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Abstract 
 

Quantitative traits obtained from computed tomography (CT) scans performed in routine 

clinical practice have the potential to enhance translational research and genomic discovery 

when linked to electronic health record (EHR) and genomic data. For example, both liver fat and 

abdominal adipose mass are highly relevant to human disease; non-alcoholic fatty liver disease 

(NAFLD) is present in 30% of the US adult population, is strongly associated with obesity, and 

can progress to hepatic inflammation, cirrhosis, and hepatocellular carcinoma.  We built a fully 

automated image curation and organ labeling technique using deep learning to identify liver, 

spleen, subcutaneous and visceral fat compartments in the abdomen and extract 12 quantitative 

imaging traits from 161,748 CT scans in 19,624 patients enrolled in the Penn Medicine Biobank 

(PMBB). The average liver fat, as defined by a difference in attenuation between spleen and 

liver, was -6.4 ± 9.1 Hounsfield units (HU). In 135 patients who had undergone both liver biopsy 

and imaging, receiver operating characteristic (ROC) analysis revealed an area under the curve 

(AUC) of 0.81 for hepatic steatosis. The mean fat volume within the abdominal compartment for 

subcutaneous fat was 4.9 ± 3.1 L and for visceral fat was 2.9 ± 2.1 L. We performed integrative 

analyses of liver fat with the phenome extracted from the EHR and found highly significant 

associations with chronic liver disease/cirrhosis, chronic non-alcoholic liver disease, diabetes 

mellitus, obesity, hypertension, renal failure, alcoholism, hepatitis C, use of therapeutic adrenal 

cortical steroids, respiratory failure and pancytopenia. Liver fat was significantly associated with 

two of the most robust genetic variants associated with NAFLD, namely rs738409 in PNPLA3 

and rs58542926 in TM6SF2. Finally, we performed multivariate principle component analysis 

(PCA) to show the importance of each of the quantitative imaging traits to NAFLD and their 

interrelationships with the phenome. This work demonstrates the power of automated image 

quantitative trait analyses applied to routine clinical imaging studies to fuel translational scientific 

discovery. 
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Introduction 
 

Advanced imaging is a critical component of health care, is utilized extensively in 

modern medicine, and is a major component of the electronic health record (EHR). Medical 

centers collect enormous quantities of imaging data that could be extremely valuable for 

translational science, but quantitative traits are not systematically extracted for use by either 

researchers or clinicians. Automated measurement of quantitative traits from imaging obtained 

during clinical care that are then integrated with EHR and genomic data obtained via biobanking 

protocols at scale will fuel new biological discovery, inform disease etiology and 

pathophysiology, and guide the next generation of precision medicine therapies (1). 

Both liver fat and abdominal adipose mass are examples of quantitative traits that are 

highly relevant to human health and disease and can be quantitated from medical images such 

as CT scans (2-6). Non-alcoholic fatty liver disease (NAFLD) affects approximately 30% of the 

US adult population and can progress to hepatic inflammation, cirrhosis, and hepatocellular 

carcinoma (7, 8). Excess liver fat is the predominant histologic and radiologic feature that 

identifies NAFLD patients and is associated clinically with obesity, cardiovascular disease and 

diabetes (9, 10). The automated extraction of liver fat and adipose mass from clinical imaging 

studies at scale would be of great interest for integration with other aspects of the phenome via 

the EHR, as well as potentially with genomic and biomarker data, to advance translational 

science and precision medicine. 

To address the challenges of conventional analysis of large numbers of images, 

machine learning can be brought to bear to provide precise image analysis using automation 

(11, 12). Deep learning has rapidly increased in popularity, becoming a dominant method in 

computer vision (13), yet most studies have explored only a few imaging traits and do not 

integrate this information with the EHR to show the extent to which these traits are associated 

with the disease phenome (14-17). An additional challenge is that patients often undergo 

multiple imaging scans for which machine learning has not been trained, limiting its application 

at scale. Our overall objective was to develop an automated approach that addresses these 

limitations and shows the association between multiple imaging traits and the disease phenome. 

We built a fully automated image curation and organ labeling technique using deep 

learning applied to CT scans to identify liver, spleen, subcutaneous and visceral fat 

compartments in the abdomen and quantify 12 imaging phenotypes from those regions. After 

rigorously validating the deep learning methods, we applied it to 161,748 CT scans from 19,624 

patients enrolled in the Penn Medicine Biobank (PMBB), a centralized resource of annotated 

blood and tissue samples linked with clinical EHR and genetic data. We performed integrative 
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analyses of the imaging traits with other phenotypic data extracted from the EHR using principle 

component analysis (PCA). This work demonstrates the power of automated image quantitative 

trait analyses to fuel translational science by leveraging imaging studies performed in clinical 

care and linked to an academic biobank. 
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Results 

 

Radiologic studies in participants in the Penn Medicine Biobank (PMBB) 

In the University of Pennsylvania Health System between January 1988 and April 2019, 

more than 18 million radiology studies were performed, of which ~2.7 million were CT scans 

(Fig. 1A).  Approximately 50% of the CT studies (n = 1,331,012) were abdominal or chest CTs 

(Fig. 1B).  At the time of this study, the PMBB had recruited ~50,000 participants. We found that 

imaging in PMBB participants is extremely common: from 1988 to 2019, 170,209 CT, 96,129 

magnetic resonance imaging (MRI), and 89,923 ultrasound studies were performed on patients 

who had at some point been enrolled in the PMBB (Fig. 1C). After chest x-ray, the most widely 

utilized advanced imaging studies performed were CT studies of the abdomen and chest, of 

which 64,473 were suitable for analyses (based on CPT code). Overall, 19,624 unique PMBB 

participants had undergone abdominal or chest CT scanning, with a total of 161,748 scans 

performed, providing a large sample for carrying out this study. 

