Physiol., 26, 1249-1256. 

193 Lipinski VM, Santos TG and Schuch AP, 2016, An UV-sensitive anuran species as 
an indicator of environmental quality of the Southern Atlantic Rainforest, J 

Photochem Photobiol B, 165, 174-181. 

194 Liu H, Cao X, Liu X, Xin R, Wang J, Gao J, Wu B, Gao L, Xu C, Zhang B, Grierson D and Chen K, 2017, UV‐B irradiation differentially regulates terpene synthases 
and terpene content of peach, Plant Cell Environ., 40, 2261-2275. 

195 Liu L, Gregan S, Winefield C and Jordan B, 2015, From UVR8 to flavonol synthase: 
UV-B-induced gene expression in Sauvignon blanc grape berry, Plant Cell 

Environ., 38, 905-919. 

196 Llorens L, Ruben Badenes-Perez F, Julkunen-Tiitto R, Zidorn C, Fereres A and 
Jansen MAK, 2015, The role of UV-B radiation in plant sexual reproduction, 
Perspect. Plant Ecol., 17, 243-254. 

197 Lomax BH, Fraser WT, Sephton MA, Callaghan TV, Self S, Harfoot M, Pyle JA, 
Wellman CH and Beerling DJ, 2008, Plant spore walls as a record of long-term 
changes in ultraviolet-B radiation, Nat. Geosci., 1, 592-596. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

206                                                EEAP 2018 Quadrennial Assessment  

 

198 Londero JEL, Dos Santos CP, Segatto ALA and Passaglia Schuch A, 2017, Impacts 
of UVB radiation on food consumption of forest specialist tadpoles, Ecotoxicol. 

Environ. Safety, 143, 12-18. 

199 Lopez L, Stahle D, Villalba R, Torbenson M, Feng S and Cook E, 2017, Tree ring 
reconstructed rainfall over the southern Amazon Basin, Geophys. Res. Lett., 44, 
7410-7418. 

200 Lopez ML, Palancar GG and Toselli BM, 2012, Effects of stratocumulus, cumulus, 
and cirrus clouds on the UV-B diffuse to global ratio: Experimental and modeling 
results, J. Quant. Spectrosc. Radiat. Transf., 113, 461-469. 

201 Luengo Escobar A, Magnum de Oliveira Silva F, Acevedo P, Nunes-Nesi A, Alberdi 
M and Reyes-Díaz M, 2017, Different levels of UV-B resistance in Vaccinium 

corymbosum cultivars reveal distinct backgrounds of phenylpropanoid 
metabolites, Plant Physiol. Biochem., 118, 541-550. 

202 Ma Z, Yang W, Wu F and Tan B, 2017, Effects of light intensity on litter 
decomposition in a subtropical region, Ecosphere, 8, e01770. 

203 Maja MM, Kasurinen A, Holopainen T, Julkunen-Tiitto R and Holopainen JK, 2016, 
The effect of warming and enhanced ultraviolet radiation on gender-specific 
emissions of volatile organic compounds from European aspen, Sci. Tot. Environ., 
547, 39-47. 

204 Malenovský Z, Lucieer A, King Diana H, Turnbull Johanna D, Robinson Sharon A 
and Lecomte N, 2017, Unmanned aircraft system advances health mapping of 
fragile polar vegetation, Methods Ecol. Evolut., 8, 1842-1857. 

205 Malenovský Z, Turnbull JD, Lucieer A and Robinson SA, 2015, Antarctic moss 
stress assessment based on chlorophyll content and leaf density retrieved from 
imaging spectroscopy data, New. Phytol., 208, 608-624. 

206 Manatsa D, Morioka Y, Behera SK, Yamagata T and Matarira CH, 2013, Link 
between Antarctic ozone depletion and summer warming over southern Africa, 
Nat. Geosci., 6, 934-939. 

207 Manatsa D, Mudavanhu C, Mushore TD and Mavhura E, 2016, Linking major 
shifts in East Africa 'short rains' to the Southern Annular Mode, Int. J. Climatol., 
36, 1590-1599. 

208 Manova V and Gruszka D, 2015, DNA damage and repair in plants – from models 
to crops, Front. Plant. Sci., 6. 

209 Mao B, Wang Y, Zhao T-H, Tian R-R, Wang W and Ye J-S, 2017, Combined effects 
of elevated O3 concentrations and enhanced UV-B radiation of the biometric and 
biochemical properties of soybean roots, Front. Plant. Sci., 8. 

210 Mariani M and Fletcher M-S, 2016, The Southern Annular Mode determines 
interannual and centennial-scale fire activity in temperate southwest Tasmania, 
Australia, Geophys. Res. Lett., 43, 1702-1709. 

211 Mariz-Ponte N, Mendes RJ, Sario S, Ferreira de Oliveira JMP, Melo P and Santos C, 
2018, Tomato plants use non-enzymatic antioxidant pathways to cope with 
moderate UV-A/B irradiation: A contribution to the use of UV-A/B in 
horticulture, J. Plant Physiol., 221, 32-42. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

EEAP 2018 Quadrennial Assessment  207 

 

212 Martin M, Meylan S, Haussy C, Decencière B, Perret S and Le Galliard J-F, 2016, 
UV color determines the issue of conflicts but does not covary with individual 
quality in a lizard, Behav. Ecol., 27, 262-270. 

213 Martin M, Meylan S, Perret S and Le Galliard J-F, 2015, UV coloration influences 
spatial dominance but not agonistic behaviors in male wall lizards, Behav. Ecol. 

Sociobiol., 69, 1483-1491. 

214 Martin M, Théry M, Rodgers G, Goven D, Sourice S, Mège P and Secondi J, 2016, 
UV wavelengths experienced during development affect larval newt visual 
sensitivity and predation efficiency, Biol. Lett., 12. 

