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ABSTRACT Obtaining genome-wide genotype data from a set of individuals is the first step in many

genomic studies, including genome-wide association and genomic selection. All genotyping methods

suffer from some level of missing data, and genotype imputation can be used to fill in the missing data and

improve the power of downstream analyses. Model organisms like human and cattle benefit from high-

quality reference genomes and panels of reference genotypes that aid in imputation accuracy. In nonmodel

organisms, however, genetic and physical maps often are either of poor quality or are completely absent,

and there are no panels of reference genotypes available. There is therefore a need for imputation methods

designed specifically for nonmodel organisms in which genomic resources are poorly developed and

marker order is unreliable or unknown. Here we introduce LinkImpute, a software package based on a k-

nearest neighbor genotype imputation method, LD-kNNi, which is designed for unordered markers. No

physical or genetic maps are required, and it is designed to work on unphased genotype data from

heterozygous species. It exploits the fact that markers useful for imputation often are not physically close

to the missing genotype but rather distributed throughout the genome. Using genotyping-by-sequencing

data from diverse and heterozygous accessions of apples, grapes, and maize, we compare LD-kNNi with

several genotype imputation methods and show that LD-kNNi is fast, comparable in accuracy to the best-

existing methods, and exhibits the least bias in allele frequency estimates.
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A primary goal of genomic research is to establish associations between

genotypes and phenotypes. Our understanding of human disease has

been significantly accelerated through studies linking genotypes with

disease phenotypes, primarily through the use of genome-wide associ-

ation (GWA) (e.g., Altshuler et al. 2008). Such associations also are

essential for accelerating breeding in agricultural species. For example,

genome-wide, single-nucleotide polymorphism (SNP) data are used

routinely in cattle to accelerate improvement with marker-assisted se-

lection and genomic selection (GS) (e.g., Hayes et al. 2009). The dis-

covery and exploitation of genotype2phenotype associations in an

increasing number of agricultural species has the potential to dramat-

ically accelerate food improvement (McClure et al. 2014).

No matter what the focal species is, the discovery of novel genoty-

pe2phenotype relationships most often requires genome-wide geno-

type data from a large number of samples. To date, genotyping

microarrays have been the technology of choice for acquiring these

data. Arrays are widely used for GWA studies in humans (Stranger

et al. 2011) and have also been developed for several agricultural species

[e.g., cattle (Matukumalli et al. 2009), rice (Zhao et al. 2011), grape

(Myles et al. 2010), and apple (Chagné et al. 2012)]. Although arrays

have proven to be effective in a few species, next-generation DNA

sequencing is becoming the method of choice for generating ge-

nome-wide genotype data in many organisms. Methods that use re-

duced representation libraries and multiplex barcoding have been

developed to generate genome-wide genotype data from next-genera-

tionDNA sequencing that are similar to the data generated from arrays

and are suitable for GWA and GS. For example, genotyping-by-

sequencing (GBS) (Elshire et al. 2011) produces genotype data useful
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for GS in wheat (Poland et al. 2012) and drastically reduces the cost of

linkage mapping in apple compared with arrays (Gardner et al. 2014).

Although genotyping microarrays produce somemissing data, GBS

produces an extremely sparse genotypematrixwithmostlymissingdata:

often hundreds of thousands of SNPs are discovered, but only a small

fraction of the SNPs (e.g.,,10%) passmissing data thresholds (Gardner

et al. 2014). Imputing the missing genotypes has been shown to im-

prove the power of methods such as GWA (Li et al. 2009) and so

genotype imputation is becoming an increasingly important compo-

nent of studies into genotype2phenotype relationships, especially

when data are collected using methods like GBS.

