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Abstract

Diminishing fossil carbon resources, global warming, and increasing material and en-

ergy needs urge for the rapid development of a bioeconomy. Biomass feedstock from 

agro‐industrial value chains provides opportunities for energy and material produc-

tion, potentially leading to competition with traditional food and feed production. 

Simulation and optimization models can support the evaluation of biomass value 

chains and identify bioeconomy development paths, potentials, opportunities, and 

risks. This study presents the linkage of a farm model (EFEM) and a techno‐economic 

location optimization model (BIOLOCATE) for evaluating the straw‐to‐energy and 

the innovative straw‐to‐chemical value chains in the German federal state of Baden‐

Wuerttemberg taking into account the spatially distributed and price‐sensitive nature 

of straw supply. The general results reveal the basic trade‐off between economies of 

scale of the energy production plants and the biorefineries on the one hand and the 

feedstock supply costs on the other hand. The results of the farm model highlight the 

competition for land between traditional agricultural biomass utilization such as food 

and feed and innovative biomass‐to‐energy and biomass‐to‐chemical value chains. 

Additionally, farm‐modeling scenarios illustrate the effect of farm specialization and 

regional differences on straw supply for biomass value chains as well as the effect of 

high straw prices on crop choices. The technological modeling results show that straw 

combustion could cover approximately 2% of Baden‐Wuerttemberg’s gross electricity 

consumption and approximately 35% of the district heating consumption. The ligno-

cellulose biorefinery location and size are affected by the price sensitivity of the straw 

supply and are only profitable for high output prices of organosolv lignin. The location 

optimization results illustrate that economic and political framework conditions affect 

the regional distribution of biomass straw conversion plants, thus favoring decentral-

ized value chain structures in contrast to technological economies of scale.
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1 |  INTRODUCTION

The current global economic system depends strongly on fi-

nite resources. The world’s population growth and the en-

largement of the global middle class are likely to increase 

the demand for finite resources (Imbert, Ladu, Morone, & 

Quitzow, 2017). Likewise, apart from the quantitative limita-

tion of raw materials in a fossil‐based economy, the limita-

tion of climate change requires the reductions of global CO2 

emissions (BP, 2018). In order to achieve the 2°C Global 

Temperature Target, a significant share of coal and gas re-

serves must remain unused (McGlade & Ekins, 2015). For 

this reason, policy‐makers encourage the transformation of a 

fossil‐based economy toward a bioeconomy. There are politi-

cal strategies to promote the bioeconomy at European Union 

level (EC, 2012), at state (e.g., Germany) level (BMEL, 

2014), and at federal state (e.g., Baden‐Wuerttemberg) level 

(Hirth et al., 2013; WM, 2010). Within these strategies, the 

expansion of agricultural biomass use as a raw material is 

a crucial part in meeting the global challenges of climate 

change and the finite nature of fossil resources (IRENA, 

2018). Simultaneously, an increased exploitation of agricul-

tural biomass for energetic and material purposes competes 

with biomass for food and feed use and might consequently 

lead to an intensification of agricultural production causing 

negative environmental effects (Backhaus, Broers, Kögel‐

Knabner, Schwerin, & Thrän, 2015). For evaluation of these 

trade‐offs, models can be applied to illustrate the economic 

and ecological impacts of future bioeconomy paths. In order 

to perform a prospective evaluation of the bioeconomy, a 

combination of multidisciplinary models from multiple sec-

tors at different aggregation levels is necessary (Wicke et al., 

2015). In addition to classical agricultural biomass such as 

grains or silage maize, lignocellulosic biomass will play an 

increasingly important role in the bioeconomy (Olsson & 

Saddler, 2013). As an important source of renewable energy, 

lignocellulosic biomass has been used for heat production 

ever since and lately serves as a resource for bioethanol pro-

duction. In the future, lignocellulosic biomass such as agri-

cultural and forestry residues might also replace fossil‐based 

raw materials like crude oil and coal because of their valuable 

chemical compounds. Very promising products are biobased 

polymers such as lactic acid polymers or phenolic resins 

(Biddy, Scarlata, & Kinchin, 2016). In that regard, the EU 

has set new objectives to establish biorefinery operations for 

biofuels and chemical production by 2030 (BIC, 2017).

Whereas traditional bioenergy concepts generate electric 

and thermal energy by combusting lignocellulosic biomass, 

the innovative lignocellulose biorefinery concepts enable a 

full material utilization of the lignocellulosic components 

in order to obtain platform chemicals as a raw material for 

higher‐value biomaterials. Thus, for biorefineries, the valu-

able component fraction within the feedstock is important, 

and for bioenergy plants, it is the energetic potential of the 

biomass. Despite these slightly different goals, the economic 

implementation of such concepts is characterized by a critical 

trade‐off in planning biomass conversion plant locations. On 

the one hand, spatially scattered and fragmented availability 

of lignocellulosic biomass supply in combination with the 

relatively high water content and low energy density com-

pared to fossil‐based raw materials causes high transpor-

tation costs and affects the profitability of entire biomass 

value chains, esp. for bioenergy production (Giuntoli et al., 

2013). On the other hand, technological economies of scale 

(EoS) call for larger conversion plants. The economic benefit 

is caused by the fact that the rate for machinery costs and 

other investments rises slower than the capacity of the plant 

(Remmers, 1995). Hence, centralized structures with large‐

capacity plants are more investment‐efficient than decentral-

ized plant structures, which aim to reduce transport distances 

and thus are more cost efficient in terms of transportation. 

In recent years, numerous publications have addressed this 

trade‐off by different approaches. These publications can be 

distinguished, among other, by the breadth and depth of the 

evaluation of different production methods and processing 

stages of the value chain, as well as by the determination of 

the available feedstock supplies. Regarding the latter, many 

studies apply the technical or sustainable biomass potential 

while disregarding the economic constraints. In such stud-

ies, the biomass supply data are often taken from statistics. 

For instance, Ekman, Wallberg, Joelsson, and Börjesson 

(2013) estimate the feedstock supply based on official statis-

tics and reports, and scientific literature. Ekşioğlu, Acharya, 

Leightley, and Arora (2009) calculate the biomass supply 

based on land availability and regionally differentiated yield 

levels. Marvin, Schmidt, and Daoutidis (2013) and Chen 

and Fan (2012) use official databases projecting regional 

differentiated prices and available quantities for individual 

feedstocks. Bussemaker, Day, Drage, and Cecelja (2017) 

consider limited variable forestry feedstocks with a predeter-

mined fixed price. Rudi, Müller, Fröhling, and Schultmann 

(2017) formulate a mathematical model using existing po-

tentials based on statistics in order to optimize the biomass 

value chain in terms of multiple feedstocks, technologies, and 

outputs.

Other studies adjust the statistical data by applying ei-

ther a supply quota to ensure a sustainable utilization of 

biomass (Giarola, Zamboni, & Bezzo, 2011; Luo, van der 

Voet, & Huppes, 2010) or a predetermined share of arable 

land to produce feedstock (Lin, Rodríguez, Shastri, Hansen, 

& Ting, 2013). Zhang, Osmani, Awudu, and Gonela (2013) 

focus on biomass production on marginal land and derive 

biomass supply from the availability of marginal land. Other 

approaches determine the regional biomass supply based on 

agricultural production conditions on a high spatial resolu-

tion using geographic information systems (GIS) (Gonzales 
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& Searcy, 2017). Panichelli and Gnansounou (2008) apply 

a purely GIS‐based approach to identify bioenergy locations 

in northern Spain. Parker et al. (2010) provide a consistent 

study of multiple conversion technologies competing for a di-

verse set of biomass feedstocks with real‐world geographical 

data. Sukumara, Faulkner, Amundson, Badurdeen, and Seay 

(2014) use GIS to calculate a fixed maximum biomass supply 

for their location optimization. Wang, Liu, and Zhang (2013) 

combine a GIS‐based statistical method with remote sensing 

to improve the spatial resolution and accuracy of the biomass 

supply for bioenergy. Tittmann, Parker, Hart, and Jenkins 

(2010) develop spatially explicit feedstock supply curves 

for various crop availabilities in their techno‐economic ap-

proach. Wang, Hastings, and Smith (2012) derive feedstock 

supply by using a crop growth model for miscanthus. Other 

studies on biomass supply determination approach the topic 

from a monetary perspective. Sharma, Sarker, and Romagnoli 

(2011) present a financial planning model that maximizes 

stakeholder value based on land availability and yield level. 

