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We consider a new formulation of the stochastic coupled cluster method in terms of the similarity transformed
Hamiltonian. We show that improvement in the granularity with which the wavefunction is represented results
in a reduction in the critical population required to correctly sample the wavefunction for a range of systems
and excitation levels and hence leads to a substantial reduction in the computational cost. This development
has the potential to substantially extend the range of the method, enabling it to be used to treat larger
systems with excitation levels not easily accessible with conventional deterministic methods.

Coupled cluster theory is a highly accurate and size
consistent method of treating electron correlation.1,2 It
can achieve high accuracy for molecules3 as well as for
extended systems4,5. However, the scaling with system
size (O(N6) for the CCSD truncation and worsening
for higher truncation) and the complexity of the equa-
tions at high truncation levels limit the applicability of
the method. It also scales poorly over distributed com-
puter architectures due to the dense linear algebra op-
erations involved. Recently, inspired by the successes
of the Full Configuration Interaction Quantum Monte
Carlo (FCIQMC) method4,6–13, a stochastic formulation
of the coupled cluster equations (coupled cluster Monte
Carlo, CCMC) has been proposed to ameliorate these
problems.14 It uses a set of discrete “excips” to represent
the cluster amplitudes, but only converges to the correct
ground state when a system dependent critical number of
walkers (the “plateau”) is exceeded.14,15 This limits the
size of systems accessible to the method. In this paper,
we propose a modification of the CCMC algorithm that
reduces the plateau heights enabling the application of
the method to larger systems.
In coupled cluster theory, the wavefunction is repre-

sented using the exponential ansatz ΨCC = eT̂ |DHF〉,

where T̂ =
∑

i
tiâi and âi is a string of creation and an-

nihilation operators in second quantization theory, such
that âi |DHF〉 = |Di〉, where |Di〉 is the Slater deter-
minant with orbitals i1, i2, . . . , iN occupied. Trunca-
tions of the theory are obtained by restricting the sum
in T̂ to contain excitations of at most the truncation
level number of orbitals, but the exponential form en-
sures the theory remains size consistent. The ampli-
tudes ti are determined by projecting the Schrödinger
equation ĤΨCC = EΨCC onto the set of substituted
determinants generated by T̂ . In CCMC, after rescal-
ing the amplitudes by tHF to give the modified ansatz

ΨCC = tHFe
T̂ /tHF |DHF〉, this is recast into an iterative

form:

ti → ti − δτ
〈

Di

∣

∣

∣
Ĥ − S

∣

∣

∣
ΨCC

〉

(1)

where δτ is a small positive number (the timestep)

and S the shift, an energy offset introduced to control
the growth of the coefficients. The coefficients of
the wavefunction are discretised and represented by
populations of fictitious particles called excips on each
excitor, where an excitor is a combination of creation
and annihilation operators that produces an excited
determinant from the Hartree-Fock. The wavefunction
and Hamiltonian are then stochastically sampled to
update the excitation amplitudes. In outline, the al-
gorithm proceeds as follows (for more details see Ref. 16):

1. Choosing a cluster: s excitors (s is randomly cho-
sen from 0 ≤ s ≤ l + 2 where l is the truncation
level) are randomly chosen and combined to give
an excitation operator which acts on the reference
determinant to give a determinant |Dn〉. This step
is equivalent to truncation of the Taylor expansion

of eT̂ at l+2-th power (exact for a 2-body Hamilto-

nian with up to l-fold excitations in T̂ ) and samples
the wavefunction ansatz. The factor of 1

n! arising
in the Taylor expansion is absorbed into the calcu-
lated weight of the cluster.

2. Spawning: A random single or double excitation of
|Dn〉, |Dm〉, is chosen and a new excip spawned on
|Dm〉 with probability proportional to |Hmn| and
sign determined by the sign of Hmn, where Hmn =
〈Dm|Ĥ|Dn〉. This step samples the action of the
Hamiltonian.

