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Linked dimensions of psychopathology and
connectivity in functional brain networks
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Neurobiological abnormalities associated with psychiatric disorders do not map well to

existing diagnostic categories. High co-morbidity suggests dimensional circuit-level

abnormalities that cross diagnoses. Here we seek to identify brain-based dimensions of

psychopathology using sparse canonical correlation analysis in a sample of 663 youths. This

analysis reveals correlated patterns of functional connectivity and psychiatric symptoms. We

find that four dimensions of psychopathology – mood, psychosis, fear, and externalizing

behavior – are associated (r= 0.68–0.71) with distinct patterns of connectivity. Loss of

network segregation between the default mode network and executive networks emerges as

a common feature across all dimensions. Connectivity linked to mood and psychosis

becomes more prominent with development, and sex differences are present for connectivity

related to mood and fear. Critically, findings largely replicate in an independent dataset

(n= 336). These results delineate connectivity-guided dimensions of psychopathology that

cross clinical diagnostic categories, which could serve as a foundation for developing

network-based biomarkers in psychiatry.
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P
sychiatry relies on signs and symptoms for clinical decision
making, without the use of established biomarkers to aid in
diagnosis, prognosis, and treatment selection. It is

increasingly recognized that existing clinical diagnostic categories
could hinder the search for biomarkers in psychiatry1, as they are
not clearly associated with distinct neurobiological abnormal-
ities2. The high co-morbidity among psychiatric disorders
exacerbates this problem3. Furthermore, studies have demon-
strated common structural, functional, and genetic abnormalities
across psychiatric syndromes, potentially explaining such co-
morbidity4–6. This body of evidence underscores the lack of direct
mapping between clinical diagnostic categories and the under-
lying pathophysiology.

This context has motivated the development of the National
Institute of Mental Health’s Research Domain Criteria, which
seek to construct a biologically-grounded framework for psy-
chiatric diseases7. In such a model, the symptoms of individual
patients are conceptualized as the result of mixed dimensional
abnormalities of specific brain circuits. While such a model sys-
tem is theoretically attractive, it has been challenging to imple-
ment in practice due to both the multiplicity of clinical
symptoms and the many brain systems implicated in psychiatric
disorders.

Network neuroscience is a powerful approach for examining
brain systems implicated in psychopathology8,9. One network
property commonly evaluated is its community structure, or
modular architecture. A network module (also called a sub-
network or a community) is a group of densely interconnected
nodes, which may form the basis for specialized sub-units of
information processing. Converging results across data sets,
methods, and laboratories provide substantial agreement on
large-scale functional brain modules such as the somatomotor,
visual, default mode, and fronto-parietal control networks10–12.
Furthermore, multiple studies documented abnormalities within
this modular topology in psychiatric disorders13,14. Specifically,
evidence suggests that many psychiatric disorders are associated
with abnormalities in network modules subserving higher-order
cognitive processes, including the default mode and fronto-
parietal control networks15,16.

In addition to such module-specific deficits, studies in mood
disorders17,18, psychosis14,19, and other disorders20,21 have
reported abnormal interactions between modules that are typi-
cally segregated from each other at rest. This is of particular
interest as modular segregation of both functional22,23 and
structural24 brain networks is refined during adolescence, a cri-
tical period when many psychiatric disorders emerge. Such
findings have led many disorders to be considered “neurodeve-
lopmental connectopathies.”25 Describing the developmental
substrates of psychiatric disorders is a necessary step towards
early identification of at-risk youth, and might ultimately allow
for interventions that “bend the curve” of maturation to achieve
improved functional outcomes26.

Despite the increasing interest in describing how abnormal-
ities of brain network development lead to the emergence of
psychiatric disorders, existing studies have been limited in
several respects. First, most have adopted a categorical case-
control approach, or only examined a single dimension of
psychopathology15, and are therefore unable to capture het-
erogeneity across diagnoses. Second, dimensional psycho-
pathology derived from factor analyses, including our prior
work27–30, were solely driven by covariance in the clinical
symptomatology, rather than being guided by both brain and
behavior features. Third, especially in contrast to adult studies,
existing work in youth has often used relatively small samples
(e.g., dozens of participants). While multivariate techniques
allow the examination of both multiple brain systems and

clinical dimensions simultaneously, such techniques usually
require large samples31.

In the current study, we seek to delineate functional network
abnormalities associated with a broad array of psychopathology
in youth. We have capitalized on a large sample of youth from the
Philadelphia Neurodevelopmental Cohort (PNC)32 by applying a
recently-developed machine learning technique called sparse
canonical correlation analysis (sCCA)33. As a multivariate
method, sCCA is capable of discovering complex linear rela-
tionships between two high-dimensional datasets34,35. It should
be noted that the approach of the current study is distinct from
prior work discovering biotypes within categories of psycho-
pathology, based purely on imaging features themselves (e.g.,
functional connectivity36 and gray matter density37). In contrast,
we seek to link a broad range of symptoms that are present across
categories to individual differences in functional brain networks.
Such an approach has been successfully applied in prior work on
neurodegenerative diseases34 as well as normal brain-behavior
relationships35.

Here, we use sCCA to delineate linked dimensions of psy-
chopathology and functional connectivity. As described below, we
uncover dimensions of connectivity that are highly correlated
with specific, interpretable dimensions of psychopathology. We
find that each psychopathological dimension is associated with a
distinct pattern of abnormal connectivity, and that all dimensions
are characterized by decreased segregation of default mode and
executive networks (fronto-parietal and salience). These network
features linked to each dimension of psychopathology show
expected developmental changes and sex differences. Finally, our
results are largely replicated in an independent dataset.

