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Abstract—Link prediction is a challenging task due to the
inherent skewness of network data. Typical link prediction
methods can be categorized as either local or global. Local
methods consider the link structure in the immediate neigh-
borhood of a node pair to determine the presence or absence
of a link, whereas global methods utilize information from the
whole network. This paper presents a community (cluster) level
link prediction method without the need to explicitly identify
the communities in a network. Specifically, a variable-cost loss
function is defined to address the data skewness problem. We
provide theoretical proof that shows the equivalence between
maximizing the well-known modularity measure used in com-
munity detection and minimizing a special case of the proposed
loss function. As a result, any link prediction method designed
to optimize the loss function would result in more links being
predicted within a community than between communities. We
design a boosting algorithm to minimize the loss function and
present an approach to scale-up the algorithm by decomposing
the network into smaller partitions and aggregating the weak
learners constructed from each partition. Experimental results
show that our proposed LinkBoost algorithm consistently
performs as good as or better than many existing methods
when evaluated on 4 real-world network datasets.

I. INTRODUCTION

The ability to predict the formation of links in a network
is an important task in network analysis. A reliable link
prediction model is useful for uncovering missing links in a
static network or for projecting the formation of new links
in a dynamic network. The level of link prediction accuracy
sought often varies depending on the context of its applica-
tion. For example, despite its poor accuracy, the FOF (Friend
of Friend) algorithm has been extensively used in predicting
future links between users in large social networks. However,
in critical applications such as bio-surveillance and terrorist
network monitoring, predictions are cost sensitive in that
there is a severe penalty factor associated with different
incorrect predictions made by algorithm.

The low accuracies of link prediction algorithms can be
attributed to the inherent skewness of network data. In this
regards, there are two types of skewness to be considered.
The obvious one is class skewness, which refers to the
lopsided ratio of non-linked (the negative class) to linked
(the positive class) node pairs in a network. Typically the

ratio is of the order of O(1/N). Such high skewness would
result in a biased decision boundary and requires inclusion
of skew correction approaches into the link prediction frame-
work. Another type of skewness, which has received little
attention in the link prediction literature, is in the degree
distribution of the nodes. Since many networks exhibit a
scale-free behavior, this results in the (few) high degree
nodes exerting the most influence on the prediction for the
positive class. As a result, most link prediction models tend
to fail in their prediction for the majority of the low-degree
nodes. To avoid this, we need to develop a loss function for
link prediction that considers both type of skewness in the
data.

In addition, existing link prediction methods are either
global or local in nature. The former (e.g., common neigh-
bors[13]) simply utilizes information from the immediate
neighborhood of the nodes to make its prediction. Though
such an approach tends to perform poorly especially on
large networks, it is computationally efficient. The latter
(e.g., based on supervised learning [9], [19]) often achieves
better performance but at the expense of higher computa-
tion time. Moving away from these two extremes is the
method of finding links at the community (cluster) level.
The intuition here is that links are more likely to be formed
between nodes in the same community rather than those
in different communities. However, identifying the right set
of communities is itself a challenging problem. One of the
most well-known community finding algorithms is based
on the network modularity measure [15]. However, to the
best of our knowledge, none of the existing link prediction
algorithms are designed to optimize the measure.

The main contributions of this paper are as follows:
• We propose a variable-cost loss function for super-

vised link prediction that considers both the imbalanced
class distribution (of linked and non-linked node pairs)
as well as skewness in the degree distribution. The
variable-cost loss function addresses the bias in degree
distribution by penalizing the misclassification of low-
degree linked node pairs more than misclassification of
high-degree linked node pairs.

• We show the intimate relationship between the pro-
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posed loss function and the modularity measure used to
identify communities in a network. As a consequence,
a link prediction algorithm that optimizes the proposed
loss function is inherently biased towards finding links
within communities without explicitly identifying the
communities.

• We design a boosting algorithm for link prediction
called LinkBoost that optimizes the cost-sensitive
loss function. We also provide weak learners that utilize
the nodal attributes to estimate the link potentials
between the node pairs.

• We present an approach for scaling up the LinkBoost
framework by first decomposing the network into
smaller, potentially overlapping partitions and then
combining the predictions made by the weak learners
constructed from the different partitions.

To the best of our knowledge, the degree dependent cost
sensitive link prediction algorithm is the first of its kind.
Through the design of our loss function, the paper also
highlights the connection between community-based link
prediction, modularity measure, and the boosting algorithm.
Finally, experimental results show that our proposed Link-
Boost algorithm consistently performs as good as or better
than many existing methods when evaluated on 4 real-world
network datasets.

