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    Chapter 5   

 Linking Chromosome Duplication and Segregation 
via Sister Chromatid Cohesion 

              Adam     R.     Leman     and     Eishi     Noguchi    

    Abstract 

   DNA replication during S phase generates two identical copies of each chromosome. Each chromosome is 
destined for a daughter cell, but each daughter must receive one and only one copy of each chromosome. 
To ensure accurate chromosome segregation, eukaryotic cells are equipped with a mechanism to pair the 
chromosomes during chromosome duplication and hold the pairs until a bi-oriented mitotic spindle is 
formed and the pairs are pulled apart. This mechanism is known as sister chromatid cohesion, and its 
actions span the entire cell cycle. During G1, before DNA is copied during S phase, proteins termed cohes-
ins are loaded onto DNA. Paired chromosomes are held together through G2 phase, and fi nally the cohesins 
are dismantled during mitosis. The processes governing sister chromatid cohesion ensure that newly repli-
cated sisters are held together from the moment they are generated to the metaphase–anaphase transition, 
when sisters separate.  
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1       Introduction 

 During the cell cycle, new organelles, membranes, cytosol, and 
genetic materials are all generated to give rise to two new cells. 
Even during processes that promote asymmetrical cell divisions, 
arguably, the most important cell-cycle processes revolve around 
duplication and segregation of the entire genome, so that both 
daughter cells inherit the exact same genetic material. 

 During S phase, genomic DNA is replicated and packaged into 
chromatin. The identical copies of each chromosome are known as 
sister chromatids, and they are tightly associated together through 
G2 phase and early mitosis. During metaphase of mitosis, sister 
chromatids are associated with the mitotic spindle, aligned along 
the central axis of the cell, and one sister from each pair is associ-
ated with a separate spindle pole under tension. At the metaphase–
anaphase transition, sister chromatid cohesion is relieved, and the 
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microtubule spindle-pulling forces separate each sister chromatid 
pair and move one copy of the entire genome to one pole. The 
spindle-pulling forces continue until the cell is divided, and two 
separate cells are generated at cytokinesis. 

 Sister pairing calls for the physical tethering of the sister 
 chromatids to each other. The primary proteins responsible for this 
tethering comprise the cohesin complex. Cohesins are well conserved 
throughout eukaryotes, and the processes governing cohesion are 
generally conserved as well. The cohesin complex must be loaded 
onto DNA during G1 phase prior to DNA replication. For sister 
chromatid cohesion to be established, the newly replicated DNA 
copies are encircled by the cohesin complex in S phase. Finally, owing 
to the elaborate regulation during mitosis, cohesin- mediated sister 
chromatid-pairing ends, allowing for equal segregation of the 
genome to each daughter    cell. In this review, we discuss the structure 
of the cohesin complex, how it is loaded onto DNA, the link between 
DNA replication and cohesion establishment, and fi nally how the 
cohesin is released from sister chromatids during mitosis.  

2     The Cohesion Complex 

 Cohesin is a four-subunit complex comprising “structural mainte-
nance of chromosomes (SMC)”-type proteins and non-SMC-type 
proteins. SMC-type proteins exist in all three domains of life 
(eukaryota, prokaryota, and archaea), and eukaryotic cells have 
several SMC proteins that help govern a variety of cellular pro-
cesses [ 1 ]. Smc1 and Smc3 form the cohesin complex with non- 
SMC subunits, Scc1 and Scc3, and function in sister chromatid 
cohesion [ 2 ]. We focus on this cohesin complex in this review; 
however, various other complexes containing SMC proteins are 
involved in the preservation of genome integrity. The Smc2–Smc4 
complex is known as condensin and works during mitosis to com-
pact chromosomes [ 3 ,  4 ]. The Smc5–Smc6 complex contributes 
to various genome maintenance processes including homologous 
recombination [ 5 – 7 ]. Furthermore, Rad50, a component of the 
MRN complex, is also an SMC family member and initiates DNA 
double-strand break processing [ 8 ]. While these SMC family 
 proteins are involved in diverse roles in genomic integrity, their 
structures are remarkably similar (reviewed in ref.  9 ). 

 These proteins are characterized by a conserved modular 
 structure, possessing a long coiled-coil region interrupted by a 
dimerization domain (also known as a hinge domain) and the 
amino (N)- and carboxyl (C)-termini domains that contain Walker 
A and Walker B ATP-binding motifs, respectively. Because the 
coiled-coil region folds at the hinge domain, and the N- and 
C-termini are brought together to create a nucleotide-binding 
domain (NBD), each monomer of SMC proteins forms a structure 

Adam R. Leman and Eishi Noguchi



77

reminiscent of two spheroid objects connected by a fl exible chain 
(Fig.  1a ) [ 10 ,  11 ].

   The overall structure of the cohesion SMC proteins helps to 
defi ne the function of the cohesin complex and its role in tethering 
sister chromatids. While the precise shape of the cohesion complex 
has yet to be fully sorted out (discussed below), the structures of 
the major components of the cohesion complex have been deter-
mined. The cohesin SMC proteins exist as an Smc1–Smc3 het-
erodimer in the cell, with two 50-nm extensions protruding from 
the interacting hinge domain (Fig.  1a ) [ 2 ]. The heterodimer is 
brought to a closed form by Scc1, which is a member of kleisin 
protein family [ 2 ,  12 ,  13 ]. Scc1 interacts with NBD domains of 
both Smc1 and Smc3, generating a ring with a diameter of approx-
imately 45–50 nm (Fig.  1b ) [ 2 ,  13 ,  14 ]. Within this tripartite com-
plex, paired sister chromatids are trapped and physically kept in 
close proximity. The cohesins then keep the sister chromatids jux-
taposed within multiple complexes loaded on every chromosome. 
Localization analyses place the cohesin complex at intervals of 
~20 kb throughout the genome [ 15 ,  16 ]. 