Results
Linked dimensions of psychopathology and connectivity. We
sought to delineate multivariate relationships between functional
connectivity and psychiatric symptoms in a large sample of
youth. To do this, we used sCCA, an unsupervised learning
technique that seeks to find correlations between two high-
dimensional datasets33. In total, we studied 999 participants of
ages 8–22 who completed both functional neuroimaging and a
comprehensive evaluation of psychiatric symptoms as part of the
PNC27,32 (Table 1 and Fig. 1). Participants in the PNC were
recruited from Children’s Hospital of Philadelphia pediatric
network in the greater Philadelphia area. In this community-
based study, participants were not recruited from psychiatric
services. As such, the prevalence of screening into specific

Table 1 Philadelphia neurodevelopmental cohort (PNC)

Discovery Replication Total

n 663 336 999

Sex Male 293 155 448

Female 370 181 551

Race White 306 153 459

Black 286 141 427

Other 71 42 113

Age 8–10 70 40 110

11–13 125 63 188

14–16 195 102 297

17–19 206 100 306

20–22 58 30 88

>22 9 1 10

Mean 15.82 ± 3.32 15.65 ± 3.32 15.76 ± 3.32

The cross-sectional sample of the PNC has 1601 participants in total. After applying health,

structural, and functional imaging quality exclusion criteria (details in Online Methods section),

663 and 336 subjects were included in the final discovery and replication samples, respectively
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psychopathology categories generally aligned with epidemiologi-
cally ascertained samples, as previously described27 (see Supple-
mentary Table 1). We divided this sample into discovery (n=
663) and replication datasets (n= 336) that were matched on age,
sex, race, and overall psychopathology (Fig. 1 and Supplementary
Fig. 1). Following pre-processing using a validated pipeline that
minimizes the impact of in-scanner motion38 (see Supplementary
Fig. 2, Supplementary Fig. 3 and Supplementary Fig. 4), we
constructed subject-level functional networks using a 264-node
parcellation system that includes an a priori assignment of nodes
to network communities10 (Fig. 2a–c, e.g., modules or sub-net-
works; see Online Methods section). Prior to analysis with sCCA,
we regressed age, sex, race, and motion out of both the con-
nectivity and clinical data to ensure that these potential con-
founders did not drive results. As features that do not vary across
subjects cannot be predictive of individual differences, we limited
our analysis of connectivity data to the top ten percent most
variable connections, as measured by median absolute deviation,
which is more robust against outliers than standard deviation
(Supplementary Fig. 5). The input data thus consisted of 3410
unique functional connections (Fig. 2b) and 111 clinical items
(Fig. 2c). The clinical items were drawn from the structured
GOASSESS interview27, and covers a diverse range of psycho-
pathological domains, including mood and anxiety disorders,
psychosis-spectrum symptoms, attention-deficit/hyperactivity
disorder (ADHD), and other disorders (see details in Supple-
mentary Data 1). Using elastic net regularization (L1+ L2) and
parameter tuning over both the clinical and connectivity features,
sCCA was able to obtain a sparse and interpretable model while
minimizing over-fitting (Fig. 2d and Supplementary Fig. 6).
Ultimately, sCCA identified specific patterns (“canonical vari-
ates”) of functional connectivity that were linked to distinct
combinations of psychiatric symptoms.

Based on the scree plot of covariance explained (Fig. 3a), we
selected the first seven canonical variates for further analysis.
Significance of each of these linked dimensions of symptoms and
connectivity was assessed using a permutation test, which
compares the canonical correlate of each variate to a null

distribution built by randomly re-assigning subjects’ brain and
clinical features (see Online Methods section and Supplementary
Fig. 7); False Discovery Rate (FDR) was used to control for type I
error rate due to multiple testing. Of these seven canonical
variates, three were significant (Pearson correlation r= 0.71,
PFDR < 0.001; r= 0.70, PFDR < 0.001, r= 0.68, PFDR < 0.01, respec-
tively) (Fig. 3b), with the fourth showing a trend toward
significance (r= 0.68, PFDR= 0.07, Puncorrected= 0.04). Notably,
these results were robust to many different methodological
choices, including the number of features entered into the initial
analysis (Supplementary Fig. 8a), the parcellation system
(Supplementary Fig. 8b), and the use of regularization with
elastic net versus data reduction with principal component
analysis (Supplementary Fig. 8c).

Each canonical variate represented a distinct pattern that
relates a weighted set of psychiatric symptoms to a weighted set of
functional connections. Inspection of the most heavily weighted
clinical symptom for each dimension provided an initial
indication regarding their content (Fig. 3c–f). For example,
“feeling sad” was the most heavily weighted clinical feature in the
first dimension, while “auditory perceptions” was the most
prominent symptom in the second. Next, we conducted detailed
analyses to describe the clinical and connectivity features driving
the observed multivariate relationships.

Brain-guided dimensions of psychopathology cross clin-
ical diagnostic categories. To understand the characteristics of
each linked dimension, we used a resampling procedure to
identify both clinical and connectivity features that were con-
sistently significant across subsets of the data (see Online Meth-
ods section and Supplementary Fig. 9). This procedure revealed
that 37 out of 111 psychiatric symptoms reliably contributed to at
least one of the four dimensions (Fig. 4). Next, we mapped these
data-driven items to typical clinical diagnostic categories. This
revealed that the features selected by multivariate analyses gen-
erally accord with clinical phenomenology. Specifically, despite
being selected on the basis of their relationship with functional
connectivity, the first three canonical variates delineated dimen-
sions that resemble clinically coherent dimensions of mood,
psychosis, and fear (e.g., phobias). The fourth dimension,
which was present at an uncorrected threshold, mapped to
externalizing behaviors (ADHD and oppositional defiant disorder
(ODD)).