Further studies emphasize the biomass storage (Ebadian, 

Sowlati, Sokhansanj, Townley‐Smith, & Stumborg, 2013), 

the mode of transportation (Lin et al., 2016), or the impact 

of annual traffic growth rates (Bai, Hwang, Kang, & Ouyang, 

2011).

Several studies perform a detailed analysis of agricultural 

biomass production for biorefineries. Egbendewe‐Mondzozo, 

Swinton, Izaurralde, Manowitz, and Zhang (2011) iden-

tify profitable cropping systems by combining a terrestrial 

ecosystem model (EPIC) with a regional profit‐maximiz-

ing mathematical programming model. Sokhansanj, Mani, 

Tagore, and Turhollow (2010) use detailed production and 

logistic options and weather conditions in order to estimate 

the biomass supply for biorefineries. Glithero, Wilson, and 

Ramsden (2013) conduct on‐farm surveys and link them with 

farm accounting data to estimate straw supply for a potential 

bioethanol pathway. Other studies distinguish between dif-

ferent types of agricultural production. Thompson and Tyner 

(2014) estimate the costs of corn stover harvest and supply 

and then use that information to estimate farm production 

decisions and changes to farm profit at varying corn stover 

prices. Bai, Ouyang, and Pang (2012) present a game‐theo-

retic model that incorporates farmers’ decisions and market 

choices in the location optimization problem to integrate the 

competitive agricultural land use and the feedstock market 

equilibrium. Only few studies analyze the effects of an ex-

panded bioeconomy with the help of farm models, which 

mainly apply mathematical programming. Louhichi et al. 

(2010) develop a bioeconomic farm model that can be ap-

plied in combination with models at high aggregation levels 

to assess policy questions under different biophysical and 

socioeconomic conditions. Banse et al. (2016) use a farm 

model within a model compound with a general equilibrium 

model and a partial equilibrium model for an analysis of 

bioeconomy pathways, comprising agricultural, wood, and 

energy markets. According to our literature survey, not any 

study combines an agricultural farm model with a location 

optimization model to evaluate biomass value chains while 

integrating on‐farm competition and technological EoS. 

For this reason, we propose the soft linkage of the agricul-

tural farm model EFEM (Economic Farm Emission Model) 

(Kazenwadel, 1999) and the location optimization model 

Biomass value chain Integrated Optimization for LOcation, 

CApacity and TEchnology planning (BIOLOCATE) (Rudi, 

Müller et al., 2017) that considers spatially distributed and 

price‐sensitive straw supply in a location optimization of bio-

mass conversion plants.

Whereas EFEM applies regional agricultural production 

conditions and biomass prices and costs to estimate biomass 

supply, BIOLOCATE uses GIS‐based input data (e.g., trans-

port distances) in combination with techno‐economic data 

(e.g., investments and capacities) to determine optimal bio-

mass conversion plant locations. The linkage enables a trans-

fer of data on biomass quantities and prices from the farm 

model to the location optimization model. The advantage of 

such model linkage consists in the consideration of the com-

petitive situation of agricultural biomass supply and the most 

profitable locations of biomass conversion plants. Within this 

linkage, we also present a comparison of the classical bio-

mass‐to‐energy pathway (BtE) and the innovative biomass‐

to‐chemical pathway (BtC) while integrating price‐sensitive 

agricultural production.

We focus on straw from wheat, barley (both spring and 

winter types), oat, and triticale as a by‐product of grain culti-

vation. Straw offers the opportunity of a low competition be-

tween uses for either food and feed production (Weiser et al., 

2014) and represents a highly unused potential in Baden‐

Wuerttemberg (Gauder, Graeff‐Hönninger, & Claupein, 

2011; WM, 2010). Although the energetic use of biomass 

comes along with possible ecological difficulties (e.g., flue 

gas cleaning), the energetic use of straw has a positive eco-

logical performance (Tonini, Hamelin, & Astrup, 2016). In 

addition to the energetic use of straw, in the long term, a 

material use of biomass is inevitable in order to substitute 

fossil resources (Lewandowski, 2015). In this context, da 

Costa Sousa, Chundawat, Balan, and Dale (2009) and Anwar, 

Gulfraz, and Irshad (2014) identified the organosolv process 

as one of the most promising fractionation methods for lig-

nocellulose biorefineries. The main advantage of organic 

solvents for pulping is the high purity of the obtained orga-

nosolv lignin, which allows easy processing into value‐added 

products (Zhang, Pei, & Wang, 2016). Furthermore, C5 and 

C6 sugars can be fermented into platform and building block 

chemicals such as succinic acid, which is a promising pre-

cursor of many industrially important chemicals (Luo et al., 

2010). Taking these aspects into consideration, we examine 

the established BtE pathway of straw combustion and the 
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innovative lignocellulose biorefinery concept as classified by 

the International Energy Agency Task 42 “Biorefining” for 

primary refining within the BtC pathway.

The main objective of the study was the application 

of a model linkage between a farm model and a location 

optimization model to the agro‐industrial valorization of 

straw from herbaceous agricultural residues to evaluate the 

energetic and material valorization options from a regional 

perspective.

In the following sections, we introduce both models and 

their linkage as well present and discuss the integrated mod-

eling results.

2 |  MATERIALS AND METHODS

Agricultural biomass itself is relatively inexpensive, but 

has a low energy density. As a consequence, the economic 

profitability of such value chains critically depends on trans-

portation costs. For this reason, logistics is of major im-

portance when it comes to planning biobased value chains 

(Ba, Prins, & Prodhon, 2016). Additionally, on each farm, 

different farming productions compete for land. Therefore, 

the profitability of agricultural biomass production depends 

on different agricultural production conditions and specific 

farm capacities. Hence, it is fundamental to include provi-

sion, logistics, and conversion processes when evaluating 

biomass value chains. In this context, the provision process 

includes harvesting and pretreatment operations, and the lo-

gistics process includes storage, transport, and transshipment 

procedures.

2.1 | Biomass‐to‐energy (BtE) pathway

The BtE pathway is represented by the combustion 

of straw to generate heat and power within a capacity 

range of 3–25 MWel. An average electric efficiency of 

�
el
=0.0236 ⋅ ln (�el)+0.189 and an average thermal effi-

ciency of �th
=−0.008 ⋅ ln (�el)+0.6457 in accordance with 

the installed electric capacity �el are assumed (Rudi, Müller 

et al., 2017). The overall combustion efficiency is based on 

a 15% electric and a 60% thermal efficiency range as well as 

a scalable energy ratio resulting in a technology efficiency 

(η) of 25%. The large‐capacity range enables an investiga-

tion of effects of Economies of Scale (EoS) and of govern-

mental regulations on large‐scale bioenergy systems such as 

the German Renewable Energy Act (REA). The considered 

bioenergy system integrates different types of combustion 

technologies such as the fixed‐ and fluidized‐bed combustion 

in combination with steam turbines. Fixed‐bed combustion 

is mainly applied in low‐capacity ranges, whereas fluid-

ized‐bed combustion is more common in larger applications 

(Kaltschmitt, 2013).

As for all solid fuel combustion technologies, the boiler 

efficiency is related to the lower heating value (LHV) of the 

feedstock, which is assumed to be 14.2 MJ/kg for straw. The 

conversion process is modeled as a black box integrating 

the various subprocesses (e.g., on‐site storage, pretreatment, 

combustion, and flue gas treatment), which is based on the 

scaling factor approach formulated by Rudi, Müller et al. 