  Fig. 1    Models of cohesin structure. ( a ) The general structure of the Smc1/3 
 proteins. A nucleotide-binding domain with ATPase activity (NBD) connected by a 
coiled-coil domain to a hinge domain. ( b ) The cohesin complex as a ring. ( c ) The 
cohesin ring as a 2:2:2 complex of Smc1/Smc3/Scc1. ( d ) The cohesin complex 
as a bracelet or links in a chain. ( e ) The cohesin complex “handcuff” model. The 
 black  and  white bars  denote the sister chromatids       
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 Apart from the core ring-forming subunits, the functional 
cohesin complex requires the Scc3 subunit [ 17 ,  18 ]. In vertebrates, 
there are two Scc3 homologs, known as stromal antigen (SA) or 
STAG proteins, SA1/STAG1 and SA2/STAG2 [ 19 ]. Although 
Scc3 is not a structural subunit of cohesin, it is essential for cell 
growth in yeast and is required for proper cohesion processes 
[ 18 ,  20 ]. Scc3 binds directly to Scc1, and together these proteins 
mediate cohesin interaction with other proteins required for regula-
tion of sister chromatid cohesion throughout the cell cycle [ 2 ,  21 ]. 

 The structure of the cohesin complex in vivo is still a topic for 
discussion in the fi eld. Several different models of cohesin complex 
entrapment of DNA have been proposed, and each has different 
implications for the overall cohesin complex stoichiometry. The 
most prominent model of cohesin complex structure is that of a 
tripartite ring made of Smc1–Smc3–Scc1 [ 2 ,  22 ]. This ring encir-
cles sister chromatid pairs within its diameter with a 1:1:1 stoichi-
ometry (Fig.  1b ). As an alternative possibility, it has been proposed 
that these rings could be concatenated to increase the ring diame-
ter. In this model, the interacting faces each still associates with the 
same subunit, but on a different molecule (with a stoichiometry of 
2:2:2, 3:3:3, etc.) (Fig.  1c ) [ 23 ]. Instead of one ring holding two 
chromosomes, another model posits that the rings can form links 
such as on a chain. In this model, each ring holds one chromosome 
and also another cohesin ring (Fig.  1d ) [ 24 ]. Finally, a handcuff 
model has been proposed in which closed cohesin rings are bridged 
by an Scc3 molecule, a shape reminiscent of handcuff around two 
arms [ 25 ,  26 ] (Fig.  1e ). The strongest evidence so far has been for 
1:1:1 tripartite rings forming cohesin complexes in vivo on circular 
minichromosomes in yeast, but further work will defi ne whether 
this conformation is universal [ 27 ].  

3     Loading Cohesin Prior to DNA Replication 

 To properly pair chromosomes and to reduce pairing errors, sister 
chromosomes need to be held together as soon as they are dupli-
cated. Rather than loading cohesin complexes after DNA replica-
tion, the rings are loaded onto the parental DNA prior to DNA 
replication. Vertebrates perform this process almost immediately 
after the parental DNA is separated from its sister copy, during 
telophase at the end of mitosis. In fungi, the cohesin loading occurs 
during G1 phase. In both cases, a conserved protein complex per-
forms the loading. In yeast, two proteins, Scc2 and Scc4, form a 
complex and are responsible for cohesin loading (Fig.  2 ) [ 28 ]. In 
mammals, orthologs of these proteins are known as NIPBL and 
MAU2, respectively, and form a cohesin-loading complex. In the 
literature, this complex is often referred to as adherin, but it 
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was recently proposed to rename the complex kollerin to avoid 
confusion with cadherin proteins [ 23 ]. Neither subunit in the 
loading complex has enzymatic function. It is thought that the 
function of the adherin/kollerin complex is to facilitate or stimu-
late the ATPase activity of the Smc1 and Smc3 proteins to load 
them onto DNA. The ATPase activity of the Smc1/3 proteins is 
involved in loading of cohesin rings onto DNA [ 29 ,  30 ]. However, 
an ATPase mutation, which permits ATP binding but ATP hydro-
lysis, in Smc1 and Smc3 still allows for the loading of the cohesin 
ring complex onto DNA, although the association is not stable. 
This indicates that the cohesin complex can be recruited to chro-
matin without ATPase activity, but likely not in the conformation 
required for proper chromosome cohesion [ 31 ]. Strikingly, the 
localization of these mutant cohesin complexes is similar to that of 
Scc2/4,  suggesting that ATP binding by SMCs is involved in ini-
tial recruitment and association of cohesins with chromatin, but 
transition to a stable cohesin loading on DNA and subsequent 
relocalization of cohesins require ATP hydrolysis.