While each canonical variate mapped onto coherent clinical
features, each dimension contained symptoms from several
different clinical diagnostic categories. For example, the mood
dimension was comprised of symptoms from categorical domains
of depression (“feeling sad” received the highest loading), mania
(“irritability”), and obsessive-compulsive disorder (OCD; “recur-
rent thoughts of harming self or others”) (Fig. 4a). Similarly,
while the second dimension mostly consisted of psychosis-
spectrum symptoms (such as “auditory verbal hallucinations”),
two manic symptoms (i.e., “overly energetic” and “pressured
speech”) were included as well (Fig. 4b). The third dimension was
composed of fear symptoms, including both agoraphobia and
social phobia (Fig. 4c). The fourth dimension was driven
primarily by symptoms of both ADHD and ODD, but also
included the irritability item from the depression domain
(Fig. 4d). The connectivity-guided clinical dimensions were
significantly correlated with, but not identical to, previous factor
models such as the bifactor models28 (see Supplementary Fig. 12).
These data-driven dimensions of psychopathology align with
clinical phenomenology, but in a dimensional fashion that does
not adhere to discrete categories.
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Common and dissociable patterns of connectivity. sCCA
identified each dimension of psychopathology through shared
associations between clinical data and specific patterns of con-
nectivity. Next, we investigated the loadings of connectivity fea-
tures that underlie each canonical variate. To aid visualization of
the high-dimensional connectivity data, we summarized loading
patterns according to network communities established a priori
by the parcellation system. Specifically, we examined patterns of
both within-network and between-network connectivity (Sup-
plementary Fig. 10; see Online Methods section), as this frame-
work has been useful in prior investigations of both brain
development22,23 and psychopathology17,19,39,40. This procedure
revealed specific patterns of network-level connectivity that were
related to the four dimensions of psychopathology (Fig. 5). For
example, the mood dimension was characterized by a marked
increase in connectivity between the ventral attention and sal-
ience networks (Fig. 5a, e, i), while the psychosis dimension
received the highest loadings in connectivity between the default
mode and executive systems (salience and fronto-parietal net-
works (Fig. 5b, f, j)). In contrast, increased within-network con-
nectivity of the fronto-parietal network was most evident in the
fear dimension (Fig. 5c, g, k). Alterations of the salience system
were particularly prominent for the externalizing behavior
dimension, including lower connectivity with the default mode
network and greater connectivity with the fronto-parietal control
network (Fig. 5d, h, l). Quantitatively, the specific loadings of
within- and between-network connectivity in each dimension did
not significantly correlate with each other (all P > 0.05), demon-
strating that each dimension of psychopathology was character-
ized by a unique pattern of network connectivity.

The results indicate that while each canonical variate was
comprised of unique patterns of connectivity, there were several
features that were shared across all dimensions. Such findings
agree with accumulating evidence for common circuit-level

dysfunction across psychiatric syndromes4,5. To quantitatively
assess such common features, we compared overlapping results
against a null distribution using permutation testing (see Online
Methods section). This procedure revealed an ensemble of edges
that were consistently implicated across all four dimensions.
These connections can be mapped to individual nodes, and
revealed that the regions most impacted across all dimensions
included the frontal pole, superior frontal gyrus, dorsomedial
prefrontal cortex, medial temporal gyrus, and amygdala (Fig. 6a).
Similar analysis at the level of sub-networks (Fig. 6b) illustrated
that abnormalities of connectivity within the default mode and
fronto-parietal networks were present in all four psychopatholo-
gical dimensions (Fig. 6c). Furthermore, reduced segregation
between the default mode and executive networks, such as the
fronto-parietal and salience systems, was common to all
dimensions. These shared connectivity features complement each
dimension-specific pattern, and offer evidence for both common
and dissociable patterns of connectivity associated with
psychopathology.

Developmental effects and sex differences. In the above ana-
lyses, we examined multivariate associations between connectivity
and psychopathology while controlling for participant age.
However, given that abnormal brain development is thought to
underlie many psychiatric disorders25,26, we next examined
whether connectivity patterns significantly associated with psy-
chopathology differ as a function of age or sex in this large
developmental cohort. We repeated the analysis conducted above
using connectivity and clinical features, but in this case did not
regress out age and sex; race and motion were regressed as prior.
Notably, the dimensions derived were quite similar, with highly
correlated feature weights (Supplementary Table 2). As in prior
work24,41, developmental associations were examined using
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generalized additive models with penalized splines, which allows
for statistically rigorous modeling of both linear and non-linear
effects while minimizing over-fitting. Using this approach, we
found that the brain connectivity patterns associated with both
mood and psychosis became significantly more prominent with
age (Fig. 7a, b, PFDR < 10

−13, PFDR < 10
−6, respectively). Addi-

tionally, brain connectivity patterns linked to mood and fear were
both stronger in female participants than males (Fig. 7c, d, PFDR

< 10−8, PFDR < 10
−7, respectively). We did not observe age by sex

interaction effects in any dimension.

Linked dimensions are replicated in an independent sample.
Throughout our analysis of the discovery sample, we used pro-
cedures both to guard against over-fitting and to enhance the
generalizability of results (regularization, permutation testing,
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resampling). As a final step, we tested the replicability of our
findings using an independent sample, which was left-out from all
analyses described above (n= 336, Table 1, Fig. 1, and Supple-
mentary Fig. 1). Although this replication sample was half the size
of our original discovery sample, sCCA identified four canonical
variates that highly resemble the original four linked dimensions
of psychopathology. Specifically, the correlations between the
clinical loadings in the discovery sample and those in the repli-
cation sample were r= 0.85 for psychosis (PFDR < 4.4 × 10−16),
r= 0.73 for externalizing (PFDR < 4.4 × 10−16), r= 0.59 for fear
(PFDR= 8.43 × 10−12), and r= 0.23 for mood (PFDR= 0.01). In
the replication sample, three out of four dimensions were sig-
nificant after FDR correction of permutation tests (Fig. 8 and
Supplementary Fig. 11). While the bootstrap analysis identified 37
out of 111 symptoms in the discovery sample to consistently
contribute to the four linked-dimensions (Fig. 4), the same ana-
lysis in the replication sample yielded similar sets of symptoms
(80%, 64%, 63%, and 50% overlapping for psychosis, externalizing
behavior, fear, and mood, respectively). Additionally, connectivity
patterns associated with mood symptoms increased significantly
with age (PFDR= 0.0082), while connectivity patterns associated

with psychosis symptoms showed a trend towards increasing with
age (Puncorrected= 0.027, PFDR= 0.053). As in the discovery
sample, connectivity patterns associated with fear (PFDR= 0.039)
and mood (PFDR= 0.0083) were both elevated in females in the
replication sample.

Discussion
Leveraging a large neuroimaging data set of youth and recent
advances in machine learning, we discovered several multivariate
patterns of functional connectivity linked to interpretable
dimensions of psychopathology that cross traditional diagnostic
categories. These patterns of abnormal connectivity were largely
replicable in an independent dataset. While each dimension
displayed a specific pattern of connectivity abnormalities, loss of
network segregation between the default mode and executive
networks was common to all dimensions. Furthermore, patterns
of connectivity displayed unique developmental effects and sex
differences. Together, these results suggest that complex psy-
chiatric symptoms are associated with specific patterns of
abnormal connectivity during brain development.