The rest of the paper is organized as follows. In Section
II we give an overview of related work. In Section III
we discuss the nature of cost sensitive learning. In Section
IV we present the proposed variable-cost loss function and
discuss its importance to the link prediction problem. In
Section V we discuss the relationship between the risk
associated with proposed loss function and the well-known
modularity measure. In Section VI we derive the boosting
framework for the proposed loss function and describe the
weak learners used for the framework. We also describe the
heuristics for applying the proposed LinkBoost algorithm
on large networks. Experimental evaluations are provided in
Section VII, followed by concluding remarks.

II. RELATED WORK

Link prediction algorithms can be categorized in many
ways. First, the algorithms can be supervised or unsuper-
vised. Second, they can be based on the observed link
structure only or may incorporate nodal attributes. Third, the
algorithms may utilize the link structure information from
immediate neighborhoods (local methods), entire network
(global methods), or at community levels.

The simplest unsupervised link prediction algorithm is
based on computing the similarity scores between a pair
of nodes using the nodal attributes or their local network
topology. Examples of such local methods include common
neighbors, Salton index [18], preferential attachment [2],
[23], and Adamic-Adar index [1]. The performance of the
different local measures were compared in [13], [24]. The

results suggest that simple common neighbors approach
performs better than other local measures. A theoretical
justification for the better performance of common neighbors
approach was presented in [16].

Unsupervised global methods for link prediction typically
consider the weighted paths between node pairs. Examples
include the Katz measure [12], random walk with restart
[22], average commute time, and matrix forest index [4].
Measures based on paths, in general offer higher prediction
accuracy compared to the local similarity measures. How-
ever, they require the entire network link structure and their
computations are generally time consuming.

Link prediction using supervised learning has been in-
vestigated by many authors [9], [10], [21], [19]. Al Hasan
et al. [9] derived several nodal and topological features for
link prediction and applied a variety of classifiers such as
support vector machines and decision tree to predict links
in bibliographic databases. Kashima and Abe [10] proposed
a parameterized probability model for the link structure and
developed an expectation maximization algorithm to esti-
mate the model parameters. Scripps et al. [19] employed a
regularized matrix factorization approach for link prediction.
Taskar et al. [21] used a relational Markov network to jointly
model the nodal attributes and links. However, one of the
main challenges in link prediction is the extremely large
class skew, which leads to poor detection rate. Rattigan
and Jensen [17] suggested an alternative problem known as
anomalous link discovery to identify the most interesting
links in the network. Recently, there have been attempts to
develop a semi-supervised approach for link prediction [11]
as well as combining link prediction with other tasks such
as collective classification [3].

More recently, there have been attempts to develop link
prediction algorithms using generative models that account
for the clustering (community) structure in the network.
Guimera et al. [8], used the likelihood based methods for
estimating the reliability of a link between any node pair,
given the observed link structure. The reliability score is then
used to predict both missing and spurious links. Clauset et al.
[5] have proposed maximum likelihood based methods that
represent the clusters in the network as a hierarchy, which
in turn are represented as a dendrogram. Each dendrogram
has an associated likelihood value indicating the strength of
community structure represented by the dendrogram. The
missing links are predicted by first sampling large a number
of dendrograms proportional to their likelihood and for each
unconnected node pairs i and j, the expected connecting
probability is computed by averaging the corresponding
probability over all sampled dendrograms. Finally, the node
pairs are sorted according the connecting probability and
highest ranked ones are declared as potential links.

Both the reliability and hierarchical cluster model try to
estimate the link potentials between the node pairs at cluster
level. They in fact, average over all possible partitions of
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communities present in given network which makes it is
very costly to implement even on small sized networks. In
this paper, we suggest an alternative to these two algorithms
which strive to identify more links with in a community. We
do this by defining loss function whose associated risk when
minimized, leans towards giving higher rating for the with
in community node pairs. We also show the relationship be-
tween the proposed cost sensitive loss function and the well
known modularity measure used for clustering networks.