(2017). The authors used research results from the project net-

work entitled “Innovations for sustainable biomass utilization 

(OUI BIOMASSE)” to estimate the investment and the effi-

ciency functions of the applied BtE pathway (Schumacher, 

Fichtner, & Schultmann, 2017).

2.2 | Biomass‐to‐chemicals (BtC) pathway

The integration of the BtC pathway is based on Engel, 

Fliedner, Fröhling, Haase, and Laure (2014) and the research 

network “Lignocellulose as new resource platform for novel 

materials and products” from the Bioeconomy Research 
Program Baden‐Wuerttemberg (https://biooekonomie-bw.

uni-hohenheim.de/en). The considered pilot‐scale biorefinery 

concept utilizes straw to produces glucose (C6 sugars), high‐

purity lignin, and C5 sugars (in particular xylose) as output 

products by applying the organosolv pulping process. In con-

trast to conventional pulping processes (i.e., kraft, sulfite, or 

soda), the resulting organosolv lignin is characterized by lit-

tle ash and carbohydrate impurities with a high Klason lignin 

content of approximately 90% and a molecular weight of 

3,100 g/mol (Engel et al., 2014). The purity of lignin defines 

its application and the market price. High‐purity lignin can 

be applied to substitute phenolic resins in binding agents or 

to synthesize polyurethanes in order to replace fossil‐based 

products. Whereas the extracted glucose can be sold on the 

sugar market, the C5 sugar fraction is assumed to be a valu-

able raw material for the synthesis of xylitol and furfural, 

though its market potential is low in comparison with that 

of lignin and glucose (Mountraki, Koutsospyros, Mlayah, & 

Kokossis, 2017). The biochemical organosolv process con-

verts lignocellulosic feedstock into its components with the 

highest fractionation rates by pulping with ethanol–water 

(Kleinert, 1974). Whereas cellulose is treated by enzymatic 

hydrolysis, lignin is precipitated from the mother liquor via 

water dilution and thermal precipitation. The organic solvent 

(i.e., ethanol) is recovered from the liquid process streams 

while the remaining C5 sugar fraction is extracted (Laure, 

Leschinsky, Fröhling, Schultmann, & Unkelbach, 2014).

In order to assess the energetic (BtE) and material (BtC) 

biomass valorization pathways for Baden‐Wuerttemberg, we 

soft‐link the agricultural farm model EFEM with the optimi-

zation model BIOLOCATE. Figure 1 shows the scheme of 

the developed model approach. By providing biomass supply 

volumes from EFEM and separating the supply costs, trans-

port costs, and the technological profit in BIOLOCATE, an 

https://biooekonomie-bw.uni-hohenheim.de/en
https://biooekonomie-bw.uni-hohenheim.de/en
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optimization of the value chain is performed by maximizing 

the overall profit of the system. The technological profit is 

defined as the revenue obtained by selling the output prod-

ucts subtracted by all occurring costs for producing the prod-

ucts excluding supply and transportation costs. These costs 

are integrated into the final location decision model.

2.3 | Agricultural production

The Economic Farm Emission Model (EFEM) is a com-

parative static linear optimization model, which maximizes 

the farms’ gross margins. It operates in a bottom‐up ap-

proach, which can be used at farm level as well as at regional 

level. Regionalization is achieved through extrapolation of 

the farm results. Figure 2 highlights the study area Baden‐

Wuerttemberg located in southwest Germany and shows the 

spatial resolution applied by EFEM. Baden‐Wuerttemberg is 

divided into eight Agro‐Ecological Regions (AER). These 

regions are characterized by similar agricultural production 

conditions, such as geological, topographical, and climate 

conditions (cf. Table 1). Although AER are on average five 

times as large as NUTS‐3 regions (regional classification of 

the EU territory; cf. EC, 2016), they are more suitable for 

application in the study region. The different AER depict the 

regionally differentiated production conditions that result in 

different production foci. For example, there is a fertile crop 

farming region (AER 1), a region with less intensive forage 

farming in low mountain ranges (AER 3), and a region with 

intensive dairy production based on grassland (AER 5).

F I G U R E  1  Scheme of model linkage

F I G U R E  2  Study region (Baden‐Wuerttemberg) in Germany 

and spatial resolution (AER) of EFEM
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The model consists of the farm type module, the produc-

tion module, and the extrapolation module. The farm type 

module contains the different farm structures in each region. 

Each region is represented by a maximum of six typical farm 

models, for example, dairy farms or arable farms that de-

pict the most common farm types in the individual region. 

Different sizes of a particular farm type per region are also 

possible. The general classification of these farm types is 

based on the farm typologies of the Farm Accountancy Data 

Network (FADN) (cf. EC, 2018b). The capacities of the typ-

ical farm models are based on average single farm data of 

the FADN and create restrictions for the optimization pro-

cess. The main part of the model is the production module. 

It unites all relevant agricultural production operations of the 

plant and livestock production. EFEM distinguishes different 

production activities on arable land and grassland, which can 

be used as food or feed and in the BtE and BtC pathways. The 

different production processes can be varied in fertilization 

and plant production intensities.

Policy regulations and plant cultivation restrictions are 

also included in EFEM, for example, crop rotation, upper‐

limit usage of organic fertilizer, and equating of humus bal-

ance constraints. The latter is of particular importance for 

maintaining the soil fertility in production systems that re-

move organic matter from the fields, for example, by using 

straw rather than incorporating it into the soil (Cherubini & 

Ulgiati, 2010). The humus balance (HB) is calculated at farm 

level (r) and comprises the effect of different crops (Dcrop) 

and manure (Dmanure), as shown in Eq. 1. The effect of crops 

depends on the specific value per crop (k), yield level (w), 

and the use of the by‐product (s). The effect of manure on 

humus is differentiated between pig and cattle manure. The 

balance at farm level depends on the specific production area 

for each crop (u) and the specific amount of manure (w). 

In this context, the farms are able to cultivate intercrops to 

compensate the reduction of humus. Furthermore, the mod-

eled farms are able to compensate the consequent nutrient 

removal through an adapted mineral and organic fertiliza-

tion. All adaption strategies include their particular costs. 

The parameters of humus and fertilizer effects are based on 

VDLUFA (2014) and DüV (2017). The values of relevant 

input data, such as producer prices, factor prices, and yields, 

are based on 3‐year averages to compensate the annual vari-

ability. The considered variable costs are exogenous param-

eters in the model that were obtained from official databases 

(cf. KTBL, 2017b; LEL, 2017a,b). The extrapolation module 
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projects the farm module results onto the regional level ap-

plying extrapolation factors. These factors are also defined 

by a linear optimization approach for depicting the entire ag-

ricultural production in each region. The agricultural census 

of 2010 provides the relevant regional capacities for the pro-

jection to AER level. Kazenwadel (1999) and Schäfer (2006) 

describe this modeling approach in detail, and a more recent 

application of EFEM can be found in Schwarz‐v Raumer, 

Angenendt, Billen, and Jooß (2017) and Krimly, Angenendt, 

Bahrs, and Dabbert (2016).

Economic Farm Emission Model is calibrated to the base 

year 2010. The results of the model are validated against 

the agricultural census of 2010 by comparing data on ani-

mal numbers, crop production, and land use with statistical 

data. The comparison shows a difference in crop production 

of less than 10%, which is considered to be sufficient, and 

the complete area for fodder production is modeled 2% below 

statistics. The modeled livestock production shows a maxi-

mum deviation of 7% in comparison with statistical data of 

the agricultural census of 2010.

Logistic processes such as biomass collection, storage, 

and transportation are important cost drivers in biomass value 

chains. Concerning storage, we select square bales and on‐

field storage under tarps due to the cost advantages over other 

baling and storage types (Martelli, Bentini, & Monti, 2015; 

Sahoo & Mani, 2017). Contractors, paid by the farmers, per-

form the straw baling and collection to in‐field stockyards. The 

straw price referred to in the following is the ex‐field storage 

price, which includes the baling and storage costs expressed 

in euros per ton of fresh matter (€/tFM). The straw quantity 

is expressed in fresh matter with a dry mass content of 86%. 