Most existing genotype imputationmethods, suchasBeagle (Brown-

ing and Browning 2007) and fastPHASE (Scheet and Stephens 2006),

rely on SNPs ordered according to a genetic or physical map. These

methods are most often used to impute genotypes in species with large

amounts of high-quality genotype data, including reference genomes

and reference genotype panels, like humans (e.g., International Hap-

Map 3 Consortium 2010) and cattle (e.g., Bovine HapMap Consortium

2009). These methods first phase the genotype data and take the phased

haplotype information into consideration when inferring missing ge-

notypes. Generic imputationmethods that do not rely on phasing, such

as k-nearest neighbors (Troyanskaya et al. 2001) or Missing Forest

(MF) (Stekhoven and Bühlmann 2012), are not specifically designed

for genotype data but can be used to impute missing genotypes. Al-

though there have been comparisons between generic imputation

methods (Stekhoven and Bühlmann 2012; Rutkoski et al. 2013) and

between genotype-specific methods (Browning and Browning 2007;

e.g., Marchini and Howie 2010), there has been little comparison be-

tween the two groups of algorithms to date.

Here we introduce LD-kNNi, an imputation algorithm based on the

k-nearest neighbors imputation (kNNi) method (Troyanskaya et al.

2001), which takes into account the linkage disequilibrium (LD) be-

tween SNPs when choosing the nearest neighbors. Critically, our algo-

rithm does not require ordered SNPs, unlike most existing genotype

specific methods such as Beagle and fastPHASE. We compare the

performance of our new method to several existing methods by using

genome-wide SNP data from apple, maize, and grape.

MATERIALS AND METHODS

LD-kNNi

kNNi is a commonly used imputation method that has been used pre-

viously for genotype imputation (Troyanskaya et al.2001) andhas recently

been extended to categorical data (Schwender 2012). In this work we only

consider biallelic SNPs and code the genotypes numerically as 0 (homo-

zygous major allele), 1 (heterozygous), and 2 (homozygous minor allele).

To impute a genotype at SNP pj in sample si the categorical kNNi

algorithm (henceforth simply kNNi) first calculates a distance from

the sample to every other sample. We use the taxicab distance, where

the distance, dn (s1, s2) between any two samples s1 and s2 is given

by the following equation:

dnðs1; s2Þ ¼
1

n

X

p2P

jgðs1; pÞ2 gðs2; pÞj (1)

where P is the set of all SNPs and g (s, p) is the genotype of sample s at

position p. It is possible that either, or both, of g (s1, p) or g (s2, p) are

unknown, in which case this SNP is ignored in the summation. To

account for the fact that the distance between samples may therefore

sum across a different number of samples, we include a normalizing

term, 1/n, where n is the number of SNPs actually included in the

summation. Distance measures other than the taxicab distance could

be used, the most obvious alternative being the Euclidean distance.

Using the Euclidean distance rather than the taxicab distance did not

noticeably change performance (data not shown).

The algorithm proceeds by picking the k nearest neighbors to si that

have a known genotype at position p and then imputing the genotype, gi
(pj, si), as a weighted modal average of these genotypes (Schwender

2012). That is:

gi

�

si; pj

�

¼ arg max
a2f0;1;2g

X

s2N

1

dnðsi; sÞ
I
�

g
�

s; pj

�

¼ a
�

(2)

where N is the set of k samples nearest si , which have a known

genotype at SNP pj: Iðgðs; pjÞ ¼ aÞ is an indicator function that takes
the value 1 if g (s, pj) = a and 0 otherwise.

Standard k-nearest neighbor relies on the assumption that the most

similar samples across the whole genome will be the best samples with

which to impute any genotype. However, we reasoned that the best

samples to use for imputation are those that share an evolutionary

history at the SNP to be imputed, and that these samples may not be

the most similar genome-wide. Genotype imputation methods like

Beagle and fastPHASE use a similar reasoning: they use information

from neighboring SNPs because these SNPs likely share a history with

the SNP to be imputed due to physical linkage. Beagle and fastPHASE

rely, however, on orderedmarkers and sufficiently dense genotype data

to enable haplotype reconstruction. In the absence of a known marker

order, we reasoned that the most informative samples for imputation

may be those that are most similar at SNPs that are highly correlated

with the SNP to be imputed. These highly correlated SNPs may be

physically linked to the SNP of interest, but they may also be correlated

without being physically linked. Regardless of the reason for the cor-

relation, we reasoned that these SNPs would be most informative for

choosing the nearest neighbors with which to perform imputation.

