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Abstract

We propose a one-state-variable ICAPM which rationalizes a large set of stock
return anomalies, including size, value, and momentum. Differential covariance with
news about future market discount rates drives observed cross-sectional patterns in
expected returns. In response to discount-rate shocks, large, growth, and recent loser
stocks outperform small, value, and winner stocks, respectively. Our interpretation is
that increases in discount rates represent “bad” news, increasing investors’ marginal
utility of wealth. Ignoring this state variable causes drastic underestimation of the
equilibrium price of “level risk” in bond returns. The model augmented with a “level”
factor jointly prices stocks and bonds.
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‡R.H. Smith School of Business, University of Maryland. Email: shrihari@umd.edu.
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1 Introduction

The logic of Merton (1973) suggests there exists a representation for the stochastic discount
factor which is a linear combination of the return on the aggregate wealth portfolio and
state variables which capture changes in the investment opportunity set1. We propose and
test an equilibrium model in which shocks to risk aversion (sentiment) generate time-varying
expected equity returns. We find support for the model’s prediction that such shocks repre-
sent “bad” news for the representative investor and manifest in the cross-section of expected
asset returns.

Empirically, we augment the one-factor CAPM2 with a single additional factor, the shock
to expected future excess market returns. This single additional factor is sufficient to ratio-
nalize a large cross-section of expected returns, including size, book-to-market ratio, recent
performance (momentum), and anomaly portfolios studied in Novy-Marx and Velikov (2014).
Since the CAPM completely fails in fitting the cross-section of assets we analyze, the success
of our model comes entirely from the expected market return factor. This result is similar
to Campbell and Vuolteenaho (2004) but with two important differences. First, we specify
a general equilibrium model in which time variation in expected returns is endogenous. Sec-
ond, instead of the typical vector auto-regression (VAR) approach, we use future realized
returns to proxy for expected future returns (see Section 2.4). This provides a consistent
estimate of expected returns under any information set. Our methodology produces very
different cross-sectional patterns in factor loadings compared to the VAR approach. We
find that growth stocks and large firm stocks outperform value stocks and small firm stocks,
respectively, in response to an increase in expected market returns.

The pattern in loadings we find results in an opposite conclusion about the compensation
an investor requires for bearing the risk of time-varying expected returns. We conclude that
an increase in the expected market return corresponds to a drop in the investor’s utility and
hence an increase in his marginal utility of wealth. This implies the investor is willing to pay
in order to eliminate this risk from his portfolio. We solve a general equilibrium model that

1Under loose restrictions, even with trading constraints, the absence of arbitrage implies the existence
of a stochastic discount factor, Mt+1, such that the relationship 1 = Et [Mt+1Ri,t+1] holds for all assets
Skiadas (2009, Chapter 1). The SDF is also called a state-price density. Equivalently, no arbitrage implies
the existence of a present-value function and of an equivalent martingale measure. If some wealth is not
fully tradable then shocks to that wealth generates hedging demands in the space of tradable securities.

2See Sharpe (1964), Treynor (1961)
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delivers exactly this prediction. In the model, expected market returns are high when the
representative investor’s risk aversion is high. These states of the world correspond to times
of high marginal utility, consistent with our estimated price of risk. Further evidence of the
relation between marginal utility and the market risk premium comes from bonds. Long-term
bonds have higher covariance with innovations to market discount rates than do short-term
bonds. Overall, these patterns are consistent with a “flight-to-quality” interpretation where
effective investor risk aversion rises, stock prices fall, bond prices rise, and “good” companies
outperform “bad” companies.

The second contribution of our paper is decomposing the average return differential
between long and short term government bonds into a large positive differential due to
loadings on “level risk” (interest-rate risk) and a large negative spread due to loadings on
our expected market return factor. These net to a slightly upward sloping term structure of
expected bond returns. Koijen et al. (2010) find a similar decomposition of bond risk premia
using time-varying expected bond returns instead of stock returns. Our results suggest that
analyzing fixed income securities in isolation can lead to erroneous conclusions about bond
risks and risk premia.

Finally, we document that returns on the Fama-French-Carhart factors SMB, HML, and
UMD are useful forecasters of future market excess returns, significant both statistically and
economically. In our sample from August 1963 to December 2013, the three factors combined
greatly outperform the dividend price ratio, D/P , in terms of R2. This confirms the spreads in
covariances seen in Section 3 are economically relevant. Additionally, we show that the first
principal component of anomaly portfolios has similar forecasting ability to the three Fama-
French-Carhart factors combined in terms of R2 and its statistical significance is substantially
higher than that of SMB, HML, and UMD.
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2 The Model

2.1 Specification

Following Duffie and Epstein (1992a), we define a stochastic differential utility by two prim-
itive functions, f (Ct, Jt) : R+ × R → R and A (Jt) : R → R. For a given consumption
process C, the utility process J is the unique Ito process that satisfies the stochastic differ-
ential equation,

dJt =
[
−f (Ct, Jt)−

1
2A (Jt) ‖σJ,t‖2

]
dt+ σJ,tdZt, (1)

where σJ,t is an R3-valued square-integrable utility-”volatility” process, Jt is the continuation
utility for C, conditional on current information at time t, f (Ct, Jt) is the flow utility, A (Jt)
is a variance multiplier that penalizes the variance of the utility “volatility” ‖σJ,t‖ ≡ σJ,tσ

′

J,t,
and dZt is a vector of shocks. A pair (f, A) is called an aggregator. We use a Kreps-Porteus
(Epstein-Zin-Weil) aggregator, defined as

f (C, J) = δ

ρ

Cρ − Jρ

Jρ−1 = δ

ρ
J

[(
C

J

)ρ
− 1

]
(2)

A (J) = −α
J
, (3)

where ρ = 1 − 1
ψ

and ψ is the elasticity of intertemporal substitution; δ is a subjective
discount factor, and α is the risk-aversion parameter.

We consider a simple endowment with a dividend process given by:

dD

Dt

= gtdt+ σDdZ (4)

where gt is the mean consumption growth,

dg = φg (ḡ − gt) dt+ σgdZ. (5)

We extend the utility specification, the parameter α to be stochastic,

dα = φα (ᾱ− αt) dt+ σαdZα, (6)
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This parameter can be interpreted as either time-varying risk aversion (Campbell and Cochrane,
1999, Dew Becker, 2011, Kozak, 2013) or time-varying ambiguity aversion with respect to
model specification (Drechsler, 2013, Hansen and Sargent, 2008)3.

Finally, agents’ wealth evolves according to:

dW

Wt

= (θtλt + rt − Ct) dt+ θtσRdZ (7)

where θt is the share of wealth invested in the risky asset, λt is the expected excess return
on the risky asset, and rt is the risk-free rate.

2.2 Solution

Market clearing requires Ct = Dt, θt = 1, and Wt = Pt. For simplicity, we further assume
that the elasticity of intertemporal substitution is equal to unity. We solve the Hamilton-
Jacobi-Bellman equation corresponding to the above problem in the Appendix A.

Theorem 1. The equilibrium SDF corresponding to the problem in equations (1), (2), (3),
and (6) is given by:

dΛ
Λt

= −rtdt− αtdRM − (αt − 1) aα︸︷︷︸
<0

σαdZ − (αt − 1) ag︸︷︷︸
>0

σgdZ (8)

where RM is the return on the market portfolio, aα and ag are constants provided in the
Appendix A. When risk aversion is higher than 1, the price of risk-aversion risk is negative.

The equity risk premium is given by

λt = λ0 + αt × σDσ
′

D (9)

3Variability in α generates time-varying prices of risk in the model. Our main results survive if we instead
model time-varying quantity of risk (through time-varying volatility of consumption growth).
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where λ0 is a constant defined in Appendix A4. Finally, the risk-free rate is:

rt = δ + gt − λt. (10)

Proof. See Appendix A.

Theorem 2. The price of market discount rate risk is negative when investors’ risk aversion
is higher than unity. Investors dislike assets that pay off poorly in states when the discount
rate is high, and require a higher risk premium on those assets.

Proof. The result follows immediately from the fact that the coefficient aα in (8) is negative,
aα < 0 (see Appendix A).

Theorem 2 is a result of endogenous variation of discount rates in the model (due to
movements in risk aversion). This contrasts with the corresponding result for exogenous
variation in expected returns as in Campbell (1996) and Campbell and Vuolteenaho (2004).

Theorem 3. Given the results in Theorem 1, the three-factor model holds:

µRi,t = αt × cov
(
dRe

i,t, dR
e
M,t

)
+ ag (αt − 1)× cov

(
dRe

i,t, dgt
)

(11)

+aα (αt − 1)× covt
(
dRe

i,t, dλt
)

≡ δM,t × covt
(
Re
i,t+1, R

e
M,t+1

)
+ δλ,t × covt

(
Re
i,t+1, λt+1

)
(12)

+δg,t × covt
(
Re
i,t+1, gt+1

)
where µRi,t is the conditional excess return on asset i, dRe

M,t is the excess return on the market
portfolio, dλt are shocks to the equity risk premium, and dgt are shocks to the growth rate.

Proof. See Appendix A.

2.3 Unconditional Pricing

We discretize the model for empirical implementation and define rxi,t+1 as the log return
on an asset i over the time period t → t + 1. When instantaneous excess returns dRe

i,t are
4Given the dynamics of αt this implies λt follows an AR(1) process. It allows us to capture persistence

in the risk premium while keeping the model tractable. The assumption is similar to those made in the
literature, which typically assume that a vector of state variables follows a VAR(1) process (see, for example,
Campbell (1996), Campbell and Vuolteenaho (2004)).
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normally distributed, corresponding discrete-time log excess returns rxi,t+1 are as well.
The model above is specified conditionally with “shocks” as factors. In Appendix B.2 we

derive an unconditional representation in terms of “levels”. Theorem 4 below summarizes
the result.

Assumption 1. Consumption growth rate is constant, σg = 0.

Assumption 1 serves solely for expositional purposes in this section and will be relaxed
in Section 4.