   What might the hydrolysis of ATP do to load cohesin rings 
onto DNA? Interestingly, the answer may come at the opposite 

  Fig. 2    Redistribution of cohesins by transcription. ( a ) The Scc2/Scc4 complex 
loads cohesin complexes onto chromatin. ( b ) The transcription machinery pushes 
some cohesin complexes to the end of open reading frames. ( c ) Cohesins inter-
act with CTCF proteins bound at the edge of open transcription       
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ends of Smc1/3 molecules, the hinge domain. There are several 
lines of evidence that the complex opens at the Smc1–Smc3 hinge 
domains to trap or encircle chromatin. Gruber et al. fused Smc1 
and Smc3 hinge domains. This fusion construct was lethal to bud-
ding yeast, whereas fusion constructs that permanently connect 
SMC subunits and Scc1 (Smc1–Scc1 and Smc3–Scc1) were not 
[ 32 ]. These experiments suggest that the ring opens at the hinge 
domain. How then could ATP hydrolysis at the NBD, which is at 
the opposite end of each SMC subunit, affect the hinge domain 
interface? Investigation of Rad50, an SMC family protein involved 
in DNA double-strand break processing, revealed that ATP hydro-
lysis at the NBD induces a conformational change of the entire 
protein [ 33 ]. The dimerization- and nucleotide-binding domains 
of Rad50 are separated by a long coiled coil of about 50 nm [ 34 ]. 
In spite of this long distance, upon ATP hydrolysis at its NBD, 
Rad50 undergoes a conformational change that rotates and releases 
Rad50 from dimerization at the hinge-domain equivalent [ 35 ]. 
Therefore, a similar conformational change may occur in the 
Smc1–Smc3 hinge interaction upon ATP hydrolysis at the NBD, 
leading to ring opening. Once the ring is opened, the next step is 
to trap sister chromatids and close the ring. The dimerization of two 
hinges from Smc1 and Smc3 is dependent on two independent 
interaction surfaces of each hinge. This confi guration creates a small 
donut-like structure at the hinge [ 2 ]. Mutational analysis of the 
hinge domains of Smc1/3 has shown that the interaction between 
two separate faces on each hinge domain is required for stable asso-
ciation of cohesin with chromatin. Mutations within either interface 
resulted in lethal defects of sister chromatid cohesion, presumably 
due to the inability to close the ring and stably load cohesins onto 
chromatin [ 36 ]. Therefore, cohesin loading involves two processes: 
ATP hydrolysis to open the complex at the hinge interface, followed 
by securing interactions of the hinge domains of Smc1/3 to close 
the ring for stable chromatin association. 

 To successfully tether sister chromatids together, cohesin 
 complexes must be loaded at many sites on each chromosome. 
Therefore, cohesin loading occurs throughout the genome. 
However, the loading sites are species specifi c, although there is 
no major difference in the quality of sister chromatid cohesion. 
In yeast, cohesin loading is especially concentrated at centromeres 
and telomeres [ 37 ]. Interestingly, in  Xenopus , the pre-replication 
complexes (pre-RCs) forming at replication origins recruit the 
Scc2–Scc4 complex [ 38 ,  39 ]. This recruitment links origins of 
 replication to cohesin loading. Other factors at both origin and 
cohesin- loading sites facilitate the loading of cohesins. In yeast, 
kinetochore proteins as well as replication fork proteins are 
required for proper loading of cohesins at the centromere and for 
subsequent stability of pericentromeric cohesion [ 40 ]. Strikingly, 
kinase activity known to regulate origin fi ring is also required for 
cohesin loading in  Xenopus . The recruitment of the adherin/kollerin 
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 complex to the pre-RC is dependent upon the DDK (Dbf4–Cdc7) 
kinase, which acts on pre-RCs [ 41 ]. It appears that mechanisms 
linking cohesin loading to other processes have somewhat diverged 
in evolution; however, each leads to successful loading of cohesin 
complexes. 

 Although cohesins are loaded at Scc2–Scc4 sites, some cohes-
ins do not stay localized at the same sites for the duration of the 
cell cycle. In yeast, large numbers of cohesin rings can be “pushed” 
or “slid” away from their original loading sites and moved into 
intergenic regions (Fig.  2 ) [ 37 ,  42 ]. Since these sites are often at 
the end of open reading frames or at regions of convergent tran-
scription, the model is that the transcription elongation complex 
facilitates the translocation of cohesins away from transcriptionally 
active sites to heterochromatin regions, usually proximal to euchro-
matin. In mammalian cells, the outcome is the same, but the 
mechanism may be different. The majority of NIPBL/Scc2- 
binding sites colocalize with cohesin rings; however, the cohesin 
ring sites far outnumber NIPBL sites, and most cohesin ring sites 
do not have coincident NIPBL binding [ 43 ,  44 ]. These results are 
consistent with the model that mammalian cohesin can be loaded 
at NIPBL/Scc2–Mau2/Scc4 sites and then relocated elsewhere 
(Fig.  2 ). However, in higher eukaryotes, cohesin rings might not be 
displaced by transcription machinery as seen in yeast. For example, 
 Drosophila  genes contain cohesins even when actively transcribed 
[ 45 ]. Therefore, the relocation of cohesin rings after loading may 
occur by a different process. In metazoans, the transcriptional 
repressor CTCF uses its zinc-fi nger domains to recognize DNA 
sequences containing CCCTC repeats. CTCF is found in numer-
ous sites on the genome and has a variety of roles in chromatin 
architecture and transcription regulation (reviewed in ref.  46 ). 
Interestingly, CTCF has a role in determining cohesin ring sites on 
DNA (Fig.  2 ). Cohesin loading is not dependent on CTCF, but 
the localization of a large subset of cohesin complexes is dictated 
by CTCF [ 16 ]. The tethering of cohesin rings to CTCF appears to 
act through SA2 (Scc3), which binds the CTCF C-terminus, and 
this interaction appears to contribute to CTCF functions in tran-
scription insulation [ 47 ]. Although this study explains how cohe-
sin complexes are associated with CTCF sites, no clear mechanism 
has been found for translocating cohesin rings from NIPBL sites to 
CTCF sites.  