We therefore introduce LD k-nearest neighbor imputation (LD-

kNNi), where only the l SNPs most in LD with the SNP to be imputed

are used to determine the nearest neighbor and the weightings to be

used when imputing. The “LD” in our algorithm name, LD-kNNi, does

not necessarily refer to physical linkage but rather to the correlation

between any two SNPs in the data.

Thus, Equation 1 becomes:

dlðs1; s2Þ ¼ cþ
1

n

X

p2LðpiÞ

jgðs1; pÞ2 gðs2; pÞj (3)

where L(pi) is the set of l SNPs in strongest LD with the SNP to be

imputed. The algorithm then continues as for kNNi with one minor

n Table 1 Performance of the different imputation methods on
the apple dataset

Method Genotype Error Allele Error Run Time, sec

Mode 23.0% 12.4% a

kNNib 20.6% 10.8% 18
MF 9.9% 5.1% 40,107
fastPHASE 7.7% 3.9% 52,399
Beagle 7.6% 3.9% 424
LD-kNNic 7.4% 3.9% 104

kNNi, k-nearest neighbors imputation; LD-kNNi, linkage disequilibrium k-near-
est neighbors imputation.
a

Run time was under a second.
b

Using a fixed value of k = 8.
c

Using fixed values of k = 5 and l = 20.
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exception. As we are now using a smaller number of SNPs to calculate

distance, it is possible that there could be no genetic difference be-

tween a pair of samples. To avoid a distance of zero, which would

result in Equation 2 being undefined, we add a constant to the stan-

dard taxicab distance. We set this constant to one as adding different

values has little effect on imputation performance (Supporting In-

formation, Table S1 and File S1).

We implement LD-kNNi in our program LinkImpute (available

from http://www.cultivatingdiversity.org/software under the GPL ver-

sion 3 license). LinkImpute allows parameter values (k for kNNi, k and l

for LD-kNNi) to be either fixed or optimized. To optimize the param-

eter values, LinkImpute randomly samples 10,000 known genotypes.

For each set of parameter values, each one of these genotypes is masked

and then imputed to calculate accuracy. LinkImpute optimizes the

parameters by assuming the parameter space is unimodal, bounding

the search space and then searching the space for the optimal values.

Whencomparingdifferent imputationmethodson theappledataset,

we used manually optimized parameter values (k for kNNi, k and l for

LD-kNNi). For kNNi, k = 8 was chosen. For LD-kNNi, k = 5 and l = 20

(Figure S1). When comparing imputation programs on different data-

sets, we allowed LinkImpute to choose optimal parameters.

Data

We collected GBS data from a collection of 1995 accessions from the

genusMalus from the US Department of Agriculture apple germplasm

repository in Geneva, NY. The samples were processed with two dif-

ferent restriction enzymes (ApeKI, PstI/EcoT22I) in separate GBS li-

braries and were sequenced using Illumina Hi-Sequation 2000

technology. Genotypes were called using a custom GBS pipeline de-

scribed in Gardner et al. (2014). Briefly, 100-bp reads generated from

both enzymes were aligned to the Malus domestica reference genome

version 1.0 (Velasco et al. 2010) using the default parameters in BWA

(Li and Durbin 2009). Genotypes were called using GATK (McKenna

et al. 2010) with a minimum of eight reads supporting each genotype.

