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Abstract. This paper presents an investigation into the robustness to
motor noise of an insect-inspired visual navigation method that links
together local view-based navigation in a series of visual locales auto-
matically defined by the method. The method is tested in the real world
using specialist robotic equipment that allows a controllable level of mo-
tor noise to be used. Extensions to the method, which can improve its
robustness to severe motor noise and to major disruptions such as being
displaced along its route, are investigated.

1 Introduction

We recently introduced an insect-inspired method for navigating across relatively
complex environments by linking together local view-based navigation using the
across a series of automatically defined visual locales [1]. Within the Linked Lo-
cal Navigation (LLN) framework, local homing was achieved using the Average
Landmark Vector (ALV) model. The LLN method was demonstrated in a vari-
ety of simulated and real environments and was shown to be inherently robust
to visual noise. In addition, many mobile robot platforms also suffer from high
degrees of motor noise, as do insects while being buffeted by gusts of wind for
example. Hence, in order to further evaluate the LLN’s promise for real world
applications and its potential use in biological modelling, this paper presents
an investigation of the LLN method’s robustness to motor noise. Using special-
ist robotic equipment we can systematically explore the effects of motor noise
in controllable real world conditions, something not possible in previous route-
based models [2,3]. The LLN method is shown to be robust to even high levels
of motor noise.

We then investigate simple extensions of the LLN method, based on minimal
‘place recognition’, which can improve robustness to severe motor noise and to
major disruptions such as displacement along the learned route. The ability to
recognise a location depends on the representation of the visual scene and a
range of representations have been used from Fourier components [4] to colour
information [5]. Here we present an analysis of place recognition using only a
two and three-dimensional Average Landmark Vector and discuss how place
recognition can be used to augment our LLN method.
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After briefly describing the main navigation algorithm and the robotic equip-
ment used, the experimental results are presented.

2 Linked Local Navigation

This section describes the biologically inspired visual navigation algorithm under
investigation. At its core is a computationally efficient view-based navigation
method that performs well in locations close to the goal. View-based methods
compare the current visual scene with a stored representation of the scene at
the goal and derive a direction heading from the difference between the two. A
series of local view-based navigation steps are chained together in a novel way
to allow navigation over complex environments. For full details see [1].

While there are many algorithms capable of implementing local view-based
navigation (for review see [6]), the most parsimonious is the ALV method which
processes a view into a single vector. The ALV model requires little computation
and memory, and has been shown to be effective for visual navigation in both
simulation [7] and on autonomous mobile robots [8,1].

To calculate the ALV, features (landmarks) are selected from a 360 degree
panoramic view. The ALV is simply the average of the unit vectors from the
agent towards each landmark. For navigation, the agent is placed at a goal
location and the ALV there (the goal ALV) stored. To return to the goal, the
agent calculates the vector difference between the current ALV and the goal
ALV and moves in that direction. Since the difference between the ALVs gives
the approximate direction of goal, navigation is implemented by iterating this
process [7].

Prerequisites for the ALV are therefore a 360o visual system, an ability to
align views with an external reference (e.g., a compass direction) and a robust
object detection system. Ants and bees have near spherical vision, both gain
compass information from celestial cues [9] and it is assumed that they can
reliably segregate objects from the background [10]. Thus the ALV method is
biologically plausible and has been shown to be computable with simple artificial
neural networks [11].

Taking inspiration from observations of ant navigation [12], the full linked
local algorithm requires a training phase where a scaffolding behaviour dictates
the route to be learnt. In training, the agent travels along a path from start to
goal. If the number of landmarks currently seen is different to the number seen
at the previous time-step, the ALV calculated at the previous time-step is stored
as a waypoint; this simply requires that the agent can perceive the binary event
of an appearance or disappearance of a landmark. When the agent is within
5cm of the goal, the goal ALV is calculated and stored as the final waypoint. In
this way the environment is broken up into separate visual locales in which local
view-based navigation will be effective.

The navigation phase begins with the agent at the start position with an
ordered series of stored ALVs as waypoints. The agent then uses the local navi-
gation method (ALV) to navigate towards the first waypoint. When the number
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of landmarks changes, the agent is assumed to have crossed a boundary into
the next visual locale and the navigation system switches to using the ALV
associated with the next waypoint in the list. This process continues until the
agent reaches the final goal or times out.

While a movement calculation based purely on the difference between the
current and goal (or waypoint) ALVs, is adequate for local navigation, it causes
problems at the boundary between visual locales. As the difference becomes
small so does the the resultant movement and the agent will very likely not reach
the waypoint let alone cross the boundary. After investigating various methods
to overcome this [1], we settled on a method which applies momentum to the
heading of the agent together with an absolute step-size of 2cm. The heading
direction at time t, θt, is calculated as a weighted average of the angle dictated
by the difference of the current and goal ALVs, φt, and the previous heading,
θt−1, with the weight, ωt, of the previous heading increasing with the value of
|θt−1 − φt|, as described by the following equations.