III. PRELIMINARIES

We consider the link prediction task as a binary classifica-
tion problem, in which a node pair is assigned to the positive
class if there is a link between them, or to the negative class
otherwise. Let V = {1, 2, · · · , n} denote the set of nodes in
the network and E = V ×V denote the set of all node-pairs.
We represent the adjacency matrix of the network as A,
where Aij = {+1,−1} indicating the presence or absence
of links. Each node i ∈ V is associated with a set of d-
dimensional nodal attributes xi = {xi1, xi2, ..., xid}. Our
objective is to learn a target function f : V × V → � that
maps each node pair to its link potential. The function is op-
timal if it minimizes the expected risk R = EE,A[L(f(e), a)]
for any given node-pair e ∈ E , where L[f(e), a] is the loss
function. The loss function usually takes the form of

L[f(eij), Aij ] =

⎧⎪⎨
⎪⎩
0, if sgn(f(eij)) = Aij

C1, if sgn(f(eij)) �= Aij = 1

C2, if sgn(f(eij)) �= Aij = −1

(1)

where sgn(·) is the sign function, whose value is equal to
+1 if its argument is non-negative and −1 otherwise. When
C1 = C2 = 1, this corresponds to the 0-1 loss function.
Many supervised link prediction algorithms are designed to
yield a classifier that minimizes the following 0-1 empirical
loss function, which is given by

R̂0-1 =
1

n2

n∑
i,j=1

I
[
Aijsgn(f(eij)) ≤ 0

]
(2)

where I(·) is an indicator function, which is equal to 1 if its
argument is true and zero otherwise.

A major hinderance in this binary classification task is the
class imbalance problem. In the social network data, negative
examples (non-linked node pairs) tend to outnumber the
positive examples by a significantly large proportion. The
literature for classification on imbalanced data suggests two
approaches to tackle this problem, namely, sampling and
cost-sensitive learning. In the first approach, a balanced
training set is obtained by undersampling the negative exam-
ples or oversampling the positive examples. This approach
has several drawbacks. Firstly, undersampling the negative
examples reduces the amount of data available for training
an accurate model. Furthermore, one has to do the under-
sampling repeatedly to remove the sampling bias. On the

other hand, oversampling the positive examples in the social
network data increases the training set size significantly,
which in turn, makes the training time considerably longer.

The cost sensitive learning approach is based on the
premise that different classes of examples (positives or
negatives) incur different penalties for misclassification. The
loss function defined in (1) is cost sensitive if C1 �= C2,
where C1 is the cost for misclassifying linked node pairs as
non-linked node pairs and C2 is the cost of misclassifying
the non-linked node pairs as linked node pairs.

The loss function defined in (1) and the associated
risk functions are not differentiable, hence does not offer
mathematical dexterity in designing classifiers. The risk as-
socilated with exponential loss can be used as an alternative:

R̂exp =
1

n2

∑
ij

exp

[
−Aijf(eij)

]
(3)

The exponential risk is a continuous and differentiable
function and it bounds the risk for 0-1 loss from above.
It can be shown that an equivalent expression bounding the
cost sensitive loss function defined in (1) is

R̂cost-sens =
1

n2

∑
ij

[
I(Aij = 1) exp(−C1f(eij))

+ I(Aij = −1) exp(C2f(eij))
]

(4)

By simply changing the class labels for presence and
absence of links from {+1,−1} to {C1,−C2} the cost
sensitive risk in Equation (4) can be transformed to the
empirical risk of (3). Generally the cost parameters C1 and
C2 are chosen in such a way that they correct for the
classification bias that arises due to skewness in the class
distribution. If n+ and n− represent the number of positive
and negative examples in the data, then C1 and C2 are often
chosen such that C1

C2
= n

−

n+
. For large sparse networks, the

fraction n
−

n+
= O(n), thus if we fix C1 = 1, then the value of

C2 ∼ n−1 which results in working with extreme penalties
that are easily polluted by the limitations of the machine
precision. To avoid this, we need to scale the cost of both
positive and negative labels such that the desired penalty
ratio is maintained. Another significance of the cost ratio C1

C2

is its role in determining the optimal cost sensitive decision
surface. The optimal decision surface for the cost sensitive
learning

f∗ = arg minfEE,A[L(e, a)]

is given by the Bayes Decision Rule [14]

f∗(e) = log
PA|E(a = 1|e)C1

PA|E(a = −1|e)C2
(5)

Hence for any cost structure (C1, C2), cost sensitive opti-
mality differs from cost insensitive optimality only through
the threshold T = log C1

C2
.
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The preceding formulation assumes that C1 and C2 are
constants. We argue that it may not desirable to treat the
misclassification cost for all the linked (and non-linked) node
pairs by the same yard stick. In the next section, we present
a variable cost loss function, such that misclassification
of low degree linked node pairs incurs more penalty than
misclassification of high degree linked node pairs. We also
show that such modification leads to a link prediction
algorithm that leans towards predicting more links within
the same community than otherwise.