215 Martinez-Luscher J, Morales F, Delrot S, Sanchez-Diaz M, Gomes E, Aguirreolea J 
and Pascual I, 2015, Characterization of the adaptive response of grapevine (cv. 
Tempranillo) to UV-B radiation under water deficit conditions, Plant Sci., 232, 
13-22. 

216 Martinez-Luscher J, Morales F, Sanchez-Diaz M, Delrot S, Aguirreolea J, Gomes E 
and Pascual I, 2015, Climate change conditions (elevated CO2 and temperature) 
and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon 
assimilation, altering fruit ripening rates, Plant Sci., 236, 168-176. 

217 Martinez-Luscher J, Sanchez-Diaz M, Delrot S, Aguirreolea J, Pascual I and Gomes 
E, 2016, Ultraviolet-B alleviates the uncoupling effect of elevated CO2 and 
increased temperature on grape berry (Vitis vinifera cv. Tempranillo) 
anthocyanin and sugar accumulation, Aust. J. Grape Wine Res., 22, 87-95. 

218 Martínez-Lüscher J, Torres N, Hilbert G, Richard T, Sánchez-Díaz M, Delrot S, 
Aguirreolea J, Pascual I and Gomès E, 2014, Ultraviolet-B radiation modifies the 
quantitative and qualitative profile of flavonoids and amino acids in grape 
berries, Phytochem., 102, 106-114. 

219 Mayewski PA, Maasch KA and Dixon D, 2013, West Antarctica's sensitivity to 
natural and human-forced climate change over the Holocene, J. Quat. Sci., 28, 40-
8. 

220 Mazza CA and Ballaré CL, 2015, Photoreceptors UVR8 and phytochrome B 
cooperate to optimize plant growth and defense in patchy canopies, New. Phytol., 
207, 4-9. 

221 Mazza CA, Izaguirre MM, Zavala J, Scopel AL and Ballaré CL, 2002, Insect 
perception of ambient ultraviolet-B radiation, Ecol. Lett., 5, 722-726. 

222 Mazza CA, Zavala J, Scopel AL and Ballaré CL, 1999, Perception of solar UVB 
radiation by phytophagous insects: Behavioral responses and ecosystem 
implications, Proc. Nat. Acad. Sci. USA., 96, 980-985. 

223 McConnell JR, Aristarain AJ, Banta JR, Edwards PR and Simões JC, 2007, 20th-
Century doubling in dust archived in an Antarctic Peninsula ice core parallels 
climate change and desertification in South America, Proc. Nat. Acad. Sci. USA., 
104, 5743-5748. 

224 McConnell JR, Burke A, Dunbar NW, Köhler P, Thomas JL, Arienzo MM, Chellman 
NJ, Maselli OJ, Sigl M, Adkins JF, Baggenstos D, Burkhart JF, Brook EJ, Buizert C, 
Cole-Dai J, Fudge TJ, Knorr G, Graf H-F, Grieman MM, Iverson N, McGwire KC, 
Mulvaney R, Paris G, Rhodes RH, Saltzman ES, Severinghaus JP, Steffensen JP, 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

208                                                EEAP 2018 Quadrennial Assessment  

 

Taylor KC and Winckler G, 2017, Synchronous volcanic eruptions and abrupt climate change ≈17.7 ka plausibly linked by stratospheric ozone depletion, Proc. 

Nat. Acad. Sci. USA., 114, 10035. 

225 McEnroe WD and Dronka K, 1966, Color vision in the adult female two-spotted 
spider mite, Science, 154, 782. 

226 McKenzie RL, Johnston PV, Smale D, Bodhaine BA and Madronich S, 2001, 
Altitude effects on UV spectral irradiance deduced from measurements at 
Lauder, New Zealand, and at Mauna Loa Observatory, Hawaii, J. Geophys. Res. 

Atmos., 106, 22845-22860. 

227 Mejia-Giraldo JC, Henao-Zuluaga K, Gallardo C, Atehortua L and Puertas-Mejia 
MA, 2016, Novel in vitro antioxidant and photoprotection capacity of plants from 
high altitude ecosystems of Colombia, Photochem. Photobiol., 92, 150-7. 

228 Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M and Cox PM, 
2009, Impact of changes in diffuse radiation on the global land carbon sink, 
Nature, 458, 1014. 

229 Montzka SA, Dutton GS, Yu P, Ray E, Portmann RW, Daniel JS, Kuijpers L, Hall BD, 
Mondeel D, Siso C, Nance JD, Rigby M, Manning AJ, Hu L, Moore F, Miller BR and 
Elkins JW, 2018, An unexpected and persistent increase in global emissions of 
ozone-depleting CFC-11, Nature, 557, 413-417. 

230 Morales LO, Brosché M, Vainonen J, Jenkins GI, Wargent JJ, Sipari N, Strid A, 
Lindfors AV, Tegelberg R and Aphalo PJ, 2013, Multiple roles for UV RESISTANCE 
LOCUS8 in regulating gene expression and metabolite accumulation in 
Arabidopsis under solar ultraviolet radiation, Plant Physiol., 161, 744-759. 

231 Moreno JE, Tao Y, Chory J and Ballaré CL, 2009, Ecological modulation of plant 
defense via phytochrome control of jasmonate sensitivity, Proc. Nat. Acad. Sci. 

USA., 106, 4935-40. 

232 Morin X, Roy J, Sonié L and Chuine I, 2010, Changes in leaf phenology of three 
European oak species in response to experimental climate change, New. Phytol., 
186, 900-910. 

233 Mullen P and Pohland G, 2008, Studies on UV reflection in feathers of some 1000 
bird species: are UV peaks in feathers correlated with violet-sensitive and 
ultraviolet-sensitive cones?, Ibis, 150, 59-68. 

234 Müller V, Albert A, Barbro Winkler J, Lankes C, Noga G and Hunsche M, 2013, 
Ecologically relevant UV-B dose combined with high PAR intensity distinctly 
affect plant growth and accumulation of secondary metabolites in leaves of 
Centella asiatica L. Urban, J. Photochem. Photobiol. B., 127, 161-169. 