 

Automated extraction of quantitative traits from abdominal and chest CT images 

Using abdominal and chest CT scans, we set about to develop an automated approach 

for quantifying 12 image-derived phenotypes (IDPs): liver HU (attenuation) mean, liver HU 

deviation, liver fat, liver volume, spleen HU mean, spleen HU deviation, spleen volume, 

subcutaneous fat volume, subcutaneous fat area, visceral fat volume, visceral fat area, and 

visceral-subcutaneous fat ratio (see Supplementary Table 1 for list of IDPs). As shown in Fig. 2, 

the fully automated technique filters images and removes non-axial orientations and high noise 

data such as thin sections (slice thickness < 2 mm) as detailed in methods. It identifies non-

contrast or contrast enhanced CT scans (CNN1), identifies images that show abdominal 

anatomy (CNN2), and labels pixels showing liver (CNN3A), spleen (CNN3B), subcutaneous and 

visceral fat anatomy (CNN3C). The output of CNN3C provides the inner abdominal contour which 

yields visceral and subcutaneous fat compartments (Fig. 2B). The explicit form of the CNNs 

appear in Supplementary Fig. 1. 

We validated the software to measure the performance of each component 

(Supplementary Table 2). The performance of CNN1 to identify contrast enhanced CT scans 

was evaluated using 400 randomly selected scans, composed of 200 with IV contrast and 200 

without. Of the 400 scans tested, 399 were classified correctly. The performance of CNN2 to 

identify the abdominal borders was assessed by randomly selecting another 100 CTs of the 

abdomen and pelvis and comparing the CNN and manually derived results. For the superior 
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border, the automated method was within approximately one slice from the selected slice 

(1.01±1.11) and for the inferior border within one slice from the selected one (0.70±0.64). 

Performance of CNN3 in labeling liver, spleen, visceral and subcutaneous fat was found by 

comparing with an expert radiologic observer (D.T.) as detailed in methods. There was excellent 

agreement and minimal bias between all expert and automatically derived metrics as shown in 

Supplementary Table 2. 

After validation, we automatically extracted 12 IDPs from abdominal and chest CT 

exams in the PMBB. As shown in Fig. 3, 161,748 CT scans were processed by our algorithm 

and data was extracted for 86,311 scans, corresponding to 63,160 studies, representing 19,301 

patients who remained for IDP quantitation. The clinical characteristics of these patients are 

shown in Table 1. As shown in Fig. 2A, patient scans were retrieved from Penn Medicine 

picture archiving and communication server (PACS), anonymized, and image data was 

synchronized with a cloud computing platform for processing (Amazon Web Services). 

Quantitative imaging traits were extracted and mean values for each of the 12 quantitative IDPs 

are shown in Table 2 and distributions of traits are shown in Supplementary Fig. 4. 

 

Association of liver fat with clinical traits and diagnoses  

A total of 14,930 unique patients in PMBB had CT scans suitable for quantitation of liver 

fat and associated IDPs. Liver fat was calculated by taking the mean attenuation of the spleen 

and subtracting the mean attenuation of the liver; a higher value indicates more hepatic fat. 

After attributing a single liver fat (LF) value to each patient, LF had a mean of -6.4 ± 9.1 

Hounsfield units. 

144 patients with a CT scan appropriate for quantitation also had liver biopsy with a 

pathology report in the EHR. 94 were negative for steatosis and 50 were positive for steatosis 

as detailed in methods, and a receiver operator characteristic (ROC) analysis of the liver fat 

measurement resulted in an area under the curve (AUC) of 0.81 (Fig. 4A). Liver fat that 

provided a balance between sensitivity and specificity was -6 HU with a sensitivity of 0.66, and a 

specificity of 0.79. When using this threshold of -6 HU to dichotomize patients into steatosis or 

no steatosis, 6052 (42.5%) patients in our cohort were found to be steatotic. We then compared 

laboratory values between the steatotic patients (LF ≥ -6) and non-steatotic patients (LF < -6 

HU) as shown in Fig. 4B. Steatosis was significantly associated with elevated AST (p=3.5e-18), 

ALT (p=3.4e-26), and alkaline phosphatase (p=1.2e-9). HbA1c (p=5.6e-4) and triglycerides 

(p=1.2e-9) were significantly increased and HDL-C (p=2.9e-14) and LDL-C (p=1.3e-3) were 

decreased in patients with steatosis.   
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As expected, patients with steatosis had an elevated body mass index (BMI) (p=9.9e-

28). Because NAFLD is strongly associated with obesity, we examined the correlations between 

liver fat and adipose volumes. There was a significant correlation between liver fat and visceral 

adipose volume (r=0.19, p<2.2e-16) and subcutaneous fat volume (r=0.064, p=2.9e-9). The 

visceral-subcutaneous fat ratio was significantly correlated with liver fat (r=0.15, p<2.2e-16). 

The quantitative trait of liver fat was used to perform a phenome-wide association study 

(PheWas) against the diagnostic codes in the EHR, in order to ask in an unbiased manner 

which diagnoses were disproportionately associated with increased liver fat (Fig. 5). There were 

a total of 281 diagnoses that were significantly associated with increased liver fat. Some of the 

strongest associations were with chronic liver disease/cirrhosis (p=5.7e-93), chronic 

nonalcoholic liver disease (p=1.9e-87), diabetes mellitus (p=3.5e-84), obesity (p=7.8e-42), 

hypertension (p=2.4e-44), renal failure (p=7.7e-49), alcoholism (p=9.0e-22), hepatitis C (p=1.1e-

14), use of therapeutic adrenal corticosteroids (p=2.1e-13), respiratory failure (p=9.4e-35) and 

pancytopenia (2.3e-19). These very strong associations help to validate the liver fat quantitation 

and show interesting and less well-established associations of liver fat with clinical conditions. 

 

Association of hepatic fat with genetic variants known to be associated with NAFLD  

Two well-established coding variants associated with NAFLD are rs738409 in the gene 

PNPLA3 (encoding the missense variant I148M) and rs58542926 in the gene TM6SF2 

(encoding the missense variant E167K) (18). A total of 5,268 PMBB participants with liver fat 

quantitation were genotyped for these variants.  We found highly significant associations with 

both rs738409 (MAF 0.21, p=1.2e-11, beta=1.49, 95% CI: 1.06-1.91) and with rs58542926 

(MAF 0.06, p=4.2e-8, beta=2.10, 95% CI: 1.33-2.81). These significant genetic associations 

further validate our liver fat quantitation and suggest that with a larger sample size of genotyped 

and imaged individuals, this approach could be valuable in helping to identify additional genomic 

loci associated with NAFLD. 