3. Death: A new excip is spawned on |Dn〉 with prob-
ability proportional to |Hnn−E| and opposite sign
to the parent.

4. Annihilation: Pairs of excips with opposite signs on
the same excitor are removed.

In conventional treatments of coupled cluster theory,
it is convenient to rewrite the equations in the form

〈

Dm

∣

∣ H̄ − E
∣

∣DHF

〉

= 0, (2)
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using the similarity transformed Hamiltonian

H̄ = e−T̂ ĤeT̂ . This has the advantage that, us-
ing the Campbell–Baker–Hausdorff formula and Wick’s
theorem17, the expansion of the exponential truncates
at fourth order and can be written as

H̄ = Ĥ + [Ĥ, T̂ ]c +
1

2
[[Ĥ, T̂ ], T̂ ]c +

1

3!
[[[Ĥ, T̂ ], T̂ ], T̂ ]c

+
1

4!
[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ]c, (3)

where the subscript c is included to emphasise that only
the terms of the commutators in which the Hamiltonian
is connected to each cluster operator are needed, and the
remaining terms cancel to zero due to the commutators.
This decouples the amplitude equations from the energy
equation.
The question thus arises as to whether benefits can be

derived from using the similarity transformed Hamilto-
nian in CCMC. The iterative equations used to calculate
the amplitudes are, analogously to the original CCMC
equations,

ti → ti − δτtHF

〈

Di

∣

∣ H̄
∣

∣DHF

〉

if |Di〉 6= |DHF〉

(4)

tHF → tHF − δτtHF

〈

DHF

∣

∣ H̄ − S
∣

∣DHF

〉

(5)

Notably, the shift only appears in the equation for the
reference population. This means that the population
control only acts directly on the reference, and popula-
tion control for other excitors is achieved indirectly by
changes in the rate of spawning, both from the reference
and also, due to the change in normalisation, from the
other excitors.
Can we sample H̄ in a manner analogous to CCMC? In

Eq. (3), we may choose any of the five terms at random,
and this is equivalent to selecting the size, s, of cluster
to consider. Each T̂ within the unexpanded commutator
is itself a sum over excitors (each with an amplitude).

To sample this, for each of the T̂ operators, we pick, at
random, just one of the excitors within its sum. This
results in s (potentially different) excitors, i.e. a cluster
of size s.
Given this specific choice of excitors, we must still eval-

uate the entire nested commutator. Could we instead
sample at random just one of the terms in the expansion
of the nested commutator rather than the complete ex-
pansion? While this is possible, we note that one of the
benefits of the similarity transformed approach is that for
unlinked clusters all the terms in the nested commuta-
tor cancel to zero, and so decomposing the commutator
would remove any gains from the cancellation of terms.
In order to sample the commutator we must instead eval-
uate the sum of all the permutations of Ĥ and T̂ oper-
ators arising from the commutators for a sampled term
from H̄. The random sampling of a cluster containing s

excitors from the T̂ s term in the power expansion of eT̂

in conventional CCMC can also be used to select the ex-
citors included in the s-fold commutator. However, the

allowed excitations in Ĥ (to give a non-zero projection
on to some Di in Eq. (4)) can differ in each term within
the commutator, and so sampling this is not so straight-
forward.
To solve this, we return briefly to look at the second

sampling step in CCMC: Ĥ is sampled by selecting an
allowed excitation of the collapsed cluster |Dn〉. i.e. we

choose 〈Di| such that matrix element Hin = 〈Di| Ĥ |Dn〉
is non-zero. Once this excitation is chosen, the value of
i has been determined, and this then selects a single t-
update, ti, from the set of all possible updates in Eq. (1).
We may look at this in a different manner: Let us select a
given projectee determinant 〈Di| in Eq. (1), and see what

allowed samplings of Ĥ may lead to it. For conventional
CCMC, the choice is unique.
For linked CCMC, a choice of a given projectee deter-

minant 〈Di| corresponds to at most one allowed excita-

tion in Ĥ in each term of the commutator. This exci-
tation is the same in each term, but may have a differ-
ent corresponding matrix element. Therefore for a given
sampling of T̂ s (i.e. cluster), we must carefully select one
from all possible allowed projectees, and then we may
evaluate the commutator for that projectee.
To use this form of the coupled cluster equations in

stochastic coupled cluster requires making three modifi-
cations to the steps in conventional CCMC.

1. Due to the truncation of the Hausdorff expansion,
only clusters of at most four excitors need to be
used, regardless of the truncation level considered.