The final genotype matrix was filtered to contain only samples from the

domesticated apple,Malus domestica, and#20%missing data per SNP

and per sample. SNPs with a minor allele frequency (MAF) of ,0.01

were then discarded. Finally, the data were pruned to exclude clonal

relationships: if two or more samples had IBD.0.9, they were consid-

ered clones and the sample with the least amount of missing data from

the group was retained. This resulted in a dataset of 711 samples and

8404 SNPs.

To test the accuracy of our imputation method we created a

“masked” dataset by setting 10,000 random genotypes to missing. This

created “truth known” genotypes to which our imputed genotype calls

were compared. We limited our testing to 10,000 masked genotypes,

which represents 0.17% of the genotype matrix, in order to maintain a

dataset with a reasonable amount of missing data while providing

enough masked genotypes to be able to estimate imputation accuracy.

Biased allele frequency in imputed data has been shown to affect

downstream analyses (Han et al. 2014). To determine how well each

imputation method estimates allele frequencies, we filtered the geno-

type matrix to contain no missing data. This resulted in a matrix con-

taining 1001 SNPs from 459 samples (Figure S2). We masked and then

imputed 20% (91,952 genotypes) of the genotypes at random and

compared the allele frequency estimates from the imputed data to

the allele frequency estimates from the complete genotype matrix. As

most imputation methods make use of other SNPs to aid imputation,

we imputed using all 8404 SNPs in the dataset so as to provide more

information to these methods.We then restrict our analysis to the 1001

complete SNPs.

We also tested theperformanceofourmethodongenome-wideSNP

data frommaize and grape. The maize data were downloaded from the

International Maize and Wheat Improvement Center (Hearne et al.

2014). We reduced the data to biallelic SNPs with ,20% missing data

and aMAF.1% and then discarded samples with.20%missing data.

This resulted in 43,696 SNPs from 4300 samples.

Togenerate the grapedatasetwecollectedGBSdata fromacollection

of diverse samples from the genus Vitis including commercial Vitis

vinifera varieties, hybrids and wild accessions from the USDA grape

germplasm collection. The samples were processed with two different

restriction enzymes (HindIII/BfaI, HindIII/MseI) and were sequenced

using Illumina Hi-Sequation 2000 technology. We then used the 12X

grape reference genome (Jaillon et al. 2007; Adam-Blondon et al. 2011)

and the Tassel / BWA version 4 pipeline to generate a genotype matrix

(Li and Durbin 2009; Glaubitz et al. 2014). Default parameters were

Figure 1 The number of shared neighbors between the k-nearest
neighbors imputation (kNNi) and linkage disequilibrium k-nearest
neighbors imputation (LD-kNNi) methods. The value of l was set to 5
for both methods.

Figure 2 The probability of a single-nucleotide polymorphism (SNP)
being on the same chromosome as the imputed SNP as a function of
linkage disequilibrium (LD) with the imputed SNP. SNPs are ranked
according to LD, with the SNP most in LD with the imputed SNP
ranked one.
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used at each stage except for the SNP output stage where we filtered for

biallelic SNPs. We then removed any genotypes with fewer than eight

supporting reads using vcftools (Danecek et al. 2011). Using PLINK

(Purcell et al. 2007), we removed SNPs with.20%missing data before

removing samples with .20% missing data. We then removed SNPs

with excess heterozygosity (failed a Hardy2Weinberg equilibrium test

with a p-value , 0.001) and finally SNPs with a MAF , 0.01. This

created a dataset of 8506 SNPs and 77 samples.

Other imputation methods

We compared LD-kNNi, as implemented in LinkImpute, with several

other imputationmethods and programs that do not require a reference

panel:

Generic imputation methods:

1. Mode: The modal value of all other samples’ genotypes at the SNP

of interest. Implemented in LinkImpute.

2. k Nearest Neighbor: As described above and implemented in

LinkImpute.

3. MF: As implemented in the R package MissForest (version 4.6-10)

with maxiter set to 10 and ntree to 100 and all other parameters set

to default values. MF could not be run on the entire genome at

once because the run time was prohibitive. Instead it was run one

chromosome at a time (Stekhoven and Bühlmann 2012).