 

Multi-feature analysis shows relatedness of image-derived phenotypes 

Based on the top associations between imaging traits and phecodes, we further 

explored these relationships using principal component analysis (PCA). Fig. 6A is a PCA biplot 

that shows how the phecodes (black dots) are projected in the first two principal components 

(PCs) space by their associations with imaging traits. The arrows indicate the relative 

contributions of each imaging trait towards such groupings on these components. Of note, 

subcutaneous and visceral fat related traits all point in a similar direction, with spleen HU 
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deviation and contribute heavily to the first PC. The phecode for sleep disorders has strong 

negative loadings on PC1 but almost zero loading on PC2, supporting the concept that sleep 

disorders such as sleep apnea are positively associated with increased adiposity. The chronic 

liver disease and cirrhosis phecode loads heavily on PC2, indicating a strong positive 

association mostly explained by imaging traits regarding liver fat trait maps. Spleen volume also 

maps strongly in this direction, suggesting an association with splenomegaly, which may result 

secondary to liver pathology. Liver fat and liver HU mean points in opposite directions because 

liver attenuation is inversely related to liver fat. Fig. 6B shows the PCA results by projecting the 

disease domains instead of the phecodes onto the first two PCs space of imaging traits. 

Consistently, digestive and hematopoietic pathologies are located where liver fat and spleen 

volume are most relevant, while endocrine, neurologic, and respiratory disease systems are 

projected to share similar patterns of association with imaging traits, mostly contributed by 

visceral and subcutaneous fat related traits. 
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Discussion 

Using deep learning, we extracted liver, spleen, and abdominal fat quantitative imaging 

traits from 19,624 patients enrolled in the Penn Medicine Biobank who had undergone clinical 

CT scanning. Our method was validated against liver biopsy data in a subset of patients. Using 

these quantitative trait imaging data and integrating them with EHR phenotype data, we found 

2,495 significant associations between these imaging traits and the EHR disease phenome. 

Hepatic fat was very strongly associated with expected diagnoses such as obesity, diabetes 

mellitus, hypertension, chronic nonalcoholic liver disease, alcoholism, and cirrhosis, as well as 

with less obvious diagnoses such as chronic kidney disease, respiratory failure, and 

pancytopenia.  Associations of hepatic fat with visceral adipose mass, transaminases, HbA1c, 

triglycerides, and genetic variants known to be associated with NAFLD provided additional 

confidence in the data.  Multivariate analysis of imaging traits showed the extent to which each 

imaging trait is connected to the disease phenome; hepatic fat and spleen volume showed the 

strongest association with chronic liver disease. This is a proof of concept study performed at 

scale and these data provide a basis to pursue new or unexpected connections between liver 

and abdominal imaging traits and progression of disease. While several studies have employed 

deep learning to extract imaging traits (11, 12, 19), there has been little research to integrate 

these traits with the EHR or an academic biobank resource at scale. In several recent studies, 

hepatic fat was quantified using deep learning or other algorithms (14, 15, 20, 21), but was 

limited to liver traits or did not investigate the association between imaging traits and other types 

of information such as the disease phenome, genotyping data and histopathology.  

Clinical CT data is heterogenous and uses different scanners, manufacturers and 

reconstruction algorithms. It required an autonomous and fault-tolerant approach to accurately 

evaluate multiple imaging traits from the diverse set of 161,748 scans. Since hepatic fat 

quantitation relies on scans without intravenous (IV) contrast and study metadata is often 

unreliable, it was necessary to separate non-contrast scans using deep learning for contrast 

classification. Variabilities in patient position and body habitus required a separate network to 

classify images that show the abdomen for accurate quantification of abdominal fat. Multiple 

deep learning networks were used to extract the 12 imaging traits. The approach was 

autonomous and can process uncurated clinical CT data. It can automatically report imaging 

traits in patients and show their traits with respect to patients across the biobank. The difference 

in spleen and liver attenuation or spleen volume showed higher association with chronic liver 

disease than liver attenuation alone and is explained by variations in body habitus as well as 

scanner type, which affect absolute liver attenuation. 
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Hepatic steatosis is prevalent and estimated to be present in approximately one-third of 

US adults; we found 42% of our patients (6,052) had steatosis, which was consistent with an 

older and less healthy group of patients in a tertiary health care center compared with the 

general population (22). The value at which the spleen-liver attenuation should be dichotomized 

to represent steatotic and non-steatotic patients varies widely in the literature. Studies using 

biopsy data for validation have recommended cutoffs ranging from -3.2 to +9 (23-25) compared 

to our finding of -6 derived using ROC analysis with biopsy data.  Using this cutpoint to 

dichotomize patients into steatosis or not, we found that steatosis was significantly associated 

with elevated AST, ALT, and alkaline phosphatase, consistent with findings in previous studies 

(26, 27). Steatosis was also positively associated with HbA1c and triglycerides and negatively 

with HDL-C, also consistent with previous findings (28).  

There are several limitations to this study. Prospective studies of hepatic fat traits appear 

to show better accuracy against pathology (24, 29). Given the allowance of up to two years, the 

degree of steatosis may have also fluctuated and the difference in the measurements could 

reflect this physiologic change. Furthermore, most of the reports had a qualitative indicator of 

steatotic involvement. The percent involvement that is reflected by terms such as “mild” or 

“moderate” steatosis is not standardized and could reflect values lower than the 30% cutoff 

value.  The labeled liver may include vasculature, lesions, or border pixels which are 

traditionally excluded when measuring attenuation. Additionally, images with artifacts or organs 

with tumors, cysts, or pronounced vasculature could skew attenuation values. Using CT to 

measure liver fat has also only been shown sensitive in patients with moderate to severe 

steatosis indicating that we are missing a portion of the population with mild disease (25). This 

study is also limited as phenotypes were curated from EHR billing codes and is often 

incomplete.  