Theorem 4. Given Assumption 1, and the conditional model in Equation 11, we obtain the
following linear pricing relation:

∀i, t : E (rxi,t+1) + Vi
2 = cov (rxi,t+1, rxM,t+1)× δ̂M (13)

+ cov (rxi,t+1, λt+1)× δ̂λ

where δ̂M and δ̂λ are two constant unconditional prices of market and expected returns risk,
respectively. Appendix B.2 derives the link between these prices and the conditional ones in
Appendix B, Equation 65.

Proof. Refer to the proof of a more general Theorem 8 with an arbitrary number of factors
and risk prices in Appendix B.2.

Two aspects about this relation are worth emphasizing. First, all moments in the formula
are unconditional and hence can be easily estimated using time-series regressions. Second,
the formula involves the covariances with levels rather than shocks. This results from the
time-series properties of α.

2.4 Expected Returns Factor

2.4.1 Using Future Realized Returns

The unconditional model in Equation 13 involves the expected market return λt+1, which is
not directly observable by an econometrician. Typically, a predictive regression (or VAR)
using macroeconomic and financial variables is employed to address this issue. A major
limitation of such an approach is that it restricts the information set to a small number
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of variables. Since investors are presumed to condition on all available information, the
forecasts from a predictive regression will not equal market expectations. This measurement
error may bias estimates of covariance and risk premia.

We employ a novel methodology designed to circumvent the issue. We use future realized
returns as an unbiased estimator of current risk premia required by investors. This is valid
since for any information set Ft+1 at time t+ 1,

rxM,t+2 = Et+1rxM,t+2 + εt+2 (14)

Et+1 (εt+2) = Et+1 (εt+2|Ft+1) = 0 (15)

True (population) conditional covariances are also equal

covt (rxi,t+1, rxM,t+2) = covt (rxi,t+1, Et+1rxM,t+2) (16)

and thus a consistent estimator of the covariance on the RHS is also a consistent estimator
of the covariance on the LHS. See Appendix B.3 for a more formal argument. Our empirical
method allows us to test the model without directly estimating expected market returns5.
Instead, our approach is based on investors’, rather than the econometrician’s, ability to
forecast returns.

2.4.2 Moving Average of Future Realized Returns

An issue with using one period ahead realized returns is that the signal-to-noise ratio of such
a proxy is low. Because expected returns are persistent, we can cumulate a longer series of
future returns in order to improve the ratio. There is an obvious trade-off here: increasing
the length of the cumulative sum improves the signal-to-noise ratio at a decreasing rate. We
determine the horizon length empirically in later sections.

We now show that the cumulative sum of future realized returns can be used as a proxy
for the market risk premium in Equation 13.

Theorem 5. When the expected returns factor is measured over a long horizon, the un-
conditional relation in Equation 13 still holds, with the new prices of risk that are a linear
transform of the ones in Equation 13:

5Discount rates are often estimated using forecasting regressions
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∀i, t : E (rxi,t+1) + Vi
2 = cov (rxi,t+1, rxM,t+1)× δ̃M (17)

+ cov (rxi,t+1, λt+1:t+T )× δ̃λ

where λt+1:t+T = Et+1rxM,t+2:t+T+1 denotes expected market returns (risk premia) starting
one period ahead for T ≥ 1 periods, δ̃M and δ̃λ are two constant unconditional prices of
market and expected returns risk, respectively. Appendix B.2 derives the link between these
prices and the conditional ones in Equation 11 and Equation 82.

Proof. Refer to the proof of a more general Theorem 9 with an arbitrary number of factors
and risk prices in Appendix B.2.

When a moving average of future returns is used as an estimator of the expected market
returns factor, we can still show consistency of covariance estimates. See Appendix B.2.1 for
more details.

2.5 Empirical Relation

Equipped with the results in Theorem 4 and Theorem 5, we proceed with approximating
the unconditional relation in Equation 17 to facilitate the empirical tests in the following
Section 3. Appendix B.4 shows that with daily data, the unconditional pricing relation in
Equation 17 can be represented as follows:

∀i, t : E
(
Re
i,t+1

)
= cov (rxi,t+1, rxM,t+1)× δ̃M (18)

+ cov
(
rxi,t+1, λ̂t+1:t+T

)
× δ̃λ̂

where Re
i ≡ Ri

Rf
is the level of excess returns and λ̂t+1:t+T ≡ rxM,t+2:T = ∑T

j=2 rxM,t+j. In
deriving this relation, we use the fact that future realized returns can be used as an unbiased
and consistent estimate of market risk premia (see Equation 87). When log returns are
normally distributed, the relation is exact; otherwise it is an approximation. All random
variables in Equation 18 are observed by an econometrician. We use the level of excess
returns, Re

i , on the LHS, and the covariances of log excess returns rxi with the market rxM
and the future realized excess returns, rxM,t+2:T = ∑T

j=2 rxM,t+j on the RHS.
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3 Empirical Link Between Cross-Sectional and Aggre-
gate Expected Returns

We estimate and test the expected return relation of Equation 18 using three sets of test
assets. The first is the canonical 25 portfolios formed by a two-way sort of firms on market
capitalization (ME) and book-to-market ratio (BE/ME), available at Ken French’s website
6. Lewellen et al. (2010) highlight a key issue in estimating and testing asset pricing models.
When the test assets have a strong factor structure that captures much of the time-series
variation as well as the cross-sectional variation in expected returns, a spurious model with
many factors may still produce a remarkably good cross-sectional fit as long as the spurious
factors are correlated with the “true” factors. This result is not due to sampling varia-
tion; it holds in population. A solution they propose is to add assets which increase the
“dimensionality” of the test asset space.

In addition to the canonical 25 portfolios, we construct an alternative set of test assets.
We include fifteen portfolios consisting of five value-weighted quintile portfolios each from
independent sorts on size, book-to-market ratio, and momentum (prior 2-12)7. Fama and
French (2008) show that sorting firms based on prior performance produces a reliable spread
in average returns subsumed by neither the size effect or the book-to-market effect. Fur-
thermore, the momentum factor, UMD (Carhart, 1997), is nearly uncorrelated with the size
factor, SMB, and is negatively correlated with the book-to-market factor, HML (Fama and
French, 1996). Including momentum sorted portfolios as test assets makes it decidedly more
difficult for a model to fit the cross-section of expected returns. Our preferred estimation uses
these fifteen portfolios; for robustness and for comparison with the literature, we perform
all estimation and testing on the Fama-French 25 portfolios as well. Third, we estimate the
model using 15 anomaly long-short portfolios from Novy-Marx and Velikov (2014)8 (here-
after NMV). These capture many prominent features of the cross-section of returns9. The
data are only available at monthly frequency. Finally, we always include the value-weight
market and risk-free returns as test assets, both to show how well the model fits these assets

6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
7Also available at Ken French’s website.
8See Novy-Marx and Velikov (2014) for details on data construction. The data are available at

http://rnm.simon.rochester.edu/data_lib/index.html
9We exclude a few high-frequency anomalies and those that did not survive in the past two decades.
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and because they theoretically have the best measured factor loadings.
Following the spirit of Merton (1973) and the continuous-time model in Section 2, we

use portfolio returns measured at daily frequency10. All returns are measured over the
period 01-Aug-1963 to 31-Dec-2013. Using daily, rather than monthly, returns reduces the
approximation error due to linearization of the exponential function that we rely on in
deriving the estimation equation. As noted in Campbell and Vuolteenaho (2004), “July
1963 is when COMPUSTAT data become reliable and most of the evidence on the book-
to-market anomaly is obtained from the post-1963 period”. Furthermore, in the pre-1963
sample, the “CAPM explains the cross-section of stock returns reasonably well” (Campbell
and Vuolteenaho, 2004). Since inflation estimates are not available daily11, we use only
excess log returns. These are, by construction, net of inflation (but may contain inflation
risk premia).

As a proxy for the excess return on the wealth portfolio, rxm,t, we use RmRf, the excess
return on the value-weight portfolio of all common equity traded on the NYSE, AMEX,
and NASDAQ. Of course the standard critique applies that there exist many assets, both
traded (foreign securities) and non-traded (real-estate, human capital) that are not included
in this portfolio (Roll, 1977). As discussed above, we construct λ̃t = ∑H

i=1 rxm,t+i. For our
preferred specification, we set H = 126 trading days, or one-half year. Though the theory of
Section 2.4 implies the model should fit for all choices of H, finite length of the historic data
series means that increasing H comes with a loss of precision in estimating Cov

(
rxi,t, λ̃t

)
.

Our results are quantitatively robust across various choices of H, from 3 months to 2 years,
using daily or monthly frequency of returns (see Appendix D).

Table 1 shows the estimated covariances of asset returns with the factors. Panel A
shows Cov (rxi,t, rxm,t) with Newey-West standard errors in parentheses (252 lags; 1 year).
Quintile 1 represents large firms, growth firms, and recent losers in relation to the dimensions,
size, book-to-market, and momentum, respectively. Analogously, Quintile 5 represents small
firms, value firms, and recent winners. The column to the right of Quintile 5 represents the
Q5-Q1 spread portfolio. The FF column gives the estimates for the canonical Fama-French-
Carhart (FFC) factors, SMB, HML, and UMD. The covariances match the well known
pattern in market betas.

10We also replicated the analysis at monthly frequency and obtain very similar results (see Appendix D).
11Inflation is not well measured even at monthly frequency (Cecchetti, 1997).
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Table 1: Covariances

Q1 Q2 Q3 Q4 Q5 FF Q5-Q1
Panel A: Ci,M

ME 9.46 9.15 8.97 8.87 7.59 -0.70 -1.87
BE/ME 9.91 8.92 8.69 8.23 8.57 -1.39 -1.34
Prior 2-12 12.05 9.98 9.35 9.24 10.69 -0.86 -1.36

Panel B: Ci,λ

ME 1.85 1.53 0.89 0.29 -0.19 -1.16 -2.04
(2.33) (1.44) (0.81) (0.25) (-0.14) (-1.85) (-2.14)

BE/ME 2.07 1.50 1.06 1.10 -0.63 -1.84 -2.69
(2.37) (1.62) (1.00) (1.11) (-0.60) (-2.70) (-2.80)

Prior 2-12 3.60 2.39 1.42 0.88 0.65 -2.10 -2.96
(2.50) (2.53) (1.71) (0.92) (0.49) (-2.01) (-2.43)

Panel C: E [Re
i ]

ME 6.35 8.09 8.47 8.87 8.06 2.24 2.42
BE/ME 6.05 6.92 7.22 9.28 11.24 4.56 5.85
Prior 2-12 1.43 5.81 5.64 7.46 10.33 8.08 10.95

Notes: This table shows covariances and annualized mean returns estimated over 01-Aug-1963
to 31-Dec-2013. Panel A lists the covariances of portfolio returns with the market return, Ci,M .
Panel B depicts the covariances of portfolio returns with the discount rate factor, Ci,λ. Panel
C shows the the expected excess returns on each portfolio, E [Rei ]. The column "FF" represent
the Fama-French factors, smb, hml, and umd. t-statistics in parentheses are adjusted for serial
correlation using Newey-West procedure with 252 lags (1 year). All covariances are scaled by 105.