θt = ωtθt−1 + (1 − ωt)φt, where ωt = min
( |θt−1 − φt|

0.5π
, 1

)
(1)

This method prevents large jumps in direction, ignoring φt altogether when
|θt−1−φt| ≥ π

2 . Using egocentric polar coordinates, the movement vector is thus
rt = (2, θt).

3 The Sussex Gantry Robot and Visual Processing

All experiments reported in this paper were performed on a gantry robot: a large
volume XYZ Cartesian robot (Figure 1) with an operating volume of 3×2×2m.
Black/dark-grey cardboard tubes of different diameters were placed within the
environment to make high contrast landmarks against the white walls of the
gantry. The gantry head can be moved with sub-millimetre precision which allows
us, through software control, to effectively control the amount of motor noise
experienced by the agent.

For the work presented here we used a panoramic camera mounted on the Z-
axis. The camera, a VCAM 360, is shown in Figure 1B. The hemispherical mirror
projects a 360o image of the environment on to the downward facing CCD video
camera. The image was transformed from a circular reflection to a 1-dimensional
image representing a 360- degree panorama (Figure 1C). The transformation was
accomplished by taking eight 1-pixel-wide radial samples from the panoramic
image. The radial positions of these annular samples are shown by the concentric
circles in Figure 1C. Three hundred and sixty one-degree, grey-scale levels were
calculated for each radial strip through interpolation. These are then averaged
across the eight samples to give a 1 x 360 strip of mean grey-scales rounded to
integers in the range [0, 255].

This one-dimensional strip is the raw visual input. At each time-step this
is processed into landmarks (Figure 1D) from which the ALV is generated, as
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Fig. 1. The gantry robot. A: The gantry robot is an XYZ Cartesian robot, which can
position a camera at any point in a 3mx2mx2m volume. B: The camera head is a
catadioptric system that projects a 360o panoramic image of the world onto a CCD
array. C: A frame capture from the video feed. The three concentric circles (outermost
to innermost) indicate the sampled area’s upper edge, horizon, and lower edge. The
resulting strip, after unwrapping, is shown underneath along with a thresholded strip.
D: A trace of the visual input experienced by the agent along a route. This trace
demonstrates: (i) occlusion, (ii) appearance of landmarks as they come into perceptual
range, and (iii) disappearance of landmarks as they leave perceptual range.

described briefly below. Note that due to occlusions and the limited perceptual
range of the agent, the set of perceived landmarks will change during locomotion.

Landmark recognition is accomplished in several sequential stages, described
in detail in [1]. Briefly, The raw visual input is first resolved into 90 panoramic
facets resulting in an inter-facet angle of the same order as the inter-ommatidial
angle of ants’ eyes [13]. Each facet has a receptive field covering 8o, that is,
itself and half of each of its neighbours. The activation within each facet is
averaged and then thresholded to -1 or 1 depending on whether the output is less
than 194. We take advantage of the robot’s movement to implement two further
processing steps based on lateral and temporal excitation/inhibition which serve
to ‘clean’ the visual signal by ameliorating the problem of perceptual ‘flickering’
of landmarks; that is, single landmarks which are on the edge of the agents’
perceptual range and occluding landmarks which are alternately perceived as
one or two objects. Effectively, these steps mean that a new landmark appearing
is not perceived until it is at least two facets in width. Similarly, once two
landmarks have been perceived as one, they are not perceived as 2 landmarks
until the gap between them is at least two facets.
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Once this visual processing is complete, landmarks are defined as connected
sets of active facets and the bearing of each landmark is calculated as the av-
erage of the angular position of the facets containing the landmark edges. Thus
landmark bearings are accurate to ±2o. These bearings are then used to gener-
ate the ALV and this, together with a signal determining whether the number
of landmarks has changed, is passed to the main algorithm.

Landmark heights were extracted from the full panoramic image generated by
the visual system. For each visible landmark (as detected by the image processing
method detailed above) we find the point where the central facet of the landmark
changes from 1 to -1, starting from the centre of the 2 concentric circles in Figure
1C and working downwards. As all our landmarks are equal height (1m, meaning
the tops of visible landmarks are above the field of view of our camera) the
elevation of the landmark base gives us a proxy for their perceived height. The
visual processing is specialized to the environments used in the experiments, but
could be generalized.