A
u
d
it
o
ry

 p
e
rc

e
p
ti
o
n
s

O
d
d
/u

n
u
sa

l t
h
o
u
g
h
ts

R
e
a
lit

y 
co

n
fu

si
o
n

A
ud

ib
le

 th
ou

gh
ts

Sup
er

st
iti
on

s

Thought c
ontro

l

Mind tric
ks

Loss sense of self

Auditory verbal hallucinations

Persecutory/suspicious

Overly energetic
Pressured speechIrritabilityFeeling sad

C
ryingA

n
h
e
d
o
n
ia

Irrita
b
ility

S
u
ic

id
a
lity

T
h
o
u
g
h
ts

 o
f h

a
rm

in
g

S
o
lo

 t
ra

v
e
l

L
e
a
vi

n
g
 h

o
m

e

P
u
b
lic

 t
ra

n
si

t

B
rid

ge
s/

tu
nn

el
s

N
ov

el
 s

oc
ia

l s
itu

at
io

ns

Focu
s o

f s
ocia

l s
itu

atio
ns

Center of attentionPublic performance

Problems following instructions

Trouble paying attention

Trouble listening

Difficulty sitting still

Difficulty waiting turn

M
aking careless m

istakes

T
rouble m

aking plans
B

re
a
kin

g
 ru

le
s

Irrita
b
ility d

u
e
 to

 u
n
fa

irn
e
ss

L
o
s
in

g
 te

m
p
e
r

P
sychosis

M
a
n
ia

Depre
ss

ion

A

0
.2

7

0
.2

0.
21

0.
49

0.3
8

0.35

0.310.28

B
0.4 0.38 0.36

0.3
0.27

0.26
0
.2

2
0
.2

4

0
.2

5

0
.1

8

C

0.37
0.36

0.26

0.24

0.34

0.28

0
.2

7

0
.2

7

D

0.21

0
.3

6
0
.2

9
0
.2

9
0
.2

8
0
.2

4
0.

23

0.2
2 0.35 0.3 0.27

D
im

e
n

s
io

n

Oppo.Defiant

A
tt
e
n
tio

n
 D

e
fic

it

S
o
cia

l p
h
o
bia

Agoraphobia
SUIOCD

Fig. 4 Connectivity-informed dimensions of psychopathology cross clinical diagnostic categories. a The mood dimension was composed of a mixture of

depressive symptoms, suicidality, irritability, and recurrent thoughts of self-harm. b The psychotic dimension was composed of psychosis-spectrum

symptoms, as well as two manic symptoms. c The fear dimension was comprised of social phobia and agoraphobia symptoms. d The externalizing behavior

dimension showed a mixture of symptoms from attention-deficit and oppositional defiant disorders, as well as irritability from the depression section. The

outermost labels are the item-level psychiatric symptoms (see details in Supplementary Data 1). The color arcs represent categories from clinical screening

interview and the Diagnostic and Statistical Manual of Mental Disorders (DSM). Numbers in the inner rings represent sCCA loadings for each symptom in

their respective dimension. Only loadings determined to be statistically significant by a resampling procedure are shown here

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05317-y

6 NATURE COMMUNICATIONS |  (2018) 9:3003 | DOI: 10.1038/s41467-018-05317-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Both the co-morbidity among psychiatric diagnoses and the
notable heterogeneity within each diagnostic category suggest that
our current symptom-based diagnostic criteria do not “carve nature
at its joints”2. Establishing biologically-targeted interventions in
psychiatry is predicated upon delineation of the underlying neu-
robiology. This challenge has motivated the NIMH Research
Domain Criteria (RDoC) effort, which seeks to link circuit-level
abnormalities in specific brain systems to symptoms that might be
present across clinical diagnoses42. Accordingly, there has been a
proliferation of studies that focus on linking specific brain circuit(s)
to a specific symptom dimension or behavioral measure across
diagnostic categories43,44. However, by focusing on a single beha-
vioral measure or symptom domain, many studies ignore the co-
morbidity among psychiatric symptoms. A common way to
attempt to evaluate such co-morbidity is to find latent dimensions
of psychopathology using factor analysis or related techniques. For
example, factor analyses of clinical psychopathology have suggested
the presence of dimensions including internalizing symptoms,
externalizing symptoms, and psychosis symptoms27,28. While such
dimensions are reliable, they are drawn entirely from the covariance
structure of self-report or interview-based clinical data, and are not
informed by neurobiology.

An alternative and increasingly pursued approach is to parse
heterogeneity in psychiatric conditions using multivariate analysis
of biomarker data such as neuroimaging. For example,
researchers have used functional connectivity36 and gray matter
density37 to study the heterogeneity within major depressive

disorder and psychotic disorders, respectively. However, most
studies have principally considered only one or two clinical
diagnostic categories, and typically the analytic approach yields
discrete subtypes (or “biotypes”). By definition, such a design is
unable to discover continuous dimensions that span multiple
categories. Further, there is tension between the dimensional
schema suggested by RDoC and categorical biotypes; as suggested
by RDoC, it seems more plausible that psychopathology in an
individual results from a mixture of abnormalities across several
brain systems. Finally, unsupervised learning approaches using
only imaging data and not considering clinical data may fre-
quently yield solutions that are difficult to interpret, and do not
align with clinical experience.

In contrast, in this study we used a multivariate analysis
technique – sCCA – that allowed simultaneous consideration of
clinical and functional connectivity data in a large sample with
diverse psychopathology. This method allowed us to uncover
linked dimensions of psychopathology and connectivity that cross
diagnostic categories yet remain clinically interpretable. Com-
pared to supervised classification methods (e.g., case-control, or
multi-class), where each subject is categorized into one discrete
class, unsupervised sCCA overcomes the inherent limitation of
using discrete diagnostic categories (such as those provided by the
Diagnostic and Statistical Manual of Mental Disorders) and
allows continuous dimensions of psychopathology to be present
in an individual to a varying degree. In addition, in contrast to
“one-view” multivariate studies (such as factor analysis of clinical
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data or clustering of imaging data)27,28, the sCCA-derived clinical
dimensions were explicitly selected on the basis of co-varying
signals that were present as both individual differences of con-
nectivity and clinical symptoms. Such an unsupervised “two-
view” approach has been successfully applied in studies of
neurodegenerative diseases34 and normal brain-behavior rela-
tionships35. In this dimensional, trans-diagnostic approach, the
psychopathology of an individual is represented as a mixture of
dimensional brain circuit abnormalities, which together produce
a specific combination of psychiatric symptoms.