In conclusion, this study presents a new automated method for the quantification of 

abdominal and liver fat from clinical CT scans and shows how autonomous image trait 

quantification in the context of academic biobanks can facilitate genomic, biomarker, and 

translational research.     
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Materials and Methods 

 

Penn Medicine Biobank 

The Penn Medicine Biobank (PMBB) is a resource for integrating quantitative traits 

derived from clinical imaging studies with genetics, blood biomarker and other electronic health 

record data at Penn Medicine, a multi-hospital health system headquartered in Philadelphia, PA. 

PMBB is a detailed long-term, prospective, epidemiological study of over 50,000 volunteers 

containing approximately 27,485 diagnostic codes (ICD9 and ICD10). It is ethnically diverse and 

African-Americans represent approximately 25% of the patients. At present, the BioBank does 

not integrate data from advanced imaging, yet more than 18 million imaging studies were 

performed by Penn Medicine since 1998 and 3 million radiology studies in 2018 and 2019 alone 

making this an underutilized BioBank resource. All patients provided informed consent to 

participate in the PMBB and to utilization of electronic health record and image data. 

 

Study Design 

Within our biobank cohort of 52,441 patients, we queried the EHR image-server based 

on Current Procedural Terminology (CPT) codes for all non-contrast chest (CPT 71250, 71270), 

non-contrast abdomen (CPT 74150, 74170), and all abdomen/pelvis (CPT 74176, 74177, 

74178) CT scans. Chest studies were included as these routinely include one-third to one-half 

of the liver, and an even larger fraction of the spleen, which is sufficient for evaluation of liver 

fat. Based on this query, we identified 64,473 studies with a total of 161,748 axial image scans 

representing 19,624 patients. Scans using high-pass reconstruction kernels, such as Siemens 

I50F, were excluded as these are intended for edge detection tasks and create high-degrees of 

image noise. Additionally, scans with slice thickness less than 2 mm were excluded as these 

are known to introduce noise. Finally, image stacks with less than 10 images were excluded as 

these likely represent incomplete datasets. Liver fat analysis was conducted on all non-contrast 

chest, abdomen, and abdomen/pelvis studies corresponding to CPT codes 71250 (n=26,959), 

71,270 (n=1116), 74150 (n=2,383), 74170 (n=1,410), 74176 (n=10,031), 74178 (n=1,914). In 

total, 43,813 studies containing a total of 61,769 image scans representing 14,930 patients were 

processed for liver fat analysis. Measurement of visceral and subcutaneous fat was performed 

on all abdominal/pelvis studies corresponding to CPT codes 74176 (n=10,031), 74177 

(n=19,347), and 74178 (n=1,914). In total 31,292 studies containing a total of 41,255 image 

scans corresponding to 13,448 patients were processed for visceral and subcutaneous fat 

analysis. All training data was manually generated by a trained technician under the supervision 
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of a board-certified abdominal radiologist using 3D Slicer software. Application of exclusion 

criteria as well as the number of scans processed in each part of the study is shown in Fig. 3. 

We developed deep learning algorithms for one of the most widely used imaging 

modalities, computed tomography (CT), to automatically extract quantitative traits pertaining to 

abdominal and liver fat from >14,000 patients. By using deep learning to automatically extract 

CT image traits, we performed large-scale associations with phenotyping (N>13,000) and 

genomic (N>5,000) data to provide automated assessment of fatty liver disease and potential 

underlying conditions. 

 

Image Analysis 

Hardware and Image Prefiltering 

All architectures were implemented in Python using the Tensorflow package in the cloud 

(Amazon Web Services). Training was conducted using an NVIDIA P100 graphical processing 

unit (GPU) and inferences used parallel processing across 8 NVIDIA K80 GPUs. The network 

inputs were 2D axial slices with size of 256x256 pixels and were thresholded with a window 

width of 150 Hounsfield units (HU) and a level of 30 HU for the contrast classification network 

(CNN1) as well as liver (CNN3A) and spleen (CNN3B) segmentation networks. A window width of 

1800 HU and level of 400 HU was used for the abdominal compartment delineation network 

(CNN2) and a window width of 400 HU and a level of 50 HU was used for the abdominal contour 

segmentation network (CNN3C). See Fig. 2 for a depiction of each network’s role in our project. 

 

Model Architecture – Detection of Non-Contrast CT Scans 

The first network (CNN1) identified intravenous (IV) contrast CT scans and removed 

them from the liver fat analysis pipeline. Images were shown to convolutional layers which 

flattened into fully connected layers modeled after the VGG-16 classification network [11] 

(Supplementary Fig. 1A). This architecture showed excellent performance for labeling of 

images in the ImageNet competition. The network outputs a probability between 0 and 1 

indicating the likelihood that the slice contains IV contrast. Scans were considered to have 

contrast if the average per-slice probability was greater than 0.5. This network was trained on 

800 scans, 400 with IV contrast, and 400 without. Additionally, half these scans were of the 

abdomen/pelvis and half were thoracic. Of the abdomen/pelvis scans, within the IV contrast 

group 158 contained additional PO contrast and within the no-IV contrast group 115 contained 

PO contrast. 320 patients (50,654 slices) were randomly placed in the training group, and 80 

patients (12,867 slices) in a validation group. Training was conducted over 10 epochs with 
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batch-size of 32. A separate testing set was randomly selected from the Penn Medicine Biobank 

and contained 50 abdomen/pelvis studies and 50 thoracic studies. To evaluate performance of 

VGG classification network an additional 400 scans were randomly selected from PMBB data 

with 200 being thoracic and 200 of the abdomen/pelvis. Of the abdomen/pelvis scans, 75 of the 

IV contrast scans also had PO contrast and of those without IV contrast, 44 contained PO 

contrast. See Supplementary Fig. 2 for a summary of the scan types used in testing CNN1.  