4     Establishment of Sister Chromatid Cohesion During DNA Replication 

 Sister chromatid cohesion is established during DNA replication 
and maintained until the two sisters separate in mitosis. Cohesin 
complexes are loaded onto DNA and associated with chromatin 
prior to DNA replication. However, these cohesins are not yet 
engaged in sister chromatid cohesion. Initially, it was unclear 
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whether cohesin paired chromatids during DNA replication or 
after replication was completed. To test whether sister chromo-
some cohesion could be established during S phase or during G2 
(after the genome has been duplicated), Uhlmann and Nasmyth 
placed the  SCC1  gene under an inducible promoter and restricted 
Scc1 production to G1 or G2 phase in budding yeast [ 48 ]. When 
Scc1 was expressed in G1 phase (before DNA replication), the cells 
paired their chromosomes properly. However, when Scc1 expres-
sion was turned on only in G2 (after DNA replication), cells failed 
to pair their chromosomes, leading to chromosome missegrega-
tion and cell death [ 48 ]. The temporal requirement for Scc1 is 
consistent with the requirement of the adherin/kollerin cohesin 
loader complex, which is dispensable after G1 [ 49 ]. Thus, the 
cohesin ring subunits must be present when Scc2–Scc4 mediates 
their loading. Further, mutation in a critical arginine fi nger within 
the ATPase-active site suggests that Smc1/3-mediated ATP hydro-
lysis only occurs during cohesin loading during G1 in yeast [ 49 ]. 
Thus, the complete cohesin complex must be loaded onto chroma-
tin prior to DNA replication to establish sister chromatid cohesion 
[ 48 ]. In addition, cohesion establishment requires involvement of 
replication factors moving with the replication fork in order to pair 
the sister chromosomes during S phase without displacing the cohe-
sin ring from the chromatin [ 49 ]. Therefore, cohesin complexes are 
loaded prior to DNA replication, remain associated with chromatin 
during DNA replication, and then fully establish sister chromatid 
cohesion during DNA replication. Because sister chromatids are in 
close proximity immediately after DNA replication at the replication 
fork, cells are able to eliminate the need to search for sister chroma-
tids, thus increasing the fi delity of sister chromatid cohesion. 

 Upon DNA replication, the cohesin complex undergoes a 
transition, leading to a more secure association with chromatin. 
Fluorescent recovery after photobleaching (FRAP) experiments 
show that, after cohesion is established during S phase in mamma-
lian cells, cohesin complexes are far more stably associated with 
DNA [ 50 ]. One of the major S-phase factors involved in establish-
ment of sister chromatin cohesion is the acetyltransferase Eco1, 
which is also known as Ctf7 [ 18 ,  51 ]. In animals, two genes encode 
for the acetyltransferase. In humans, the Eco1 homologs are known 
as Esco1/2 (or EFO1/2), and in  Drosophila , they are called san and 
deco; both acetyltransferases are required for cohesion in animals 
[ 52 – 54 ]. In yeast, Eco1 appears to progress with the replication 
fork during DNA replication [ 37 ]. Although the Eco1 acetyltrans-
ferase activity leads to the establishment of cohesion, Eco1 does 
not promote a direct interaction of cohesin and DNA. Instead, it 
appears that Eco1-dependent acetylation leads to a stabilization of 
cohesin complexes on chromatin. The target of Eco1/Ctf7 acety-
lation activity is known to be two lysine residues near the NBD on 
the Smc3 [ 55 – 57 ]. 
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 The exact mechanism by which Eco1/Ctf7-dependent Smc3 
acetylation stabilizes cohesion is unknown, but several models have 
been put forward. In the fi rst model, Smc3 acetylation negatively 
regulates ATP binding by Smc3 and breaks the ATP-loading and 
-hydrolysis cycle of cohesin loading. This leads to stabilization of 
the cohesin complex on chromatin while preventing oligomeriza-
tion of SMC proteins that could negatively affect sister chromatid 
cohesion. This is supported by the fact that acetyl-mimetic muta-
tions of Smc3 restore viability of cells with lethal ATP-hydrolysis 
mutations of the same molecule [ 58 ]. In the second model, Smc3 
acetylation appears to have an effect on suppressing anti-cohesion 
factors, such as Wapl and Pds5, that bind to the cohesin complex 
[ 59 ,  60 ]. Mutations in budding yeast Wpl1 (Wapl homolog)  rescue 
a mutant allele of Eco1 ( eco1 - 1 ), demonstrating that these proteins 
have counteracting activities in cohesion [ 55 ]. Furthermore, when 
Wpl1 and Pds5 are deleted in yeast, the requirement for Eco1-
dependent acetylation of Smc3 is abolished, and cells remain viable. 
This is presumably due to the suppression of the anti- cohesion 
establishment activity of the Wpl1–Pds5 complex during S phase 
[ 61 ,  62 ]. Interestingly, Eco1/Ctf7 activity is continuously required 
to maintain Smc3 acetylation, but it is dispensable after DNA rep-
lication, further supporting the model that the acetylated form of 
Smc3 is only required for cohesion establishment during S phase, 
but not for cohesion maintenance after DNA replication has been 
completed [ 18 ,  51 ,  61 ]. Thus, Smc3 acetylation by Eco1/Ctf7 
may counteract an antiestablishment activity of Wapl and Pds5 in 
order to establish cohesion. In vertebrate animals, this appears to 
occur through recruitment of an essential cohesion protein, 
Sororin, which stabilizes cohesin on chromatin [ 63 ,  64 ]. Sororin is 
required only in the presence of Wapl, suggesting that Sororin 
counteracts Wapl after it is recruited to acetylated cohesins [ 65 ]. 
However, this mechanism may not be universal, because no Sororin 
homolog has been identifi ed in yeast.  