Notably, the brain-driven dimensions described here incor-
porated symptoms across several diagnostic categories while
remaining congruent with prevailing models of psychopathology.
For example, the mood dimension was composed of items from
five sections of the clinical interview: depression, mania, OCD,
suicidality, and psychosis-spectrum. Despite disparate origins, the
content of the items forms a clinically coherent picture, including
depressed mood, anhedonia, loss of sense of self, recurrent
thoughts of self-harm, and irritability. Notably, symptoms of
irritability were also significantly represented in the externalizing
behavior dimension, suggesting that irritability may have het-
erogeneous, divergent neurobiological antecedents. The fear
dimension, on the other hand, represents a more homogeneous
picture of various types of phobias (e.g. social phobia and agor-
aphobia), that had little overlap with other categorical symptoms.
Finally, the psychosis dimension (which was only significant in
the discovery sample) was mainly comprised of psychotic
symptoms, but also included symptoms of mania. This result
accords with studies demonstrating shared inheritance patterns of
schizophrenia and bipolar disorder, and findings that specific
common genetic variants increase risk of both disorders45.
Instead of averaging over many clinical features within a diag-
nostic category, sCCA selected specific items that were most
tightly linked to patterns of connectivity. These groups of
symptoms remained highly interpretable, and were lar-
gely reproducible in the replication data set.

Each of the clinical dimensions identified was highly correlated
with patterns of dysconnectivity. These patterns were summarized

according to their location between and within functional network
modules, which has been a useful framework for understanding
both brain development and psychopathology19,23. While each
dimension of psychopathology was associated with a unique
pattern of dysconnectivity, one of the most striking findings to
emerge was evidence that reduction of functional segregation
between the default mode and fronto-parietal networks was a
common feature of all dimensions. The exact connections impli-
cated in each dimension might vary, but permutation-based
analyses demonstrated that loss of segregation between these two
networks was present in all four dimensions. Fox et al.46 originally
demonstrated that the default mode network is anti-correlated
with task-positive functional brain systems including the fronto-
parietal network. Furthermore, studies of brain maturation have
shown that age-related segregation of functional brain modules is
a robust and reproducible finding regarding adolescent brain
development23,24. As part of this process, connections within
network modules strengthen and connections between two net-
work modules weaken. This process is apparent using functional
connectivity22,23 as well as structural connectivity24. Notably, case-
control studies of psychiatric disorders in adults have found
abnormalities consistent with a failure of developmental network
segregation, in particular between executive networks, such as the
fronto-parietal and salience networks, and the default mode net-
work47. Using a purely data-driven analysis, our results support
the possibility that loss of segregation between the default mode
and executive networks may be a common neurobiological
mechanism underlying vulnerability to a wide range of psychiatric
symptoms, lending new evidence for the triple-network model of
psychiatric disorders48,49.

In addition to such common abnormalities that were present
across dimensions, each dimension of psychopathology was
associated with a unique, highly correlated pattern of dyscon-
nectivity. For example, connectivity features linked to the mood
dimension included hyper-connectivity within the default mode,
fronto-parietal and salience networks. These dimensional results
from a multivariate analysis are remarkably consistent with prior
work, which has provided evidence of default mode hyper-
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connectivity using conventional case-control designs and uni-
variate analysis50,51. However, the data-driven approach used
here allowed us to discover a combination of novel connectivity
features that was more predictive than traditional univariate
association analyses. These features included enhanced con-
nectivity between both the dorsal attention and fronto-parietal
networks as well as between the ventral attention and salience
networks. The fear, externalizing, and psychosis dimensions were
defined by a similar mix between novel features and a con-
vergence with prior studies. Specifically, fear was characterized by
weakened connectivity within default mode network, enhanced
connectivity within fronto-parietal network, and – in contrast to

mood – decreased connectivity between ventral attention and
salience networks. In contrast to other dimensions, externalizing
behavior exhibited increased connectivity in the visual network
and decreased connectivity between fronto-parietal and dorsal
attention networks. Finally, the psychosis dimension exhibited
stronger connectivity in default mode network and reduced seg-
regation from executive networks (fronto-parietal and salience).
Notably, while prior studies have focused on the central role of
default mode dysconnectivity in schizophrenia52 with mixed
evidence for hyper-connectivity53 and hypo-connectivity54, in the
present data the effect within default mode network itself was not
nearly as strong as its reduced segregation from the executive
networks. Indeed, this finding is consistent with recent data that
in psychosis the disruption of segregation between the default
mode and task positive networks is a more consistent feature than
dysconnectivity within the default mode itself 55.

Importantly, each of these dimensions was initially discovered
while controlling for the effects of age and sex. However, given
that many psychiatric symptoms during adolescence show a clear
evolution with development56 and marked disparities between
males and females57, we evaluated how the connectivity features
associated with each dimension were correlated with age and sex.
We found that the patterns of dysconnectivity that linked to
mood and psychosis symptoms strengthened with age during the
adolescent period. This finding is consistent with the well-
described clinical trajectory of both mood and psychosis dis-
orders, which often emerge in adolescence and escalate in severity
during the transition to adulthood58. In contrast, no age effects
were found for externalizing or fear symptoms, which are typi-
cally present earlier in childhood and have a more stable time-
course59. Additionally, we observed marked sex differences in the
patterns of connectivity that linked to mood and fear symptoms,
with these patterns being more prominent in females across the
age range studied. This result accords with data from large-scale
epidemiological studies, which have documented a far higher risk
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of mood and anxiety disorders in females60,61. Despite marked
differences in risk by sex (i.e., double in some samples), the
mechanism of such vulnerability has been only sparsely studied in
the past32. The present results suggest that sex differences in
functional connectivity may in part mediate the risk of mood and
fear symptoms.