Further logistic processes including the un‐/loading and trans-

portation are implemented in the BIOLOCATE model.

2.4 | Location planning (BIOLOCATE)

Different biomass valorization pathways exist, starting 

from the provision of biomass feedstock through to the 

logistics, and the conversion of biomass. Each pathway 

consists of interactive planning tasks and multiple deci-

sions, such as the type and source of biomass feedstock, 

the quantity to be transported, and the conversion tech-

nology to be chosen in order to produce a certain output 

product (Schwaderer, 2012). Considering the multiplicity 

of conversion technologies and products, as well as bio-

mass price elasticities, the use of linear models is highly 

recommended, as they are easy to apply, reduce compu-

tation time, and ensure optimality (De Meyer, Cattrysse, 

Rasinmäki, & van Orshoven, 2014; Hong, How, & Lam, 

2016). The BIOLOCATE model is a mixed integer linear 

programming model (MILP), which models strategic deci-

sions within biomass value chains. Such decisions concern 

the location planning of biomass conversion plants while 

taking into account technological EoS. EoS are gener-

ally larger for centralized large‐scale conversion plants 

than for multiple smaller and decentralized ones because 

the former need less specific investments while increas-

ing the geographic catchment area of biomass feedstock. 

However, unlike fossil resources, biomass feedstock, due 

to low energy density, favors a cost‐effective short‐dis-

tance transportation, resulting in a decentralized network 

structure with small‐ or medium‐scale conversion plants 

(Fiedler, Lange, & Schultze, 2007; Kaltschmitt, Hartmann, 

& Hofbauer, 2009; Kudakasseril Kurian, Raveendran Nair, 

Hussain, & Vijaya Raghavan, 2013; Wiese, 2013; Yue, 

You, & Snyder, 2014). The integration of this trade‐off 

assumption between EoS and transportation costs requires 

advanced modeling techniques to assess biomass valoriza-

tion pathways while incorporating various types of bio-

mass feedstock, the multiplicity of conversion processes, 

and many output products (Fröhling, Schweinle, Meyer, 

& Schultmann, 2011; Sharma, Ingalls, Jones, & Khanchi, 

2013). Numerous models analyze biomass valorization 

pathways (Ba et al., 2016; Garcia & You, 2015; Yadav 

& Yadav, 2016), but disregard the trade‐off assumption 

(Batidzirai, 2013; Shastri, Rodriguez, Hansen, & Ting, 

2012) and the price elasticity of the biomass feedstock 

(Panichelli & Gnansounou, 2008). The presented model 

integrates the price elasticity of agricultural biomass feed-

stock and enables location planning of biomass conver-

sion plants based on a techno‐economic analysis (TEA) of 

biomass‐to‐energy (BtE) and biomass‐to‐chemical (BtC) 

pathways. The TEA integrates different capacity ranges of 

conversion technologies in comparison with the associated 

investments (Ekşioğlu et al., 2009; Zhang, Johnson et al., 

2016). Important factors of the TEA are the capital and op-

erational expenditures for building conversion plants, such 

as biomass power plants (BtE) and biorefineries (BtC).

An economic evaluation of biomass value chains is pro-

vided while integrating relevant cost and investment factors in 

accordance with the German VDI 6025/2067 guidelines (VDI, 

2012a,b). These factors comprise the gross investment, the in-

come from current operations, as well as capital and operational 

expenditures, and are uniformly discounted over the planning 

period of 20 years in accordance with the annuity method. The 

expenditures consist of the costs of feedstock and fuel, main-

tenance and repair, as well as insurances, taxes, and costs of 

labor, utilities, operating material, supplies, administration and 

overhead, and the disposal of residues and ash (Eltrop, 2014).

The main characteristics of the model are described by 

relevant model equations, whereas the model notation is 

summarized in Table 2. Both the energetic and the material 

valorization pathways are integrated into one model formu-

lation to compare the straw valorization for bioenergy gener-

ation and production of chemical components, that is, lignin, 

glucose, and C5 sugars. The starting point of the value chain 
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T A B L E  2  Indices, variables, parameters, and equations of BIOLOCATE

Indices

b∈{1,… ,B} Type of biomass feedstock

i∈{1,… ,I} Biomass supply location (source)

j∈{1,… ,J} Conversion plant location (sink)

p∈{1,… ,PBtE ,PBtC ,P} Conversion technology

Variables

xbijp ∈ℝ
+ Continuous variable: biomass flow [tFM/year]; ∀b∈{1,… ,B}, i∈{1,… ,I}, j∈{1,… ,J}, p∈{1,… ,P}

ybjp ∈ℕ
0

Integer variable: number of installed plants per location; ∀b∈{1,… ,B}, j∈{1,… ,J}, p∈{1,… ,P}

Z Objective function value of profit to be maximized [€/year]

G
Profit Profit of the complete biomass value chain [€/year]

C
Biomass Costs of biomass feedstock [€/year]

C
Transport Costs of biomass transport [€/year]

p
el(�

p
,�el

p
) Price of electrical energy depending on the plant availability and installed capacity [€/kWhel]

�
th(� th

p
) Relative share of sold thermal energy depending on installed capacity of BtE conversion technology

Parameters

a
bi

Supply quantity of biomass feedstock b at source location i: [tFM/year]

Ip Investments for BtE conversion technology p: [€/year]

ICAPEX

p
,IOPEX

p
Basis value of the expenditure function of BtC conversion technology p: [€], [€/t], [€/kWh]

c
Biomass

b
Supply costs of biomass feedstock b: [€/tFM]

c
fixT

b
Fixed transportation costs of biomass feedstock b: [€/tFM]

c
varT

b
Variable transportation costs of biomass feedstock b: [€/(tFMkm)]

dij Road distance between biomass source location i and conversion plant location j: [km]

fpb Demanded quantity of biomass feedstock b for conversion by technology p: [tFM/year]

gBtE
p

,gBtC
p

Investment profit of technology p for BtE and BtC conversion: [€/year]

lhv
b

Lower heating value of biomass feedstock b: [MJ/tFM]

n
CAPEX

p
,nOPEX

p
EoS scaling factor for capital (0.7) and operational expenditures (0.95) of BtC conversion technology p: [‐]

o
th Relative loss of thermal energy in the district heat network: [%]

p
x

p
Price of output product x (i.e., lignin, C5 sugars, C6 sugars) produced by BtC conversion technology p: [€/tFM]

pth Price of thermal energy generated by BtE conversion: [€/kWhth]

qth Costs of expanding the district heating network: [€/kWhth]

�
p
,�0

p
Basis capacity and actual capacity of BtC conversion technology p: [tFM/year]

�min
p

,�max
p

Lower/upper limit for installed electrical power of BtE conversion technology p: [MWel]

�
el

p
Electrical efficiency of BtE conversion technology p: [%]

�
th
p

Thermal efficiency of BtE conversion technology p: [%]

�
p

Operation time of conversion technology p: [hr/year]

�
el

p
, � th

p
Installed electrical/thermal capacity of BtE conversion technology p: [MWel], [MWth]

�
x
bp

Factor for converting biomass b into output x (i.e., lignin, C5 sugars, C6 sugars) through BtC technology p: [‐]

Equations

Objective function max Z =G
Profit

−C
Biomass

−C
Transport (2)

System profit
GProfit

=

B
∑

b=1

J
∑

j=1

P
∑

p=1

gp ⋅ybjp

(3)

Biomass supply costs
CBiomass

=

B
∑

b=1

I
∑

i=1

J
∑

j=1

P
∑

p=1

cBiomass

b
⋅xbijp

(4)

Transport costs
CTransport

=

B
∑

b=1

I
∑

i=1

J
∑

j=1

�

�

c
fixT

b
+cvarT

b
⋅dij

�

⋅

P
∑

p=1

xbijp

�

(5)

(Continues)
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is the biomass source location i, for example, an agricultural 

farm, which provides a type of feedstock b, for example, 

straw. The quantity of feedstock supply is price‐sensitive for 

every source location. Biomass is transported to a sink loca-

tion j in order to be converted with technology p. Conversion 

technologies are modeled in their entirety; hence, individual 

processing and conditioning activities at different locations 

as well as pretreatment measures and intermediate products 

are not modeled separately in contrast to other modeling ap-

proaches developed by, for example, De Meyer, Cattrysse, 

and van Orshoven (2015, 2016).