4 Results 1: Motor Noise

Controllable amounts of motor noise were added as follows. During the training
phase (see Section 2), the agent travels along a path from start, s, to goal, g, in
steps of 2cm. When noise is added to the learning route, the learning step lt is
defined by:

lt = 2
ht

‖ht‖ + (N (0,2npc) ,N (0,2npc)) (2)

where ht = g − lt−1 is the vector from current position to goal (so at the first
step, h0 = g − s) and N (0, 2npc) is a Normally distributed random number
drawn with mean 0 and standard deviation 2 npc, where npc ∈ [0, 0.8] sets the
standard deviation to a percentage of the step-size 2cm. Thus noise is added
independently to x and y dimensions independently and alters both size and
direction of the step taken. At the highest noise levels, this can result in the step
being taken in the opposite direction than was intended.

During the navigation phase, after the heading vector, rt - as defined in Sec-
tion 2, is transformed into Cartesian co-ordinates ut = (2cos(θt), 2sin(θt)) noise
is added in the same way as for the learning step, to give a final step vt of:

vt = ut + (N (0,2npc) ,N (0,2npc)) (3)

with parameters as defined above. Note that the momentum on the heading is
calculated according to θt, the heading the agent ‘thinks’ it is taking, rather
than the actual direction it takes. We feel this is most realistic in terms of an
insect or robot’s movements being moderated by environmental noise.

To assess the algorithm’s robustness to motor noise, we initially ran the algo-
rithm with 5 different noise levels applied to the navigation part of the algorithm.
The learning run was performed with no noise so we could isolate the effects of
noise on the navigation and learning phases of the algorithm independently. 10
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Fig. 2. Navigation with motor noise. A: Simple and complex environments with land-
marks (circles), waypoints (squares) and learning run (solid line). Dashed line indicates
area shown in C-H. Simple environment is as complex environment minus open symbols
(2 waypoints and 2 landmarks). B: Navigation success over 10 runs in simple (black)
and complex (white) environments for various noise levels (npc). C-F: 10 navigation
runs in complex environment (npc = 20, 40 and 80%, C-E respectively) and simple envi-
ronment (npc = 80%, F). G: Learning run with 40% noise (straight line shows noiseless
learning). H: Navigation after noisy learning run (complex environment, npc = 40%).

runs were performed for each noise level in first a simple and then a complex
environment. The results are shown in Figure 2. Failures were counted as any
run in which the agent entered a visual locale which was not the next on its list
of waypoints. In both environments, the algorithm was robust to high levels of
motor noise.

In the simple environment, the algorithm was successful until the standard
deviation of the Gaussian noise reached 1.6 cm, 80% of the step-size. As this
noise is applied independently to x and y components of the movement vector,
individual steps often took the agent in the opposite direction to which it was
trying to home. Successful homing under these conditions demonstrates the ben-
efits of view-based homing as opposed to odometric information. At each step,
the direction to home is calculated anew and thus errors do not accumulate. The
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algorithm will therefore succeed unless by chance the noise on several sequential
steps takes the agent in a consistent direction towards a new visual locale which
is not the one the agnet ‘expects’ to encounter next. Thus, one can see that for
the high noise level, clusters of failures appear at points where incorrect visual
locales occur close to the paths taken by the agent.

In the complex environment, due to the increased number of waypoints and
erroneous visual locales, the algorithm’s performance dropped when the standard
deviation of the Gaussian noise reached 40% of the step-size. Note however
that two of the three failures ocurred near the end of the run where there are
a succession of waypoints very close to each other (Figure 3D). For many of
these ‘failures’, the algorithm did home successfully to the goal using the goal
waypoint and ignoring subsequent boundaries experienced. While the chances of
such ‘lucky’ successes are higher near the goal, success is not guaranteed and so
we count these runs as failures.

Finally, we performed a further 10 runs with the standard deviation of the
Gaussian noise at 40% on both the learning and navigation parts of the algorithm
(Figure 3G-H). The agent homed successfully in all runs. This demonstrates that
the algorithm is robust noise on the learning run. Moreover, the greater success
with a noisy learning run shows firstly, there is no advantage to the straight-
path learning runs we perform; and secondly, the lesser performance of the agent
at 40% noise in the complex environment could be due to a ‘difficult’ set of
waypoints to navigate.

5 Results 2: Route Recognition

We next wanted to investigate the effects of more severe noise. It is known
that ants who are taken from the end of their route near the goal (nest/food)
and placed at a new location somewhere near its usual route can successfully
navigate back to the route and from there, to the goal. To reproduce this sort of
robustness our agent needs, on displacement, to be able to assess which locale
it is in, or, more pertinently, which waypoint it should navigate to. Can this be
achieved using the minimal visual representation of the world that the agent has
available to it?