Although this study benefited from a large sample, advanced
multivariate methods, and replication of results in an indepen-
dent sample, several limitations should be noted. First, it should
be emphasized that our approach did not seek to define biotypes
within clinical diagnostic categories in a fully data-driven man-
ner, as in influential prior work36,37. Rather, here we sought to
provide complementary understanding of heterogeneity by link-
ing symptoms that are present across clinical diagnostic cate-
gories to alterations of functional connectivity, uncovering
dimensions of psychopathology that are guided by and linked to
underlying network abnormalities. However, this approach
necessarily is limited by the clinical data being used, in this case
item-level data from a structured clinical interview. Although the
item-level data used do not explicitly consider clinical diagnostic
categories, the items themselves were nonetheless drawn from a
standard clinical interview. Incorporating additional data types
such as genomics may capture different sources of important
biological heterogeneity. Second, while we successfully replicated
our findings (except for the psychosis dimension) in an inde-
pendent sample, the generalizability of the study should be fur-
ther evaluated in datasets that are acquired in different settings.
Third, all data considered in this study were cross-sectional,
which has inherent limitations for studies of development.
Ongoing follow-up of this cohort will yield informative data that
will allow us to evaluate the suitability of these brain-derived
dimensions of psychopathology for charting developmental tra-
jectories and prediction of clinical outcome. Fourth, our repli-
cation sample was constructed from the PNC data. Using an
independently acquired dataset to validate our findings would
provide evidence of greater generalizability than splitting the
original data into two samples. However, this approach was
dictated by the lack of correspondence with clinical instruments
used in other large-scale developmental imaging studies. This
limitation underscores the need for harmonization of not just
imaging data but also clinical measures across studies moving
forward. Finally, our current analysis only considered functional
connectivity and clinical psychopathology. Future research could
incorporate rich multi-modal imaging data, cognitive measures,
and genomics.

In summary, in this study we discovered and replicated mul-
tivariate patterns of connectivity that are highly correlated with
dimensions of psychopathology in a large sample of youth. These
dimensions cross traditional clinical diagnostic categories,
yet align with clinical experience. Each dimension was composed
of unique features of connectivity, while a lack of functional
segregation between the default mode network and executive
networks was common to all dimensions. Paralleling the clinical
trajectory of each disorder and known disparities in prevalence
between males and females, we observed both marked develop-
mental effects and sex differences in these patterns of con-
nectivity. As suggested by the NIMH Research Domain Criteria,
our findings demonstrate how specific circuit-level abnormalities
in the brain’s functional network architecture may give rise to a
diverse panoply of psychiatric symptoms. Such an approach has
the potential to clarify the high co-morbidity between psychiatric
diagnoses and the great heterogeneity within each diagnostic
category. Moving forward, the ability of these dimensions to
predict disease trajectory and response to treatment should be
evaluated, as such a neurobiologically-grounded framework could
accelerate the rise of personalized medicine in psychiatry.

Online methods
Participants. Resting-state functional magnetic resonance ima-
ging (rs-fMRI) datasets were acquired as part of the Philadelphia
Neurodevelopmental Cohort (PNC), a large community-based
study of brain development32. In total, 1601 participants com-
pleted the cross-sectional neuroimaging protocol (Table 1, Fig. 1).
One subject had missing clinical data. To create two independent
samples for discovery and replication analyses, we performed a
random split of the remaining 1600 participants using the
CARET package in R. Specifically, using the function create-
DataPartition, a discovery sample (n= 1069) and a replication
sample (n= 531) were created that were stratified by overall
psychopathology (Supplementary Fig. 1). The two samples were
confirmed to also have similar distributions in regards to age, sex,
and race (Fig. 1), as well as motion (Supplementary Fig. 2).
Overall psychopathology is the general factor score reported
previously from factor analysis of the clinical data alone27,28.

Of the discovery sample (n= 1069), 111 were excluded due to
gross radiological abnormalities or a history of medical problems
that might affect brain function. Of the remaining 958
participants, 45 were excluded for having low quality T1-
weighted images, and 250 were excluded for missing rs-fMRI,
incomplete image coverage, or excessive motion during the
functional scan, which is defined as having an average framewise
motion more than 0.20 mm or more than 20 frames exhibiting
over 0.25 mm movement (using the Jenkinson calculation63).
These exclusion criteria produced a final discovery sample
consisting of 663 youths (mean age 15.82, SD= 3.32; 293 males
and 370 females). Applying the same exclusion criteria to the
replication sample produced 336 participants (mean age 15.65,
SD= 3.32; 155 males and 181 females). See Table 1 and Fig. 1 for
detailed demographics of each sample.

Psychiatric assessment. Psychopathology symptoms were eval-
uated using a structured screening interview (GOASSESS), which
has been described in detail elsewhere27. To allow rapid training
and standardization across a large number of assessors, GOAS-
SESS was designed to be highly structured, with screen-level
symptom and episode information. The instrument is abbreviated
and modified from the epidemiologic version of the NIMH
Genetic Epidemiology Research Branch Kiddie-SADS62. The
psychopathology screen in GOASSESS assessed lifetime occur-
rence of major domains of psychopathology including psychosis
spectrum symptoms, mood (major depressive episode, mania),
anxiety (agoraphobia, generalized anxiety, panic, specific phobia,
social phobia, separation anxiety), behavioral disorders (opposi-
tional defiant, attention deficit/hyperactivity, conduct), eating
disorders (anorexia, bulimia), and suicidal thinking and beha-
vior (Supplementary Table 1). The 111 item-level symptoms used
in this study were described in prior factor analysis of the clinical
data in PNC28. For the specific items, see Supplementary Data 1.