The MILP formulation maximizes the profit of BtE and 

BtC pathways (2), cf. equations in Table 2. It consists of 

the revenue of selling output products, such as bioenergy or 

chemical components (3), subtracted by occurring costs and 

investments for a planning period of 20 years. Bioenergy in 

the form of heat and power is generated through combustion. 

The installed electric power corresponds to the output prod-

uct, which is fed into the power and district heat network and 

then sold (10).

Whereas bioenergy is generated by burning straw, chem-

ical components are produced through the primary refining 

step by applying the organosolv process. The particular lig-

nocellulose biorefinery concept is implemented as a top‐

down approach according to the German VDI 6310 guideline 

(VDI, 2016). In accordance with the biomass input flow, con-

version factors transform the lignocellulosic feedstock into its 

components while capital and operational expenditures are 

taken into account to estimate the costs (11). The total ex-

penditures are broken down into biomass feedstock costs (4), 

provided by EFEM; transport costs (5), corresponding to av-

erage logistics service provider rates; investments, and aux-

iliary costs, estimated by the application of scaling factors.

Whereas Eq. (4) in Table 2 represents the sum of biomass 

supply costs for the selected LAU 2 source regions taking into 

account different price‐to‐quantity ratios, Eq. (5) in Table 2 

considers the fixed and distance‐dependent road transport 

costs offset with the biomass volumes to be transported from 

the source to the specific sink locations.

The system boundaries are defined by the source and 

sink locations that are located in the federal state of Baden‐

Wuerttemberg. However, the BIOLOCATE model can be ap-

plied to any other geographical region. The flow of biomass 

feedstock is represented by a continuous variable (xbijp ∈ℝ
+),  

and the decision on the location is represented by an inte-

ger variable (ybjp ∈ℕ
0
). Whereas xbijp defines feedstock‐de-

pendent costs and restrictions, the location decision variable 

ybjp represents the number of installed plants per location, 

enabling the allocation of investments and auxiliary costs to 

specific locations.

Although biomass is spatially distributed, we assume that 

the price‐sensitive biomass feedstock is supplied at 1,104 

source locations (6), which represent the second level of 

local administrative unit (LAU 2) municipalities of Baden‐

Wuerttemberg. The volume of biomass xbijp is variable and 

cannot exceed the parameter a
bi

, which is the volume of bio-

mass supply at one LAU 2 region (i). It depends on the price 

that is offered at that specific LAU 2 region. LAU 2 is the 

building blocks of the European NUTS regions; they com-

prise the municipalities and communities of the European 

Union, which for Baden‐Wuerttemberg range from 100 ha 

to 44,000 ha (EC, 2016). The centroid of these LAU 2 lo-

cations is assigned to 40 candidate sink locations forming a 

road transportation network without any storage or transship-

ment activity. Potential biomass conversion plant locations in 

Baden‐Wuerttemberg have been investigated by Schwaderer 

(2012) in accordance with certain criteria as shown in  

Figure 3. At first, the distance to settlement areas, the topo-

graphy, and the land use, for instance, define spatial criteria 

in order to determine candidate plant locations in the geo-

graphical boundaries of Baden‐Wuerttemberg (analysis of 

potential plant locations). By linking the source and sink lo-

cations of the biomass flow with the road network, the trans-

port distances are calculated in the second step (transportation 

Equations

Supply of biomass J
∑

j=1

P
∑

p=1

xbijp ≤abi

∀b∈{1,… ,B}∀i∈{1,… ,I} (6)

Process supply at 

conversion plant

I
∑

i=1

xbijp = fbp ⋅ybjp

∀b∈{1,… ,B}∀j∈{1,… ,J}

∀p∈{1,… ,P}

(7)

Input of biomass for BtE 

conversion
fbp =

�
el
p
⋅�p ⋅3,600

s

hr

lhvb ⋅�
el
p

∀b∈{1,… ,B} ∀p∈
{

1,… ,PBtE
}

(8)

BtE conversion and 

capacity constraint
� th

p
=

�el
p

�el
p

⋅�th
p

;�min
p

≤�el
p
≤�max

p
∀p∈

{

1,… ,PBtE
}

(9)

Investment profit of BtE 

conversion
gBtE

p
= (10 ⋅pel

(

�p,�el
p

)

⋅�
el
p
+10 ⋅

(

pth
−qth

)

⋅

(

1−oth
)

⋅�
th
(

�
th
p

)

⋅�
th
p

) ⋅�p − Ip
∀p∈

{

1,… ,PBtE
}

(10)

Investment profit of BtC 

conversion
gBtC

p
=px

p
⋅�

x
bp
⋅ fbp−

(

ICAPEX

p

(

�p

�0

p

)nCAPEX

+ IOPEX

p
⋅

(

�p

�0

p

)nOPEX
)

∀b∈{1,… ,B} ∀p∈
{

1,… ,PBtC
}

(11)

T A B L E  2  Continued
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network definition). The final layer used in the BIOLOCATE 

model consists of a set of distance doublets (source: i, sink: j).
If a conversion plant operates with a certain capacity, the 

required feedstock input is ensured (7) assuming an operation 

period for combustion plants of 7,000 and for biorefineries 

of 8,000 full‐load hours per year (Haase, 2012; Zeller et al., 

2012).

The implemented combined heat and power (CHP) tech-

nology produces electric and thermal energy simultaneously 

via the conversion process of combustion (8). The generated 

bioenergy is calculated based on the technical efficiencies, 

the feedstock availability, and implicit input variables, such 

as the water content of the feedstock (9). For an operational 

time frame of 20 years, the price of electric energy is con-

ditioned by the rated power of the plant and calculated in 

accordance with the subsidy amount from remunerations 

under the German Renewable Energy Act (REA, 2014) for 

the production year 2015. While the electrical energy is en-

tirely distributed, thermal energy is sold at a reasonable price 

of 0.06 €/kWhth (AGFW, 2017), taking into account the grid 

extension costs and heat losses by assuming an existing heat 

demand (10).

In addition to the price‐dependent biomass supply, the 

final investment decision depends largely on the capacity 

of the conversion plant. As proposed by Koch (2009) and 

Schatka (2011), the presented modeling approach applies 

25 individual discrete values of the capacity curve for invest-

ment estimations. These include an investment cost factor of 

0.17 for auxiliary costs such as tax, operation and mainte-

nance, and labor costs in accordance with Schwaderer (2012). 

Depending on the scale‐up factors, a set number of scale‐up 

capacities for the combustion and chemical conversion of 

straw into chemical components are used to formulate the 

mathematical problem (10 and 11). The profit estimation of 

the biorefinery concept results from the revenue obtained 

from selling the converted chemical components minus the 

capital and operational expenditures. The capital expendi-

tures comprise plant equipment such as compressors, heaters, 

and coolers for solvent recovery, reactors for decomposing 

lignocellulosic biomass, equipment for lignin and cellulose 

washing as well as lignin precipitation, reactors for hydroly-

sis, and devices for lignin separation. The operational expen-

ditures include costs of fossil‐based ethanol (500 €/tEthanol),  

enzymes (36 €/tGlucose), process water (0.15 €/tFeedstock), 

power (0.11 €/kWh), and heat (24‐28 €/tFeedstock). Some heat 

is generated from burning the hydrolysis lignin, the remain-

ing heat is generated from heaters. Electricity for running the 

biorefinery is supplied from the grid. Hence, the considered 

biorefinery is not energy self‐sufficient, which at the current 

state of technology development is a realistic assumption 

(Wertz & Bédué, 2013).