5     Establishing Cohesion at the Replication Fork 

 The establishment of cohesion at the replication fork is, as men-
tioned previously, a clever mechanism to pair sister chromatids as 
soon as they are generated. While most work has focused on how 
replication fork proteins impact chromosome cohesion pheno-
types, proper establishment of cohesion also plays an important 
role in DNA replication. It has been shown that by restricting 
Smc3 acetylation, DNA replication speed is reduced [ 66 ]. Eco1 is 
a replisome-associated acetyltransferase and travels with the repli-
some during DNA replication (Fig.  3 ) [ 49 ,  67 ,  68 ]. Overexpression 
of the polymerase clamp PCNA rescues temperature- sensitive 
mutants of Eco1 in budding yeast [ 51 ]. PCNA is a heterotrimeric 
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clamp that coordinates a myriad of interactions between replication 
and other processes [ 69 ]. Eco1 binds PCNA at its PCNA-interacting 
protein (PIP) box domain. The PIP box domain is conserved 
throughout Eco1 homologs, including the human variant Esco2 
[ 68 ]. Since Eco1 interacts with PCNA, one can imagine a model in 
which Eco1 travels with the replication fork and acetylates Smc3 sub-
units of cohesin complexes as they are encountered by the replication 
fork, establishing cohesion as the replisome  progresses (Fig.  3 ).

   During DNA replication, PCNA is loaded onto DNA 
 continuously by a fi ve-subunit clamp loader known as replication 
factor C (RFC) complex [ 70 ]. An alternative RFC complex con-
taining Ctf18 (RFC Ctf18 ) is capable of loading PCNA onto DNA 
and is required for proper sister chromatid cohesion [ 49 ,  66 ,  71 – 75 ]. 
Indeed, PCNA localization to chromatin is dramatically reduced in 
 ctf18  mutants, rendering these cells more sensitive to genotoxic 
agents [ 49 ]. However, replication and cohesion establishment 
still occur in  ctf18  cells, indicating that this function is not essential 
for cohesion establishment. An open question is how RFC Ctf18 - 
mediated PCNA loading enhances cohesin establishment in a man-
ner different from the canonical RFC complex. It is possible that 
RFC Ctf18  loads PCNA specifi cally at sites of cohesin localization or 
loads a modifi ed PCNA that interacts more effi ciently with Eco1. 
RFC Ctf18 -dependent promotion of cohesion establishment may be 
indirect, in which RFC Ctf18  might serve to increase replisome integ-
rity or maintain the replisome in a confi rmation in such a way that 
the replisome can smoothly progress through cohesin-associated 
chromosome sites. 

  Fig. 3    Interactions between the cohesins and the replisome establish sister chro-
matid cohesion. Localizing the Eco1 acetyltransferase to the replisome through 
PCNA interaction allows for cohesion establishment at the replication fork. 
Factors such as the FPC and RFC Ctf18  stabilize the replisome and ensure that the 
replisome structure is amenable to cohesion establishment       
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 Proteins involved in replisome structure and stability also play 
a role in proper cohesion establishment during DNA replication 
(Fig.  3 ). Representative of these include Mrc1/Claspin, Ctf4/
And-1, and the replication fork protection complex (FPC). Mrc1/
Claspin, which interacts with DNA polymerase ε and the MCM 
helicase, moves with the replication fork and mediates the signal 
of stalled replication forks to activate the replication checkpoint 
[ 76 – 78 ]. The Ctf4/And-1 protein acts as a linker between the 
MCM helicase and the DNA polymerase α-primase complex while 
promoting proper cohesion establishment [ 79 – 82 ]. The FPC, which 
consists of the Timeless and Tipin proteins in metazoans, plays a 
critical role in replisome stabilization and replication checkpoint 
signaling and is also involved in promoting sister chromatid cohe-
sion (reviewed in ref.  83 ). Although it is still largely unknown how 
this complex serves as a cohesion-promoting factor, depletion or 
mutation of FPC components in a variety of eukaryotic organisms 
leads to a cohesion defect [ 84 – 91 ]. It has been proposed that the 
FPC coordinates leading- and lagging-strand DNA synthesis pro-
cesses at the replication fork [ 92 ,  93 ]. Ineffi cient lagging-strand 
synthesis may cause a long stretch of single-stranded DNA, gener-
ating a large loop structure at the replication fork. Such a large 
replication fork structure with the replisome components would 
render the replisome unable to pass through the cohesin ring com-
plex [ 49 ]. Consistent with this notion, lagging-strand processing 
has been linked with Smc3 acetylation. Eco1 interacts with Fen1, a 
fl ap endonuclease required for Okazaki fragment maturation, pos-
sibly positioning the acetyltransferase to act on Smc3 as it localizes 
to the lagging-strand processing machinery [ 94 ,  95 ]. 