235 Munoz AA, Gonzalez-Reyes A, Lara A, Sauchyn D, Christie D, Puchi P, Urrutia-
Jalabert R, Toledo-Guerrero I, Aguilera-Betti I, Mundo I, Sheppard PR, Stahle D, 
Villalba R, Szejner P, LeQuesne C and Vanstone J, 2016, Streamflow variability in 
the Chilean Temperate-Mediterranean climate transition (35 degrees S-42 
degrees S) during the last 400 years inferred from tree-ring records, Clim. Dyn., 
47, 4051-4066. 

236 NASA, 2014, Ozone Hole Watch, National Aeronautics and Space Administration. 
Goddard Space Flight Center, http://ozonewatch.gsfc.nasa.gov/, accessed 2012. 

http://ozonewatch.gsfc.nasa.gov/


Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

EEAP 2018 Quadrennial Assessment  209 

 

237 Nenadis N, Llorens L, Koufogianni A, Diaz L, Font J, Abel Gonzalez J and 
Verdaguer D, 2015, Interactive effects of UV radiation and reduced precipitation 
on the seasonal leaf phenolic content/composition and the antioxidant activity of 
naturally growing Arbutus unedo plants, J. Photochem. Photobiol. B., 153, 435-
444. 

238 Neugart S, Fiol M, Schreiner M, Rohn S, Zrenner R, Kroh LW and Krumbein A, 
2014, Interaction of moderate UV-B exposure and temperature on the formation 
of structurally different flavonol glycosides and hydroxycinnamic acid 
derivatives in kale (Brassica oleracea var. sabellica), J. Agric. Food. Chem., 62, 
4054-4062. 

239 Neugart S and Schreiner M, 2018, UVB and UVA as eustressors in horticultural 
and agricultural crops, Scientia Horticult., 234, 370-381. 

240 Newsham KK and Robinson SA, 2009, Responses of plants in polar regions to 
UVB exposure: a meta-analysis, Glob. Change Biol., 15, 2574-2589. 

241 Niang I, Ruppel O, Abdrabo M, Essel A, Lennard C, Padgham J and Urquhart P, 
2014, Africa, in IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and 

Vulnerability. Part B: Global and Sectoral Aspects. Contribution of Working Group 

II to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change eds.: Field C, Baros V, Dokken D, Mach K, Mastrandrea M, Bilir T, 
Chatterjee M, Ebi K, Estrada Y, Genova R, Girma B, Kissel E, Levy A, MacCracken S, 
Mastrandrea P and White L, Cambridge University Press, Cambridge, United 
Kingdom and New York, NY, USA, pp. 1199–1265. 

242 Nile SH and Park SW, Edible berries: Bioactive components and their effect on 
human health, Nutrition, 30, 134-144. 

243 Nottebrock H, Schmid B, Mayer K, Devaux C, Esler Karen J, Böhning‐Gaese K, 
Schleuning M, Pagel J and Schurr Frank M, 2016, Sugar landscapes and pollinator‐mediated interactions in plant communities, Ecography, 40, 1129-
1138. 

244 Novotná K, Klem K, Holub P, Rapantová B and Urban O, 2016, Evaluation of 
drought and UV radiation impacts on above-ground biomass of mountain 
grassland by spectral reflectance and thermal imaging techniques, Beskydy, 9, 
21-30. 

245 Nybakken L, Hörkkä R and Julkunen-Tiitto R, 2012, Combined enhancements of 
temperature and UVB influence growth and phenolics in clones of the sexually 
dimorphic Salix myrsinifolia, Physiol. Plant., 145, 551-564. 

246 O'Daniels ST, Kesler DC, Mihail JD, Webb EB and Werner SJ, 2017, Functional 
visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker 
(Dryocopus pileatus), and its influence on foraging substrate selection, Physiol 

Behav, 174, 144-154. 

247 Oliva M, Navarro F, Hrbacek F, Hernandez A, Nyvlt D, Pereira P, Ruiz-Fernandez J 
and Trigo R, 2017, Recent regional climate cooling on the Antarctic Peninsula 
and associated impacts on the cryosphere, Sci Total Environ, 580, 210-223. 

248 Oliveira FNM and Ambrizzi T, 2017, The effects of ENSO-types and SAM on the 
large-scale southern blockings, Int. J. Climatol., 37, 3067-3081. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

210                                                EEAP 2018 Quadrennial Assessment  

 

249 Olsson LC, Veit M, Weissenböck G and Bornman JF, 1998, Differential flavonoid 
response to enhanced UV-B radiation in Brassica napus, Phytochem., 49, 1021-
1028. 

250 Palmieri L, Masuero D, Martinatti P, Baratto G, Martens S and Vrhovsek U, 2017, 
Genotype-by-environment effect on bioactive compounds in strawberry 
(Fragaria x ananassa Duch.), J. Sci. Food. Agric., 97, 4180-4189. 

251 Pan X, Song Y-B, Liu G-F, Hu Y-K, Ye X-H, Cornwell WK, Prinzing A, Dong M and 
Cornelissen JHC, 2015, Functional traits drive the contribution of solar radiation 
to leaf litter decomposition among multiple arid-zone species, Sci. Rep., 5, 13217. 

252 Pancotto VA, Sala OE, Cabello M, Lopez NI, Robson TM, Ballaré CL, Caldwell MM 
and Scopel AL, 2003, Solar UV-B decreases decomposition in herbaceous plant 
litter in Tierra del Fuego, Argentina: potential role of an altered decomposer 
community, Glob. Change Biol., 9, 1465-1474. 

253 Parmesan C and Yohe G, 2003, A globally coherent fingerprint of climate change 
impacts across natural systems, Nature, 421, 37. 

254 Passaglia Schuch A, dos Santos MB, Mendes Lipinski V, Vaz Peres L, dos Santos 
CP, Zanini Cechin S, Jorge Schuch N, Kirsh Pinheiro D and da Silva Loreto EL, 
2015, Identification of influential events concerning the Antarctic ozone hole 
over southern Brazil and the biological effects induced by UVB and UVA radiation 
in an endemic treefrog species, Ecotoxicol. Environ. Safety, 118, 190-198. 