Genotype-specific methods:

4. Beagle: Version r1230 using default settings (Browning and

Browning 2007).

5. fastPHASE: Version 1.4.0 using default settings except K (the

number of clusters) is set to 200 (Scheet and Stephens 2006).

Data availability

The datasets used in this study are available in Supporting Information

File S1. LinkImpute is available from http://www.cultivatingdiversity.

org/software under the GPL version 3 license.

RESULTS

Imputation accuracy

We first compared the accuracy of imputation by using the large apple

datasetwherewe randomlymasked10,000genotypes.Wecompared the

imputed genotypes with the actual genotypes and calculated two

measures of accuracy. Genotype error is the proportion of genotypes

called incorrectly and allele error is the proportion of alleles called

incorrectly. The methods rank similarly for both measures (Table 1),

although allele error is approximately half of genotype error. This is to

be expected, because all methods that are likely to impute one allele

correctly are unlikely to impute both alleles incorrectly.

Our results show that LD-kNNi performs slightly better than Beagle

and fastPHASE, which have the greatest accuracy of all the other

Figure 3 Imputation accuracy as a function of the minor allele frequency (MAF) of the imputed SNP for each of the six imputation methods. MAF
is binned in 5% bins and the number of SNPs in each bin is shown in parentheses. kNNi, k-nearest neighbors imputation; LD-kNNi, linkage
disequilibrium k-nearest neighbors imputation.
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methods tested (Table 1). MF performs noticeably worse than these

methods, although this may, in part, be due to having imputed on a per

chromosome basis. kNNi performs significantly worse than any of

these methods, only slightly out-performing Mode imputation. We

investigated the difference between LD-kNNi and kNNi further by

computing, for each imputed genotype, the number of neighbors that

are shared between the kNNi and LD-kNNi methods, using k = 5 in

both cases. We found that in 56% of imputations the two methods

share no neighbors (Figure 1). This finding suggests that in many cases

kNNi is imputed using samples that, although similar across the whole

genome, may not be informative for the SNP we are imputing. Figure

S3 further supports this hypothesis by measuring the average distance,

using the LD-kNNi methodology (dl, Equation 3), from the sample to

be imputed to the neighbors being used in the imputation. This shows

that the average distance, again using k = 5 in both cases, is much

greater in the case of kNNi (average distance: 6.4) than LD-kNNi

(average distance: 1.8).

Unsurprisingly, we found that the performance of LD-kNNi is

dependent on the level of LD between the SNP to be imputed and

the SNPs used to find the nearest neighbors. Where the average LD

between the SNPs used and the imputed SNP is high, the imputation

error is lower (Figure S4). Although the apple reference genome is not

used in LD-kNNi, we exploited it to investigate how often our nearest

neighbor calculations used SNPs from chromosomes other than the

chromosome on which the imputed SNP is located. To do this, we

calculated the probability of being on the same chromosome as the

imputed SNP for the 20 SNPs in greatest LD with the imputed SNP.

Figure 2 shows that for the SNP with the highest LD, there is a prob-

ability of 0.7 of being on the same chromosome and that this drops off

to 0.31 for the 20th-ranked SNP.

We investigated the performance of the different imputation meth-

ods based on the MAF of the imputed SNPs. Figure 3 shows the geno-

type error rate of the different methods stratified by MAF. While the

error rate noticeably increased with MAF for Mode and kNNi, the

increase is small for the other four methods.

Run time

Comparing the run time of the various imputation methods (Table 1),

we note that both MF and fastPHASE took significantly longer than

any of the other methods: these two methods take on the order of 10 hr

compared with only a few minutes or less for the other methods.

Further analysis of the run time suggests that, as both the number of

samples and SNPs increases, LD-kNNi will continue to have a shorter

run time than Beagle (Figure S7 and Figure S8).