The MILP model integrates strategic decisions on loca-

tion, capacity, and technology planning in order to provide a 

techno‐economic analysis of biomass value chains. Such de-

cisions cover the straw quantity to be supplied, transported, 

and converted to either bioenergy or chemical raw materials 

at various plant locations with different capacities in order 

to maximize the profit of the value chain. The model is ap-

plied to the agro‐industrial valorization of straw from her-

baceous agricultural residues to evaluate the energetic and 

material valorization options from a regional perspective. 

The input data covers the economic biomass potential of 

spatially distributed price‐sensitive quantities of straw from 

EFEM.

F I G U R E  3  Criteria for the selection of potential biomass conversion plant locations (1) and determination of transportation network (2)
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2.5 | Model linkage

BIOLOCATE requires feedstock supplies at a LAU 2 

level. However, the biomass production output of EFEM 

is at the regional level of AER. Accordingly, the modeled 

biomass supply of EFEM has to be spatially distributed to 

the LAU 2 level in order to process the location optimiza-

tion with BIOLOCATE. In this approach, we assume that 

the modeled crop rotation in the AER is the same in each 

LAU 2 region. The administrative LAU 2 regions are as-

signed to the respective AER and are determined by a two‐

step distribution. First, the overall straw production per 

AER is converted into an average yield per hectare using 

the available amount of arable land. Then, the straw yield 

of that particular crop rotation in the individual AER is as-

signed to each LAU 2 region and then multiplied by the 

respective arable land area. This quantity at LAU 2 level 

is subsequently transferred to BIOLOCATE. The statistics 

of arable land at LAU 2 level and of the AER in this spa-

tial distribution are based on the Agricultural Census 2010 

(DESTATIS, 2010).

Besides the integrated animal husbandry production 

systems, a few production systems are not considered in 

EFEM. Horse husbandry is not implemented because horse 

owners’ high willingness to pay makes farm‐level imple-

mentation in economic linear optimization approaches diffi-

cult. Furthermore, sheep farming only plays a minor role in 

Baden‐Wuerttemberg, and for this reason, it is not included 

in EFEM. In order to take this into account, we extrapolate 

the straw demand for the not integrated animal bedding and 

feed based on animal numbers and average straw demands in 

accordance with Rösemann, Haenel, and Dämmgen (2015) 

and KTBL (2017a). These demand volumes are deducted 

from the modeled straw supply and are therefore not avail-

able for conversion.

3 |  RESULTS

3.1 | Straw supply

In order to depict straw supply with different prices, we run 

EFEM with eleven scenarios. Each scenario reveals the straw 

supply at a particular price. In addition to the baseline sce-

nario, we model the straw supply between 30 and 80 €/tFM 

ex field in steps of 5 €/tFM. Figure 4 shows the correspond-

ing straw supply curves for each AER. The straw supply in-

creases in each region with increasing price. This is caused 

by different marginal costs of straw supply of the farms, 

which are based on different agricultural production condi-

tions and farms’ specific costs to compensate the removal of 

nutrients and humus. The shape of the supply curves shows 

differences between the regions. In most regions, the supply 

curve shows a relatively constant supply for up to a price of 

40 €/tFM and a strongly increasing progression between 50 

and 60 €/tFM. This range represents the best price‐to‐quantity 

ratio of straw supply. AER 1, AER 6, and AER 8 provide ap-

proximately 500 ktFM at most, and the supply curves are char-

acterized by a high progression at a straw price of 50 €/tFM. 

These regions have a high number of cropping farms and 

area of arable land. Hence, the competition between the use 

of straw for innovative BtE and BtC valorizations and tradi-

tional agricultural use such as feed is less pronounced. This 

F I G U R E  4  Modeled straw supply curves per AER
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results in a relatively high straw supply in these regions. The 

modeled maximum straw supply for AER 2 and AER 4 is ap-

proximately 300 ktFM for a straw price of 80 €/tFM. In AER 2, 

the straw production has to compete with a pronounced corn 

production. This corn production is relatively profitable and 

limits the use of straw to the already cultivated cereals in the 

crop rotation. This is the reason for the flat run of the straw 

supply curve at straw prices above 80 €/tFM compared to the 

other regions. In AER 7, the maximum straw supply amounts 

to around 170 ktFM. In AER 3 and AER 5, even for a price of 

80 €/tFM, no straw supply is available. The latter two regions 

are characterized by a strong competition for arable land 

between cattle and dairy farming and cash crop production. 

Due to the higher profitability of cattle and dairy farming per 

area, the arable land is mainly used for growing forage (si-

lage maize and grass‐clover), and relatively small amounts 

of grain.

3.2 | BtE location optimization

The BIOLOCATE model optimizes for the most profitable 

combination of biomass supply while taking into account, 

the specific biomass prices at each source location in order 

to produce a certain amount of energy at specific locations. 

Figure 5a shows the results of straw combustion plant loca-

tion planning in Baden‐Wuerttemberg. Whereas connecting 

lines illustrate the feedstock flow from LAU 2 regions to 

the combustion plants, different color schemes represent 

the consumed quantities of feedstock. The feedstock prices 

ranging between 50 and 60 €/tFM with an average of 55 €/tFM 

are additionally highlighted. The average road transport 

distance from the source locations of straw supply to the 

combustion plants is 23 km, whereas the longest distance 

is 91 km.

The total system profit accounts for approximately 

30 million €/year, which is generated at 34 of the 40 can-

didate plants with an overall installed electric capacity of 

213.65 MW and a thermal capacity of 563 MW. Of these 

plants, 33 have an installed capacity of 6.3 MWel and one 

of 5.75 MWel (cf. green squares in Figure 6). One loca-

tion contains three plants, and four locations contain two 

plants. The remaining locations consist of one plant. The 

plants convert a total of 1,538 ktFM/year of straw to pro-

duce 1.49 TWh of electricity, which corresponds to 2% of 

the gross electricity consumption and 3.94 TWh of thermal 

energy that correspond to 35% of the district heating con-

sumption of Baden‐Wuerttemberg (Stala BW, 2018). In the 

case of district heating, however, it should be noted that only 

a small proportion of the households (7%) are supplied with 

districted heating. The total costs consist of a 10% share of 

technology investments, 25% share of transportation costs, 

and 65% share of straw supply costs.

F I G U R E  5  Modeling results of combustion plant location planning and priced straw supply flows at LAU 2 level
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The optimal BtE location decisions are influenced by 

the feed‐in tariff of the German Renewable Energy Act 

(REA, 2014). The feed‐in tariff provides a surcharge to 

the energy price in order to help finance biomass com-

bustion technologies. Its consideration results in a de-

centralized plant allocation of low‐capacity combustion 

plants. In accordance with this regulation, a feed‐in tar-

iff up to a rated capacity of 5 MWel and corresponding 

to an installed capacity of 6.3 MWel is economically fa-

vorable. Such plants are the most profitable ones under 

the considered model assumptions due to the highest 

ratio between technological profit and input quantities, 

as shown in Figure 6. In addition, Figure 6 shows a sce-

nario without the REA feed‐in tariff. Whereas the green 

dots and the orange triangles represent the ratio in €/tFM 

per plant between the technological profit and the input 

straw volumes, the green and orange pillars highlight the 

absolute technological profit in million € per plant with 

a nonlinearly increasing installed capacity. Assuming a 

market price of electric energy of 0.03 €/kWhel (EEX, 

2017) and of thermal energy of 0.1 €/kWhth, a scenario 

without the REA feed‐in tariff is defined. Although a 

realistic price of thermal energy is 0.06 €/kWhth, only 

prices above 0.1 €/kWhth enable profitable solutions for 

the location optimization. In contrast to the feed‐in tariff 

scenario, which benefits plant capacities of up to 5 MWel, 

the market price scenario without the feed‐in tariff favors 

high‐capacity combustion plants in a range of 9–12 MWel. 