2. Clusters where two of the operators excite to or
from the same orbital (following Bartlett et. al.18,
we refer to these as “conjoint” terms, though they
are also known as Exclusion-Principle-Violating
terms19) must also be considered. For example,
take a pair of excitors that excite from the same
orbital, say âai and âbi , where âai = ĉiĉ

†
a and ĉi (ĉ

†
a)

is a conventional annihilation (creation) operator.

âai â
b
i = 0 and hence 〈Di|Ĥâai â

b
i |DHF〉 = 0 for all

|Di〉 and in the original form of stochastic coupled
cluster any such cluster of excitors can be ignored.
The argument applies equally to a pair of excitors
that excite to the same orbital.

When the similarity transformed Hamiltonian is
used, such a cluster can give a non-zero contri-
bution, however, as terms from the commutators,
such as 〈Di|â

a
i Ĥâbi |DHF〉 are not necessarily 0. This

means that the excitation in Ĥ must be chosen from
the determinant produced by collapsing some sub-
set of the cluster, |Dn〉, here given by âbi |DHF〉 =
∣

∣Db
i

〉

, as collapsing the whole cluster just gives zero,
not a valid excitor. From this, excitation 〈m| is cho-

sen with non-zeroHmn to sample Ĥ. The projectee
〈Di| follows from applying the remaining excitors
to |Dm〉. This overall process corresponds to the

product 〈Di|â
a
i |Dm〉 〈Dm|Ĥ|Dn〉 〈Dn|â

b
i |DHF〉
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Different partitions may give non-zero contribu-
tions to the commutator for different projectees,
so to sample all possible spawning events in an un-
biased manner requires randomly selecting a par-
tition, using that to choose an allowed projectee,
then evaluating the commutator by considering all
possible (allowed) partitions.

3. All Hamiltonian matrix elements, in spawning and
death, must be replaced by matrix elements of
the similarity transformed Hamiltonian. This also
means that the shift only applies to death on the
reference, and there is no death for conjoint clus-
ters. For instance when a cluster formed of a sin-
gle excitor âai is being considered and the excita-
tion for the Hamiltonian chosen for spawning is
âbj , the probability of spawning an excip on

∣

∣Dab
ij

〉

does not depend on Hmn = 〈Dab
ij |Ĥ|Da

i 〉 but on

〈Di|[Ĥ, T̂ ]|DHF〉 = 〈Dab
ij |Ĥ|Da

i 〉 − 〈Db
j |Ĥ|DHF〉.

Consider a system of three occupied orbitals, i, j and k,
and three virtual orbitals, a, b and c. Some representative
spawning attempts are:

1. A cluster consisting of a single excitor âbi is selected,
giving the determinant

∣

∣Db
i

〉

when applied to the

reference. The single excitation to
〈

Dab
ij

∣

∣ is cho-
sen for the spawning attempt, which succeeds with
probability proportional to | 〈Dab

ij |[Ĥ, âbi ]|DHF〉 | =

| 〈Dab
ij |Ĥ|Db

i 〉−〈Da
j |Ĥ|DHF〉 |. Death also occurs on

Db
i with probability proportional to 〈Db

i |Ĥ|Db
i 〉 −

〈DHF|Ĥ|DHF〉.

2. The cluster composed of the two excitors âai and
âbj is chosen, and collapsed onto the reference to

give
∣

∣Dab
ij

〉

. The single excitation to
∣

∣

∣
Dabc

ijk

〉

is

chosen for spawning, but this excitation (âck) is
not linked to the cluster so no spawning is at-
tempted as all the terms in the commutator cancel.
Death occurs on

∣

∣Dab
ij

〉

with probability propor-

tional to 〈Dab
ij |Ĥ|Dab

ij 〉−〈Da
i |Ĥ|Da

i 〉−〈Db
j |Ĥ|Db

j〉+

〈DHF|Ĥ|DHF〉.