 As mentioned above, effi cient lagging-strand synthesis appears 
to be a key determinant of sister chromatid cohesion establish-
ment. In both mammalian cells and budding yeast, Fen1 associates 
with the ChlR1 (Chl1 in yeast) protein, a member of the FANCJ 
DNA helicase family [ 95 ,  96 ]. The loss of ChlR1 leads to sister 
chromatid cohesion defects in yeast and mammalian cells [ 97 – 101 ]. 
Biochemical studies revealed that ChlR1 stimulates Fen1 fl ap 
endonuclease activity in vitro, and loss of Fen1 itself also leads to 
cohesion defects with striking similarity to the cohesion defects 
associated with ChlR1 depletion [ 96 ], indicating the intimate link 
between lagging-strand processing at the replication fork and sister 
chromatid cohesion. It appears that ChlR1 and FPC operate in the 
same pathway to promote sister chromatid cohesion. Studies in 
human cells show that ChlR1 co-purifi es with the FPC and that 
both the FPC and ChlR1 are found to interact with cohesin com-
plexes by immunoprecipitation [ 89 ,  101 ]. ChlR1 overexpression 
rescues cohesion defects caused by FPC depletion, while Chl1 
overexpression suppresses the sensitivity of FPC mutants to geno-
toxic agents in fi ssion yeast [ 86 ,  89 ]. Furthermore, downregula-
tion of FPC or ChlR1 causes profound defects in replication 
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recover after replication stress [ 89 ,  102 ]. Considering that ChlR1 
interacts with Fen1 [ 96 ], it is highly possible that the FPC and 
ChlR1 act together to facilitate lagging-strand synthesis to accom-
modate proper establishment of sister chromatid cohesion at the 
replication fork. 

 In addition to the direct involvement of lagging-strand synthesis 
in sister chromatid cohesion, the replisome itself may also need to 
be stabilized when it passes through the cohesin-bound chromo-
some regions. It is proposed that the fork stalls transiently at the 
sites of cohesin complexes, necessitating fork stabilization [ 103 ,  104 ]. 
Indeed, the FPC and ChlR1/Chl1 are involved in maintaining 
replisome stability when the replication fork stalls, probably at the 
lagging strand [ 83 ,  102 ]. It is also important to note that RFC Ctf18  
is involved in both fork stabilization and sister chromatid cohesion 
[ 86 ]. Interestingly, loss of RFC Ctf18  results in reduced levels of 
Smc3 acetylation [ 66 ]. In addition, RFC Ctf18  stimulates the helicase 
activity of ChlR1, suggesting the role of RFC Ctf18  in lagging-strand 
processing. Therefore, it is possible that fork stabilization and effi -
cient lagging-strand synthesis are required for effi cient acetylation 
of Smc3 by Eco1 acetyltransferase at the replication fork. Since 
Eco1 physically associates with PCNA [ 68 ], the localization of 
Eco1 at the fork may be dependent on PCNA loaded by RFC Ctf18  
and also on Fen1 engaged at the lagging strand. Such a molecular 
confi guration may provide a condition for effi cient Smc3 acetyla-
tion that promotes fork progression through cohesin-bound chro-
mosome regions. An alternative explanation is that uncoupling the 
lagging strand from the leading strand creates a structure that is 
incompatible with passage through the cohesin complex. Additional 
studies are needed to disentangle these possibilities and determine 
the relationship between replisome progression and cohesion 
establishment.  

6     G2/M Phase: Maintaining and Disassembling Chromosome Cohesion 

 Once sister chromatid cohesion is established, it must be main-
tained until cells segregate sister chromosomes at anaphase. Upon 
the completion of DNA replication in budding yeast, cohesion 
establishment is ended by the Clb2–Cdk1 complex-dependent 
phosphorylation of Eco1 [ 105 ]. This phosphorylation greatly 
enhances the targeting of Eco1 to the SCF Cdc4  ubiquitin ligase 
complex, leading to the degradation of Eco1 [ 106 ]. There is one 
notable exception: in response to DNA damage, Eco1 is stabilized, 
and cohesin complexes need to be loaded at the sites of DNA dam-
age for a proper DNA damage response [ 107 – 109 ]. Therefore, in 
the absence of DNA damage, chromosome cohesion must be 
maintained on chromosomes after DNA replication, since Eco1 is 
not available to reestablish cohesion. 

Adam R. Leman and Eishi Noguchi



87

 After DNA replication, cohesin complexes are rendered far 
more stable on chromatin than prior to S phase. FRAP studies in 
both yeast and humans show that the turnover of cohesin  complexes 
on chromatin is greatly reduced in G2 [ 36 ,  50 ,  110 ]. In human 
cells perhaps one-third of cohesin complexes are stably associated 
with chromatin for the duration of G2 phase, a dramatic increase 
from the ~25-min residence time of G1 cohesin complexes [ 50 ]. 
In this state, cohesins stably pair sister chromatids until  mitosis 
where the process of removing cohesin complexes is highly regu-
lated (Fig.  4 ).