However, the economic benefits are much lower due to 

the missing surcharge, as shown by the comparison of the 

two dotted lines. Therefore, only one plant with a capac-

ity of 10.7 MWel is implemented (as indicated in Figure 6 

by the orange squares) in the northeastern part of Baden‐

Wuerttemberg (Figure 5b). Despite a low straw price of 

30 €/tFM, the plant barely reaches the break‐even with a 

total profit of 10,142 € per year. The concavity of the two 

continuous lines is explained by the application of dif-

ferent CHP technologies, for example, fixed‐bed firing, 

fluidized‐bed combustion, and the assumed average tech-

nology efficiency. The updated version of the REA 2017 

does not provide significant changes in the feed‐in tariff 

in comparison with the REA 2014. Hence, we only expect 

a slight decrease in the technological profit, but no major 

effects on the modeling results.

3.3 | BtC location optimization

Similar to the BtE location optimization, the optimal BtC 

location decision is influenced by the classical trade‐off be-

tween EoS and transportation costs. Hence, one would expect 

a highest capacity biorefinery in the center of the transporta-

tion network to be optimal; however, the capacity decision 

is significantly affected by the straw supply price as well. 

In order to understand the choice of the optimal biorefinery 

location and capacity, four restricted plant capacity scenarios 

are modeled. The scenario results are presented in Figure 7 

and show the optimal locations in size proportion for a plant 

capacity size of 0.5 (Figure 7a), 1.0 (Figure 7b), 1.1–1.7 

(Figure 7c), and 1.8‐2 (Figure 7d) million tFM of straw per 

year. Each of these four capacity scales results in different 

optimal biorefinery locations. Out of these capacity scales, 

the overall optimal capacity is 1.6 million tFM, although the 

maximum straw supply quantity at a price of 80 €/tFM is 

2.1 million tFM (cf. Figure 4).

Unlike the results of the BtE pathway, only one optimal 

candidate location for a biorefinery has been selected near 

Stuttgart (cf. Figure 7c). The high‐capacity biorefinery con-

sumes a total of 200 tFM/hr, which corresponds to an annual 

straw demand of 1,600 ktFM. The selected straw price varies 

between 50 and 70 €/tFM with an average price of 56 €/tFM. 

The majority of the LAU 2 regions (85%) provide straw at a 

price of either 55 or 60 €/tFM. The consumed feedstock sup-

ply ranges between 0.12 and 18 ktFM of straw for the LAU 2 

regions, of which 877 provide nonzero volumes. Either the 

remaining 227 regions have no arable land, or all straw is 

consumed by livestock farming. The northern and eastern 

F I G U R E  6  Technological profit per 

plant of applying combustion technology 

per straw input without transportation and 

supply costs with and without (w/o) the 

feed‐in tariff of the Renewable Energy Act 

(REA, 2014)
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regions of Baden‐Wuerttemberg provide higher quantities of 

straw supply in contrast to the western (Black Forest) and the 

southern (Allgäu) regions.

The centralized structure of the supply flow toward the city 

of Stuttgart is characterized by an average transport distance 

of approximately 100 km with the longest distance being 

F I G U R E  7  Modeling results of optimal biorefinery locations and straw supply prices at LAU 2 level for four capacity restriction scenarios 

(size of location marker is proportional to biorefinery capacity)
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231 km. The modeled biorefinery produces 224 kt/year of 

lignin, 640 kt/year of glucose, and 365 kt/year of residual C5 

sugars. By assuming a lignin price of 1,000 €/t (Bruijnincx, 

Weckhuysen, Gruter, & Engelen‐Smeets, 2016; Rettenmaier 

et al., 2014; Smirnova & Zetzl, 2016; de Wild, Huijgen, & 

Gosselink, 2014), a glucose price according to the world 

market price of 350 €/t (EC, 2018a), and a C5 sugar price 

corresponding to 60% of the glucose price (Haase, 2012), a 

total profit of approximately 86 million €/year is obtained. 

The share of total costs consists of 10% for transportation, 

25% for straw supply costs, and 65% of technology‐related 

investment costs per year.

Figure 8 summarizes the modeling results of 18 distinct 

biorefinery capacities and the number of biorefineries im-

plemented within the capacity scales (x‐axis). The costs of 

transportation and straw supply as well as the total sales rev-

enue for each restricted capacity are presented (y1‐axis). In 

addition, the average straw supply price is shown (y2‐axis).

Under the aforementioned product price assumptions, 

even small‐scale biorefineries generate a profit. Furthermore, 

with growing capacities, the number of small‐scale biorefin-

eries increases to up to three with locations in the northern, 

central, and southeastern regions of Baden‐Wuerttemberg 

(cf. Figure 7a,b). Limited by the maximum available straw 

quantity and starting from a capacity of more than one million 

tFM of straw per year, one central biorefinery near Stuttgart 

has been selected (cf. Figure 7c). This location remains un-

changed up to an input of 1.8 million tFM with Pforzheim 

being the optimal location (cf. Figure 7d). Pforzheim and 

especially Stuttgart are located in the center of Baden‐

Wuerttemberg, and both have an excellent road transport con-

nectivity. While the transport costs remain almost unaffected 

due to the robust central location choice, the straw supply 

price becomes significant with larger capacities. This critical 

price describes the optimal price‐to‐quantity ratio of straw 

supply and represents a threshold for an economic supply of 

approximately 50–60 €/tFM on average (cf. Figure 4). Hence, 

instead of implementing a biorefinery of the largest possible 

size, a capacity size is chosen, which valorizes a straw quan-

tity that has the best price‐to‐quantity ratio. In the case of 

the optimal solution of 1.6 million tFM, the average supply 

costs are 56 €/tFM, as highlighted in Figure 8. In difference to 

the average straw supply costs, the variation of transportation 

costs lowers the overall profit, but does not affect the plant 

location decision.

In general, due to the need for large quantities of low‐

cost feedstock, the profitability of a large biorefinery is very 

sensitive to any increase in feedstock costs (Zimmer, Rudi, 

Müller, Fröhling, & Schultmann, 2017). This relationship 

between EoS of larger capacities and diseconomies of scale 

of higher supply quantities becomes relevant for biomass 

value chains on regional level, when transportation costs 

play a minor role (Richard, 2010). At a biorefinery capacity 

of larger than 1.6 million tFM, the EoS are compensated by 

disproportionately increasing feedstock costs. Hence, higher 

capacities benefit the EoS at the cost of higher supply prices 

when transportation prices are irrelevant.

4 |  DISCUSSION

The results of the study indicate the influences of different 

problems and trade‐offs regarding the supply chain optimiza-

tion of energetic (BtE) and material (BtC) biomass pathways. 

Biorefineries for material production are facing enormous in-

vestment cost and benefit significantly from cost digression 

that comes along with larger plant capacities. On the contrary, 

such concepts demand very high feedstock volumes whose 

provisioning becomes much more challenging with increas-

ing plant size (Wang, Ebadian, Sokhansanj, Webb, & Lau, 

2017). In addition, modeling of the agricultural straw supply 

shows significant effects of competition for the use of arable 

land. This competition results in a declining progression of 

straw supply curves at higher straw prices (>60 €/tFM).

The straw supply curves, in general, are driven by the typ-

ical regional farm characteristics. In regions with a high share 

F I G U R E  8  Results of restricted plant 

capacity model runs and optimal solution 

without restriction of plant capacity
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of cropping farms such as AER 1, the farms adjust the crop-

ping pattern for the sole profitability of the specific arable 

crops. In these regions, the farms start to provide straw when 

the costs of provision (baling, collecting, and on‐field stor-

age) and nutrient removal are covered by the sales proceeds. 

In the case of high straw prices, crop rotation shifts toward an 

extended grain production. Furthermore, because of higher 

straw yields, the production of spring grains is decreased in 

favor of increased winter grain cultivation.

In regions with extensive animal production, the sup-

ply curve increases less prominently (e.g., AER 6). This 

is explained by the competition of arable land for straw as 

feedstock and for livestock production. These regions are 

characterized by a higher profitability of the feed demand for 

livestock production than of the utilization of straw in BtE or 

BtC pathways. In contrary, the nutrient removal can be bal-

anced to some extent by the farms’ nutrient supplies through 

the purchase of feed that is returned to the field as manure. 