IV. VARIABLE COST LOSS FUNCTION FOR LINK

PREDICTION

This section describes our rationale for introducing a
variable cost loss function for link prediction. It is generally
observed that the degree distribution of real-world networks
tends to follow a power law distribution, where there are
few high degree nodes and a large number of low degree
nodes. Consequently, a supervised learning algorithm for
link prediction not only faces the bias from the large number
of non-linked node pairs (negative class) but also from the
small number of high degree nodes. Specifically, among the
linked node pairs (positive class), the high degree nodes
contribute more in determining the decision surface. Since
we want to build models that can explain the observed links
between any node pairs and not strongly influenced by the
links formed for a few of the high degree nodes, we need
to design a loss function that removes this bias within the
positive class.

One way to do this would be to make the misclassification
penalty dependent on the degree of the nodes. Let ki be the
degree of node i. Then the cost of misclassifying the linked
node pair eij is given by

C1(eij) = 1− βkikj ,

where β is user defined parameter, typically chosen to keep
the cost function non-negative. Notice that C1 monotonically
decreases with increasing degrees of ki or kj , thus penalizing
more for misclassification of links between low degree nodes
compared to misclassification of links between the high
degree nodes.

Analogously, the same reasoning can be made about the
non-linked node pairs. The low degree node pairs exert
a higher influence on the negative class than the high
degree node pairs. To remove this bias among the negative
examples, we define the cost for misclassifying non-linked
node pairs as

C2(eij) = γkikj ,

which increases when the node degrees are higher. We now
need to account for the overall bias between the positive and
negative examples, this is done by choosing the value of β
and γ such that C2 < C1. Putting it all together, we obtain
the following loss function

L(f(eij), Aij) =

⎧⎪⎨
⎪⎩
1− βkikj , if sgn(f(eij)) �= Aij = 1

γkikj , if sgn(f(eij)) �= Aij = −1

0, otherwise (6)

The distinguishing aspect of the above loss function is
that it assigns variable misclassification cost for different
node pairs. When β = 1∑

i
ki

the term βkikj represents the
expected number of links between the node pair i and j
[15]. We will show in the next section that for this specific
value of β, lowering the risk associated with the variable
cost loss function is same as maximizing the modularity
measure. This results in the learning algorithm being biased
more towards learning links between the node pairs in same
community than learning the links that lie between the
communities.

V. MODULARITY

A well accepted conjecture in the network mining litera-
ture is that link densities are expected to be higher within
a community than between communities. This suggests the
possibility of an intimate connection between link prediction
and community finding tasks. A popular method to identify
communities in a network is using the well known modular-
ity measure [15]. Here the possible existence of a community
in a given network is revealed by comparing the actual
link density in the subgraph induced by the community
and the density one would expect to have if the nodes of
the subgraph were linked irrespective of the community
structure. The modularity measure can be mathematically
quantified as follows.

Q =
∑
ij

[
I(Aij > 0)− Pij

]
I(ci = cj), (7)

where Pij is the expected number of links between the nodes
i and j under a null model (or reference network). The
variables ci and cj represent the community membership
of nodes i and j respectively. Modularity-based community
finding algorithms are designed to assign the nodes to differ-
ent communities such that the overall modularity measure,
Q, is maximized. The null model used often corresponds to
that of a random graph with the same degree distribution as
the given network. This leads to [6]

Q =
1

n2

∑
ij

[
I(Aij > 0)−

kikj
2m

]
I(ci = cj) (8)

where m =
∑

i ki/2 is the number of links in the network.
The following theorem shows the equivalence between

maximizing (8) and minimizing the risk associated with
a special case of the loss function given in (6). Consider
a community-based link prediction model that predicts the
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existence of a link between a node-pair based on whether
the nodes are in the same community, i.e.,

sgn(fcomm(eij)) =
{

+1, if I(ci = cj);
−1, otherwise.

(9)

Theorem 1. For the variable cost loss function given in (6),
minimizing the risk associated with the community-based
link prediction model fcomm(eij) with β = γ = 1∑

i ki
is

equivalent to maximizing the modularity function in (8)

Proof: The empirical risk associated with the variable
cost loss function given in (6) for the community-based link
prediction model is

R̂mod =
1

n2

[ ∑
ij:Aij=1

I(sgn(fcomm(eij)) = −1)(1− βkikj)

+
∑

ij:Aij=−1

I(sgn(fcomm(eij)) = 1)(γkikj)

]

=
1

n2

[ ∑
ij:Aij=1

(1− δij)(1−
1

2m
kikj)

+
∑

ij:Aij=−1

(δij
1

2m
kikj)

]
(10)

where we have replaced I(sgn(fcomm(eij)) = 1) = δij and
β = γ = 1/2m. Now minimizing the empirical risk with
respect to δ is equivalent to maximizing the following

min
f

R̂mod

= max
δ

1

n2

[ ∑
ij:Aij=1

δij(1−
kikj
2m

)−
∑

ij:Aij=−1

δij
1

2m
kikj

]

= max
δ

1

n2

∑
ij

δij

[
I(Aij > 0)−

kikj
2m

]
(11)

Since δij = I(sgn(fcomm(eij)) = 1) = I(ci = cj), this
completes the proof.