255 Paul ND and Gwynn-Jones D, 2003, Ecological roles of solar UV radiation: 
towards an integrated approach, TREE, 18, 48-55. 

256 Pawson S, Steinbrecht W, [Lead Authors], Charlton-Perez AJ, Fujiwara M, A.Yu, 
Karpechko I, Petropavlovskikh, Urban J and Weber M, 2014, Update on Global 
Ozone: Past, Present, and Future, Chapter 2 in Scientific Assessment of Ozone 

Depletion: 2014, World Meteorological Organization Report No. 55, Geneva, 
Switzerland,   

257 Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C, Clark TD, 
Colwell RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, 
Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lenoir J, 
Linnetved HI, Martin VY, McCormack PC, McDonald J, Mitchell NJ, Mustonen T, 
Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte 
CJB, Strugnell JM, Sunday JM, Tuanmu M-N, Vergés A, Villanueva C, Wernberg T, 
Wapstra E and Williams SE, 2017, Biodiversity redistribution under climate 
change: Impacts on ecosystems and human well-being, Science, 355, eaai9214. 

258 Perlwitz J, 2011, Tug of war on the jet stream, Nat. Clim. Change, 1, 29-31. 

259 Perovich DK, 2007, Light reflection and transmission by a temperate snow cover, 
J. Glaciol., 53, 201-210. 

260 Petridis A, Döll S, Nichelmann L, Bilger W and Mock HP, 2016, Arabidopsis 

thaliana G2-G2-like flavonoid regulator and brassinosteroid enhanced 
expression1 are low-temperature regulators of flavonoid accumulation, New. 

Phytol., 211, 912-925. 

261 Phoenix GK and Bjerke JW, 2016, Arctic browning: extreme events and trends 
reversing arctic greening, Glob. Change Biol., 22, 2960-2962. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

EEAP 2018 Quadrennial Assessment  211 

 

262 Predick KI, Archer SR, Aguillon SM, Keller DA, Throop HL and Barnes PW, 2018, 
UV-B radiation and shrub canopy effects on surface litter decomposition in a 
shrub-invaded dry grassland, J. Arid. Environ., 157, 13-21. 

263 Qi J, Zhang M, Lu C, Hettenhausen C, Tan Q, Cao G, Zhu X, Wu G and Wu J, 2018, 
Ultraviolet-B enhances the resistance of multiple plant species to lepidopteran 
insect herbivory through the jasmonic acid pathway, Sci. Rep., 8, 277. 

264 Rafferty NE, 2017, Effects of global change on insect pollinators: Multiple drivers 
lead to novel communities, Curr. Opin. Insect Sci., 23, 22-27. 

265 Randriamahefasoa TSM and Reason CJC, 2017, Interannual variability of rainfall 
characteristics over southwestern Madagascar, Theoret. Appl. Climatol., 128, 
421-437. 

266 Randriamanana TR, Lavola A and Julkunen-Tiitto R, 2015, Interactive effects of 
supplemental UV-B and temperature in European aspen seedlings: Implications 
for growth, leaf traits, phenolic defense and associated organisms, Plant Physiol. 

Biochem., 93, 84-93. 

267 Rani S and Sud D, 2015, Role of enhanced solar radiation for degradation of 
triazophos pesticide in soil matrix, Sol. Energy, 120, 494-504. 

268 Rasines-Perea Z and Teissedre P-L, 2017, Grape polyphenols’ effects in human 
cardiovascular diseases and diabetes, Molecules, 22, 68. 

269 Reddy KR, Patro H, Lokhande S, Bellaloui N and Gao W, 2016, Ultraviolet-B 
radiation alters soybean growth and seed quality, Food Nutrit. Sci., 7, 55. 

270 Ritchie RJ, 2010, Modelling photosynthetic photon flux density and maximum 
potential gross photosynthesis, Photosynthetica, 48, 596-609. 

271 Rizzini L, Favory J-J, Cloix C, Faggionato D, O'Hara A, Kaiserli E, Baumeister R, 
Schaefer E, Nagy F, Jenkins GI and Ulm R, 2011, Perception of UV-B by the 
Arabidopsis UVR8 protein, Science, 332, 103-106. 

272 Robberecht R and Caldwell MM, 1978, Leaf epidermal transmittance of 
ultraviolet radiation and its implications for plant sensitivity to ultraviolet-
radiation induced injury, Oecologia, 32, 277-287. 

273 Robinson SA and Erickson III DJ, 2015, Not just about sunburn--the ozone hole's 
profound effect on climate has significant implications for Southern Hemisphere 
ecosystems, Glob. Change Biol., 21, 515-527. 

274 Robinson SA, King DH, Bramley-Alves J, Waterman MJ, Ashcroft MB, Wasley J, 
Turnbull JD, Miller RE, Ryan-Colton E, Benny T, Mullany K, Clarke LJ, Barry LA 
and Hua Q, 2018, Rapid change in East Antarctic terrestrial vegetation in 
response to regional drying, Nat. Clim. Change, 8, 879-884. 

275 Robson TM, Hartikainen SM and Aphalo PJ, 2015, How does solar ultraviolet-B 
radiation improve drought tolerance of silver birch (Betula pendula Roth.) 
seedlings?, Plant Cell Environ., 38, 953-967. 

276 Robson TM, Pancotto VA, Flint SD, Ballaré CL, Sala OE, Scopel AL and Caldwell 
MM, 2003, Six years of solar UV-B manipulations affect growth of Sphagnum and 
vascular plants in a Tierra del Fuego peatland, New Phytol, 160, 379-389. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

212                                                EEAP 2018 Quadrennial Assessment  

 

277 Royles J, Amesbury MJ, Convey P, Griffiths H, Hodgson DA, Leng MJ and Charman 
DJ, 2013, Plants and soil microbes respond to recent warming on the Antarctic 
Peninsula, Curr. Biol., 23, 1702-1706. 