Comparing the performance of LinkImpute and Beagle on mul-

tiple datasets (Table 2) we note that LinkImpute has a similar run-

time to Beagle on all three datasets while achieving slightly better

accuracy.

n Table 2 Performance of LinkImpute and Beagle on different datasets

Dataset Number of SNPs Number of Samples

Genotype Error Run Time, sec

LinkImputea Beagle LinkImputea Beagle

Apple 8404 711 7.4% 7.6% 104 424
Maize 43,696 4300 18.1% 18.7% 7608 16,585
Grape 8506 77 9.5% 11.0% 28 16

SNP, single-nucleotide polymorphism.
a

Using the LD-kNNi option and optimized values of k and l

Figure 4 Bubble plots of the
actual and imputed genotypes
for each of the 10,000 masked
genotypes using each of the six
imputation methods. Bubbles are
not shown for the correctly im-
puted cases. The size of the
bubbles is proportional to the
frequency of observations in
that category. kNNi, k-nearest
neighbors imputation; LD-kNNi,
linkage disequilibrium k-nearest
neighbors imputation.
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Accuracy of allele frequency estimation

Figure 4 shows a bubble plot of actual and incorrectly imputed geno-

types for each of the six imputation methods. This shows that all six

methods have a bias toward imputing the major allele. This allele bias is

pronounced for Mode and kNNi and is less severe for the other

methods.

The allele bias observed in Figure 4 is expected to affect allele fre-

quency estimation. We investigated this further by using our smaller

dataset. For each of the six methods, we calculated the MAF across the

1001 SNPs without missing genotype data using both the observed

genotypes and the imputed genotypes. Figure 5 shows that every im-

putation method biases the MAF downward. This finding is consistent

Figure 5 Minor allele frequency (MAF)
computed by the use of actual and imputed
genotypes for each of the six imputation
methods. kNNi, k-nearest neighbors
imputation; LD-kNNi, linkage disequilibrium
k-nearest neighbors imputation.

2388 | D. Money et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
3
jo

u
rn

a
l/a

rtic
le

/5
/1

1
/2

3
8
3
/6

0
2
5
3
4
9
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



with our observation of allele bias in Figure 4. The resulting bias is least

pronounced for genotype specific methods, which all bias the MAF

downward by 0.5% as opposed to a minimum of 0.6% for any of the

other methods.

Figure 5 shows the tendency for the MAF to be underestimated

when calculated using an imputed dataset no matter what imputation

method is used. In addition, LD-kNNi outperforms every othermethod

in estimating MAF: the points cluster much closer to the line for LD-

kNNi than for any of the other methods. Moreover, LD-kNNi’s most

extreme deviation (3.8%) from the observed MAF is lower than any of

the other tested methods (Figure S5). The two groups in the Mode plot

are caused by the two different modal values for SNPs (0 or 1). The

bottom left group is where the modal value is 0, the top right group is

where it is 1 (Figure S6).

DISCUSSION
LD-kNNi performs well compared with the most commonly used

imputation methods. On our apple dataset it results in both superior

imputation accuracy (Table 1) and more accurate allele frequency es-

timates (Figure 4 and Figure 5). Accuracy results on the two other

tested datasets are similar, and the results presented here suggest that

performance should be comparable on other similar datasets. In par-

ticular, Figure 3 suggests that the MAF distribution should have little

effect on the relative performance of LD-kNNi.

The run time of LinkImpute also compares favorably with existing

methods. Only two of the methods studied here have both high

accuracy and reasonable run times, namely Beagle and the LD-kNNi

option of LinkImpute. Of these, our method is slightly faster. In

addition, as the number of samples and SNPs increases, LD-kNNi is

expected to outperform the other methods (Figure S7 and Figure S8),

which is particularly noteworthy because increasing sample size is

critical to augmenting the statistical power of GWA studies (Spencer

et al. 2009).