 

Model Architecture – Identification of Images Showing Abdominal Anatomy 

The second network (CNN2) labeled 2D slices as belonging to the abdominal cavity. This 

network standardized the quantification of subcutaneous and visceral fat across patients by 

identifying defined anatomical endpoints for the abdominal cavity. The same network 

architecture that was used in IV contrast classification (CNN1) was used for this task of labeling 

abdominal cavity images. The network was trained to output a probability between 0 and 1 

indicating the likelihood that the slice is within the boundary of the abdomen. The superior 

border of the abdomen is defined as the first slice in which the lungs are no longer visible. The 

inferior border of the abdomen is defined as the first slice that the bottom of the L5 vertebra is 

visible. These borders were manually labeled on 468 training scans and the network was 

trained to differentiate between two classes – the abdominal slices (located within the borders) 

and the not-abdominal slices (located outside the borders). Of these scans, 375 were used for 

model training and 93 for validation. Within the training group, there were 13536 abdominal 

slices and 21769 not-abdominal slices. Within the validation group, there were 3374 abdominal 

slices and 5401 not-abdominal slices. Training was conducted over 30 epochs with a batch size 

of 32. A testing set of 100 abdomen/pelvis CT scans was selected at random from the PMBB on 

which the performance of the automated model was compared to manual labeling. 

 

Model Architecture - Segmentation 

Additional networks were trained to segment the liver, spleen, subcutaneous and 

visceral fat from axial 2D slices modeled after a U-Net architecture (30). This model is 

composed of symmetric paths joined by skip connections where localized feature information 

from the contracting path is combined with contextual information from the expanding path. The 

complete architecture is shown in Supplementary Fig. 1B. The networks output a probability 

for each voxel indicating the probability that it belongs to the foreground. For liver segmentation, 

the network (CNN3A) was trained on a total of 106 scans with 81 scans (7,999 slices) randomly 

selected for training and 25 scans (2,436 slices) for validation.  For spleen segmentation, the 
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network (CNN3B) was trained on a total of 158 scans with 127 scans (12,399 slices) randomly 

selected for training and 31 scans (2,865 slices) for validation. For abdominal compartment 

segmentation, the network (CNN3C) was trained on a total of 50 scans with 40 scans (1627 

slices) randomly selected for training and 10 scans (430 slices) for validation. Training data was 

selected iteratively when the model underperformed on a scan. Of note, to identify 

subcutaneous and visceral fat, we do not train a network to directly provide these 

segmentations. Instead, we first segment the abdominal compartment (see CNN3C in Fig. 2A 

and Fig. 2B), and then locate fat voxels by thresholding for attenuation values between -190 

and -30. All fat voxels within the abdominal compartment segmentation are visceral fat and all 

those outside the segmentation are subcutaneous fat. Training was conducted with a batch-size 

of 32 over 135 epochs for liver, 108 for spleen, and 106 for the abdominal compartment 

network.  

To evaluate segmentation performance, a testing set of 20 abdomen/pelvis CT scans 

was randomly selected from PMBB and both manual as well as automated segmentations for 

liver and spleen were produced. DICE coefficients were calculated to measure agreement 

between manual and automatic segmentations. Additionally, 50 scans were selected at random 

and mean attenuation was measured in the liver and spleen by the manual placement of ROIs. 

Eight spherical (20 mm diameter) ROIs were placed in the liver with four in the left and four in 

the right lobe. Two spherical (15 mm diameter) ROIs were placed in the spleen. Care was taken 

to avoid placement near edges or in regions of vasculature or lesions. The mean HU was 

computed between ROIs for the liver and spleen and compared to that obtained from the 

automated approach. To evaluate performance of the abdominal compartment network, the 

abdominal compartment was manually contoured in a testing set of 10 randomly selected 

abdomen/pelvis CT scans and DICE coefficients were calculated to measurement agreement 

between manual and automatic segmentations. Additionally, visceral/subcutaneous fat 

measures were manually acquired on a single slice between L3 and L4 on 100 randomly 

selected abdomen/pelvis scans and then compared with automatically derived metrics. 

 

Image Derived Phenotypes 

A total of 12 image derived phenotypes (IDP) were quantified on a subset of the total 64,473 CT 

studies. These IDPs describe volume or attenuation properties of organs based on the results of 

our image processing networks. The IDPs are defined as follows: 

Liver fat: liver fat (LF) was quantified by subtracting the mean attenuation of all voxels contained 

within the liver from the mean attenuation of all voxels contained in the spleen. This IDP was 
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computed on all non-contrast chest, abdomen, abdomen&pelvis scans (CPT 74176, 74178, 

74150, 74170, 71250, 71270) for a total of 41,638 studies representing 14,254 patients. 

Liver HU Mean: calculated by taking the mean attenuation of all voxels contained within the liver 

segmentations. This IDP was computed on the same subset of scans as liver fat. 

Liver HU Dev: calculated by taking the standard deviation of attenuation for all voxels contained 

within the liver segmentations. This IDP was computed on the same subset of scans as liver fat. 

Spleen HU Mean: calculated by taking the mean attenuation of all voxels contained within the 

spleen segmentations. This IDP was computed on the same subset of scans as liver fat. 

Spleen HU Dev: calculated by taking the standard deviation of attenuation for all voxels 

contained within the spleen segmentations. This IDP was computed on the same subset of 

scans as liver fat. 

Liver Volume: calculated by computing the volume in milliliters for all of the liver segmentations. 

This IDP was computed on all non-contrast abdomen, abdomen&pelvis CT scans (CPT 74176, 

74178, 74150, 74170) for a total of 14,572 studies representing 7,911 patients. 

Spleen Volume: calculated by computing the volume in milliliters for the spleen segmentations. 

This IDP was computed on the same subset of scans as liver metric volume. 

SubQ (Subcutaneous) Volume: calculated by computing the volume in milliliters for the 

subcutaneous fat region. This IDP was computed on all abdomen&pelvis CT scans (CPT 

74176, 74177, 74178) for a total of 31,243 studies representing 13,427 patients. 