Panel B reports Cov
(
rxi,t, λ̃t

)
for the same portfolios. In all three dimensions (size,

book-to-market, and momentum), Cov
(
rxi,t, λ̃t

)
decreases from left to right. That is to say,

when the “risk premium”, λt, rises, small stocks are expected to fall more than large stocks,
value stocks are expected to fall more than growth stocks, and recent winners are expected
to fall more than recent losers. Though using realized market returns in place of expected
returns produces consistent covariances estimates, they are less precisely estimated due to
the extra noise present in realized returns. Still, the covariances of the spread portfolios
with λ̃t are statistically significantly different from zero and the covariances follow a reliable
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pattern, suggesting that our results are not spurious.
The model in Section 2 suggests these covariances could result from a “flight-to-quality”

phenomenon, where the overall risk premium rises and the risk premium on “low quality”
assets rises by even more. Our model is only one such motivation for time-varying expected
returns. Indeed, as noted in (Shefrin, 2008, Chapter 30.3.3), the stochastic discount factor
in a habit formation model (Campbell and Cochrane, 1999) is of the same general form as
one based on a model of investor sentiment. Both deliver time-varying expected returns
through an effectively time-varying risk-aversion parameter for the representative agent. We
choose to directly model time-varying risk aversion. As we discuss below, the negative sign
of δλ, suggests that even if these covariances are produced by sentiment driven “flight-to-
quality” episodes, these are likely to be amplifications of fundamental shocks so that the risk-
premium rises during aggregate “bad times”. Panel C shows sample average returns which
increase monotonically from left to right across quintiles, consistent with the well known size,
value, and momentum phenomena. Panels B and C suggest a strong relationship between
Cov

(
rxi,t, λ̃t

)
and E [rix,t], which can be clearly seen in Figure 1.

Figure 1 (a) plots sample values of E [rix,t] vs Cov
(
rxi,t, λ̃t

)
for the 15 quintile portfolios.

Figure 1 (b) is the same plot for the 25 Fama-French portfolios and Figure 1 (c) shows the
NMV anomalies. The graphs confirm that Cov

(
rxi,t, λ̃t

)
and E [rix,t] line up fairly well in

the cross-section of assets, suggesting the λt risk factor captures the size, value, momentum
effects, and NMV anomalies.
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Figure 1: Univariate fit
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(b) Fama-French 25 Portfolios
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3.1 Estimation Results

We estimate the risk price vector δ = [δM δλ]
′
using GMM with a prespecified block-diagonal

weighting matrix (Cochrane, 2001, Chapter 11.5). It is equivalent to the standard two-stage
estimation procedure. Cov

(
rxi,t, λ̃t

)
and Cov (rxi,t, rxM,t) are estimated in the first stage

by just-identified GMM, which yields the standard formulas for sample covariance. In the
second stage, we minimize the mean-squared model pricing errors of the test assets. This
is equivalent to an OLS regression of sample mean returns on the covariances estimated
from the first stage. In addition to our two-factor ICAPM, we estimate the Sharpe-Lintner
CAPM and well as the Fama-French model augmented with the umd (momentum) factor
of Carhart (1997). For ease of comparison, all models are written and estimated in terms of
covariances instead of regression βs. Below is a summary of the pricing equations, where δs
are interpreted as risk prices (coefficients in the SDF):

2-Factor ICAPM: E [Rei ] = Ci,MδM + Ci,λδλ (19)

2-Factor ICAPM, Unrestricted: E [Rei ] = α+ Ci,MδM + Ci,λδλ (20)

CAPM, Restricted: E [Rei ] = Ci,MδM (21)

CAPM, Unrestricted: E [Rei ] = α+ Ci,MδM (22)

4-Factor FF, Unrestricted: E [Rei ] = α+ Ci,MδM + Ci,smbδsmb + Ci,hmlδhml (23)

+ Ci,umdδumd

4-Factor FF, Restricted: E [Rei ] = Ci,MδM + Ci,smbδsmb + Ci,hmlδhml + Ci,umdδumd (24)

where Ci,X ≡ Cov [rxi,t, Xt] .
Estimated risk prices are given in Table 2 along with sample R2 and mean absolute

pricing errors12. Quantitatively, our two-factor ICAPM fits the cross-section of average
returns nearly as well as the 4-factor FFC model. The estimated intercept is nearly zero,
both statistically and economically. Though Cov

(
rxi,t, λ̃t

)
is not very well estimated for

any individual test asset, the cross-sectional spread in covariances is strong enough to yield
precise estimation of δλ. H0 : δλ = 0 is rejected for all conventional significance levels.
Covariance with the expected return factor is able to capture a large portion of the cross-

12For all models, we don’t impose the GLS restriction that the model exactly prices the factors. Imposing
the restriction predictably reduces R2 and increases MAPE.
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Table 2: Risk Price Estimates

α δM δλ δsmb δhml δumd R2 MAPE

2-Factor ICAPM - 4.54 -11 - - - 80.9 0.959
(4.44) (-5.29)

0.812 4.17 -10.7 - - - 81.5 0.975
(1.44) (4.25) (-5.2)

CAPM - 3.01 - - - - 10.8 1.95
(3.12)

3.12 1.7 - - - - 19.2 1.95
(4.49) (1.82)

4-Factor FF - 5.54 - 3.83 12.9 8.21 87.2 0.874
(4.66) (1.12) (3.84) (5.02)

0.706 5.19 - 3.71 12.6 8.07 87.6 0.896
(1.91) (4.53) (1.08) (3.79) (4.94)

Notes: This table shows premia estimated from 01-Aug-1963 to 31-Dec-2013 for the two-factor
ICAPM, the CAPM, and the augmented Fama-French model. The test assets are value-weighted
quintile portfolios sorted on ME, BE/ME, and Prior2-12. α is annualized and "-" indicates that
the intercept is restricted to zero. MAPE is average absolute pricing error, annualized. Moving
block bootstrap t-statistics are in parentheses.

sectional variation in average returns due to the size, book-to-market, and momentum effects.
Standard errors are calculated using the moving block bootstrap methodology (Horowitz,
2001) and are consistent across various choices of block size.

The cross-sectional fit of the ICAPM and 4-factor Fama-French models are given graphi-
cally in Figure 2. The graphs plot model implied mean excess returns on the horizontal and
sample average returns on the vertical axis. The 45◦ line represents a model with perfect
in-sample fit (100% R2).

3.2 The Sign of δλ
Campbell and Vuolteenaho (2004) perform a similar pricing exercise but with different em-
pirical methodology and theoretic motivation. They find a positive price of expected returns
risk, though the estimate isn’t statistically significant. From our estimation, the probability
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Figure 2: Performance of the ICAPM and 4-Factor Fama-French models
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Notes: 2-Factor ICAPM with restricted intercept on the left, and 4-factor Fama-French with
restricted intercept on the right. m1-m5 correspond to momentum quintile portfolios (losers to
winners). bm1-bm5 correspond to book-to-market quintiles (growth to value). me1-me5 corre-
spond to size quintiles (large to small).

that the price of risk is positive is P [δλ > 0] = 0.002% 13). The alternative approaches reach
very different conclusions.

We find that growth stocks and large firm stocks outperform value stocks and small firm
stocks, respectively, in response to an increase in market expected returns, opposite to the
pattern in Campbell and Vuolteenaho (2004). The different pattern in loadings produces
a different conclusion about the compensation an investor requires for bearing the risk of
time-varying expected returns. We conclude that an increase in the expected market return
corresponds to a drop in the investor’s utility and hence an increase in his marginal utility
of wealth. This implies the investor is willing to pay in order to eliminate this risk from
his portfolio, as predicted by our model. In contrast, Campbell and Vuolteenaho (2004)
find that an investor is willing to pay to increase his exposure to this risk. Campbell and
Vuolteenaho (2004) theoretically motivate their finding using a portfolio problem for a long-
term investor who treats discount rate shocks as exogenous. It isn’t surprising that an
exogenous increase in expected returns (with no change in risk) is beneficial to an investor14.

13p-value from a one-sided t-test of H0 : λ ≥ 0
14Theoretically, this depends on the coefficients of relative risk aversion and elasticity of intertemporal
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We endogenize time-varying discount rates and find that a representative agent suffers when
expected returns rise.

3.3 Factor Mimicking Portfolio

The two-stage OLS procedure for estimating stochastic discount factors suffers from many
problems related to samples size and factor structure in the covariance of test asset returns.
Lewellen et al. (2010) highlight these concerns and offer some suggestions:

1. Increase the dimensionality of the test assets relative to the dimension of the SDF.

2. Impose theoretic restrictions: “zero-beta rates should be close to the risk-free rate, the
risk premium on a factor portfolio should be close to its average excess return”. This
is essentially using GLS instead of OLS with the factor included as a test asset.

3. Report GLS R2 since (a) it “is completely determined by the factor’s proximity to
the minimum-variance boundary ... but the OLS R2 can, in principle, be anything”
and (b) “in practice, obtaining a high GLS R2 represents a more stringent hurdle than
obtaining a high OLS R2.”