The preceding theorem suggests that maximizing the mod-
ularity measure is equivalent to minimizing a special case
of the loss function using the clustering solution, fcomm(eij)
as the link prediction model. The clustering solution uses
only the network topology to explain the link potential
between node pairs. In contrast, our proposed variable cost
loss function provides a framework that allows us to estimate
the link potential using other information including the
nodal attributes. We design the fcomm(eij) as function of
nodal attributes xi and xj . Our experimental results have
demonstrated the effectiveness of using an exponential loss
compared to modularity function (24) for link prediction.

VI. BOOSTING APPROACH FOR LINK PREDICTION

This section presents our method for optimizing the
variable-cost loss function given in Section IV. The risk

associated with the loss function given in (6) is non-
differentiable, so we employ the following variable-cost
empirical risk function:

R̂mod =
1

n2

∑
ij

[
I(Aij = 1) exp[−(1− βkikj)f(eij)]

+ I(Aij = −1) exp[γkikjf(eij)]
]

(12)

If we set β = γ then the above loss function reduces to

R̂mod =
1

n2

∑
ij

exp

[
(I(Aij > 0)− βkikj)f(eij)

]
(13)

This form of loss function is well studied in the machine
learning community using additive modeling or boosting
techniques [7]. Specifically, an additive model takes the form
of

fα(x) = sgn

[∑
t

αtft(x)
]
.

For boosting, each fi corresponds to a weak learner and the
goal is to identify a sequence of constants α1, ..αk such that
a linear combination of the weak learners performs better
than any of the individual learners.

A. Estimating αt

Our aim is to design a boosting algorithm that mini-
mizes the variable-cost empirical risk function R̂mod. To
do this, we need to induce a sequence of weak learners
that help in reducing the risk as optimally as possible. Let
F =

∑t−1
i=1 αif

i be the previous solution of the boosting
algorithm at step (t − 1) and f t is the currently induced
weak learner. We need to identify an appropriate αt that
would lead to an improvement in R̂mod. The optimization
problem at step t is given by

min
αt,ft

∑
ij

exp

[
−

(
I(Aij > 0)−

kikj
2m

)(
Fij + αtf

t(eij)
)]

(14)
To highlight the effect of current weak learner we need

to isolate the effect of past weak learners from the equation.
Let

Dij = exp

[
−

(
I(Aij > 0)−

kikj
2m

)
Fij

]

Mij =

(
I(Aij > 0)−

kikj
2m

)
f t(eij)

sij = sgn(Mij)

W+ =
∑

ij∈Mij>0

Dij |Mij |

W− =
∑

ij∈Mij<0

Dij |Mij | (15)
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It can be shown that the objective function given in (14) is
bounded as follows:

∑
ij

exp

[
−

(
I(Aij > 0)−

kikj
2m

)(
Fij + αtf

t(eij)
)]

=
∑
ij

Dij exp(−αtsij |Mij |)

≤
∑
ij

Dij |Mij |(exp(−αtsij)− 1)

≤ (W+ exp(−αt) +W− exp(αt)−W+ −W−) (16)

where the inequality follows from applying Jensen’s inequal-
ity and the assumption that |Mij | ≤ 1. For a given f t taking
its partial derivative with respect to αt gives

αt =
1

2
log

W+

W−
(17)

The formula for αt is similar in spirit to regular AdaBoost
in which αt = 1

2 log
1−e
e

, where e is the error rate for
the weak classifier. In our case, the W+ and W− represent
the weighted sum of the correctly classified and incorrectly
classified node pairs.

B. Weak Learners

This section describes the construction of the weak learn-
ers used in our boosting framework. Similar to traditional
boosting, we could apply any simple classifier as long as it
takes into consideration the weight matrix D associated with
the node-pairs. The weak learner considered in this study is
computed based on the nodal attributes and can be computed
in closed form.

Let X represent the n × d nodal attribute matrix. Given
the current weight matrix D between the node pairs, the
goal of weak learner is to estimate the n× n link potential
matrix L(X) where Lij = f t(eij) indicates the strength of
link between the nodes i and j. Large positive values of
Lij indicate greater potential for link between the nodes
and large negative values indicate greater repulsion for link
formation between the nodes. We model L(X) as simple
weighted correlation of the nodal features. Let L(X) =
XWX

T . Here the weight matrix W is a d× d matrix that
needs to be estimated by solving the following objective
function.