Visceral Volume: calculated by computing the volume in milliliters for the visceral fat region. This 

IDP was computed on the same subset of scans as subq volume. 

SubQ Area: calculated by computing the mean per-slice area of subcutaneous fat in cm2
 for all 

scans in the abdominal compartment. This IDP was computed on the same subset of scans as 

subq volume. 

Visceral Area: calculated by computing the mean per-slice area of visceral fat in cm2
 for all 

scans in the abdominal compartment. This IDP was computed on the same subset of scans as 

subq volume. 

Visceral-SubQ Ratio: calculated by taking the ratio of SubQ Area and Visceral Area. This IDP 

was computed on the same subset of scans as subq volume. 

 

For a given IDP, each patient often has multiple measurements as each patient may have 

multiple studies and each study multiple scans. In order to conduct association studies, it is 

necessary to assign a single IDP value to each patient. For the liver fat and liver HU mean IDPs, 

when a study had multiple scans, the scan with a value closest to the median value was taken 
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for studies with 3 or more scans and closest to the mean for those with 2 scans. For patients 

with multiple studies, the maximum value of liver fat and the minimum value for liver HU mean 

was taken across all studies. While liver attenuation in a patient can vary with time, we wanted 

to capture values for patients that represented the highest degree of fatty infiltration. For this 

reason, we took the maximum liver fat value and the minimum liver HU mean across all studies. 

For all other IDPs, when handling both a study with multiple scans or a patient with multiple 

studies, the median (greater than 3) or mean (exactly 2) values were utilized. 

 

Biopsy Specimen Validation 

To validate the ability of our automated method to detect liver fat, liver biopsy reports 

were analyzed to identify patients who had pathology proven steatosis. A total of 1,124 

pathology reports were reviewed for patients who also had CT scans. Biopsy reports that 

indicated a history of or plans for a transplant were excluded as this would complicate pairing 

with the appropriate CT study. Reports indicating only mild steatosis were also excluded as CT 

is considered diagnostic only for steatosis of greater than 30% involvement. If the report listed a 

percent steatosis, reports were categorized based on this percentage with values of greater 

than 30% being positive and those less than 5% being negative for steatosis. Intermediate 

values in the range of 5% to 30% were excluded. In the absence of a definitive measurement, 

cases with qualitative terms such as “mild” or “minimal” were excluded while those indicating 

“moderate”, “severe”, or “marked” steatosis were considered positive for greater than 30% 

involvement. Next, the scans were each matched to the nearest pathology report. If no reports 

existed for a given patient or if there was no scan-report pair less than 2 years apart, those 

patients’ scans were excluded. One scan-report pair with the smallest difference in dates was 

then kept for each remaining patient. To evaluate performance of our liver fat metric in 

assessing steatosis, receiver operating characteristic (ROC) analysis was performed. Area 

under the ROC curve was measured and a balanced cutoff value was selected by choosing the 

Liver fat threshold that resulted in the coordinate nearest to the upper left corner.  

 

Phenome-wide association study 

A phenome-wide association study (PheWAS) was performed to investigate the phenotypic 

associations of fatty liver disease. ICD10 codes were first mapped to ICD9 codes using the 

2017 general equivalency mapping (GEM). Next, ICD9 codes were aggregated into phecodes 

using the PheWAS R package to create 1,816 phecodes. Patients with at least 2 occurrences of 

a PheCode are considered cases, those with none are controls, and those with 1 are treated as 
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missing. Phecodes with less than 100 cases were excluded. The  ICD9 code 571.8 is used for 

patients with non-alcoholic fatty liver disease (31, 32). 

 

Genome-wide association study 

Within the PMBB, there are 19,515 total genotype samples from three different genotype 

arrays: Illumina Omni Express (n=10,867), Infinium GSA-Version 1.0 (n=5,676), and Infinium 

GSA-Version 2.0 (n=2,972). Data from each array was quality-controlled (QC) separately. QC 

steps included identifying sex mismatches, applying marker (<95%) and sample (<90%) call-

rate filters, and removing duplicates. Prior to imputation, strand alignment was performed and 

consisted of matching SNPs to the appropriate positive strand file on 1000 Genomes reference 

panel, removing palindromic SNPs and removing SNPs absent from reference panel (33, 34). 

Additionally, PLINK (version 2.0) was used to identify and flip all SNPs where the top allele was 

not on the positive strand (35). SNPs were removed where strands could not be flipped, and the 

allele frequency differed > 40% from whites in 1000 Genomes (36). Imputation was performed 

for all autosomes on Michigan Imputation Server with the Haplotype Reference Consortium 

selected as the reference panel (37). Phasing was conducted using EAGLE (38) and imputation 

was performed using MINIMAC software (34). After imputation, the genotype data was merged 

together. Relatedness was assessed using a graph-based algorithm after applying a Pi-hat 

threshold of 0.25 to account for relatives up-to first cousins to be removed. One sample with the 

highest degree of relatedness from a list of related samples was removed from the dataset 

(1616 total samples). The top 20 principal components were computed using SmartPCA on a 

genotype dataset that included all PMBB participants and an additional 2,504 individuals from 

1000 Genomes (36). These PCs were then used for to determine genetically inferred ancestry 

and compose ancestral groups used for population stratification into European and African 

American groups. Subsequent PMBB-specific PCA analysis was performed, for which the first 4 

PCs were included as covariates in the regression model. 

A genome-wide association study (GWAS) was conducted on the subset of 5,268 

patients with both a non-contrast CT scan and genotyping data. This GWAS was conducted on 

all ancestries including European (n=3,102), African (n=1,964), and other (n=202). Linear 

regression was used to test for associations between SNPs and the continuous phenotype of 

liver fat, controlling for sex, age, age2, ancestry, and the first four principal components. 

 

Statistical Analysis 
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• Fig. 1D, 1E, Supplementary Fig. 2: In all regression plots, y=x is shown as a solid line 

and the line of best fit as a dotted line. In the bland-altman plots, the solid arrow shows 

the mean value and the dotted lines show the range of the first standard deviation. 