4. Report confidence intervals for the cross-sectional R2.

We already addressed issue (1) by having only one factor to “explain” three dimensions of
average returns. Table 2 shows that estimates with and without restrictions on the zero-
beta rate are nearly identical. Since our expected return factor is not an excess returns, we
cannot directly include it as a test asset and check the restriction in (2). We can however,
include a maximally correlated (mimicking) portfolio, i.e., regress the factor on the space
of excess returns and use the fitted values. As shown in Cochrane (2001, Ch. 4), this
yields identical OLS estimates of covariances, risk prices, pricing errors, and R2. Because
our test assets are highly correlated, in small sample the mimicking portfolio will have
unrealistic extreme long/short positions. To mitigate concerns of overfitting, we instead
construct λ̂t = proj

(
λt
∣∣∣[ mrktt smbt hmlt umdt

])
. This is the linear combination

of the four Fama-French-Carhart factors which has maximal correlation with our original

substitution. The result obtains for generally accepted parameter values.
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Table 3: GLS Estimation

δM δλ E [rM ] E [rλ] R2 MAPE

OLS 4.54 -12.7 6.87 -8.98 84.6 0.885
(4.35) (-4.85)

GLS 4.49 -14 6.2 -10.1 80.8 0.96
(4.73) (-6.12)

Notes: OLS estimates are from the standard two-step FM procedure. GLS restricts the
model to exactly fit the market and the mimicking portfolio’s in-sample average returns,
ignoring pricing errors on other assets. E [rM ] and E [rλ] are the model implied annualized
expected excess returns on the market and mimicking portfolios, respectively. For GLS these
are, by construction, equal to annualized sample averages.

expected return factor. Since it is an expected return we can include it as a test asset and
use GLS methods.

With the factor mimicking portfolio, we can address points (2) and (3) above. For the
remainder of this section, we treat the mimicking portfolio as the factor and address OLS vs
GLS15. GLS restricts the model to exactly fit the market and the mimicking portfolio’s aver-
age in-sample returns, ignoring pricing errors on other assets. Table 3 shows the estimated
SDF using both methods. E [rM ] and E [rλ] are the model implied annualized expected
excess returns on the market and mimicking portfolios, respectively. For GLS these are, by
construction, equal to sample averages.

The results are similar across methods. In particular, the model implied expected returns
on the two factors (market and λ mimicking portfolio) are similar for OLS and GLS. This
addresses point (2) from Lewellen et al. (2010). The GLS R2 is mechanically lower than OLS
R2 but not substantially so. Bootstrap simulation rejects the null16 of R2 = 0 with p ≈ 1%.
The [1%, 99%] R2 interval under the null is [−139%, 81%] .

15When only a subset of test assets are used to construct the mimicking portfolio, there is no guarantee
that estimated risk prices, etc will remain unchanged. Here, SMB, HML and UMD were not included in
the original test assets so “anything” can happen. Still, δ and R2 values are similar. We ignore sampling
uncertainty in bSMB , bHML, bUMD when reporting test statistics using the factor mimicking portfolio. This
likely does not bias our results greatly since the Newey-West t-statistics on bSMB , bHML, bUMD are between
2 and 3.

16One-sided test of H0 : R2 ≤ 0.
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3.3.1 Testing the ICAPM

A common way to test an asset pricing model is to check whether cross-sectional pricing errors
are jointly different from zero. Instead we test the ICAPM against a specific alternative,
the FFC 4-factor model. If the 2-factor ICAPM is literally true we can derive the following
restriction on the SDF loadings, assuming proj

(
λt
∣∣∣[ mrktt smbt hmlt umdt

])
is the

true mimicking portfolio (including other assets doesn’t improve model fit17).

mt = δ̃M ·mrktt + δλλt

= δ̃M ·mrktt + δλproj
(
λt
∣∣∣[ mrkt smb hml umd

])
+ εt (25)

∀ i, cov (ri, ε) = 0 ⇒ equivalently

mt = δ̃M ·mrktt + δλproj
(
λt
∣∣∣[ mrkt smb hml umd

])
(26)

= δ̃M ·mrktt + δλ [bM ·mrktt + bsmb · smbt + bhml · hmlt + bumd · umdt] (27)

The unrestricted four-factor SDF is mt = δM ·mrktt + δsmb · smbt + δhml ·hmlt + δumd ·umdt.
If the 2-factor model is strictly true, then we should have δM = δ̃M + δλ · bM and δi =
δλ · bi for i ∈

{
smb hml umd

}
. Table 4 shows the implied and direct coefficients on[

mrkt smb hml umd
]
in the SDF. The unrestricted coefficient on SMB is smaller than

the ICAPM implied value and the coefficient on UMD is larger than its implied value.
The implied and direct coefficients on HML and Market are nearly identical. This is a
manifestation of the αs (pricing errors) seen in the left panel of Figure 2. SMB has a lower
average return than predicted by it’s covariance with λ and UMD has a positive ICAPM α.
Since SDF weights are proportional to average returns when the factors are uncorrelated18

the ICAPM αs translates directly into the difference in coefficients. The last row of Table 4
gives the p-values from Wald tests of equality of implied and unrestricted 4-factor SDF
parameters19. There is almost no evidence in the data to reject the ICAPM in favor of
the 4-factor model. This lends further support to the ICAPM, as the 4-factor model was

17This assumption is approximately true in the data.
18Market, SMB, HML, and UMD are nearly uncorrelated. The map from expected return to SDF weight

depends on factor variances as well.
19We ignore uncertainty in the ICAPM estimates of δM δλ as well as the projection parameters

bM , bsmb bhml, bhmd. This omission biases the test in favor of rejecting the ICAPM, so it does not affect our
conclusion that the data do not support rejection.
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Table 4: SDF Restriction

Restricted ZB-rate Unrestricted ZB-rate
Implied 4-Factor Implied 4-Factor

Market 5.38 5.54 4.98 5.19
SMB 4.96 3.83 4.83 3.71
HML 11.30 12.89 10.99 12.58
UMD 6.29 8.21 6.12 8.07
p-value 0.79 0.76

Notes: Implied coefficients for market are δ̃M + δλ · bM where δs are from the first row of Table 2
and bM is from proj

(
λt
∣∣[ mrkt smb hml umd

])
. The remaining implied coefficients are

δi = δλ · bi with δλ and bi from the same source. p-values are from a χ2 test of equality of implied
and actual 4-factor coefficients.

specifically designed to fit these test assets.

3.4 Anomaly Portfolios

As a further test of the model, we estimate it using the cross-section of anomaly portfolios20

defined in Novy-Marx and Velikov (2014). These represent a broad set of empirical regular-
ities with seemingly very different fundamental drivers. However, as shown in Kozak et al.
(2014), a pricing model using the first two principal components of returns produces 90%
R2 in fitting the cross-section of average returns (though much less in the time-series). This
gives us hope that one (or a few) basic economic mechanisms are responsible for the variety
of anomalies.

Table 5 shows parameters of the pricing models in Equations (19)-(24), estimated using
monthly NMV returns21. We also include two principal components (labeled PC1 and PC2)
as test assets. The estimated risk prices are similar to those in Table 2. Now, however, the 2-
factor ICAPM significantly outperforms the 4-factor FF model in fitting the cross-section of

20These data are only available at monthly frequency.
21Because the NVM portfolios are long-short, they tend to have CAPM βs near zero. Sample β estimates

are very noisy and unreliable estimates of δM . To address this issue, we orthogonalize each anomaly returns
against the market portfolio before estimating asset pricing models. This procedure is equivalent to giving
infinite weight to the market portfolio in the second stage estimation (like GLS). Without this restriction,
the model R2 slightly improves, at the cost of very poor fit for E [rM ].
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Table 5: Risk Price Estimates

α δM δλ δsmb δhml δumd R2 MAPE

2-Factor ICAPM - 3.86 -14.7 - - - 64.3 2.36
(8.75) (-13.5)

2.39 2.58 -11.5 - - - 72.8 2.17
(4.9) (5.27) (-12.2)

CAPM - 2.43 - - - - -214 7.66
(5.39)

7.65 -0.668 - - - - 5.8 3.92
(12.8) (-1.21)

4-Factor FF - 4.42 - 2.57 9.62 6.39 37.8 3.09
(7.53) (2.04) (9.65) (10.9)

4.49 1.84 - 0.767 4.53 4.59 73.4 1.99
(7.72) (2.94) (0.597) (3.92) (7.98)

Notes: This table shows premia estimated from August 1963 to December 2013 for the two-factor
ICAPM, the CAPM, and the augmented Fama-French model. The test assets are NMV anomaly
portfolios. α is annualized and "-" indicates that the intercept is restricted to zero. MAPE is
average absolute pricing error, annualized. Moving block bootstrap t-statistics are in parentheses.

average returns (with restricted intercept). Notably, the t-statistics on risk prices are much
higher than in Table 2. This is due to the weaker factor structure in the NMV portfolios
as compared to the test assets used before (quintile portfolios sorted on ME, BE/ME, and
Prior2-12). Weaker cross-sectional correlation of returns results in more “effective” test
assets, improving statistical power. Figure 3 shows graphically the fit of the ICAPM and
4-factor FFC models (with restricted zero-beta rate). The ICAPM is visibly superior to the
4-factor model in fitting the average NMV returns.
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Figure 3: Performance of the ICAPM and 4-Factor Fama-French models
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4 Bond Risks and Risk Premia

4.1 Pricing Bonds

Whereas there are numerous papers which explore risk premia separately for equities and
fixed income securities, few study these assets in a unified framework22. We extend our
analysis to include risk-free government bonds and interest rate risk. Figure 4 illustrates
that the unconditional model in Equation 18 fails to price bond excess returns of maturities
from 1 to 7 years. Pricing errors are big and the slope is completely wrong. Clearly, the
market and expected returns factors are not sufficient to explain the risk compensation
required for holding these securities.

The three factor extension in Equation 11 specifies dg or shocks to consumption growth as
an additional term in the SDF. The factor helps price bonds and stocks jointly. Equation 10
allows us to substitute changes in the short term interest rate in place of dg. As an empirical
proxy we use the excess return on a 1-year zero coupon Treasury bond, which is almost
perfectly negatively correlated with changes in the 1-year yield. Cochrane and Piazzesi

22Recent work in this area includes Koijen et al. (2010).
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Figure 4: Pricing Bonds
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Notes: We plot the fitted and sample mean values of expected returns in the model Equa-
tion 17. Test assets include the stock portfolios we used before as well as 7 bonds with
maturities from 1 to 7 years, labeled B1-B7, respectively.