   How is then cohesion maintained? It appears that Smc3 
acetylation has a key role in this mechanism. Major factors 
involved in cohesion maintenance include Scc3 and Pds5. In the 
absence of functional Scc3 or Pds5, the levels of cohesin on 
DNA are reduced [ 18 ,  111 ]. As described below, Pds5 appears 
to protect Smc3 from deacetylation by Hos1/HDAC8 deacety-
lase during G2 phase through early mitosis. Since cohesion main-
tenance and subsequent cohesin removal are tightly coordinated, 

  Fig. 4    The cohesin complex is opened by two mechanisms at mitosis. G2 cohesins 
are stabilized and protected from dissociation and complex opening. On chromo-
some arms, mitotic kinases phosphorylate multiple targets, reducing Sororin 
 inhibition of Wapl and opening the cohesion complex at the Smc3–Scc1 interface. 
At centromeres and pericentromeres, the APC destroys securin, activating sepa-
rase and leading to Scc1 degradation and complex opening       
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the mechanisms that  stabilize cohesin complexes on chromatin 
must be  effi ciently deactivated to facilitate removal of cohesin 
complexes during mitosis. 

 Cohesin complexes distributed over each chromatid pair in the 
eukaryotic genome must be disassembled at the proper time every 
cell cycle. The dismantling of cohesion completes the task of the 
cohesin complexes that pair the sister chromatids until they are 
separated equally to two daughter cells. Two distinct processes 
are initiated during mitosis to remove cohesin complexes (Fig.  4 ). 
First, during prophase and metaphase much of the cohesin com-
plexes localized to chromosome arms are released. This action is 
followed by destroying cohesin complexes at pericentromeric 
regions at the metaphase–anaphase transition, allowing the segre-
gation of sister chromatids to opposing poles. Together, these pro-
cesses remove all functional cohesin complexes from the DNA. 

 First, removal of cohesin complexes from the chromosome arms 
requires the antiestablishment factor Wapl [ 59 ,  60 ]. Interestingly, 
Wapl-mediated alleviation of cohesion does not require degradation 
of cohesins, whereas later stage cohesin removal does. Instead, 
Wapl-associated cohesin removal involves opening of the cohesin 
complex at the Smc3–Scc1 interface [ 112 ]. This is counteracted by 
Smc3 acetylation, which represses Wapl- mediated cohesin opening 
[ 112 ,  113 ]. Therefore, maintaining Smc3 acetylation is vital to 
 preserving cohesion until prometaphase. By preventing the Wapl-
dependent cohesin opening, Pds5, in concert with Scc3, protects 
Smc3 acetylation from a deacetylase known as HDAC8 (Hos1 in 
budding yeast) [ 114 ]. 

 It appears that the concerted effort of several kinases on  cohesin 
complexes effectively deactivate the protective activity of Pds5 and 
Sororin, the latter of which stabilizes acetylated  cohesins by coun-
teracting Wapl activity [ 63 ,  65 ,  115 ,  116 ]. Consistent with this 
idea, phosphorylation of SA2 (Scc3 ortholog) is required for the 
dissociation of cohesins during prophase and prometaphase [ 117 ]. 
Mitotic cyclin–CDK complexes phosphorylate  Xenopus  XSA1/2 
(Scc3 orthologs) in vitro [ 19 ]. Plk1 activity is required for allevia-
tion of cohesion during mitosis, where  Xenopus  Scc3 orthologs are 
phosphorylated in a Plk1-dependent manner [ 118 ]. Furthermore, 
proteomics approaches indicate that both Pds5 and Wapl are phos-
phorylated by mitotic kinases [ 116 ]. Sororin- dependent antago-
nization of Wapl is also regulated by mitotic kinases. During mitosis, 
aurora B and cyclin–CDK complexes phosphorylate Sororin, thus 
freeing Wapl from its inhibition [ 119 ]. From these studies, one 
could imagine a mechanism by which mitotic kinases further stimu-
late Wapl activity (by removal of Sororin) while deactivating Pds5 
to allow deacetylation of Smc3 and opening of cohesin complexes. 
It is also possible that phosphorylation of cohesin complexes pro-
motes Smc3 deacetylation (Fig.  4 ). These actions lead to robust 
cohesin complex release from DNA on chromosome arms. 
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 Interestingly, the process of cohesin removal at centromeric/
pericentromeric regions is Wapl independent. The centromeric 
regions of sister chromosomes are protected during metaphase by the 
Shugoshin (Sgo1) protein [ 120 ]. When SA2 mitotic phosphorylation- 
site mutants were expressed, cohesion defects and the mitotic arrest 
phonotype of Sgo1-defi cient cells were  alleviated, suggesting that 
Shugoshin prevents phosphorylation of Scc3 to preserve cohesion 
until Shugoshin is destroyed [ 121 ]. Indeed, Shugoshin is activated 
by mitotic cyclin–CDK activity and associates with centromeres dur-
ing mitosis [ 122 ]. At the centromere, Shugoshin recruits PP2A, a 
phosphatase that prevents the phospho-regulation of cohesin sub-
units [ 123 ]. The localization of PP2A to centromeres prevents 
the Wapl-mediated mechanism of cohesin removal by preventing 
phosphorylation of key cohesin components. Therefore, another 
mechanism must control cohesin removal at the centromeric and 
pericentromeric regions of chromosomes. 