• Fig. 4: Lab values acquired greater than 90 days and BMI measurements acquired 

greater than 365 days from the scan-date were excluded. A Wilcoxon rank-sum test was 

performed to assess if lab values for steatotic vs. non-steatotic patients were 

significantly different. 

• Fig. 5 (PheWas): Logistic regression was performed with each phecode as the outcome 

and liver fat as a predictor. Regression was performed controlling for the covariates of 

age, sex, and race. Bonferroni multiple comparison correction was used to determine the 

level of significance. 

• Fig. 6 (PCA): To generate Fig. 6, we first grouped phecodes. Phecodes were rounded to 

the nearest whole number and then grouped using a logical ‘and’ operation. For example, 

the phecode 250 is diabetes mellitus, 250.1 is type 1 diabetes, and 250.2 is type 2 diabetes. 

Under our grouping system, all three of these phecodes were reduced to a single phecode 

250 which was positive if any of the three phecodes were positive. Logistic regression was 

performed for each grouped phecode as the outcome and each IDP as a predictor while 

controlling for the covariates of age, sex, and race. Grouped phecodes with less than 100 

cases were excluded. We recorded the z-scores for each of these regressions. After 

grouping and exclusion, there were a total of 317 phecodes remaining. Next, for each IDP, 

we retained the top 5 phecodes with the largest z-score (absolute value) for a total of 19 

phecodes. We then performed principal component analysis (PCA) on these phecodes by 

traits z-score matrix as a dimension-reduction method to visualize and group the phecodes 

jointly based on the phecode-IDP association patterns. Fig. 6A shows the position of 

phecodes projected onto the first two principal component space by IDP, and the relatively 

contributions (arrows from origin) of each IDP to the two principal components. Fig. 6B was 

generated in a similar manner. However, instead of grouping phecodes by rounding their 

numeric values, we grouped all phecodes by disease system as categorized by the 

PheWAS R package. The figure shows the position of disease domains projected onto the 

first two principal component space by IDP, and their relatively contributions (arrows from 

origin).  

When analyzing associations between laboratory values and liver fat, patients were first 

dichotomized into steatotic or non-steatotic using a LF threshold of -6. This value of -6 was the 
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balanced cutoff value obtained from the ROC analysis using biopsy data. A LF value greater 

than -6 implies that the spleen has an attenuation that is either within 6 Hounsfield Units less 

than that of the liver or greater than that of the liver. In cases where there were multiple lab 

values for a given patient, the value acquired nearest to the diagnostic CT scan was selected.  
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Table 1. Population characteristics for cohort 

Characteristic  Full Cohort (n=19,301†) 

Demographics  mean std. dev. 

Age (years) 58.1 15.0 

Sex  n % 

    Male 9,972  51.7 

    Female 9,312  48.3 

Ancestry     

    European 12,461 64.6 

    African 4,609 23.9 

    Asian 307 1.6 

    Other/Unknown 1,924 10.0 

Clinical Metrics mean std. dev. 

Body mass index, kg/m2 28.8  6.9 

   Systolic Blood Pressure, mmHg 126.6 12.0  

   Diastolic Blood Pressure, mmHg 74.6  7.3  

   Diagnoses  N % 

Hypertension   

    Yes 10,247 63.7 

    No 5,849 36.3 

Diabetes   

    Yes 5,176 34.4 

    No 9,865 65.6 

Heart Failure   

    Yes 3,859 24.6 
    No 11,821 75.4 
Ischemic Heart Disease   
    Yes 4,844 29.5 
    No 11,557 70.5 
Cerebral Vascular Accident   
    Yes 800 5.2 
    No 14,502 94.8 
Lab Values mean std. dev. 
Cholesterol, mg/dL 176.0 38.8 
HDL cholesterol, mg/dL 51.2 15.8 
LDL cholesterol, mg/dL 98.7 31.9 
Triglycerides, mg/dL 123.5 63.2 
HbA1c, % 6.4 2.2 
AST, IU/L 25.0 30.9 
ALT, IU/L 24.9 33.3 

†19,301 patients of 19,624 total (see Fig. 3) 
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Table 2. Mean values for image derived phenotypes 
 
Image Derived Phenotypes  n mean  std. dev.  
Liver    
    Liver HU Mean (HU) 14254 48.5 10.2 
    Liver HU Dev (HU) 14254 17.7 6.2 
    Liver Fat (HU) 14254 -6.4 9.1 
    Liver Volume (ml) 7911 1709.9 558.4 
Spleen    
    Spleen HU Mean (HU) 14254 42.3 7.0 
    Spleen HU Dev (HU) 14254 16.6 5.9 
    Spleen Volume (ml) 7911 240.9 467.2 
Adipose    
    SubQ Volume (ml) 13427 4932.0 3072.0 
    SubQ Area (cm2) 13427 273.1 158.5 
    Visceral Volume (ml) 13427 2872.7 2111.2 
    Visceral Area (cm2) 13427 156.3 104.4 
    Visceral-SubQ Ratio 13427 0.655 0.455 
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Figure 1: Survey of advanced imaging data in the Penn Medicine health system. A, Total 

number of stored imaging studies organized by modality, with dates ranging from 1988 to 

2019. B, Fraction of CT scans performed by region. Abdominal and chest CT scans together 

comprise the two largest fractions of CT studies. C, Total number of imaging studies in the 

Penn Medicine Biobank by modality, with dates ranging from 1988 to 2019. XR = x-ray, CT 