(2008) and others show that a level factor23 is a single factor sufficient to explain average
excess bond returns. Empirically, yield changes at any maturity have correlation of at least
85% with the level factor. Therefore, using convex combination of yield changes as the factor
fits the cross-section of bonds returns quite well. For convenience, we term our bond return
as the “level factor”. The single factor bond model is:

Et (rxi,t+1) + 1
2σ

2
t (rxi,t+1) = covt (rxi,t+1, rxB,t+1)× δB,t (28)

The extended model from Section 2 is:

Et (rxi,t+1) + 1
2σ

2
t (rxi,t+1) = covt (rxi,t+1, rxM,t+1)× δM,t

+ covt (rxi,t+1, λt+1)× δλ,t
+ covt (rxi,t+1, rxB,t+1)× δB,t (29)

23“Level” is approximately the average of changes in yields across all maturities.

24



where rxB is the excess log return on a short maturity bond. With the same assumptions
as before, the model conditions down as follows:

Theorem 6. Given the conditional model in Equation 29, we obtain the following linear
pricing relation:

∀i, t : E (rxi,t+1) + Vi
2 = cov (rxi,t+1, rxM,t+1)× δ̂M (30)

+ cov (rxi,t+1, λt+1)× δ̂λ
+ cov (rxi,t+1, rxB,t+1)× δ̂B

where δ̂M ,δ̂λ, and δ̂B are three constant unconditional prices of market, expected returns, and
bond risk, respectively. Appendix B.2 derives the link between these prices and the conditional
ones in Section 6.

Proof. This is a straightforward application of Theorem 8 in Appendix B with three factors
(market, expected return, and level).

Theorem 5 carries over to this case in a natural fashion:

Theorem 7. When the expected returns factor is measured over long a horizon, the un-
conditional relation in Equation 30 still holds, with the new prices of risk that are a linear
transform of the ones in Equation 30:

∀i, t : E (rxi,t+1) + Vi
2 = cov (rxi,t+1, rxM,t+1)× δ̃M (31)

+ cov (rxi,t+1, λt+1:t+T )× δ̃λ
+ cov (rxi,t+1, rxB,t+1)× δ̃B

where λt+1:t+T = Et+1rxM,t+2:t+T+1 denotes expected market returns (risk premia) starting
one period ahead for T ≥ 1 periods, δ̃M ,δ̃λ, and δ̃B are three constant unconditional prices
of market, expected returns, and bond risk, respectively.

Proof. Refer to the proof of a more general Theorem 9 with an arbitrary number of factors
and risk prices in Appendix B.2.
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Using Theorem 7 and Appendix B.4 we can show in the same way as in Section 2.5 that
the following approximate relation holds:

∀i, t : E
(
Re
i,t+1

)
= cov (rxi,t+1, rxM,t+1)× δ̃M (32)

+ cov
(
rxi,t+1, λ̂t+1:t+T

)
× δ̃λ̂

+ cov (rxi,t+1, rxB,t+1)× δ̃B

where Re
i ≡ Ri

Rf
is the level of excess returns and λ̂t+1:t+T ≡ rxM,t+2:T = ∑T

j=2 rxM,t+j. With
these results in hand, we proceed with empirical tests of the model in Equation 32.

4.2 Data

We use zero-coupon treasury yields from Gürkaynak et al. (2006) (GSW), which provides a
daily constant maturity yield curve from 1961 onward. Though the data are smoothed by
the use of a Svensson polynomial (extension of Nelson-Siegel), the yields are usually very
close to the unsmoothed yields derived using the methodology of Fama and Bliss (1987) and
“for many purposes the slight smoothing in GSW data may make no difference” (Cochrane
and Piazzesi, 2008). The advantage of GSW yields is the daily observation frequency, which
we have argued in Section 3 is important to our empirical strategy. Prior to 1971, the GSW
yields only include maturities up to seven years. Post 1971 they includes maturities to 30
years, though there is some question of the reliability of the very long maturity yields. To
match the timing of our stock data, we use maturities up to seven years, starting in 1963.
To construct zero-coupon bond returns from the GSW yields, we use the daily parameter
estimates available online24. This allows us, for example to recover the yield on a bond with
364 days to maturity. This yield is necessary for calculating the daily return on a one-year
bond. Excess returns just subtract the return on a one month t-bill, the same procedure we
use for stock excess returns.

4.3 Estimating the price of “level risk”

With daily excess log bond returns in hand, we estimate the model of Equation 28 using
the same two-stage procedure of Section 3.1. δ̃B is estimated to be approximately 40. The

24http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
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Figure 5: Univariate Bond Pricing
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cross-sectional R2 is 92% with 0.1% annualized mean absolute pricing error. Figure 5 shows
graphically the good fit of the level model for bonds.

In the context of Equation 32, we argue that δ̃B, the price of “level risk”, is commonly
underestimated in bond-only univariate models. It is a classic case of omitted variable
bias. Equation 18 and the results of Section 3.1 suggest at least two such missing variables,
Ci,λ = 105×Cov

[
rx

(i)
t+1, Et

(∑k
i=1 rxM,t+i

)]
and Ci,M = 105×Cov

[
rx

(i)
t+1, rxM,t+1

]
. Table 6

shows Ci,B, Ci,λ and Ci,M across maturities. First note that Ci,M ≈ 0 for all maturities.
More importantly, ∀i, Ci,λ ≈ 12× Ci,B. Cross-sectionally, corr (Ci,B, Ci,λ) ≈ 1.0. Since we
know from Section 3.1 that δλ 6= 0, the univariate level model suffers greatly from omitted
variables bias. Using the estimate of δλ = −11 , a back-of-the-envelope calculation suggests
the true δB = 40 + 12 × 11 = 170. In other words, the required compensation for bearing
level risk is much higher than is estimated from a univariate model of bond expected returns.
Treasury bonds, in addition to loading positively on level risk, also provide investors a hedge
against increases in the expected return on stocks. Thus, bonds earn lower average excess
returns than in the hypothetical economy where the expected market return is constant.
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Table 6: Covariances

1Y 2Y 3Y 4Y 5Y 6Y 7Y

Ci,B 0.04 0.08 0.11 0.14 0.17 0.19 0.21
Ci,M 0.02 0.02 0.03 0.04 0.06 0.08 0.10
Ci,λ 0.57 1.03 1.41 1.75 2.06 2.35 2.63

(3.48) (3.53) (3.64) (3.79) (3.95) (4.11) (4.23)

Notes: This table shows covariances of government bonds with the bond ”level“ factor, Ci,B =
105 × Cov

[
rx

(i)
t+1, (Et+1 − Et) rx(LT )

t+1

]
; the stock excess returns market factor, Ci,M = 105 ×

Cov
[
rx

(i)
t+1, rxM,t+1

]
; and the discount rate factor, Ci,λ = 105 × Cov

[
rx

(i)
t+1, Et

(
Σki rxM,t+i

)]
,

estimated over 01-Aug-1963 to 31-Dec-2013. t-statistics in parentheses are adjusted for serial
correlation using the Newey-West procedure with 252 lags (1 year).

This intuition is formalized by estimating the 3-factor ICAPM given by Equation 32.
Table 7 gives estimated risk prices (δs) from the following models:

2-Factor ICAPM: E [Re
i ] = Ci,MδM + Ci,λδλ (33)

Univariate Level Risk: E [Re
i ] = Ci,BδB (34)

3-Factor ICAPM: E [Re
i ] = Ci,MδM + Ci,λδλ + Ci,BδB (35)

where Ci,X ≡ Cov [rxi,t, Xt]. All models are estimated with the intercept restricted to zero.
The 2-factor ICAPM is estimated using only the stock portfolios from Section 3 (but both
stocks and bonds are used as test assets) and hence the risk price estimates are the same as
in Section 3.1. The univariate Level Risk model is estimated using only bond excess returns;
bonds are also the only test assets. The 3-factor ICAPM is estimated using all assets, stock
portfolios as well as bonds. Estimated values for δM and δλ are essentially unchanged in the
3-factor ICAPM (relative to the 2-factor estimates). The R2 of the 2-factor ICAPM is so
low because bonds are included as test assets (see Figure 4). Importantly, δB in the 3-factor
ICAPM is 165� 40. This is nearly equal to the back of the envelope prediction given above.

Table 8 gives annualized percent returns by maturity in sample, as implied by the uni-
variate Level Risk model, and as implied by the 3-factor ICAPM. Both models imply a larger
term premium (spread between long and short maturity average returns) than is observed
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Table 7: Risk Price Estimates

δM δλ δB R2 MAPE

2-Factor ICAPM 4.54 -11 - -8.4 2.5
(est. stocks only; pricing bonds & stocks) (4.47) (-5.33)

Level Risk - - 39.8 92.1 0.105
(bonds only) (1.69)

3-Factor ICAPM 4.03 -9.99 165 94 0.582
(bonds and stocks) (4.11) (-5.56) (5.43)

Notes: This table shows premia estimated from the 01-Aug-1963 to 31-Dec-2013 for the 2-factor
ICAPM (estimated using stock portfolios only; both bonds and stocks included as test assets), the
Level Risk model (estimated using bond returns; only bonds used as test assets), and the 3-factor
ICAPM (estimated using both stocks and bonds to price both). Model intercepts are restricted
to zero. MAPE is average absolute pricing error, annualized. Moving block bootstrap t-statistics
are in parentheses.

Table 8: Bond Expected Returns

Sample Mean Level Risk 3-Factor ICAPM
1-year bond 0.68 0.44 0.4
2-year bond 0.97 0.83 0.88
3-year bond 1.2 1.2 1.2
4-year bond 1.4 1.4 1.5
5-year bond 1.5 1.7 1.7
6-year bond 1.6 1.9 1.9
7-year bond 1.7 2.1 2

Notes: Annualized percent returns by maturity.

in the data, with the 3-factor model performing on par with the level risk model in pricing
bonds.