Image acquisition. Structural and functional subject data were
acquired on a 3T Siemens Tim Trio scanner with a 32-channel
head coil (Erlangen, Germany), as previously described32. High-
resolution structural images were acquired in order to facilitate
alignment of individual subject images into a common space.
Structural images were acquired using a magnetization-prepared,
rapid-acquisition gradient-echo (MPRAGE) T1-weighted sequence
(TR= 1810ms; TE= 3.51ms; FoV= 180 × 240mm; resolu-
tion 0.9375 × 0.9375 × 1 mm). Approximately 6 minutes of task-
free functional data were acquired for each subject using a blood
oxygen level-dependent (BOLD-weighted) sequence (TR=

3000 ms; TE= 32 ms; FoV= 192 × 192 mm; resolution 3 mm
isotropic; 124 volumes). Prior to scanning, in order to acclimate
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subjects to the MRI environment and to help subjects learn to
remain still during the actual scanning session, a mock scanning
session was conducted using a decommissioned MRI scanner and
head coil. Mock scanning was accompanied by acoustic record-
ings of the noise produced by gradient coils for each scanning
pulse sequence. During these sessions, feedback regarding head
movement was provided using the MoTrack motion tracking
system (Psychology Software Tools, Inc., Sharpsburg, PA).
Motion feedback was only given during the mock scanning ses-
sion. In order to further minimize motion, prior to data acqui-
sition subjects’ heads were stabilized in the head coil using one
foam pad over each ear and a third over the top of the head.
During the resting-state scan, a fixation cross was displayed as
images were acquired. Subjects were instructed to stay awake,
keep their eyes open, fixate on the displayed crosshair, and
remain still.

Structural preprocessing. A study-specific template was gener-
ated from a sample of 120 PNC subjects balanced across sex, race,
and age bins using the buildtemplateparallel procedure in
ANTS64. Study-specific tissue priors were created using a multi-
atlas segmentation procedure65. Subject anatomical images were
independently rated by three highly trained image analysts. Any
image that did not pass manual inspection was removed from the
analysis. Each subject’s high-resolution structural image was
processed using the ANTS Cortical Thickness Pipeline66. Fol-
lowing bias field correction67, each structural image was diffeo-
morphically registered to the study-specific PNC template using
the top-performing SYN deformation provided by ANTS68.
Study-specific tissue priors were used to guide brain extraction
and segmentation of the subject’s structural image69.

Functional preprocessing. Task-free functional images were
processed using one of the top-performing pipelines for removal
of motion-related artifact38. Preprocessing steps included (1)
correction for distortions induced by magnetic field inhomo-
geneities using FSL’s FUGUE utility, (2) removal of the 4 initial
volumes of each acquisition, (3) realignment of all volumes to a
selected reference volume using MCFLIRT63, (4) removal of and
interpolation over intensity outliers in each voxel’s time series
using AFNI’s 3DDESPIKE utility,
(5) demeaning and removal of any linear or quadratic trends,
and (6) co-registration of functional data to the high-resolution
structural image using boundary-based registration70. The arte-
factual variance in the data was modelled using a total of 36
parameters, including the six framewise estimates of motion, the
mean signal extracted from eroded white matter and cere-
brospinal fluid compartments, the mean signal extracted from the
entire brain, the derivatives of each of these nine parameters, and
quadratic terms of each of the nine parameters and their deri-
vatives. Importantly, our findings are robust to the methodolo-
gical choice of regressing out global signal (Supplementary Fig. 3
and Supplementary Fig. 4). Both the BOLD-weighted time series
and the artefactual model time series were temporally filtered
using a first-order Butterworth filter with a passband between
0.01 and 0.08 Hz71.

Network construction. We built a functional connectivity net-
work using the residual timeseries (following de-noising) of all
parcels of a common parcellation10. The parcellation used in the
main analysis consists of 264 spherical nodes of 20 mm diameter
distributed across the brain.10 The a priori communities for this
set of nodes were originally delineated using the Infomap algo-
rithm72 and were replicated in an independent sample. This

parcellation was particularly suitable for our analysis as it has
been previously used for studying developmental changes in
connectivity and network modularity22 and has been used as part
of several studies in this dataset in the past38,73,74. As part of the
supplementary analysis to demonstrate the robustness of the
results independent of parcellation choices (Supplementary
Fig. 8), we also constructed networks based on an alternative
parcellation developed by Gordon et al.12. This set of nodes was
derived using edge detection and boundary mapping to define
areal parcels. The functional connectivity between any pair of
brain regions was operationalized as the Pearson correlation
coefficient between the mean activation timeseries extracted from
those regions. For each parcellation, an n × n weighted adjacency
matrix encoding the connectome was thus obtained, where n
represents the total number of nodes (or parcels) in that parcel-
lation. Community boundaries were defined a priori for each
parcellation scheme.

To ensure that potential confounders did not drive the
canonical correlations, we regressed out relevant covariates out
of the input matrices. Specifically, using the glm and residual.glm
functions in R, we regressed age, sex, race, and in-scanner motion
out of the connectivity data, and regressed age, sex, and race out
of the clinical data. Importantly, we found that the canonical
variates derived from regressed and non-regressed datasets were
comparable, with highly correlated feature weights (Supplemen-
tary Table 2).

Dimensionality reduction. Each correlation matrix comprised
34,980 unique connectivity features. We reasoned that since
sCCA seeks to capture sources of variation common to both
datasets, connectivity features that are most predictive of psy-
chiatric symptoms would be those with high variance across
participants. Therefore, to reduce dimensionality of the con-
nectivity matrices, we selected the top edges with the highest
median absolute deviation (MAD) (Supplementary Fig. 5). MAD
is defined as median Xi �medianðXÞj jð Þ, or the median of the
absolute deviations from the vector’s median. We chose MAD as
a measurement for variance estimation, because it is a robust
statistic, being more resilient to outliers in a data set than other
measures such as the standard deviation. To illustrate which
edges were selected based on MAD, we visualized the network
adjacency matrix with all edges, at 95th, 90th, and 75th percentile
(Supplementary Fig. 5c).

An alternative approach for dimensionality reduction is
principal component analysis (PCA), from which we selected
the top 111 components (explaining 37% of variance) as
connectivity features entered into sCCA. As detailed in
Supplementary Fig. 8, using PCA yielded similar canonical
variates as MAD. We ultimately chose feature selection with
MAD because it allowed direct use of individual connectivity
strength instead of latent variables (e.g. components from PCA)
as the input features to sCCA, thus increasing the interpretability
of our results.

