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Abstract

The paper present a Linked Multilevel Hierarchical (LMH) approach to the Mixed-Integer
Nonlinear Programming (MINLP) synthesis of mechanical structures, by which the original
MINLP problem is hierarchically decomposed into material, topology and standard dimension
levels to be solved sequentially. We introduce a special case of a simplified MINLP model
formulation for mechanical superstructures (MINLP-S), which are supposed to contain a
number of (sub)groups of equal structural elements. The objective is to perform a continuous
parameter optimization of the superstructure simultaneously with a discrete optimization of its
material, topology and standard dimension alternatives. The Modified Outer-
Approximation/Equality-Relaxation (OA/ER) algorithm has been used for the optimization. In
order to demonstrate this approach, we have included a practical example of a vacuum
chamber structural synthesis for the high-frequency dryer for timber.

1 Introduction

The objective of the paper is to present simultaneous material, topology and

parameter optimization of structures. The optimization is carried out by Mixed-

Integer Nonlinear Programming (MINLP) approach. The MINLP performs a

discrete optimization of materials, topology and standard dimensions while

parameters are simultaneously calculated inside the continuous space. Since

some structural elements are added or removed from the structure within the

optimization process, so that they form various structural alternatives, the paper

concentrates on the discussion of a structural synthesis.

The MINLP optimization approach to structural synthesis is performed

through three steps [1]: i.e. the generation of a mechanical superstructure, the
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modeling of an MINLP model formulation and the solution of the defined

MINLP problem.

The MINLP approach to structural synthesis requires the generation of a

MINLP mechanical superstructure composed of various material, topology and

standard dimension alternatives. The superstructure is described by means of

structural elements and their interconnection nodes. Each structural element

may have different material and standard dimension alternatives. Various

selections of these elements give an extra topology alternatives. Therefore, the

main goal of structural synthesis is to find a feasible structure within the given

superstructure of alternatives, which is optimal with respect to material,

topology, parameters and standard dimensions.

This give rise to a very complex nonlinear and nonconvex MINLP

problem, which may not be solvable, or not solvable in a reasonable amount of

time, if the number of discrete alternatives is too high. To overcome the

problem, we are introducing a special MINLP strategy, called Linked

Multilevel Hierarchical (LMH) approach. The Modified Outer- Approximation/

Equality-Relaxation (OA/ER) [2] algorithm has been used in order to solve

such nonlinear and nonconvex problems efficiently.

2 The simplified MINLP model formulation for mechanical

superstructures

2.1 The general MINLP model formulation (MINLP-G)

The general nonconvex and nonlinear discrete/continuous optimization problem

can be formulated as an MINLP problem (MINLP-G) in the form:

min z = c*y + f(x)

s.t. h(x) = 0

g(x) < 0 (MINLP-G)

By+Cx<b

x e X= {x e R": x™ < x < x™}

where x is a vector of continuous variables specified in the compact set X and y

is a vector of discrete, mostly binary 0-1 variables. While continuous variables

are linear and nonlinear, discrete variables appear only in the linear form.

Functions /fo), h(x) and g(x) are nonlinear functions involved in the objective

function z, equality and inequality constraints, respectively. Finally, By+Cx<b

represents a subset of mixed linear equality/inequality constraints. All

functions /fc), h(x) andg(x) must be continuous and differentiate.

It should also be noted that continuous variables define structural

parameters, while binary variables correspond to different discrete decisions
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(e.g. the existence of units). Equality and inequality constraints and the bounds

of the continuous variables represent a rigorous system of the analysis. Logical

constraints that must be fulfilled for discrete decisions and structural

configurations, which are selected from within the superstructure, are given by

By+Cx<b. The economical objective function z involves fixed costs charges in

the term c^y for manufacturing while the dimension dependent costs are

included in the function f(x).

2.2 The simplified MINLP model formulation for mechanical

superstructures (MINLP-S)

The general model formulation MINLP-G was adapted for the synthesis of

mechanical superstructures (MINLP-SMS) that was already reported

elsewhere, e.g. [1].