Figure 6 shows average returns vs 3-factor ICAPM expected returns for bonds and stock
portfolios. The graphs plot model implied mean excess returns on the horizontal and sample
average returns on the vertical axis. The 45◦ line represents a model with perfect in-sample
fit (100% R2). Stocks fit almost as well as in Figure 2 (using the 2-factor ICAPM) and bonds
fit quite well. It is worth emphasizing that this result is not merely mechanical. Given two
factor models, each fitting either cross-section of stocks or bonds, a combined model with all
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Figure 6: Joint Stock and Bond Pricing
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factors need not fit the joint cross-section of bonds and stocks (see Koijen et al. 2010).
Figure 7 decomposes the expected excess return on the various bonds. The premium due

to market risk, Ci,M , is excluded since it is negligible for bonds. Bonds earn a large premium
for loading on level risk, whereas they command a large negative premium for loading on
the expected return factor. This is consistent with a “flight-to-quality” (Caballero and
Krishnamurthy, 2008) interpretation where investors’ appetite for risk falls and they attempt
to rebalance their portfolios towards safer securities (like U.S. government debt and “good
companies”). Since it is impossible for everyone to rebalance in this way at the same time,
prices adjust instead of quantities. The prices of “risky” assets fall relative to the prices of
“safer” assets.

Koijen et al. (2010) have a seemingly similar decomposition, albeit with a very different
interpretation. Our 3-factor ICAPM as well as their model both feature a level factor and
a market factor. Instead of our expected stock return factor, they use an expected bond
return factor (CP from Cochrane and Piazzesi, 2005). Whereas bond returns load positively
on our factor, λ, they load negatively on CP . Koijen et al. (2010) find a positive price of
CP risk whereas we find a negative price of λ risk. The product of loading × risk price
yields a negative number in both cases, and hence the pictures look quite similar, but with
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Figure 7: Decomposition of Bond Risk Premia
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different interpretation. We find that bonds hedge against increases in expected stock returns
but Koijen et al. (2010) find that bonds respond negatively to increases in expected bond
returns. Finally, our estimated model produces a term structure of expected returns which
is somewhat steeper than in the data (Table 8). In contrast, the estimates in Koijen et al.
(2010) result in a flat term structure.

5 Predicting the Future Market using Cross-Section

In our empirical methodology, we use future realized excess returns as a proxy for today’s
market expectation of future excess returns. We further show that this proxy is key in
explaining the cross section of stock returns. This observation can be viewed from the reverse
perspective. If time-varying expected returns manifest in the cross-section, the cross-section
of stock returns can provide information about expected future returns. Indeed, “priced
factors ... are innovations in state variables that predict future returns.” (Brennan et al.,
2004). It is therefore natural to ask whether cross-sectional variables can predict future
returns and to what extent. Few recent papers have looked at this question. Kelly and
Pruitt (2011) use the cross-section of dividend-price ratios and show that they indeed predict
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Table 9: Predictability (Fama-French factors)
ReM,t+1:t+k = a+ [DPt MRKT t−90:t SMBt−90:t HMLt−90:t UMDt−90:t] b+ εM,t+1

DP MRKT SMB HML UMD R2

3 months 0.018 0.049 - - - 0.01
(1.3) (0.8)

6 months 0.036 0.0074 - - - 0.014
(1.2) (0.099)

9 months 0.052 -0.012 - - - 0.019
(1.2) (-0.13)

12 months 0.066 -0.047 - - - 0.023
(1.2) (-0.47)

3 months 0.019 0.039 -0.27 -0.2 -0.19 0.069
(1.5) (0.47) (-2.5) (-2.7) (-3.3)

6 months 0.038 -0.024 -0.39 -0.39 -0.27 0.078
(1.5) (-0.26) (-2.4) (-2.5) (-2.5)

9 months 0.053 -0.077 -0.39 -0.47 -0.35 0.079
(1.4) (-0.67) (-2.2) (-2.2) (-2.6)

12 months 0.067 -0.1 -0.41 -0.37 -0.42 0.073
(1.4) (-0.75) (-1.7) (-1.6) (-2.8)

Notes: The table shows time-series predictability of the stock market risk premium using re-
turns on SMB, HML, and UMD. Daily sample from 01-Aug-1963 to 31-Dec-2013. Newey-West
t-statistics in parentheses.

future returns significantly better than the aggregate dividend-price ratio alone.
Our aim is not to construct the optimal predictor; we only want to show that predictabil-

ity is indeed present and use it as a robustness check of our methodology. If future returns
help to explain the cross-section, the cross-sectional returns themselves mechanically must
predict future returns. We want to ensure the covariances reported in Table 1 and Fig-
ure 1 are economically significant. As such, we use the returns on SMB, HML, and UMD

portfolios to forecast future market returns:

Re
M,t+1:t+k = a+ [DPt MRKT t−90:t SMBt−90:t HMLt−90:t UMDt−90:t] b+ εM,t+1 (36)
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Table 10: Predictability (Anomalies)
ReM,t+1:t+k = a+

[
DPt NMV PC1

t−90:t
]
b+ εM,t+1

DP MRKT NMVPC1 R2

3 months 0.019 0.047 - 0.011
(1.3) (0.67)

6 months 0.038 0.015 - 0.016
(1.3) (0.19)

9 months 0.056 -0.02 - 0.022
(1.3) (-0.2)

12 months 0.072 -0.035 - 0.027
(1.3) (-0.34)

3 months 0.021 -0.022 -0.28 0.07
(1.6) (-0.34) (-5.4)

6 months 0.041 -0.079 -0.38 0.069
(1.5) (-0.93) (-4)

9 months 0.059 -0.12 -0.42 0.065
(1.5) (-1.1) (-3.2)

12 months 0.075 -0.14 -0.43 0.062
(1.5) (-1.4) (-3.1)

Notes: The table shows time-series predictability of the stock market risk premium using the
first principal component of NMV long-short portfolios. Monthly sample from August 1963 to
December 2013. Newey-West t-statistics in parentheses.

Each of the MRKT, SMB,HML,UMD factors is computed using the past 90 calendar
days. Results are robust to varying the lag length.

The top panel of Table 9 reports the coefficient estimates, t-statistics of estimated coef-
ficients in Equation 36, and R2 at various horizons, k, (3, 6, 9, and 12 months) with only
the market and dividend-price ratio included as predictors. There is little evidence of return
predictability at horizons up to one year, as evidence by the insignificant t-statistics and low
R2. The bottom panel shows results when including SMB,HML, and UMD as additional
predictors. We find that all of the coefficients for each variable at 3-9 months horizon are
significant and negative and R2 increases greatly. We conclude that covariances of FFC fac-
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tors with expected future market returns are economically significant. Related evidence of
predictability is documented by Liew and Vassalou (2000). They show that SMB and HML

help forecast future rates of economic growth. We repeat the forecasting exercise using the
first principal component of the NMV anomaly returns (PC1). Table 10 shows that PC1
alone has similar forecasting ability25 to the three FFC factors combined. The statistical
significance for PC1 is substantially higher, likely because SMB,HML, and UMD each
contain substantial idiosyncratic “noise”, adding uncertainty to the estimates.

25As measured by R2
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6 Conclusion

In this paper we link two well-documented empirical facts: (1) time-series variation in ag-
gregate discount rates and (2) cross-sectional dispersion in average returns. We present a
model with time-varying risk aversion which generates endogenous variation in expected
market returns. Investors’ hedging demand with respect to discount rate shocks results
in an equilibrium pricing kernel in which those shocks appear as an additional factor. In
the cross-section of assets, differences in return covariance with these shocks produces dif-
ferences in expected returns. Crucially, the model predicts that shocks to discount rates
increase investors’ marginal utility and in equilibrium have a negative price of risk.

We confront the model with return data on a large set well known asset pricing anomalies,
including size, value, and momentum. Across empirical specifications, we find consistent
support for a negative risk price on our expected return factor. Our theoretically motivated
pricing model performs nearly as well as standard empirical factor models in fitting the cross-
sectional dispersion in average returns. This is surprising since we augment the standard
CAPM with a single additional factor. These empirical results and theoretical motivation
contrast sharply with previous related work. Our main conclusion is that shocks to aggregate
expected returns are “bad” for the representative agent, who requires higher expected returns
for holding exposure to these shocks. The previous studies conclude that such shocks increase
investor utility (decreasing marginal utility) and hence, higher exposure results in lower
equilibrium expected returns.

Finally, we extend the model and empirical specification to jointly price stocks and bonds.
We find that bonds hedge against discount rate shocks, earning negative expected returns
(and downward sloping term premium). This is offset by exposure to risk-free rate shocks.
Overall, the model generates a small bond risk premium and upward sloping term premium,
as found in the data.

Taken as a whole, the empirical evidence is consistent with our model in which increases
in investor risk aversion, or “flight-to-quality”, generate time-varying aggregate discount
rates. In the model and data, cross-sectional heterogeneity in sensitivity to these shocks
generates the observed spread in average returns. Like much of the literature, we examine
the equilibrium conditions of an asset pricing model. It remains uncertain as to precisely
what generates the different covariances of asset returns with discount rate shocks.
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Appendix

A The Model
Utility function Duffie and Epstein (1992a,b) show finding an ordinally equivalent aggre-

gator
(
f̄ , Ā

)
is possible such that Ā = 0, a normalized aggregator. Most papers that employ

Epstein-Zin-Weil preferences use this type of aggregator.
We take a different approach and use an unnormalized aggregator as defined explicitly in Equa-

tion 2 and Equation 3. Although such a representation requires computing an additional variance
term in Equation 1, it allows us to separate the effect of elasticity of intertemporal substitution
(EIS) and risk aversion in the stochastic differential utility. In particular, the first term, f (C, J),
depends only on EIS, whereas the second term, 1

2
α
J ‖σJ,t‖

2 depends only on risk aversion and is
linear in it (it might depend on the EIS indirectly through the σJ,t term, however).

HJB equation Assume complete markets. A representative investor in this economy max-
imizes his utility over consumption,

Jt = Et
(ˆ ∞

t

[
f (Cτ , Jτ ) + 1

2A (Jτ ) ‖ JX (Xτ , τ)σX (Xτ ,Wτ , τ) ‖2
]
dτ

)
, (37)

where X = (α, g, W ) is a vector of aggregate state variables.