As a first step to answering this question, we examined the runs with 40% noise
and assessed which locale the agent ‘thought’ it was in at each step of each run.
This was accomplished by calculating the distance (according to various met-
rics) of the (possibly parameterised) current view from the view from each of the
stored waypoints. At each step, if the closest waypoint is the one associated with
the locale the agent is in, it is assumed the agent can home successfully from that
point, first to the winning waypoint and subsequently to the goal. We used three
distance metrics based on different representations of the visual scene. The first
is the sum square difference between a Cartesian representation of current and
waypoint ALV. The second uses only the absolute angular difference between the
headings of current and waypoint ALV. As a control, we also used the sum-square
difference between the current visual scene and that at the waypoint, that is the
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Fig. 3. A-C: Percentage route recognition success over 10 runs for Cartesian ALV
(black), angular ALV (grey) and unprocessed vision (white). A: Simple environment
with 40% noise. B: Complex environment with 40% noise. C: Different learning routes.
D-E: Route recognition success over 66 horizontal and vertical transects through the
complex environment. D: Mean and standard deviation of percentage success for (left
to right) Cartesian ALV, angular ALV, unprocessed vision and 3D sum ALV. E: Dis-
tribution of successes of different routes for Cartesian ALV (black), angular ALV (dark
grey), unprocessed vision (light grey) and 3D sum ALV (white).

visual input before it is processed into landmarks. Such raw visual input has
been shown to be a good indentifier of location in regions close to the goal [14].

Results are shown in Figure 3A-B. In both simple and complex environments
results show consistent patterns. The metric based on unprocessed vision is cor-
rect over less than half of the route (48 ± 9%), as would be expected from the
results of [14]. In both environments the ALV-based metrics perform well in all
runs (discounting run 6 of the complex environment, in which navigation failed
early) with the angular ALV performing better (69±13% compared to 59±12%).
All methods perform best close to the waypoints, on the side where the agent is
approaching the waypoints. This is to be expected as the waypoints are points
at which the visual scene changes significantly. This effect should be more ev-
ident for ALV rather than visual metrics. Indeed, examination of distances to
waypoints along each route shows asymmetric profiles for the ALV methods, but
characteristic symmetric funnels [14] for the unprocessed vision.

To assess the generality of this result, we examined place recognition over 10
learning runs from a fan of points around the complex environment. Results were
fairly consistent with those achieved for the noisy runs (Figure 3C). The angular
ALV was again the best (69 ± 17%), while the Cartesian ALV (61 ± 10%) and
vision-based metric (54 ± 10%) were slightly more successful than previously.
The angular ALV did however have a much greater variance than the other two
methods with an almost bi-modal distribution of results. It is therefore worth
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noting that learning run 1 of these results - in which the angular ALV performs
well - is the learning run used for the noisy runs in the complex environment. It
is therefore possible that the angular ALV is suited to this particular run, and
that its good performance in the noisy runs may well be an overestimate.

As a final test, we assessed route recognition for the whole environment using
a database of images gathered at a grid of points with a spacing of 5cm. To
generate routes, we took either horizontal or vertical transects through the envi-
ronment, with waypoints set down whenever the number of landmarks changed
across the route. Averaged over all the 66 transects, differences between the
ALV-based methods disappeared while the visual method remained at just over
50% (Figure 3D). To attempt to increase the success-rate we incorporated the
height of the landmarks into a 3-dimensional ALV, and assessed all methods
with a number of different metrics. Intriguingly, the best performing metric
(70 ± 16%)was one which used the sum of the 3-dimensional vectors to each
landmark (rather than an average which would result in a 3-D ALV). Presum-
ably the success of this method is linked to the fact that it incorporates a sense
of the number of visible landmarks. This latter factor is clearly important as it
delineates visual locales, though is prone to aliasing. While differences between
the best performing metrics were not statistically significant, the difference in
distribution of success rates over the runs (Figure 3E) indicates that the meth-
ods are correct indifferent parts of the environment. It is therefore possible a
combination of metrics could provide more robust route recognition.

6 Discussion

In this paper we have demonstrated that the linked local navigation framework
is robust to large amounts of motor noise. Moreover, we have shown that using
the ALV, or a representation derived from it, can provide a robust measure of
place within a route should a more radical displacement occur.

We have also begun preliminary work to increase robustness further by incor-
porating route recognition within the navigational algorithm, with encouraging
results. Briefly, the algorithm proceeds as usual, but should a change in the num-
ber of landmarks occur it does not automatically start using the next waypoint.
Instead, the agent assesses whether the current view is associated with the visual
locale it is expecting. If so, the algorithm proceeds to home to the next way-
point. If not, it continues homing with the current one. Our initial tests use the
number of landmarks to assess whether the locale is correct or not. Future work
will explore the use of the continuous encodings presented here, as well as more
flexible ways of incorporating route recognition. Finally, we are investigating
neural network-based implementations of route recognition.
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