3. The cluster composed of two excitors âai and âbi is
chosen. These both excite from the same occupied
orbital i so do not collapse to give an excitor that
can be applied to the reference. To choose an ex-
citation for the spawning step, the subset of the
cluster which does produce a determinant must be
chosen. The subset containing only âai is randomly
chosen to be the latter, corresponding to the par-
titioning 〈Di|â

b
iĤâai |DHF〉, giving the determinant

|Da
i 〉 to spawn from. The double excitation (âicaj)

to
∣

∣Dc
j

〉

is chosen in the Hamiltonian, and then the

remainder of the original cluster âbi is applied to
give spawning on

∣

∣Dbc
ij

〉

with probability propor-

tional to | 〈Dc
j |Ĥ|Da

i 〉 |. There is no death attempt
for conjoint clusters.
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FIG. 1. The correlation energy calculated in CCMC for the
pathological LiH+

2 systema at the CCSD level; the projected
energy is given by solid lines, the shift by dashed lines and
the exact CCSD energy (−0.175277Eh ) by the black dotted
line. An incorrect projected energy is obtained in the fixed-
shift regime using the simple form of death. The shift and
projected estimators fluctuate about the exact CCSD energy
in the variable-shift regime in all cases.

a This was generated for minimal debugging purposes and has
geometry rLiH1

= 1 Å, rLiH2
= 1.1 Å, and θHLiH = 90 ◦. In the

STO-3G basis, unrestricted orbitals were prepared with a
custom density functional with purely exchange,
Ex = 2K + XSlater + XBecke88. 2 core electrons and 8 virtual
spinorbitals were frozen leaving an active space of 2 electrons in
4 spinorbitals. Q-Chem outputs and molecular orbital integrals
for this system are included in the data repository.20

When the algorithm described above is used to calcu-
late the coupled cluster energy, convergence to the cor-
rect projected energy is only achieved in the variable-shift
regime, as shown in Fig. 1. The system shown in Fig. 1
is a pathological system displaying a very pronounced
bias but the same behaviour is general to all systems ex-
amined, albeit to a lesser degree. Similar behaviour is
observed in FCIQMC in a non-orthogonal basis21. This
can be understood by considering the change in the coeffi-
cients when the projector is applied to the correct wave-
function. The desired form once the wavefunction has
converged is ∆ti ∝ ti, as this ensures that the wavefunc-
tion being represented does not change, only the nor-
malisation. Substituting the exact wavefunction into the
CCMC update step gives for unlinked CCMC

∆ti = −δτtHF

〈

Di

∣

∣

∣
Ĥ − S

∣

∣

∣
ΨCC

〉

(6)

= −δτ(Eexact − S)t̃i, (7)

where t̃i = 〈Di|ΨCC〉 is the coefficient of |Di〉 in the cou-
pled cluster wavefunction, and for linked CCMC

∆ti = −δτtHF

〈

Di

∣

∣ H̄ − S
∣

∣DHF

〉

(8)

=

{

−δτtHF(Eexact − S) |Di〉 = |DHF〉

0 otherwise
(9)
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For the original equations, the discrepancy t̃i − ti is
typically small as the connected amplitudes are the dom-
inant contribution to the wavefunction. However there
is a much larger discrepancy when using the similarity
transformed Hamiltonian, giving rise to the larger devi-
ation in the projected energy shown in Fig. 1. We em-
phasise that this is only true in the fixed-shift regime;
once the population has grown to its desired size, the
shift is varied to control the population and averages to
the exact energy and hence the requirement on change in
coefficients is trivially met on average.
This can be resolved by modifying the update step

Eqs. (1) and (4) to be

ti → ti − δτtHF

〈

Di

∣

∣

∣
Ĥ − ECC

∣

∣

∣
ΨCC

〉

− δτ(ECC − S)ti,

(10)
and for linked CCMC

ti → ti − δτtHF

〈

Di

∣

∣ H̄ − ECC

∣

∣DHF

〉

− δτ(ECC − S)ti,
(11)

both of which give ∆ti = −δτ(ECC − S)ti when the ti
represent the exact wavefunction.
When S = ECC, these equations reduce to the original

form, so in the variable shift regime the same solution
is obtained. The difficulty with using the Eq. (10) and
Eq. (11) as written is that the exact coupled cluster en-
ergy is not known during the calculation, as it is the
quantity we aim to obtain. We therefore use the instan-
taneous value of the projected energy in its place as it is
an easily available estimator. This does not make a dif-
ference during the variable shift phase of the calculation,
during which statistics are accumulated, but reduces the
equilibration time necessary.
This two term form of the propagation can be regarded