U (Cτ ) = f (Cτ , Jτ )− 1
2
α

J
‖JXσX‖2 (38)

The Hamilton-Jacobi-Bellman (HJB) equation for the planner’s problem is given by

0 = supC,θ
{
U (C, J) + JWE (dW ) /dt+ JαE (dα) /dt+ JgE (dg) /dt+

+1
2JWWE

(
dW 2

)
/dt+ 1

2JααE
(
dα2

)
/dt+ 1

2JggE
(
dg2

)
/dt

+JWαE (dWdα) /dt+ JWgE (dWdg) /dt+ JαgE (dαdg) /dt
}
. (39)

First-order conditions

[C] : fC = JW (40)
[θ] : 0 = α

J
J2
WW

2θσRσ
′

R + JWWλ+ JWαWσRσ
′

α

+JWgWσRσ
′

g + JWWWθ2σRσ
′

R (41)

Value function guess Find a solution of the form J(W, α, g) = W × F (α, g). Partial
derivatives are: JW = F , JWW = 0, Jα = J FαF , Jg = J

Fg
F , JWα = Fα, JWg = Fg, Jαα = J FααF ,
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Jgg = J
Fgg
F , Jαg = J

Fαg
F .

The first order-condition with respect to consumption implies constant consumption-to-wealth
ratio:

fC = δ
J

C
= F =⇒ C

W
= δ (42)

and hence σR = σD. Market clearing requires C = D, W = P , and θ = 1.
Further assume EIS=1, then f (C, J) = δ (lnC − lnJ) J = Jδ [lnδ − lnF ]. Guess the solution

of the form
F (α, g) = exp (a0 + aαα+ agg) . (43)

Plug everything in:

δ [lnδ − (a0 + aαα+ agg)]− 1
2α ‖σD + aασα + agσg‖2 + (g − δ)

+aαφα (ᾱ− α) + agφg (ḡ − g) + aαθσRσ
′

α + agθσRσ
′

g

+1
2a

2
1σασ

′

α + 1
2a

2
2σgσ

′

g + a1a2σασ
′

g = 0 (44)

Equalize coefficients near α, g, and const:

const: 0 = δlnδ − δa0 − δ + aαφαᾱ+ agφg ḡ + aασDσ
′

α + agσDσ
′

g

+1
2a

2
1σασ

′

α + 1
2a

2
2σgσ

′

g + a1a2σασ
′

g (45)

α: 0 = −aα (δ + φα)− 1
2 ‖σD + aασα + agσg‖2 (46)

g: 0 = 1− ag (δ + φg) (47)

The second equation immediately implies that aα < 0 and the third equations implies ag =
1

δ+φg > 0.

Asset prices Excess return:

λ = ασDσ
′

D −
(
aασDσ

′

α + agσDσ
′

g

)
(48)

= λ0 + α× σDσ
′

D (49)

Risk-free rate:

r = ER− λ = δ + 1
dt
E
[
dC

C

]
− λ = δ + g − λ (50)

= λ0 + g − α× σDσ
′

D (51)
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SDF The SDF is given by (Duffie and Epstein, 1992b):

dΛ
Λ ≡ f̄V

(
C, J̄

)
dt+

df̄C
(
C, J̄

)
f̄C
(
C, J̄

) . (52)

dΛ
Λ = −rdt+ L (dlnfC (C, J)− αdlnJ) dZ (53)

= −rdt− αdRM − (α− 1) aα︸︷︷︸
<0

σαdZ − (α− 1) ag︸︷︷︸
>0

σgdZ (54)

where operator L (·) denotes a vector of loading on shocks and dRM ≡ σRdZ.
When risk aversion α ≥ 1, the price of α risk is negative and the price of g risk is positive.
The SDF implies a three-factor model:

Rei,t = α× covt−1
(
Rei,t, R

e
M,t

)
+ aα (α− 1)× covt−1

(
Rei,t, dα

)
+ ag (α− 1)× covt−1

(
Rei,t, dg

)
(55)

B Operationalizing the Model
B.1 SDF
We assume that asset returns are log normally distributed and specify an SDF of the form

−mt+1 = rft + 1
2Λ′

tΣΛt + Λ′
tεt+1 (56)

where mt is a log of an SDF, rft is the log nominal risk free rate, εt+1 is a N × 1 vector of shocks,
and Λt is the N × 1 vector of market prices of risk associated with these shocks at time t. Errors
εt+1 are assumed to be i.i.d. and standard normally distributed.

No-arbitrage implies

1 = Et [Mt+1Rt+1] = Et
[
emt+1+rt+1

]
(57)

0 = Et [mt+1] + Et [rt+1] + 1
2σ

2
t (mt+1) (58)

+ 1
2σ

2
t (rt+1) + covt (rt+1,mt+1) (59)
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where r = log (R). Since Et [mt+1] + 1
2σ

2
t (mt+1) = −rft , we get

Et [rxt+1] + 1
2σt (rxt+1) = covt (rxt+1, εt+1) Λt (60)

where rx = r − rf is excess return on an asset.

B.2 Unconditional Pricing Relation
Let the conditional model be

Et (rxi,t+1) + 1
2vart (rxi,t+1) = covt (rxi,t+1, ft+1)× δf,t (61)

+ covt (rxi,t+1, λt+1)× δλ,t

where ft+1 =
[
f

(1)
t+1, f

(2)
t+1, ...f

(k)
t+1

]′

denotes k factors that are log excess returns, λt+1 = Et+1ft+2

denotes expected log returns (risk premia) on those returns starting one period ahead; δf,t and δλ,t
are of size k × 1 and denote corresponding factor risk prices.

Assumption 2. All covariances c′
if ≡ covt (rxi,t+1, ft+1), c′

iλ ≡ covt (rxi,t+1, λt+1), and variance
Vi = vart (rxi,t+1) are constant in time.

With this notation in hand, we can rewrite

Et (rxi,t+1) + Vi
2 = c

′
if × δf,t + c

′
iλ × δλ,t (62)

≡ Ci ×Dt

where Ci =
[
c

′
if c

′
iλ

]
and Dt =

[
δf,t
δλ,t

]
.

Assumption 3. Risk premia λt+1 = Et+1ft+2 follow a VAR(1) process:

λt+1 = Λ0 + Λλt + Ωλ,t+1 (63)

where Ωλare mean-zero errors uncorrelated with λt.

Theorem 8. Given the assumptions 1 and 2 and the conditional model (61), we obtain the following
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linear pricing relation:

E (rxi,t+1) + Vi
2 = cov (rxi,t+1, ft+1)× δ̂f (64)

+ cov (rxi,t+1, λt+1)× δ̂λ

≡ cov

(
rxi,t+1,

[
ft+1
λt+1

])
× D̃ (65)

where D̃ = Θ−1E [Dt]
Θ = I2k + Φfλ ×

[
Ik Λ′

]
(66)

Φfλ =
[

ΓfΣf + ΓfλΣ′
fλ

ΓλΣ′
fλ + ΓfλΣf

]
(67)

where I2k denotes an identity matrix of size 2k×2k, Σf = var [ft+1], Σfλ =
[
cf1λ cf2λ ... cfkλ

]′

,
Γfλ = cov [δf , δλ], Γf = var [δf ], Γλ = var [δλ].
Proof. Take expectations and apply the law of total covariance to the RHS of Equation 61 to get

E (rxi,t+1) + Vi
2 = cov (rxi,t+1, ft+1)× E [δf,t] + cov (rxi,t+1, λt+1)× E [δλ,t]

− cov (Etrxi,t+1, Etft+1)× E [δf,t]− cov (Etrxi,t+1, Etλt+1)× E [δλ,t] (68)

Using Assumption 2, we can write Etλt+1 = Λ0 + Λλt. Then

E (rxi,t+1) + Vi
2 = Ci ×D = cov

(
rxi,t+1,

[
ft+1
λt+1

])
×D

− cov (Etrxi,t+1, Etft+1)×
[
Ik Λ′

]
×D (69)

where D = E

[
δf,t
δλ,t

]
.

We now use Equation 62 to substitute the expressions for two covariates in cov (Etrxi,t+1, Etft+1)
term

cov

(
c

′
if × δf,t + c

′
iλ × δλ,t −

Vi
2 ,Σf × δf,t + Σfλ × δλ,t −

1
2Vf

)
(70)

= c
′
ifvar [δf ] Σf + c

′
iλvar [δλ] Σ′

fλ + c
′
ifcov [δf , δλ] Σ′

fλ + c
′
iλcov [δf , δλ] Σf (71)

= Ci ×
[

ΓfΣf + ΓfλΣ′
fλ

ΓλΣ′
fλ + ΓfλΣf

]
(72)

≡ Ci × Φfλ (73)

where Vf = [Vf1 , Vf2 , ..., Vfk ]
′
.
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Plugging this back in Equation 69 and collecting terms on the LHS and RHS gives

Ci ×
[
I2k + Φfλ ×

[
Ik Λ′

]]
×D (74)

= cov

(
rxi,t+1,

[
ft+1
λt+1

])
×D (75)

Denote
Θ = I2k + Φfλ ×

[
Ik Λ′

]
(76)

and assume that Θ is invertible. Then

Ci = cov

(
rxi,t+1,

[
ft+1
λt+1

])
×Θ−1 (77)

and hence

E (rxi,t+1) + Vi
2 = Ci ×D (78)

= cov

(
rxi,t+1,

[
ft+1
λt+1

])
×
{

Θ−1D
}

(79)

= cov

(
rxi,t+1,

[
ft+1
λt+1

])
× D̃ (80)

Theorem 9. When factor risk premia is measured over long horizon

E (rxi,t+1) + Vi
2 = cov (rxi,t+1, ft+1)× δ̃f (81)

+ cov (rxi,t+1, λt+1:t+T )× δ̃λ

the unconditional relation in Equation 65 holds with Θ given by

Θ = I2k + Φfλ ×
[
Ik L

]
(82)

where λt+1:t+T = Et+1ft+2:t+T+1 denotes expected returns (risk premia) on factors f starting one
period ahead for T ≥ 1 periods, L = Λ× (Ik − Λ)−1 (Ik − Λ)T .

Proof. Using Assumption 326,
26AR(1) assumption is sufficient condition but by no means necessary. Given sufficient persistence of risk

premia, moving average of future realized returns is a good non-parametric proxy for today’s risk premium.
Therefore, Etλt+1 will be approximately proportional to Etft+1 and the the proof of Theorem 1 carries over
without the AR(1) assumption. The assumption was made primarily for expositional reasons and in order
to quantify the factor of proportionality.
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Etλt+1:t+T =
T∑
i=1

Etλt+i (83)

= const+
T∑
i=1

Λiλt (84)

= const+ Λ× (Ik − Λ)−1 (Ik − Λ)> (85)

Plugging this into Equation 68, the proof of Theorem 8 carries over with Λ replaced by L =
Λ× (Ik − Λ)−1 (Ik − Λ)>.