In this paper, we are introducing a special case of a simplified MINLP

model formulation for mechanical superstructures (MINLP-S), which are

supposed to contain a number of (sub)groups of equal structural elements.

Some modifications have also been done in order to handle structural materials

and topology more explicitly. For this purpose we introduce material and

topological variables. The material variables represent different material

alternatives subjected to individual structural elements, groups or to the entire

superstructure while topological variables determine the number of structural

elements in each group.

The economical objective function usually involves binary variables,

which must appear linearly. Instead of binary variables we implement the

continuous topological variables into the objective. This modification give

some advantages, particularly in the case of complex and highly nonlinear

objective function.

The resulted simplified model formulation for mechanical superstructures

MINLP-S is given in the following form:

in z = %// {c, + f,(m,,d,, p,)} + /("*,</, p)mm
iel

s.t. h(m, /, d,p) = 0

g(m, t, d,p)<0

A(m, t, d, p) < a

Ey<e (MINLP-S)

Ky*+T(t}<k

Py*+S(d*)<s

weM, teT, d e D, p e P, je7={y .ye{0,l}}
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The proposed MINLP-S model formulation consists of the superstructure's

economical objective function, structural analysis constraints and logical

constraints with continuous and binary variables. A detailed description of the

MINLP-S model formulation is given in the following paragraphs.

2.2.1 Groups of equal structural elements

Let / denote the set of different groups of equal structural elements involved in

the superstructure. In each z-th group, /e/, all structural elements are equal. In

general, different groups contain different number of structural elements and, in

addition, structural elements from different groups are in principle

distinguished one from another. There also may exist some structural elements,

which belong to the entire superstructure and are not involved in any of the

defined group. These elements are in general not equal to each other.

2.2.2 Variables

Variables for this simplified MINLP-S model formulation should include

continuous variables x={m, t, d, p} as well as discrete binary variables

Continuous variables are partitioned into material variables m, topological

variables f, design variables d={d™,d**} and into performance (state,

nondesign) variables p. Topological variables *={//•}, ze/, are defined to

determine the number of structural elements for each /-th group. Design

variables include dimensions/sizes of structural elements and a superstructure

geometry. They are further partitioned into subsets d™ and d^ of continuous

design variables and standard dimensions, respectively. Performance variables

p represent all other nondesign variables like cross-section characteristics of

structural elements, load, loading, strains, deflections, coefficients for stability

analysis, stresses, economical parameters, etc. As there may exist / different

groups of elements in the superstructure, continuous variables may be further

divided into / sub vectors, subjected to these groups: jc= {*/)={ m/, /% *//,/>/•}, /e/.

Subvectors of binary variables y™* , ĵ and y* denote potential choices of

material alternatives, potential existence of structural elements and potential

selection of standard dimension alternatives, respectively. By the same analogy

as before, binary variables may be further portioned into / subsets:

2.2.3 The economical objective function

The most popular criteria used today are the minimization of mass, strain

energy, stresses or costs as well as the maximization of stiffness, frequency of

free vibration, selling price etc. In this paper, an economical objective function

is proposed to minimize the superstructure's self manufacturing (material and

labor) costs.
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The economical objective function z involves fixed cost charges in the linear

terms f, • GI and dimension dependent costs in the terms ^ -̂ (m,-, rf,-, pi) for i

different groups of equal elements, iel. Higher the numbers of selected

structural elements involved in defined groups are, higher the values of

topological variables ti are and higher costs are therefore obtained. The

objective function also involves dimension dependent costs of structural

elements, which are subjected to none group/w, d,p).

2.2 A Structural parameter constraints

Parameter nonlinear and linear constraints h(m, /, rf, p)=0, g(m, /, d, p)<0 and

A(m, t, d,p)<a represent the rigorous system of the design, loading, stress,

deflection, stability, etc. constraints known from a structural analysis.

2.2.5 Pure integer logical constraints

Pure integer logical constraints Ey<e are proposed to describe logical relations

between binary variables to avoid equal topology solutions. They also define

bounds of the topology.