Q = max
W

∑
ij

(DijBij)[XWXT ]ij)−
λ

2
‖W ‖22 (18)

where Bij = [I(Aij > 0) −
kikj

2m ] is the coefficient term
of the modularity measure or the cost associated with each
node pair. Differentiating the objective function we get,

∂L

Wpq

= −
∑
ij

DijBij(XipX
T
qj) + λWpq = 0 (19)

We get,

Wpq =
1

λ

∑
ij

XipDijBijX
T
qj

=
1

λ

∑
ij

XT
piDijBijXjq (20)

Let • denote the element wise matrix multiplication, then
W can be written as

W =
1

λ
XT (B •D)X (21)

Thus the link potential function L(X) = XWXT for the given
weight matrix D is given by

L =
1

λ
XXT (B •D)XXT (22)

A crude interpretation of the above solution is that it
aligns the correlation between the nodal attributes with
the modularity matrix. λ is chosen as a normalization
constant such that the estimated link potentials are mapped
between [−1, 1]. A distinct aspect of above definition of
weak learners is that it does not require explicit conversion
of nodal features to edge features. Traditional classifiers like
support vector machine or logistic regression requires one to
construct feature for each node pair from the nodal features,
which itself is a time consuming process.

C. Scalability

Link prediction algorithms such as Preferential Attach-
ment and Common Neighbors, though often have poor per-
formance, are still considered attractive for many practical
applications as they are easy to implement and scalable to
large sized networks. Scalability is one of the important
aspects of the proposed link prediction algorithm. Even
though the number of links in large sparse networks is small,
the supervised link prediction algorithm must examine all
possible node pairs thereby increasing the size of data to
be dealt with. In addition to the number of node pairs,
the number of features associated with each node may add
severe constraints on the performance of the model with
respect to speed, memory requirement, and accuracy.

In this section, we describe an approach to scale up
our proposed algorithm by decomposing the network into
smaller, potentially overlapping partitions and using the
boosting approach to systematically combine the weak learn-
ers constructed from each partition. This divide-and-conquer
strategy is well suited both for the link prediction problem
and the boosting framework since link formation is typically
a local phenomenon, in the sense that there are several small
communities in the network and the links are formed more
inside that community. Thus it is beneficial to construct a
local (weak) learner from a small segment of the network at
a time and aggregate them in a principled way to form the
global model via the boosting formulation.
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Algorithm 1 LinkBoost

Input: A: n× n adjacency matrix with {+1,−1} entries
X: n× d nodal attribute matrix
η: threshold for feature partitioning

Output: F: n× n link potential matrix
Initialize:

F = [0]n×n; D(0) = [1]n×n;
k: n× 1 column vector of node degrees

for t = 1 to T do
P ← GetFeaturePartition(η)
for Xp ∈ P do

V ← GetSubGraphNodes(Xp)
W ← GetBaseLearner(Xp, Dv, kv, Av)
Compute fv = XpWXT

p

Compute α using (17)
Fv ← Fv + αfv
Dv = Dv exp(−αAv • LV )

end for
end for
return F

There are many strategies to create subgraph partitions
from a large network. Our requirements are that (1) the
partitions must be distinctive enough from each other to
induce a diverse (uncorrelated) set of weak learners and
(2) the partitioning approach must be efficient to implement
especially for large-scale networks. We tried several parti-
tioning strategies (e.g., applying random walk starting from
randomly chosen seed nodes) but found that they often fail to
satisfy one of the two requirements. This led us to consider
the domain partitioning strategy, which is inexpensive to
implement and often produces a diverse set of partitions.

The proposed scalable LinkBoost algorithm is sum-
marized in Algorithm 1. The GetFeaturePartition(η)
returns a feature partition where each partition set contains
η% of the features. For each partition, we create a subgraph
containing only those nodes that have at least one non-
zero value with respect to the selected set of features. We
then build a local model on the subgraph by invoking the
GetBaseLearner subroutine. The subroutine takes the
following parameters as input: (1) Av , the adjacency matrix
associated with the subgraph induced by the feature partition
P, (2) Xp, subset of the nodal attributes in the subgraph,
(3) Dv, weights on node pairs in the subgraph, and (4)
kv , global degree of the nodes in the subgraph. The weight
returned by the GetBaseLearner subroutine is used to
update the estimated link potential matrix. This process is
repeated T times on all subgraphs obtained by different
feature partitions.