278 Rozema J, van Geel B, Bjorn LO, Lean J and Madronich S, 2002, Paleoclimate: 
Toward solving the UV puzzle, Science, 296, 1621-1622. 

279 Rutledge S, Campbell DI, Baldocchi D and Schipper LA, 2010, Photodegradation 
leads to increased carbon dioxide losses from terrestrial organic matter, Glob. 

Change Biol., 16, 3065-3074. 

280 Sanchez-Lorenzo A, Enriquez-Alonso A, Calbo J, Gonzalez JA, Wild M, Folini D, 
Norris JR and Vicente-Serrano SM, 2017, Fewer clouds in the Mediterranean: 
consistency of observations and climate simulations, Sci Rep, 7, 41475. 

281 Savenstrand H, Brosche M and Strid A, 2004, Ultraviolet-B signalling: 
Arabidopsis brassinosteroid mutants are defective in UV-B regulated defence 
gene expression, Plant Physiol Biochem, 42, 687-94. 

282 Scheffers BR, De Meester L, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, 
Butchart SHM, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M, Rondinini C, 
Foden WB, Martin TG, Mora C, Bickford D and Watson JEM, 2016, The broad 
footprint of climate change from genes to biomes to people, Science, 354, 
aaf7671. 

283 Searles PS, Flint SD and Caldwell MM, 2001, A meta-analysis of plant field studies 
simulating stratospheric ozone depletion, Oecologia, 127, 1-10. 

284 Secondi J, Martin M, Goven D, Mege P, Sourice S and Thery M, 2017, Habitat-
related variation in the plasticity of a UV-sensitive photoreceptor over a small 
spatial scale in the palmate newt, J Evol Biol, 30, 1229-1235. 

285 Seddon AWR, Jokerud M, Barth T, Birks HJB, Krüger LC, Vandvik V and Willis KJ, 
2017, Improved quantification of UV-B absorbing compounds in Pinus sylvestris 
L. pollen grains using an internal standard methodology, Rev. Palaeobot. Palynol., 
247, 97-104. 

286 Seneviratne SI, Donat MG, Mueller B and Alexander LV, 2014, No pause in the 
increase of hot temperature extremes, Nat. Clim. Change, 4, 161. 

287 Seviour WJM, Gnanadesikan A and Waugh DW, 2016, The transient response of 
the Southern Ocean to stratospheric ozone depletion, J. Climate, 29, 7383-7396. 

288 Shoji T, 2007, Polyphenols as natural food pigments: Changes during food 
processing, Am. J. Food Physiol., 2, 570-581. 

289 Singh SK, Reddy KR, Reddy VR and Gao W, 2014, Maize growth and 
developmental responses to temperature and ultraviolet-B radiation interaction, 
Photosynthetica, 52, 262-271. 

290 Sivadasan U, Randriamanana TR, Julkunen-Tiitto R and Nybakken L, 2015, The 
vegetative buds of Salix myrsinifolia are responsive to elevated UV-B and 
temperature, Plant Physiol. Biochem., 93, 66-73. 

291 Skarbø K and VanderMolen K, 2016, Maize migration: key crop expands to higher 
altitudes under climate change in the Andes, Clim. Dev., 8, 245-255. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

EEAP 2018 Quadrennial Assessment  213 

 

292 Smith KL and Polvani LM, 2017, Spatial patterns of recent Antarctic surface 
temperature trends and the importance of natural variability: lessons from 
multiple reconstructions and the CMIP5 models, Clim. Dyn., 48, 2653-2670. 

293 Smith WK, Gao W, Steltzer H, Wallenstein MD and Tree R, 2010, Moisture 
availability influences the effect of ultraviolet-B radiation on leaf litter 
decomposition., Glob. Change Biol., 16, 484-495. 

294 Solomon A and Polvani LM, 2016, Highly significant responses to anthropogenic 
forcings of the midlatitude jet in the Southern Hemisphere, J. Climate, 29, 3463-
3470. 

295 Solomon A, Polvani LM, Smith KL and Abernathey RP, 2015, The impact of ozone 
depleting substances on the circulation, temperature, and salinity of the 
Southern Ocean: An attribution study with CESM1(WACCM), Geophys. Res. Lett., 
42, 5547-5555. 

296 Son SW, Purich A, Hendon Harry H, Kim BM and Polvani Lorenzo M, 2013, 
Improved seasonal forecast using ozone hole variability?, Geophys. Res. Lett., 40, 
6231-6235. 

297 Song JQ, Smart R, Wang H, Dambergs B, Sparrow A and Qian MC, 2015, Effect of 
grape bunch sunlight exposure and UV radiation on phenolics and volatile 
composition of Vitis vinifera L. cv. Pinot noir wine, Food Chem., 173, 424-431. 

298 Soto-Vaca A, Gutierrez A, Losso JN, Xu Z and Finley JW, 2012, Evolution of 
phenolic compounds from color and flavor problems to health benefits, J. Agric. 

Food. Chem., 60, 6658-6677. 

299 Steinbauer MJ, Grytnes J-A, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, 
Winkler M, Bardy-Durchhalter M, Barni E, Bjorkman AD, Breiner FT, Burg S, 
Czortek P, Dawes MA, Delimat A, Dullinger S, Erschbamer B, Felde VA, 
Fernández-Arberas O, Fossheim KF, Gómez-García D, Georges D, Grindrud ET, 
Haider S, Haugum SV, Henriksen H, Herreros MJ, Jaroszewicz B, Jaroszynska F, 
Kanka R, Kapfer J, Klanderud K, Kühn I, Lamprecht A, Matteodo M, di Cella UM, 
Normand S, Odland A, Olsen SL, Palacio S, Petey M, Piscová V, Sedlakova B, 
Steinbauer K, Stöckli V, Svenning J-C, Teppa G, Theurillat J-P, Vittoz P, Woodin SJ, 
Zimmermann NE and Wipf S, 2018, Accelerated increase in plant species 
richness on mountain summits is linked to warming, Nature, 556, 231-234. 