2.2.6 Logical constraints for material variables

Mixed linear constraints Dy™*+M(m)<r define material variables m. Each

material alternative is to be represented by material variable m, which is

determined as a scalar product between a vector of7,ye,/, standard values of

yield stresses alternatives/,=%,̂ , ̂3,...̂} and the vector of; associated

binary variables ̂ ={)/r̂ r̂ r%-̂ }, ̂ere the sum of; binary

variables >>, has to be equal 1. Only one yield stresŝ  is then assigned to the

material variable:

In the addition, to each z'-th group an extra material variable TW/ may be in

principle defined, iel.

2.2.7 Logical constraints for topological variables

Mixed linear constraints Ky*+T(i)<k are proposed to define topological

variables f={f,-}, i'e/. Binary variables y* are used to represent the potential

existence of each structural element inside the superstructure: a structural

element is selected if its assigned binary variable is 1, otherwise it is rejected.

To each z-th group an extra subvector of «, neN(i), binary variables
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y* = {Xi,Xi'Xi'-'"X,,} ̂  assigned. Topological variable f/ is then determined

as a sum of these binary variables to represent the number of selected structural

elements inside the /-th group:

',= !>;„ (3)
neN(i)

2.2.8 Logical constraints for standard design variables

Mixed linear constraints Py* + S(d*)<s define standard design variables d* .

Each standard dimension d* is determined as a scalar product between its

vector of k, k^K, standard dimension constants q={q^q^^-^k} and its

vector of k binary variables y*={ y* , J^ , X' ,-• • .V* }• Only one discrete value

can be selected for each standard dimension, since the sum of k binary

variables y* has to be equal 1 :

(5)

3 The Linked Multilevel Hierarchical Approach

The defined MINLP problem has to be solved by the use of a suitable MINLP

algorithms and strategies.

For the solution of nonlinear and nonconvex problems we used the

Modified OA/ER algorithm [2], in which many modifications like deactivation

of linearizations, decomposition and deactivation of the objective function

linearization, use of the penalty function, use of the upper bound on the

objective function to be minimized as well as a global convexity test and a

validation of the outer approximations have been applied for the master

problem.

The OA/ER algorithm consists of solving an alternative sequence of

Nonlinear Programming (NLP) and Mixed-Integer Linear Programming

(MILP) master problem optimization subproblems. The former corresponds to

continuous optimization of parameters for a mechanical structure with fixed

material, topology and standard dimensions and yields an upper bound to the

objective to be minimized. The latter involves a global approximation to the

superstructure of alternatives in which new materials, topology and standard

dimensions are identified so that its lower bound does not exceed the current

best upper bound. The search is terminated when the predicted lower bound

exceeds the upper bound.
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The optimal solution of complex MINLP problem with a high number of

discrete decisions is in general very difficult to be obtained. Initialization

scheme is weak since initial standard dimensions selected may be bad or

infeasible. The convergence of the algorithm is usually poor.

To overcome the problem, a Linked Multilevel Hierarchical (LMH)

strategy has been developed to accelerate the convergence of the Modified

OA/ER algorithm. We hierarchically decompose the original MINLP problem

into subproblems which are then easier to solve than the original one. The

MINLP optimization of discrete decisions is sequentially performed at different

decision levels, starting from the highest (the most important) one. Decision

levels are hierarchically classified:

• from the first level of discrete material selection (the highest level),

• to the second level of discrete topology alternatives (the middle level), and

• to the third level of standard dimension decisions (the lower level).

When the dimensionality of standard dimensions is high, the problem may be

further decomposed.

Higher levels give lower bounds to the original objective function to be

minimized while lower levels give upper bounds. The MINLP subproblems are

iterated around each level until there is no improvements in the NLP solution.

Thus, we start with the discrete optimization of materials at the relaxed

topology and standard dimensions. When the optimal material is reached, we

proceed with simultaneous discrete material and topology optimization at the

second level (standard dimensions are still relaxed). Finally, after the optimal

material and topology are obtained, the MINLP is carried out once more for

complete discrete decisions at the third level. Each higher lever accumulates a

global linear approximation of the superstructure model representation to be

used at its lower level, which can in this way be solved much more efficiently.