This reduces the demand for fertilizer required for replacing 

the nutrients and the humus removed through straw exploita-

tion. Such representation of different contradictory effects 

reveals the advantage of agricultural farm models in the as-

sessment of agricultural biomass valorization in the context 

of bioeconomy.

In the following, the modeled straw supply is compared 

with the findings by Gauder et al. (2011). They calculated 

a maximum straw production including the change in crop 

rotation of 2,326 ktDM in Baden‐Wuerttemberg, which corre-

sponds to 2,705 ktFM with a moisture content of 14%. EFEM 

models a maximum straw supply of 2,478 ktFM without 

consideration of the additional demand for husbandry pro-

duction, but includes an equated humus balance. However, 

considering the straw demand for a stable humus balance, the 

remaining supply calculated by Gauder et al. (2011) for BtE 

or BtC pathways is 842 ktDM. This is only half the quantity 

of the modeled optimal feedstock supply. The difference in 

quantity is primarily explained by the additionally available 

options in EFEM to cultivate crops, such as intercrops, that 

have a positive effect on the humus supply.

A weakness in the presented model approach is the re-

gional system boundaries of EFEM that do not allow 

the consideration of trade with the neighboring regions. 

Whereas the import of straw from Switzerland is probably 

negligible, the import from, for example, Bavaria is likely 

to have a significant impact on the straw supply in Baden‐

Wuerttemberg at a high straw price. The export of straw from 

Baden‐Wuerttemberg to the neighboring regions, especially 

at higher prices, is not profitable and has therefore not been 

considered. However, such implementation of BtE or BtC 

value chains is most likely to be realized at country level, cre-

ating a competition across federal state borders. To address 

these issues, the regional study area should be expanded to at 

least the neighboring federal states in further studies.

Direct conclusions on the effects of location decisions of 

biomass conversion plants on the farms cannot be drawn yet 

due to the different spatial resolutions of the two models. 

Nevertheless, at a straw price up to 50 €/tFM as in the BtE 

scenarios, only the straw of the existing grain production 

is supplied to the particular valorization pathway. With an 

increasing straw price, the farms change the crop rotation to 

expand the cereal cultivation for an increase in straw pro-

duction. This shift in crop rotation is to the detriment of 

silage maize and rapeseed, which are already being used 

in a BtE pathway (biogas, resp. biodiesel). However, the 

increased grain production due to the coupled production 

must additionally be offset against the reduced silage maize 

and rapeseed production in the evaluation of the total out-

put. This trade‐off is caused by the limited availability of 

arable land. Such aspects must be kept in mind when evalu-

ating the contribution of the modeled biomass valorization 

pathways.

For further model extension, an additional risk premium 

to be paid to the farmers is intended to be introduced to 

cover realistic barriers, which affect the farmers’ willingness 

to sell straw for one of the considered pathways (Glithero, 

Ramsden, & Wilson, 2013). The determination of premium 

prices, however, is extremely challenging. Furthermore, the 

integration of yield fluctuations of straw seems appropriate 

in order to consider the financial risks caused by shortages 

of feedstock supplies, for example, based on unfavorable 

weather conditions. Furthermore, perennial lignocellulosic 

feedstocks such as short‐rotation coppice or miscanthus can 

also be integrated into the model linkage. In this context, mis-

canthus is a promising crop because of high biomass yields 

and a good environmental profile (Jørgensen, 2011). It is 

also suitable because it can grow on marginal land, which 

has no competition with the feed and food crop production 

(Lewandowski et al., 2016).

In order to promote straw for BtE and BtC valorization 

pathways, the focus on plant breeding could be redefined. In 

recent years, the focus of plant breeders has been mainly on 

the increase in grain yield, which generally reduces the straw‐

to‐grain ratio. It might be useful to extend research on dual‐

purpose wheat crops for increasing the profitability of both 

straw as a feedstock and grain for food and feed production 

(Townsend, Sparkes, & Wilson, 2017).

Having a closer look at the economics of the lignocel-

lulose biorefinery concept, the price of high‐value lignin is 

the most decisive factor in the techno‐economic analysis, 

because it only provides profitable solutions starting from a 

price of 700 €/t. Additionally, the lignin price is subject to 

an uncertainty as it ranges from 750 to 1,300 €/t (Bruijnincx 

et al., 2016; Rettenmaier et al., 2014; Smirnova & Zetzl, 

2016; de Wild et al., 2014). Hence, the finally implemented 

lignin price has a great influence on the future development 

of the BtC value chain.
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When looking more closely at the results of the location 

optimization, the EoS crucially affect the profitability of the 

BtC pathway. The assumed EoS of the BtC biorefinery con-

cept are based on scale‐up factors from the literature up to a 

maximum of 2 million tFM of straw supply per year. However, 

financial scale‐up risks occur with larger capacities, which 

hamper the implementation of large‐scale BtC concepts 

significantly (Castillo‐Villar, Eksioglu, & Taherkhorsandi, 

2017). Integration of such risk factors promotes small‐scale 

concepts because of lower risk investments, but on the con-

trary reduces EoS of large‐scale BtC concepts (Bruins & 

Sanders, 2012). Additionally, the size of a biorefinery can 

have a significant impact on emissions and the regulatory 

requirements (Eberle, Bhatt, Zhang, & Heath, 2017). The 

technology readiness level of the proposed lignocellulose 

biorefinery concept still has not surpassed the pilot stage; 

therefore, it is impossible to estimate emissions realistically. 

Moreover, the requirements for emission reduction measures 

depend on regional environmental conditions and policy reg-

ulations. Acceptance by the local society could also interfere 

with the location decision and should be considered in future 

works (Lee, Loveridge, & Joshi, 2017).

Numerous studies highlight the application of de-

centralized biomass value chain concepts with locally 

separated pretreatment, primary and secondary refining 

processes (Kudakasseril Kurian et al., 2013; Lin et al., 

2016; Sokhansanj et al., 2010). Such value chain struc-

tures are characterized by the decision of optimizing the 

pretreatment plant location in addition to the conversion 

plant location. However, this requires multi‐echelon mod-

eling approaches, which enable an advanced problem 

consideration.

EoS are an important factor in location optimization of 

biomass conversion plants. Capital‐intensive technologies 

such as the lignocellulose biorefinery (BtC) are charac-

terized by a significant impact of EoS on the profitability 

forming centralized valorization structures. Economies of 

Scope, on the contrary, are primarily affecting the down-

stream value chain leading to cost reductions through prod-

uct diversification. The assessment of valorization routes 

of lignin and organosolv sugars along the downstream 

processes is a key aspect of future research. For bioenergy 

generation (BtE), such effects are less important. Policy in-

centives such as surcharges, which favor decentralized BtE 

structures with medium‐sized combustion capacities, are 

rather crucial.

In order to meet the requirements of the bioeconomy, the 

ecological footprint of biomass value chains must be improved 

in comparison with that of fossil‐based value chains. Ecological 

impacts are crucial for fulfilling the role of the biomass valo-

rization pathways for the bioeconomy. For that reason, envi-

ronmental effects such as GHG emissions should be integrated 

and a Life Cycle Analysis applied to evaluate the ecological 

performance of biomass conversion technologies. However, 

the integration of GHG emissions into an optimization model 

requires advanced modeling techniques such as multi‐objec-

tive optimization. One approach, that is, the augmented epsi-

lon‐constraint method, seems promising and is currently being 

integrated (Rudi, Froehling, Zimmer, & Schultmann, 2017). 

Another model enhancement is the increase in the spatial res-

olution of biomass supply based on land use maps, and the 

inclusion of crop residues other than cereal straw.

In summary, the presented linkage between an agricultural 

farm model (EFEM) and a biomass conversion plant location 

optimization model (BIOLOCATE) elucidates the trade‐off 

between economies of scale and increasing feedstock sup-

ply costs in southwest Germany. The results highlight the 

advantages of linking two models for the techno‐economic 

analysis and optimization of biomass‐to‐energy (BtE) and 

biomass‐to‐chemical (BtC) pathways while taking into ac-

count technological economies of scale (EoS) and regional 

price‐sensitive agricultural production.
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