Sparse canonical correlation analysis. sCCA is a multivariate
procedure that seeks maximal correlations between linear com-
binations of variables in both sets, with regularization to achieve
sparsity33. In essence, given two matrices, Xn ´ p and Yn×q, where n
is the number of observations (e.g., participants), p and q are the
number of variables (e.g., clinical and connectivity features,
respectively), sCCA involves finding u and v, which are loading
vectors, that maximize cor (Xu,Yv). Mathematically, this
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optimization problem can be expressed as

maximize uTXTYv; subject to jjujj22 � 1; jjvjj22 � 1;

jjujj1 � c1; jjvjj1 � c2:
ð1Þ

Since both L1(||·||1) and L2-norm (||·||2) are used, this is an
elastic net regularization that combines the LASSO and ridge
penalties. The penalty parameters for the L2 norm are fixed for
both u and v at 1, but those of L1 norm, namely c1 and c2, are set
by the user and need to be tuned (see below).

We chose a linear kernel over non-linear implementations of
sCCA for two reasons. First, while a more complex model may
potentially better fit the data, increased model complexity often
results in reduced interpretability. Secondly, a non-linear model
may require a larger sample size to accurately estimate the
increased number of parameters.

Grid search for regularization parameters. We tuned the L1

regularization parameters for the connectivity and the clinical
features, respectively (see Supplementary Fig. 6). The range of
sparsity parameters are constrained to be between 0 and 1 in the
PMA package33, where 0 indicates the smallest number of fea-
tures (i.e., highest level of sparsity) and 1 indicates the largest
number of features (i.e., lowest level of sparsity). We conducted a
grid search in increments of 0.1 to determine the combination of
parameters that would yield the highest canonical correlation of
the first variate across 10 randomly resampled samples, each
consisting of two-thirds of the discovery dataset. Note that the
parameters were only tuned on the discovery sample and the
same regularization parameters were applied in the replication
analysis.

Permutation testing. To assess the statistical significance of each
canonical variate, we used a permutation testing procedure to
create a null distribution of correlations (Supplementary Fig. 7).
Essentially, we held the connectivity matrix constant, and then
shuffled the rows of the clinical matrix so as to break the linkage
of participants’ brain features and their symptom features. Then
we performed sCCA using the same set of regularization para-
meters to generate a null distribution of correlations after per-
muting the input data 1000 times (B). As permutation could
induce arbitrary axis rotation, which changes the order of cano-
nical variates, or axis reflection, which causes a sign change for
the weights, we matched the canonical variates resulting from
permuted data matrices to the ones derived from the original data
matrix by comparing the clinical loadings (v)75. The PFDR value
was estimated as the number of null correlations (ri) that
exceeded the average sCCA correlations estimated on the original
dataset (r), with false discovery rate correction (FDR, q < 0.05)
across the top seven selected canonical variates:

Ppermutation ¼

PB
i¼1

1; if ri � r

0; if ri < r

�

B
:

ð2Þ

In other words, we randomly assigned subjects’ clinical features to
other subjects’ connectivity features, therefore breaking up the
internal co-varying structures of the original dataset. The cano-
nical variates resulting from these re-aligned datasets with pre-
served data distribution will then serve as the null distribution
against which the real correlations are compared. The logic is that
any significant co-varying relationships will have to be greater
than the signals in a permuted data structure.

Resampling procedure. To further select features that con-
sistently contributed to each canonical variate, we performed a
resampling procedure (Supplementary Fig. 9). In each of
1000 samples, we randomly selected two-thirds of the discovery
sample and then randomly replaced the remaining one-third
from those two-thirds (similar to bootstrapping with replace-
ment). Similar to the permutation procedure, we matched the
corresponding canonical variates from resampled matrices to the
original one to obtain a set of comparable decompositions75.
Features whose 95% and 99% confidence intervals (for clinical
and connectivity features, respectively) did not cross zero were
considered significant, suggesting that they were stable across
different sampling cohorts.

Network module analysis. To visualize and understand the high
dimensional connectivity loading matrix, we summarized it as
mean within- and between-module loadings according to the a
priori community assignment of the Power parcellation (Sup-
plementary Fig. 10a)10. Specifically, within-module connectivity
loading is defined as

P

i;j2m 2Wij

Mj j ´ Mj j � 1ð Þ
; ð3Þ

where Wij is the sCCA loading of the functional connectivity
between nodes i and j, which both belong to the same community
m in M. The cardinality of the community assignment vector,
Mj j, represents the number of nodes in each community.
Between-module connectivity loading is defined as

P

i2m;j2n Wij

Mj j ´ Nj j
; ð4Þ

where Wij is the sCCA loading of the functional connectivity
between nodes i and j, which belong to community m in Mj j and
community n in Nj j, respectively.

We used a permutation test based on randomly assigning
community memberships to each node while controlling
for community size to assess the statistical significance of the
mean connectivity loadings (Supplementary Fig. 10b). Empirical
P-values were calculated similar to Eq. 2 and were FDR-corrected.

Analysis of common connectivity features across dimensions.
Each connectivity loading matrix was first binarized based on the
presence of a significant edge feature after the resampling procedure
in a given canonical variate. All four binarized matrices were then
added and thresholded at 4 (i.e. common to all four dimensions),
generating an overlapping edge matrix. Statistical significance was
assessed by comparing this concordant feature matrix to a null
model. The null model was constructed by computing the over-
lapping edges, repeated 1000 times, of four randomly generated
loading matrices, each preserving the edge density of the original
loading matrix. Any edge that appeared at least once in the null
model was eliminated from further analysis. With only the statis-
tically significant common edge features, we calculated the mean
absolute loading in each edge feature across four dimensions as well
as the nodal loading strength using Brain Connectivity Toolbox76

and visualized it with BrainNet Viewer77 both in MATLAB.

Analysis of age effects and sex differences. As previously24,28,78,
generalized additive models (GAMs), using the MGCV package
in R, were used to characterize age-related effects and sex dif-
ferences on the specific dysconnectivity pattern associated with
each psychopathology dimension. A GAM is similar to a gen-
eralized linear model, where predictors can be replaced by
smooth functions of themselves, offering efficient and flexible
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estimation of non-linear effects. For each linked dimension i, a
GAM was fit:

Connectivity Scorei � Sexþ sðAgeÞ� ð5Þ

Additionally, we also separately tested whether age by sex
interactions were present.

Data availability. The data reported in this paper have been
deposited in database of Genotypes and Phenotypes (dbGaP):
accession no. [phs000607.v3.p2].

Code availability. All analysis code is available here: https://
github.com/cedricx/sCCA/tree/master/sCCA/code/final
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