4 Structural synthesis of the vacuum chamber for the

high-frequency dryer for timber

In order to demonstrate the synthesis of the proposed MINLP optimization

approach, a practical example of structural synthesis of a vacuum chamber of

the high-frequency dryer for timber is presented, see Figure 1.

First, the chamber superstructure has been generated in which three

different material alternatives Fe 360, Fe 430 and Fe 510 are considered. All

possible structures are defined by topology variation between 3 to 7

intermediate longitudinal stiffeners for each of the both horizontal skin-plates

and, in addition, 3 to 7 intermediate longitudinal stiffeners for each of the both

vertical skin-plates. All stiffeners of the both horizontal skin-plates are

proposed to be equal, the same holds for stiffeners of the both vertical skin-

plates, for stiffeners of the front skin-plate and for stiffeners for the four

longitudinal edges. In this way, we defined four different groups of equal
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stiffeners. Three different standard thicknesses of sheet-iron plates 3.5 mm,

4.0 mm and 4.5 mm have been proposed for the skin-plate and three different

standard cross-sections IPE 100, IPE 120 and IPE 140 for transversal frames.

Finally, 32 different standard cross-sections of angles between 30x30x3 to

90x90x8 have been defined for longitudinal stiffeners, 8 for the each

superstructure' s group.

m rn

IPE 100,

L 35x35x4

610

^

490 [60

H3.5 202.5 i

3.5 1

i 202.5 i

" 810

817

202.5 i 202.5

mm

p.5

3.5

Figure 1: Vertical section of the high-frequency dryer for timber

For this purpose, an optimization model of the vacuum chamber structure has

been developed according to the proposed simplified MINLP-S model

formulation for mechanical superstructures. As an interface for mathematical

modeling and data inputs/outputs GAMS (General Algebraic Modelling
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System) by Brooke et al. [3], a high level language, has been used. The self

manufacturing costs like material, sheet-iron cutting, welding and anti

corrosion resistant painting have been accounted for in the economical type of

the objective function, subjected to the given design, material, stress, deflection

and stability constraints. Eurocode-3 [4] has been used for the design.

As the model is nonconvex and highly nonlinear, the Modified OA/ER

algorithm has been used for the optimization. The LMH strategy has been

proposed to accelerate the convergence of the mentioned algorithm. Structural

synthesis of the vacuum chamber was carried out by our MINLP computer

package TOP (Topology Optimization Program), [5]. MINOS [6] has been

used to solve the NLP subproblems and OSL [7] to solve the MILP master

problems.

The optimal solution yields the costs of DM 3870 at the optimal material

Fe510 and optimal topology 3-4 (3 intermediate longitudinal stiffeners for each

of the both horizontal skin-plates and 4 intermediate longitudinal stiffeners for

each of the both vertical skin-plates). The Modified OA/ER algorithm

accompanied by the LMH approach converged very fast: 8 major MINLP

iterations were needed (7 MILP and 8 NLP subproblems). 347 equations with

2325 nonzero elements, 181 continuous and 51 discrete variables are included

in the NLP subproblem at which the optimal solution was found. Only 549

seconds of the CPU time on the computer VAX 4000-600 were spent.

5 Conclusions

For the solution of comprehensive nonlinear discrete/continuous structural

design problems, the Linked Multilevel Hierarchical strategy has been

developed in order to accelerate the convergence of the Modified OA/ER

algorithm. We also introduced a simplified MINLP model formulation for

mechanical superstructures, which are supposed to contain a number of

(sub)groups of equal structural elements.

The synthesis of the proposed MINLP optimization approach has been

demonstrated on a practical example of the vacuum chamber for the high-

frequency dryer for timber. Alongside the optimal material and labor costs of

the chamber and its optimal topology (the optimal number of longitudinal

stiffeners), all the necessary standard thicknesses and cross-sections of

structural elements as well as other continuous dimensions like the chamber's

global geometry and the intermediate distances between structural elements

were also simultaneously obtained. No feasible results were obtained without

the implementation of the proposed LMH approach.
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