A recently developed imputation algorithm was designed for het-

erozygous species without a reference genome and was applied to

raspberry (genus Rubus; Ward et al. 2013). However, this method

applies only to biparental populations and relies on the construction

of a genetic map. The primary advantage of LD-kNNi over existing

methods is that it does not rely on ordered markers and can be applied

to diverse and heterozygous populations (Figure S9), not just biparental

crosses. Although we called SNPs using the apple reference genome,

LD-kNNi makes no use of this information during imputation. Indeed

Figure 2 shows that in many cases our algorithm is using information

from SNPs that are not on the same chromosome as the imputed SNP.

It is worth noting that linkage group assignments from apple F1 pop-

ulations conflict with reference genome locations for 14–18% of SNPs

(Antanaviciute et al. 2012; Gardner et al. 2014). It is therefore likely that

a significant number of sequences are anchored incorrectly in the ver-

sion of the apple genome used here. Thus, the values in Figure 2 may be

upward biased. Nevertheless, LD-kNNi clearly often makes use of in-

formation from SNPs on other chromosomes and the quality of the

apple reference genome has no effect on its performance.

Wedemonstrated that the performance of LD-kNNi improves as the

LD between the imputed SNPs and the SNPs used to find the nearest

neighbors increases (Figure S4). This suggests that, as the SNP density

of a dataset increases and more SNPs are in LD with one another, one

can expect improvements in the imputation accuracy of LD-kNNi. One

way of obtaining more SNPs would be to allow greater levels of missing

genotypes, although the increase in missing data are likely to have a

negative effect on imputation accuracy. Whether this negative effect is

offset by the positive effect of increased SNP density is an area that

warrants further study.

Like most other imputation methods, LinkImpute is applied to a

table of genotypes that have been called by a genotype calling algorithm.

Inmany cases, a genotype without sufficient sequence coverage is set to

missing in the table even though it has several supporting sequence reads

from the original data source. In such cases, the information from those

reads is lost and remains unused during imputation. By including the

information from these reads during imputation, we are likely to

improve imputation performance. In turn, this should enable greater

confidence genotype calls from lower read depths thereby significantly

increasing the total number of genotypes called. Moreover, incorporat-

ing imputation and SNP calling in this manner should help improve

genotyping error rates, especially in cases of low read depth. This is an

active areaof researchand future improvements are expected to increase

both genotype quality and quantity.

Our results suggest that LD-kNNi produces more accurate allele

frequency estimates at the cost of a slight decrease in imputation

accuracy. Biased allele frequencies are known to adversely affect

downstream analyses (Han et al. 2014), whereas increased imputa-

tion accuracy does not always lead to improved phenotype predic-

tion (Rutkoski et al. 2013). For many studies, an imputation method

with less bias in allele frequency estimation, such as LD-kNNi, may

therefore be preferable to a method with slightly increased accuracy.

It is worth noting that, in cases where one is only interested in

the MAF, one can simply estimate it from the nonmissing geno-

types. We show that such an estimate is indeed unbiased and that it

is more accurate than estimating MAF after imputation (Figure S5

and Figure S10). The relationship between imputation accuracy,

allele frequency bias and their effects on downstream analyses war-

rants further investigation.

Genotype imputation is a crucial step inmany genomic studies as all

existing genotyping methods result in some missing data. Most impu-

tation algorithms rely on physical or genetic maps, either directly or in

the generation of ordered SNPs, and are not suitable for use in non-

model organisms with poor or underdeveloped genomic resources. Our

novel genotype imputationmethod, LD-kNNi, does not rely on physical

or geneticmaps and imputes genotypes as accurately as the best existing

methods that require ordered markers. In addition, it is fast and

outperforms other methods in its ability to accurately estimate allele

frequencies. Thus, LinkImpute is a valuable tool for improving genome-

wide analyses in nonmodel organisms, especially for GWA and GS in

highly diverse and heterozygous organisms.
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