300 Stratmann JW, Stelmach BA, Weller EW and Ryan CA, 2000, UVB/UVA radiation 
activates a 48 kDa myelin basic protein kinase and potentiates wound signaling 
in tomato leaves, Photochem. Photobiol., 71, 116-123. 

301 Suchar VA and Robberecht R, 2017, Integration and scaling of UV-B radiation 
effects on plants: the relative sensitivity of growth forms and interspecies 
interactions, J. Plant Ecol., 11, 656-670. 

302 Suklje K, Antalick G, Coetzee Z, Schmidtke LM, Cesnik HB, Brandt J, du Toit WJ, 
Lisjak K and Deloire A, 2014, Effect of leaf removal and ultraviolet radiation on 
the composition and sensory perception of Vitis viniferaL. cv. Sauvignon Blanc 
wine, Aust. J. Grape Wine Res., 20, 223-233. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

214                                                EEAP 2018 Quadrennial Assessment  

 

303 Sullivan JH, Gitz DC, Liu-Gitz L, Xu CP, Gao W and Slusser J, 2007, Coupling short-
term changes in ambient UV-B levels with induction of UV-screening compounds, 
Photochem. Photobiol., 83, 863-870. 

304 Sun M, Su T, Zhang SB, Li SF, Anberree-Lebreton J and Zhou ZK, 2016, Variations 
in leaf morphological traits of Quercus guyavifolia (Fagaceae) were mainly 
influenced by water and ultraviolet irradiation at high elevations on the Qinghai-
Tibet Plateau, China, Int. J. Agric. Biol., 18, 266-273. 

305 Tang J, Körner C, Muraoka H, Piao S, Shen M, Thackeray Stephen J and Yang X, 
2016, Emerging opportunities and challenges in phenology: a review, Ecosphere, 
7, e01436. 

306 Tao L, Hu Y and Liu J, 2016, Anthropogenic forcing on the Hadley circulation in 
CMIP5 simulations, Clim. Dyn., 46, 3337-3350. 

307 Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe S, Helaouet P, 
Johns DG, Jones ID, Leech DI, Mackay EB, Massimino D, Atkinson S, Bacon PJ, 
Brereton TM, Carvalho L, Clutton-Brock TH, Duck C, Edwards M, Elliott JM, Hall 
SJ, Harrington R, Pearce-Higgins JW, Hoye TT, Kruuk LE, Pemberton JM, Sparks 
TH, Thompson PM, White I, Winfield IJ and Wanless S, 2016, Phenological 
sensitivity to climate across taxa and trophic levels, Nature, 535, 241-5. 

308 Thomas BC, 2017, Photobiological effects at Earth's surface following a 50 pc 
supernova, Astrobiol., 18, 481-490. 

309 Thomas BC, Goracke BD and Dalton SM, 2016, Atmospheric constituents and 
surface-level UVB: Implications for a paleoaltimetry proxy and attempts to 
reconstruct UV exposure during volcanic episodes, Earth Planet Sci. Lett, 453, 
141-151. 

310 Tomás-Barberán FA and Espín Juan C, 2001, Phenolic compounds and related 
enzymes as determinants of quality in fruits and vegetables, J. Sci. Food. Agric., 
81, 853-876. 

311 Tomotani BM, Jeugd H, Gienapp P, Hera I, Pilzecker J, Teichmann C and Visser 
ME, 2017, Climate change leads to differential shifts in the timing of annual cycle 
stages in a migratory bird, Glob. Change Biol., 24, 823-835. 

312 Tossi V, Lamattina L, Jenkins GI and Cassia RO, 2014, Ultraviolet-B-induced 
stomatal closure in Arabidopsis is regulated by the UV RESISTANCE LOCUS8 
photoreceptor in a nitric oxide-dependent mechanism, Plant Physiol., 164, 2220-
2230. 

313 Trest MT, Will-Wolf S, Keuler R, Shay N, Hill K, Studer A, Muench A, Alexander Z, 
Adams A, Dittberner L, Feehan M, Lee H, Galleguillos-Katz N, Zedler JB, Graham L 
and Arancibia-Avila P, 2015, Potential impacts of UV exposure on lichen 
communities: a pilot study of Nothofagus dombeyi trunks in southernmost Chile, 
Ecosys. Health Sustain., 1, art14. 

314 Tripathi R and Agrawal SB, 2016, Effect of supplemental UV-B on yield, seed 
quality, oil content and fatty acid composition of Brassica campestris L. under 
natural field conditions, Qual. Assur. Safe. Crops Foods, 8, 11-20. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

EEAP 2018 Quadrennial Assessment  215 

 

315 Turner J, Lu H, White I, King JC, Phillips T, Hosking JS, Bracegirdle TJ, Marshall GJ, 
Mulvaney R and Deb P, 2016, Absence of 21st century warming on Antarctic 
Peninsula consistent with natural variability, Nature, 535, 411-415. 

316 Umeno A, Horie M, Murotomi K, Nakajima Y and Yoshida Y, 2016, Antioxidative 
and antidiabetic effects of natural polyphenols and isoflavones, Molecules, 21, 
708. 

317 Urban O, Klem K, Ač A, Havránková K, Holišová P, Navrátil M, Zitová M, Kozlová K, Pokorný R, Šprtová M, Tomášková I, Špunda V and Grace J, 2012, Impact of 
clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 
uptake within a spruce canopy, Funct. Ecol., 26, 46-55. 

318 Urban O, Košvancová M, Marek MV and Lichtenthaler HK, 2007, Induction of 
photosynthesis and importance of limitations during the induction phase in sun 
and shade leaves of five ecologically contrasting tree species from the temperate 
zone, Tree Physiol., 27, 1207-1215. 