B.2.1 Consistency of the moving average estimator

For any information set Ft,

rxM,t+2:T =
T∑
j=2

rxM,t+j = E

 T∑
j=2

rxM,t+j |Ft

+
T∑
j=2

εM,t+j (86)

and E
[∑T

j=2 εM,t+j |Ft
]

= 0.
Similarly, true unconditional covariances are equal,

cov (rxi,t+1, rxM,t+2:T ) = cov

rxi,t+1, E

 T∑
j=2

rxM,t+j |Ft

+ cov

rxi,t+1,
T∑
j=2

εM,t+j


︸ ︷︷ ︸

=0

(87)

and thus a consistent estimator of the covariance on the RHS is also a consistent estimator of the
covariance on the LHS.

B.3 Covariances
Conditional Covariances are Equal:

cov (Ri,t, E [Rm,t+1 |It ] |It−1 ) = (88)
E {Ri,t · E [Rm,t+1 |It ] |It−1 } − E {Ri,t |It−1 } · E {E [Rm,t+1 |It ] |It−1 } = (89)
E {E [Ri,t ·Rm,t+1 |It ] |It−1 } − E {Ri,t |It−1 } · E {E [Rm,t+1 |It ] |It−1 } = (90)

E {Ri,t ·Rm,t+1 |It−1 } − E {Ri,t |It−1 } · E {E [Rm,t+1 |It ] |It−1 } = (91)
E {Ri,t ·Rm,t+1 |It−1 } − E {Ri,t |It−1 } · E {Rm,t+1 |It−1 } = (92)

cov (Ri,t, Rm,t+1 |It−1 ) (93)
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Unconditional Covariances are Equal

cov (Ri,t, E [Rm,t+1 |It ]) = (94)
E {cov (Ri,t, E [Rm,t+1 |It ] |It−1 )} − E {Ri,t |It−1 } · E {E [Rm,t+1 |It ] |It−1 } = (95)

E {cov (Ri,t, Rm,t+1 |It−1 )} − E {Ri,t |It−1 } · E {E [Rm,t+1 |It ] |It−1 } = (96)
E {cov (Ri,t, Rm,t+1 |It−1 )} − E {Ri,t |It−1 } · E {Rm,t+1 |It−1 } = (97)

cov (Ri,t, Rm,t+1) (98)

B.4 Empirical Relation
Assume that the log excess returns are normally distributed, with constant variance and constant
risk free rate,

rxt ≡ log (Ret ) v N
(
µt, σ

2
)

(99)

where Re ≡ R
Rf

. Then conditional expected excess returns are given by

Et−1 (Ret ) = exp

(
µt + σ2

2

)
(100)

' µt + σ2

2 (101)

Relative errors of this approximation when using daily returns are negligible (less than 0.03% for
typical test assets used). Taking the unconditional expectations, this conditions down to

ERe = µ+ σ2

2 (102)

So when estimating a pricing equation, we use log returns to estimate covariances and simple
returns to estimate the LHS of Equation 65, E (rxi,t+1) + Vi

2 .

C Bootstrap
We construct standard errors for risk prices using the moving block bootstrap procedure as follows.
There are N test assets, k factors, and T periodic observations. All moments are sample moments
taken as expectations across T . The general model is rt = C

′
λ + εt. C is an N × k matrix of

univariate covariances, Cov (rt, ft), where ft are the k factors. Notice the model is homoskedastic.
λ is the vector of risk prices, and εt is the vector of pricing errors. The null hypothesis is that λ = 0
and E [εt] = 0. The alternative is λ 6= 0.

Bootstrap procedure:

1. Estimate Ĉ and λ̂ via usual two-stage regression
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2. Construct r̃t = rt − E [rt]

(a) r̃t is satisfies the null hypothesis of risk-neutrality and maintains all other properties of
the true DGP which are shared with the null. In particular, Cov (r̃t, ft) = Cov (rt, ft)

3. Let L be the bootstrap window width. Let X =



r̃
′
1 f

′
1

...
...

r̃
′
T f

′
T

r̃
′
1 f

′
1

...
...

r̃
′
L f

′
L


. To generate bootstrap sample

i, randomly draw j from U [1, T ]. Let sj = X (i : i+ L, :) in Matlab’s indexing convention.
Append sj to Xi, which is initialized as [∅]. Repeat until Xi is of length T . Unless T/L is
an integer, the process yields a bootstrap sample of incorrect length. Build Xi to be at least
length T then trim.

4. Estimate the two-stage regression on sample Xi and save the estimate λ̂i

5. Repeat B times (we use 100,000 replications). The estimated λ̂i should be approximately
mean zero, and Std

(
λ̂i
)
≈ SE

(
λ̂
)

6. Perform usual asymptotic tests

D Robustness
We present additional results showing the sensitivity of our results to changes in specification (or
lack thereof).

D.1 Monthly Estimation
Table 11 presents risk price estimates using monthly returns on our primary test assets. The
ICAPM estimated parameters and model fit are very similar to the daily results in Table 2. The 4-
factor FF model fit has improved to nearly perfect, but the estimated risk prices (δsmb, δhml, δumd)
are half of the corresponding values in Table 2. In an i.i.d serially uncorrelated model, the SDF
coefficients should be identical no matter what the frequency of observation27. This result suggests
the 4-factor model is overfit, and hence, the estimates are not consistent across frequency.

27Subject to log-linearization error
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Table 11: Risk Price Estimates

α δM δλ δsmb δhml δumd R2 MAPE

2-Factor ICAPM - 3.28 -9.39 - - - 78.3 0.995
(8.39) (-6.64)

1.39 2.75 -9.41 - - - 79.9 1.01
(3.76) (6.62) (-6.66)

CAPM - 2.76 - - - - 30.9 1.63
(7.16)

1.31 2.25 - - - - 32.3 1.72
(3.48) (5.71)

4-Factor FF - 4 - 1.66 6.67 4.46 94.9 0.469
(7.52) (1.34) (8.36) (10)

0.0855 3.96 - 1.68 6.65 4.45 94.9 0.475
(1.1) (7.52) (1.35) (8.27) (9.97)

Notes: This table shows risk prices estimated using monthly returns from August 1963 to De-
cember 2013 for the two-factor ICAPM, the CAPM, and the augmented Fama-French model.
The test assets are value-weighted quintile portfolios sorted on ME, BE/ME, and Prior2-12. α is
annualized and "-" indicates that the intercept is restricted to zero. MAPE is average absolute
pricing error, annualized. Moving block bootstrap t-statistics are in parentheses

D.2 Future Market Return Horizon
Table 12 shows estimated δλ and cross-sectional R2 using alternative horizons, T , to define λ̂ =∑T
j=2 rxM,t+j ranging from three months to two years (using daily return data). All estimates

restrict the zero-beta rate. δλ declines almost monotonically with T , which is expected since
cov

(
rxi,t+1, λ̂t+1:t+T

)
increases with T and hence δλ must decline. Cross-sectional R2 are fairly

stable across horizon, with a peak at one year.
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Table 12: Alternative Horizons (Daily Returns)

3m 6m 9m 12m 15m 18m 21m 24m
δλ -12 -11 -9.6 -10 -8.4 -9 -5.8 -5.3

(-4.3) (-5.3) (-5.1) (-5.8) (-5.3) (-5.5) (-4.8) (-4.9)

R2 63 81 83 88 79 71 71 75

Notes: Estimated risk price of discount rate factor and cross-sectional R2 for alternative choices of
moving average horizon. Data are daily returns with value-weighted quintile portfolios sorted on
ME, BE/ME, and Prior2-12 as test assets. Moving block bootstrap t-statistics are in parentheses

Table 13 shows the results of repeating the exercise using monthly returns. The point estimates
and patterns are similar, confirming that our results aren’t driven by the choice of horizon for future
market returns.

Table 13: Alternative Horizons (Monthly Returns)

3m 6m 9m 12m 15m 18m 21m 24m
δλ -14 -9.4 -7.2 -7.3 -7.2 -7.3 -5.3 -5.4

(-7.6) (-6.5) (-6.1) (-6.8) (-6.9) (-7.3) (-6.9) (-7.1)

R2 79 78 72 75 73 70 73 75

Notes: Estimated risk price of discount rate factor and cross-sectional R2 for alternative choices
of moving average horizon. Data are monthly returns with value-weighted quintile portfolios
sorted on ME, BE/ME, and Prior2-12 as test assets. Moving block bootstrap t-statistics are in
parentheses

D.3 Fama-French 25
Our main results are presented using value-weighted quintile portfolios sorted on ME, BE/ME, and
Prior2-12. Table 14 gives estimates using daily returns on the Fama-French 25 portfolios sorted on
ME and BE/ME. As before, the 4-factor model has better fit than the ICAPM but at the expense
of less stable estimates across horizons and test assets.
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Table 14: Risk Price Estimates

α δM δλ δsmb δhml δumd R2 MAPE

2-Factor ICAPM - 4.65 -9.3 - - - 66 1.39
(4.1) (-3.87)

2.22 3.6 -8.7 - - - 68.7 1.36
(2.31) (3.5) (-3.84)

CAPM - 4 - - - - -7.85 2.47
(3.74)

5.46 1.53 - - - - 10.5 2.26
(3.59) (1.44)

4-Factor FF - 7.31 - 4.23 17.7 16.4 79.3 1.02
(4.51) (1.36) (4.12) (2.1)

0.931 6.78 - 4.1 17.2 15.8 79.7 1.03
(2.25) (4.4) (1.33) (4.05) (2.05)

Notes: This table shows premia estimated using monthly returns from 01-Aug-1963 to 31-Dec-
2013 for the two-factor ICAPM, the CAPM, and the augmented Fama-French model. The test
assets are the 25 portfolios sorted on ME and BE/ME. α is annualized and "-" indicates that the
intercept is restricted to zero. MAPE is average absolute pricing error, annualized. Moving block
bootstrap t-statistics are in parentheses
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