 Sister chromatid separation should ideally occur during ana-
phase as this is when sister chromosomes migrate to opposite poles 
of the mitotic spindle. Cohesion of chromosome arms is removed 
before the metaphase–anaphase transition, leaving only centro-
meric cohesion to tether sister chromatids to each other. This 
leaves a relatively small area of each chromosome held by cohesins 
left to remove. At the onset of anaphase, the Scc1 subunit of the 
tripartite cohesin complex undergoes a proteolytic cleavage by a 
protein known as separin or separase [ 124 ,  125 ]. The separin pro-
tein is bound and rendered inactive by securin, preventing prema-
ture activity [ 126 ,  127 ]. Securin is a target of the anaphase-promoting 
complex (APC), a ubiquitin ligase complex that becomes active at 
the metaphase–anaphase transition [ 128 ,  129 ]. Securin has been 
characterized as one of the major targets (along with the mitotic 
cyclin) for the APC Cdc20  complex in yeast cell-cycle regulation 
[ 130 ]. Once securin is degraded, separin/separase is free to cleave 
Scc1 and relieve chromosome cohesion, allowing sister chromatids 
to be pulled to their respective poles by the mitotic microtubule 
spindle (Fig.  4 ). At this point, chromosomes are unpaired and free 
of cohesin complexes. Prior to the next DNA replication round, 
cohesins are loaded again and the cycle is iterated.  

7     Cohesinopathies: Broken Rings That Compromise Genomic Integrity 

 The regulation of genetic inheritance is critical for the reproductive 
and cellular health of humans. Although not discussed in this 
review, meiotic chromosome cohesion uses a similar mechanism to 
that of mitotic sister chromatid cohesion, and failure to properly 
pair chromosomes during meiosis can lead to trisomy disorders 
such as Downs, Edwards, or Patau syndromes [ 131 ]. However, 
most types of aneuploidy are incompatible with development. 
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In analyses of human spontaneous abortions, it has been observed 
that over 35 % are trisomic or monosomic [ 132 ]. It has been pro-
posed that this high rate of chromosomal abnormalities is due to 
chromosome cohesion defects during meiosis, probably due to the 
fact that cohesion must be maintained for many years in human 
oocytes (reviewed in ref.  133 ). 

 Autosomal or spontaneous mutations in the cohesion estab-
lishment and maintenance pathways can also lead to syndromes in 
humans that are collectively known as cohesinopathies. The severity 
of these disorders underlines the importance of maintaining proper 
sister chromosome cohesion during development and cell prolif-
eration in tissue maintenance. Cornelia de Lange syndrome (CdLS) 
is a human disease characterized by short stature, craniofacial/limb 
abnormalities, seizures, and mental retardation. In addition, many 
CdLS patients die of gastrointestinal problems or pneumonia, sug-
gesting immune-system problems in these patients [ 134 ]. CdLS is 
caused by mutations in cohesion proteins NIPBL (the human Scc2 
homolog), Smc1, or Smc3 [ 135 – 138 ]. Mutations in NIPBL, the 
cohesin loader, have a stronger effect and lead to a more serious 
form of CdLS. Recently, mutations in HDAC8, the Smc3 deacety-
lase, have also been identifi ed in some CdLS patients with previ-
ously uncharacterized mutations [ 139 ]. 

 Interestingly, cells derived from CdLS patients display strong 
sensitivity to DNA-damaging agents [ 140 ]. This suggests that 
some phenotypes of the disease could result from improper DNA 
repair responses, yet most CdLS patients do not have increased 
tumor incidence. Roberts syndrome has a similar clinical presenta-
tion to CdLS, although it is caused by mutations in Esco2 acetyl-
transferase [ 141 ]. 

 A recently characterized disease, Warsaw breakage syndrome 
(WABS), has been attributed to the loss of functional DDX11/
ChlR1 DNA helicase, which plays a critical role during S phase to 
establish proper sister chromatid cohesion [ 101 ,  102 ,  142 ,  143 ]. 
Mutations to both alleles of the  DDX11 / CHLR1  gene lead to 
WABS, which is characterized by severe developmental defects, 
including microcephaly, growth and mental retardation, and facial 
dysmorphy [ 143 ]. The fi rst WABS patient was reported to carry 
biallelic mutations in the  DDX11 / CHLR1  gene, including a 
splice-site mutation and a carboxyl-terminal deletion [ 143 ]. More 
recently, a new homozygous mutation in  DDX11 / CHLR1  was 
identifi ed in siblings with many of the symptoms associated with 
WABS, confi rming the role of  DDX11 / CHLR1  mutations in 
WABS [ 144 ]. Interestingly, the phenotypic presentation of WABS 
is a combination of those seen in patients with mutations in cohe-
sion establishment proteins (such as Roberts syndrome or CdLS) 
and in Fanconi anemia pathway, which plays a critical role in the 
repair of DNA interstrand cross-links during DNA replication 
[ 145 ], further confi rming the role of DDX11/ChlR1 in sister 
chromatid cohesion during S phase. 
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 The processes of cohesin establishment, maintenance, and 
 dissolution are tightly regulated through the cell cycle. The ability to 
coordinate chromosome cohesion with DNA replication is critical 
for proper sister chromatid pairing during S phase, thereby allow-
ing for their equal segregation at mitosis. Unlocking these 
 mechanisms is an important research focus of genome maintenance 
mechanisms. However, much work remains to understand how the 
processes occurring at the replication fork are linked to cohesin 
complexes. Importantly, CdLS cells have increased genotoxic sen-
sitivity [ 140 ], and WABS cells show combined phenotypes of 
Fanconi anemia and the cohesinopathies, including abnormal 
chromosome segregation and sensitivities to interstrand cross- 
linking agents [ 143 ]. These fi ndings indicate the inseparable con-
nection between sister chromatid cohesion and DNA replication/
repair pathways. By studying the mechanisms of these diseases and 
developing possible therapeutic strategies, we will have a unique 
opportunity to further characterize the complicated interplay 
between DNA replication and cohesion processes.     
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