319 USGCRP, 2017, Climate Science Special Report: Fourth National Climate 
Assessment, Volume I, U.S. Global Change Research Program Report No., 
Washington, DC, USA,  p. 470 

320 Vera CS and Díaz L, 2014, Anthropogenic influence on summer precipitation 
trends over South America in CMIP5 models, Int. J. Climatol., 35, 3172-3177. 

321 Verdaguer D, Díaz-Guerra L, Font J, González JA and Llorens L, 2018, Contrasting 
seasonal morphological and physio-biochemical responses to UV radiation and 
reduced rainfall of two mature naturally growing Mediterranean shrubs in the 
context of climate change, Environ. Exp. Bot., 147, 189-201. 

322 Verdaguer D, Jansen MAK, Llorens L, Morales LO and Neugart S, 2017, UV-A 
radiation effects on higher plants: Exploring the known unknown, Plant Sci., 255, 
72-81. 

323 Vilfan N, Van Der Tol C, Yang P, Wyber R, Malenovky Z, Robinson SA and Verhoef 
W, 2018, Extending Fluspect to simulate xanthophyll driven leaf reflectance 
dynamics  Rem. Sens. Environ., 211, 345-356. 

324 Vilfan N, van der Tol C, Yang P, Wyber R, Malenovsky Z and Robinson SA, 2018, A 
model for leaf dynamic xanthophyll reflectance, Rem. Sens. Environ., In Review. 

325 Villalba R, Lara A, Masiokas MH, Urrutia R, Luckman BH, Marshall GJ, Mundo IA, 
Christie DA, Cook ER, Neukom R, Allen K, Fenwick P, Boninsegna JA, Srur AM, 
Morales MS, Araneo D, Palmer JG, Cuq E, Aravena JC, Holz A and LeQuesne C, 
2012, Unusual Southern Hemisphere tree growth patterns induced by changes in 
the Southern Annular Mode, Nat. Geosci., 5, 793-798. 

326 Virjamo V, Sutinen S and Julkunen-Tiitto R, 2014, Combined effect of elevated 
UVB, elevated temperature and fertilization on growth, needle structure and 
phytochemistry of young Norway spruce (Picea abies) seedlings, Glob. Change 

Biol., 20, 2252-2260. 

327 Visscher H, Looy CV, Collinson ME, Brinkhuis H, van Konijnenburg-van Cittert 
JHA, Kürschner WM and Sephton MA, 2004, Environmental mutagenesis during 
the end-Permian ecological crisis, Proc. Nat. Acad. Sci. USA., 101, 12952. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

216                                                EEAP 2018 Quadrennial Assessment  

 

328 Wang H, Gui M, Tian X, Xin X, Wang T and li J, 2017, Effects of UV-B on vitamin C, 
phenolics, flavonoids and their related enzyme activities in mung bean sprouts 
(Vigna radiata), Int. J.Food Sci. Technol., 52, 827-833. 

329 Wang H, Ma XC, Zhang L, Siemann E and Zou JW, 2016, UV-B has larger negative 
impacts on invasive populations of Triadica sebifera but ozone impacts do not 
vary, J. Plant Ecol., 9, 61-68. 

330 Wang J, Liu L, Wang X, Yang S, Zhang B, Li P, Qiao C, Deng M and Liu W, 2017, 
High night-time humidity and dissolved organic carbon content support rapid 
decomposition of standing litter in a semi-arid landscape, Funct. Ecol., 31, 1659-
1668. 

331 Wang J, Yang S, Zhang B, Liu W, Deng M, Chen S and Liu L, 2017, Temporal 
dynamics of ultraviolet radiation impacts on litter decomposition in a semi-arid 
ecosystem, Plant Soil, 419, 71-81. 

332 Wang Q-W, Nagano S, Ozaki H, Morinaga S-I, Hidema J and Hikosaka K, 2016, 
Functional differentiation in UV-B-induced DNA damage and growth inhibition 
between highland and lowland ecotypes of two Arabidopsis species, Environ. Exp. 

Bot., 131, 110-119. 

333 Wang QW, Kamiyama C, Hidema J and Hikosaka K, 2016, Ultraviolet-B-induced 
DNA damage and ultraviolet-B tolerance mechanisms in species with different 
functional groups coexisting in subalpine moorlands, Oecologia, 181, 1069-1082. 

334 Wargent JJ, 2017, Turning UV-B Photobiology into Commercial Reality, in 
TheRole of UV-B Radiation in Plant Growth and Development ed.: Jordan BR, CABI 
Press, Oxford, UK, pp. 163-176. 

335 Wargent JJ and Jordan BR, 2013, From ozone depletion to agriculture:  
understanding the role of UV radiation in sustainable crop production, New. 

Phytol., 197, 1058-1076. 

336 Wargent JJ, Nelson BCW, McGhie TK and Barnes PW, 2015, Acclimation to UV-B 
radiation and visible light in Lactuca sativa involves up-regulation of 
photosynthetic performance and orchestration of metabolome-wide responses, 
Plant Cell Environ., 38, 929-940. 

337 Waterman MJ, Nugraha AS, Hendra R, Ball GE, Robinson SA and Keller PA, 2017, 
Antarctic moss biflavonoids show high antioxidant and ultraviolet-screening 
activity, J. Nat. Prod., 80, 2224-2231. 

338 Waugh DW, Garfinkel CI and Polvani LM, 2015, Drivers of the recent tropical 
expansion in the Southern Hemisphere: Changing SSTs or ozone depletion?, J. 

Climate, 28, 6581-6586. 

339 Way DA and Montgomery RA, 2015, Photoperiod constraints on tree phenology, 
performance and migration in a warming world, Plant Cell Environ., 38, 1725-
1736. 

340 Weber J, Halsall CJ, Wargent JJ and Paul ND, 2009, The aqueous 
photodegradation of fenitrothion under various agricultural plastics: 
Implications for pesticide longevity in agricultural 'micro-environments', 
Chemosphere, 76, 147-150. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

EEAP 2018 Quadrennial Assessment  217 

 

341 Wightman JD and Heuberger RA, 2015, Effect of grape and other berries on 
cardiovascular health, J. Sci. Food. Agric., 95, 1584-1597. 