as effecting a separation between two roles of the dynam-
ics: the first term ensures the excip distribution repre-
sents a solution to the coupled cluster equations, while
the second allows control of the total population via vary-
ing the shift.
The changes to the equations amount in practice to

using the projected energy rather than the shift to control
the rate of death on the composite clusters. This can be
rationalised by noting that no population resides directly
on the composite clusters, so such death processes do not
contribute directly to population control, thus should not
be dependent on the shift.
The population dynamics of the CCMC algorithm are

similar to those of FCIQMC.15 In particular, there is a
plateau phase during the initial growth in the number
of particles. This plateau occurs at a system-dependent
number of excips and is the manifestation of the sign
problem in CCMC. During the plateau phase, the total
excip population remains constant, but the excip popu-
lation on the reference continues to grow, so the plateau
can be identified by finding the maximum of the ratio
of the total to the reference population.16 In this work
we adopt the definition of the plateau height as the av-
erage population across the ten times with the largest

ratio of the total population to the reference population.
We have found this to be an effective measure of the up-
per bound to the plateau in these systems, though note
that it is somewhat dependent on the initial populations
and timesteps22, so we have kept these the same in the
calculations we have compared.
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FIG. 2. Plateau heights as a fraction of the size of the Hilbert
space for the neon atom and nitrogen and water (geometry
from Ref. 23) molecules using linked and unlinked CCMC. In
all cases, a lower plateau is obtained with the linked equations.

We have studied some small systems to see the effect
of this algorithm. The coupled cluster energies are re-
covered with, as shown in Fig. 2, lower plateau heights
than when using the original formulation of the algo-
rithm. The effect is most pronounced at high truncation
levels, which is to be expected as the termination of the
expansion of H̄ at fourth order will restrict the avail-
able clusters more for higher truncations. This means
that the smaller number of connections in the effective
Hamiltonian are better sampled, increasing the rate of
annihilation.

Despite Eq. (1) and Eq. (4) solving equivalent equa-
tions for the amplitudes ti, the proportion of excitors
on the reference is much larger when using the linked
equations. The instantaneous populations fluctuate, so
only the expectation values 〈Ni〉 correspond to the cor-
rect amplitudes. When considering the total population,
however, Ntot =

∑

i
|Ni| is a non-linear function of Ni,

so 〈Ntot〉 ≥
∑

i
| 〈Ni〉 |. Excitors on which the sign of the

population is not constant raise the value of 〈Ntot〉. As
the linked equations reduce the number of low amplitude
excitors that are instantaneously occupied at a given it-
eration, they give a lower 〈Ntot〉 for a fixed population
of excitors on the reference. We are investigating the
impact of this but believe that, due to the presence of
the population on the reference in the cluster generation
probabilities, this results in more stable calculations.

In conclusion, we have demonstrated that this linked
approach makes stochastic coupled cluster calculations
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more feasible, especially at the higher truncation levels,
which are not typically used but are necessary for an
accurate treatment of many chemically interesting prob-
lems. We have also presented a modification to the death
step for both linked and unlinked formalisms to remove a
bias in projected energy estimators while the population
is still growing, and we believe that this will be useful in
other cases where there is non-linearity in the projector.
By placing CCMC in the same theoretical framework

as conventional coupled cluster theory, namely using the
similarity transformation of the Hamiltonian, we hope to
be able to translate further technical and theoretical de-
velopments to our stochastic implementation. We finish
by emphasising two important benefits of a stochastic
approach to coupled cluster: the substantial reduction in
memory demands, by allowing sparsity in the amplitudes
to emerge naturally, and access to an efficient coupled
cluster algorithm that can handle arbitrary truncation
levels.
All CCMC calculations were performed using a devel-

opment version of HANDE24,25, with one- and two-body
molecular integrals obtained from Hartree-Fock calcu-
lations performed in Q-Chem.26 All data was analysed
using pyblock27, and plots produced using matplotlib28.
Raw and analysed data and analysis scripts are available
at Ref. 20.
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