= computed tomography, US = ultrasound, MR = magnetic resonance, MG = 

mammography, XA = x-ray angiography, FL = fluoroscopy, DXA = dual-energy x-ray 

absorptiometry, NM = nuclear medicine, PETCT = positron emission tomographty and 

computed tomography, PET = positron emission tomography. 
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Figure 2: Automated extraction of quantitative imaging traits from CT scans. A, Patient 

images stored in a digital picture archiving and communication system (PACS) are queried by 

current procedure terminology code (a 5-digit number indicated the procedure, such as 

abdominal CT with contrast), anonymized and uploaded to cloud storage and computing 

platforms. Automated extraction of quantitative image phenotypes includes filtering to detect 

invalid image scans from the associated imaging metadata. A pair of convolutional neural 

networks detect whether the imaging scan is a contrast enhanced scan (CNN1) and whether 

an image is located inside or outside the abdomen (CNN2). Three sequential CNNs are used 

to extract liver (CNN3A), spleen (CNN3B), and abdominal (CNN3C) anatomy. B, By thresholding 

voxels inside and outside the abdominal segmentation, the visceral and subcutaneous fat 

compartments are delineated. C, Semantic labeling of pixels showing the liver (red), spleen 

(green), subcutaneous (blue) and visceral (yellow) fat structures. D, Agreement between 

expert radiologist and automatic labeling of liver volume and E, Bland-Altman showing mean 

bias. Correlation and Bland-Altman for spleen, subcutaneous and visceral fat are shown in 

Supplementary Fig. 2. BMI = body mass index, CNN = convolutional neural network, CT = 

computed tomography 
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Figure 3: Number of patients, studies, and scans included in the study as well as the number 

utilized in different analyses. 
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Figure 4: Relationship between circulating blood biomarkers, body mass, histology and 

hepatic fat as determined by liver CT attenuation. A, Receiver-operating-characteristic (ROC) 

for detection of liver fat on all CT from histological examinations in the PMBB. B, circulating 

blood biomarker distributions dichotomized by CT-derived liver fat (HU difference between 

spleen and liver = -6). AST = aspartate aminotransferase, ALT = alanine aminotransferase, 

Alk Phos = alkaline phosphatase, HDL = high density lipoprotein, LDL = low density 

lipoprotein, A1C = glycated hemoglobin, BMI = body mass index. 
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Figure 5: Phenome-Wide Association Study of liver fat. Blue line indicates level of 
significance with Bonferroni multiple-comparison correction. Upward-facing triangles indicate 
a positive association with increased liver fat and downward-facing triangles indicate a 
negative association. 
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Figure 6: Principal component analysis representation of (A) phecodes and (B) disease 
systems for image derived phenotypes. Position of phecodes (A) and disease systems (B) in 
terms of the first two principal components is shown with points while the mapping of the 
original IDPs is shown with arrows. 
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SUPPLEMENTARY DATA

 
 
 
 

 
 
 
 
 
  

Supplementary Figure 1: Convolutional neural networks used for labeling of A, contrast or 
non-contrast CT scans (CNN1) and abdominal borders (CNN2) and B, pixel-level labeling 
(segmentation) of liver (CNN3A), spleen (CNN3B), and subcutaneous and visceral fat (CNN3C). 
The neural network in A shows 5 stages of CNN paired with a single dense, hidden layer and 
with a 2 -category output layer. The CNN in B is a U-Net model network with 27 total layers in 
contracting and expanding paths with skip connections between layers of the same size. The 
final output layer is a probability map for each pixel belonging to the quantitative imaging 
trait.   
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Supplementary Figure 2: Diagram showing the number of scans within each 
category that were used in testing the contrast-detection network (CNN

1
). 
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Supplementary Figure 3: Correlation and Bland-Altman plots comparing CNN to manually 

derived metrics for liver Hounsfield units (A,B), spleen Hounsfield units (C,D), liver volume 

(E,F), spleen volume (G,H), subcutaneous fat volume (I,J), and visceral fat volume (K,L) 
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Supplementary Figure 4: Distribution of image-derived phenotypes for biobank 
population. 
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Supplementary Table 1. Image Derived Phenotypes that were quantified on PMBB scans. 
Image Derived Phenotypes  
Liver HU Mean (HU) 
Liver HU Dev (HU) 
Liver Fat (HU) 
Liver Volume (ml) 
Spleen HU Mean (HU) 
Spleen HU Dev (HU) 
Spleen Volume (ml) 
SubQ Volume (ml) 
SubQ Area (cm2) 
Visceral Volume (ml) 
Visceral Area (cm2) 
Visceral-SubQ Ratio 
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Supplementary Table 2. Accuracy of Deep Learning Methods for Quantitative CT Traits 
CNN1 (Contrast Detection) n     
    Sensitivity 400 100%    
    Specificity 400 99.5%    
CNN2 (Abd. Image Detection, N=100) n Mean std. dev.  range p 
    Inferior position      
        †Bias (number of slices) 100 0.70 0.64 [-2, 3]  
    Superior position      
        †Bias (number of slices) 100 1.01±1.11 1.11 [-7, 4]  
CNN3 Segmentation n     
    ‡Dice Score Coefficients  mean std. dev.   
        Liver (CNN3A) 20 0.95 0.02   
        Spleen (CNN3B) 20 0.92 0.07   
        Abdominal compartment (CNN3C) 10 0.98 0.01   
        Subcutaneous fat (CNN3C) 10 1.00 0.00   
        Visceral fat (CNN3C) 10 0.99 0.01   
    Volume (mL): CNN vs. Manual  mean bias std. dev. ICC p 
        Liver (CNN3A, whole volume) 20 46.2 80.1 0.98 1.4e-15 
        Spleen (CNN3B, whole volume) 20 15.3 43.6 0.94 9.2e-11 
        Subcutaneous fat (CNN3C, single slice) 100 0.3 9.8 0.99 <2e-16 
        Visceral fat (CNN3C, single slice) 100  0.3 9.8 0.99 <2e-16 
    Attenuation (HU): CNN vs. Manual  mean bias std. dev. ICC p 
        Liver (CNN3A) 50 1.5 1.3 0.98 <2e-16 
        Spleen (CNN3B) 50 1.8 2.0 0.96 <2e-16 

†Bias indicates mean number of slices between expert label of most inferior (superior) slice 
position and CNN-derived estimate of that slice. 
‡Dice score coefficients (DSC)= 

2|𝑋⋂𝑌||𝑋|+|𝑌|, where X is the expert label and Y is the CNN label. 

×ICC = intraclass correlation coefficient 
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