In addition to its efficient implementation and diversity
of its induced weak learners, another advantage of the
domain partitioning strategy is that the final hypothesis has
a nonlinear decision surface. It can be easily seen that the

weak learner XWXT described in Section VI-B yields a
linear decision surface separating the linked and non-linked
node pairs. Since the boosting algorithm combines the weak
learners also in a linear fashion, it will not be able to sig-
nificantly alter the decision surface. However, by employing
domain partitioning in the weak learner construction, we will
work with a distinct subgraph at a time. The weight matrix
W returned by GetBaseLearner function is applied only
to the current subgraph V and not to the entire network. This
results in inducing a non-linear decision surface (clipped
line) in the feature space (a line with respect to node pairs
in current partition and value zero for node pairs outside
the partition). Finally the boosting algorithm combines the
collection of clipped lines to produce a final classifier with
non-linear decision surface.

VII. EXPERIMENTAL EVALUATIONS

This section reports the results of experiments conducted
on the proposed LinkBoost algorithm. Since link predic-
tion is cost sensitive in nature, we compare the algorithm
against other baseline methods using the receiver operating
characteristic (ROC) curve. The curve is obtained by calcu-
lating the true positives and false positives by varying the
threshold on the estimated link potentials between the node
pairs. The link prediction model is built on the training set
while the ROC curves are plotted for the node pairs in the
test set.

A. Baseline Algorithms

We compared the performance of LinkBoost against
the following link prediction algorithms discussed in the
related work section.

Link-Based: We used three link based algorithm for
link prediction. These are Preferential Attachment, Katz
and Modularity. Preferential attachment estimates the link
potential between a node pair as product of their degrees.
The Katz measure is defined as

score(x, y) =
∞∑
l=1

βl | path
(l)
ij | (23)

where | path(l)
ij | is set of all path of length l from node

i to node j and 0 < β < 1 is a user parameter. A special
variant of Katz is the truncated Katz in which only finite
number of terms in the summation are considered. The
number of terms to consider is again a user given parameter.
The Katz measure is sensitive to both these parameters.
The modularity measure for link prediction is computed
as follows. Let Sir to be 1 if vertex i belongs to group r
and zero otherwise. Then modularity maximization involves
identifying a n × k matrix S with elements Sij such that
following equation is maximized.

max
S

tr ST BS (24)
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The problem (24) is NP hard and is relaxed by letting S
to be any real matrix such that ST S = I. We then define
fcomm(eij) =

∑
r SirSjr.

Attribute Based: Here we use the well known Fixed Cost
Adaboost where the cost parameters are set to C1 = 1
and C2 = 0.01. It is not possible to make the cost more
than 1 as the derivation of α assumes that |Mij | ≤ 1.
Furthermore, only the cost ratio C1

C2
matters and not their

absolute magnitudes. Similarly, the modularity matrix B is
multiplied by constant factor so that the magnitude of entries
are less than 1. For LinkBoost, we set η == 0.05. The
base learners used for both LinkBoost and Fixed Cost
Adaboost are the same (see Section VI-B).

B. Data Sets for Inferring Missing Links

Here we consider the problem of inferring missing links
from an incomplete network. We use two well-known cita-
tion networks1 [20]—citeseer and cora data sets—for this
experiment. In both the data sets, we first make the graph
undirected and randomly suppress 30% of the links from the
network and use them as the test set for predicting missing
links.

Cora Data Set contains publications from the machine
learning area, which include the following 7 subcategories:
Case-based reasoning, Genetic Algorithms, Neural Net-
works, Probabilistic Methods, Reinforcement Learning, Rule
Learning and Theory. The data set we use contains 2708
nodes, 5429 directed links, and 1433 unique words. Each
node corresponds to a paper and is characterized by a
0/1-valued vector indicating the absence/presence of the
corresponding word from the title of the paper.

Citeseer Data Set consists of data from 3312 scientific
publications. Each publication is labeled as one of 6 classes.
The data set we have created contains 4732 links and 3703
unique words.

C. Data Sets for Predicting Future Links

Here, we are given the network link structure and the
nodal attributes at a particular time period. Our task is to
predict the link formed between the given nodes at a future
time.

DBLP Data Set contains all the computer science articles
2 from the proceedings of 28 conferences related to machine
learning, data mining and databases from 1997 to 2006. The
train set consists of all publications from 1997-2000 and test
set contains all publications from 2001-2004. There are 9252
nodes in the train set with 9136 nodal attributes. There are
21, 107 links in the train set and only 6679 links in the test
set.

Wikipedia Data Set is a web page network which was
crawled from Wikipedia web site by Kossinets3. The data

1http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html
2http://dblp.uni-trier.de/
3G. Kossinets. Processed Wikipedia Edit History. Stanford large network

dataset collection.