342 Wijewardana C, Henry WB, Gao W and Reddy KR, 2016, Interactive effects on 
CO2, drought, and ultraviolet-B radiation on maize growth and development, J. 

Photochem. Photobiol. B., 160, 198-209. 

343 Williamson CE, Zepp RG, Lucas RM, Madronich S, Austin AT, Ballaré CL, Norval M, 
Sulzberger B, Bais AF, McKenzie RL, Robinson SA, Häder D-P, Paul ND and 
Bornman JF, 2014, Solar ultraviolet radiation in a changing climate, Nat. Clim. 

Change, 4, 434-441. 

344 Willis KJ, Feurdean A, Birks HJB, Bjune AE, Breman E, Broekman R, Grytnes JA, 
New M, Singarayer JS and Rozema J, 2011, Quantification of UV-B flux through 
time using UV-B-absorbing compounds contained in fossil Pinus sporopollenin, 
New. Phytol., 192, 553-560. 

345 WMO, 2014, Assessment for Decision-Makers: Scientific Assessment of Ozone 
Depletion: 2014,  Report No., Geneva, Switzerland,   

346 WMO, 2018, Scientific Assessment of Ozone Depletion: 2018, Global Ozone 
Research and Monitoring Project-Report No. 55,  Report No., Geneva, 
Switzerland,   

347 Wolf A, Zimmerman NB, Anderegg WRL, Busby PE and Christensen J, 2016, 
Altitudinal shifts of the native and introduced flora of California in the context of 
20th-century warming, Glob. Ecol. Biogeog., 25, 418-429. 

348 Wu C, Zhang Z, Wang H, Li C, Mo Q and Liu Y, 2018, Photodegradation accelerates 
coarse woody debris decomposition in subtropical Chinese forests, Forest Ecol. 

Manag., 409, 225-232. 

349 Wu G, Bornman JF, Bennett SJ, Clarke MW, Fang Z and Johnson SK, 2017, 
Individual polyphenolic profiles and antioxidant activity in sorghum grains are 
influenced by very low and high solar UV radiation and genotype, J.Cereal Sci., 77, 
17-23. 

350 Wu G, Johnson S, K., Bornman J, F., Bennett S, Singh V and Fang Z, 2016, Effect of 
genotype and growth temperature on sorghum grain physical characteristics, 
polyphenol content, and antioxidant activity, Cereal. Chem., 93, 419-425. 

351 Wu G, Johnson SK, Bornman JF, Bennett SJ, Clarke MW, Singh V and Fang Z, 2016, 
Growth temperature and genotype both play important roles in sorghum grain 
phenolic composition, Sci. Rep., 6, 21835. 

352 Wu Y and Polvani LM, 2017, Recent trends in extreme precipitation and 
temperature over southeastern South America: The dominant role of 
stratospheric ozone depletion in the CESM large ensemble, J. Climate, 30, 6433-
6441. 

353 Wyber R, Malenovský Z, Ashcroft M, Osmond B and Robinson S, 2017, Do daily 
and seasonal trends in leaf solar induced fluorescence reflect changes in 
photosynthesis, growth or light exposure?, Remote Sensing, 9. 

354 Yang C, Wang J and Liang W, 2016, Blocking of ultraviolet reflectance on bird 
eggs reduces nest predation by aerial predators, J. Ornithol., 157, 43-47. 



Chapter 3. Stratospheric ozone, UV radiation, climate change, and terrestrial ecosystems 

218                                                EEAP 2018 Quadrennial Assessment  

 

355 Yang Y, Niu K, Hu Z, Niklas KJ and Sun S, 2018, Linking species performance to 
community structure as affected by UV-B radiation: an attenuation experiment, J. 
Plant Ecol., 11, 286-296. 

356 Yin R and Ulm R, 2017, How plants cope with UV-B: from perception to response, 
Curr. Opin. Plant Biol., 37, 42-48. 

357 Yu Z, Beilman DW and Loisel J, 2016, Transformations of landscape and peat-
forming ecosystems in response to late Holocene climate change in the western 
Antarctic Peninsula, Geophys. Res. Lett., 43, 7186-7195. 

358 Zavala JA, Mazza CA, Dillon FM, Chludil HD and Ballaré CL, 2015, Soybean 
resistance to stink bugs (Nezara viridula and Piezodorus guildinii) increases with 
exposure to solar UV-B radiation and correlates with isoflavonoid content in 
pods under field conditions, Plant Cell Environ., 38, 920-928. 

359 Zhang J, Tian W, Chipperfield MP, Xie F and Huang J, 2016, Persistent shift of the 
Arctic polar vortex towards the Eurasian continent in recent decades, Nat. Clim. 

Change, 6, 1094. 

360 Zhang Y, Feng L, Jiang H, Zhang Y and Zhang S, 2017, Different proteome profiles 
between male and female Populus cathayana exposed to UV-B radiation, Front. 

Plant. Sci., 8, 320. 

361 Zhou Z, Schenke D, Miao Y and Cai D, 2017, Investigation of the crosstalk 
between the flg22 and the UV-B-induced flavonol pathway in Arabidopsis 

thaliana seedlings, Plant Cell Environ., 40, 453-458. 

362 Zohner CM, Benito BM, Svenning J-C and Renner SS, 2016, Day length unlikely to 
constrain climate-driven shifts in leaf-out times of northern woody plants, Nat. 

Clim. Change, 6, 1120. 

 

 


	University of Wollongong
	Research Online
	2019

	Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems
	Janet F. Bornman
	Paul W. Barnes
	T Matthew Robson
	Sharon A. Robinson
	Marcel A.K Jansen
	See next page for additional authors
	Publication Details

	Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems
	Abstract
	Keywords
	Publication Details
	Authors


	Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.