Figure 1. Proportion of within community links (good links) as function
of topK values
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set contains edit history of all the pages in Wikipedia from
its inception until January 2008. We examined the user-user
interaction network (user talk pages). The user interactions
in the first 6 months of 2004 is taken as train set and the
next 6 months is taken as test set. There are 8178 users and
24891 features for each user.

D. Links Within Community

First, we evaluated the performance of the LinkBoost
algorithm in terms of its ability to predict links within
community. For both cora and citeseer data sets we use
the ground truth community label to verify the proportions
of links formed within community for each of the link
prediction algorithms. We sort the link potentials and declare
the top-K largest link potentials as the possible missing or
future links. Figure 1 shows the plot of the proportion of
within community links or good links as function of top-
K values. Clearly, the LinkBoost algorithm outperforms
both modularity and Katz measures, thus validating the
claim that our algorithm indeed strives to identify links
within a community. The proportion of good links identified
by modularity and Katz are quite high for smaller values of
topK, but falls significantly for larger topK values.
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Table I
LINK PREDICTION: THE TABLE SHOWS THE AUC OF PREDICTED MISSING LINKS AND FUTURE LINKS IN EACH OF THE FOUR DATA SETS.

AUC (% improvement compared to LinkBoost)
Data Method Cora Citeseer DBLP Wiki

Link Only Katz 0.72 (-16.70%) 0.63 (-41.30%) 0.61 (-17.50%) 0.86 (-2.20%)
PA 0.63(-14.20%) 0.59(-33.70%) 0.71(-4.00%) 0.90(+2.20%)

Modularity 0.67(-20.00%) 0.60(-32.50%) 0.63(-14.86%) 0.64(-27.27%)

Link+ AdaCost 0.53 ± 0.09(-36.90%) 0.54 ±0.12 (-39.32%) 0.56 ± 0.2 (-24.32%) <.50
Content LinkBoost .84± 0.025 .89±0.063 .74± 0.18 .88± 0.14

Figure 2. ROC curves comparing performances of different link prediction algorithms.
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E. Missing and Future Links

Next we evaluate the performance of LinkBoost for
the missing and future link prediction problems. The ROC
curves are shown in Figure 2. Firstly, notice that the AUC
of LinkBoost is consistently higher than modularity mea-
sure. As mentioned earlier, modularity utilizes only the net-
work link structure whereas boosting makes use of both the
link and the content information thus resulting in superior
performance. The LinkBoost consistently outperforms the
fixed cost Adaboost as well, highlighting the importance of
the proposed variable cost structure.
LinkBoost outperforms the Katz measure on both cora

and citeseer citation networks. The Katz measure performs
better than the fixed cost Adaboost on the DBLP network
and as good as LinkBoost on Wikipedia network. How-
ever it is sensitive to choice of parameter setting. In this
paper, we report the results based on the parameters that
best fits the test set.

Finally, LinkBoost outperforms the preferential attach-
ment measure on both the citation networks. However it
is performance is comparable to preferential attachment
on DBLP and Wiki networks. Specifically, LinkBoost
is slightly better than preferential attachment on DBLP
network and is slightly worse on Wikipedia network. This
is because the preferential attachment algorithm is based on
the premise that the rich gets richer. We suspect that the user
network in Wikipedia exhibit the preferential attachment
characteristics where few authoritative users communicate
with large number of other users. The average AUC for
LinkBoost is 0.88 and for preferential attachment is 0.90.

F. Low Degree Nodes

In this section, we demonstrate the ability of the proposed
method to identify the links formed between low degree

nodes in the citation networks. A node with degree less than
2 is considered to be a low degree node. We compute the
models on the training set and estimate the ROC curves for
the subgraph consisting of low degree nodes. The results are
plotted in Figure 3. As expected, the preferential attachment
measure under performs as it ranks the high degree nodes
ahead of the low degree nodes. The proposed LinkBoost
with effective degree sensitive loss function overcomes this
problem.

VIII. CONCLUSION

In this paper, we have given a new direction for the
supervised link prediction problem in large sparse networks.
We have proposed a new degree dependent cost function and
has shown that minimization of the associated risk leads
to modular link prediction where more links are predicted
within community. Such a cost function addresses the skew-
ness in class distribution and skewness in nodal degrees.
The proposed algorithm is scalable and easy to implement.
Experimental evaluations show the superior performance of
the proposed method over existing supervised and unsuper-
vised methods. The proposed method is specially effective
in predicting the missing links for the low degree nodes. For
future work, we plan to investigate methods for estimating
optimal cost parameters and alternate ways for creating the
weak learners used in LinkBoost formulation.
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