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ABSTRACT

E-mails concerning the development issues of a system con-
stitute an important source of information about high-level
design decisions, low-level implementation concerns, and the
social structure of developers.

Establishing links between e-mails and the software arti-
facts they discuss is a non-trivial problem, due to the inher-
ently informal nature of human communication. Different
approaches can be brought into play to tackle this trace-
ability issue, but the question of how they can be evaluated
remains unaddressed, as there is no recognized benchmark
against which they can be compared.

In this article we present such a benchmark, which we cre-
ated through the manual inspection of a statistically signifi-
cant number of e-mails pertaining to six unrelated software
systems. We then use our benchmark to measure the effec-
tiveness of a number of approaches, ranging from lightweight
approaches based on regular expressions to full-fledged in-
formation retrieval approaches.

Categories and Subject Descriptors

D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, reverse engineering, and reengineering

1. INTRODUCTION
It is estimated that up to 60 percent of software main-

tenance is spent on program comprehension [21]. This is
because the knowledge about a system is often expressed
implicitly and thus is difficult to retrieve [16]. For this
reason, many approaches extracting information from the
source code and the program structure have been presented
in a process known as reverse engineering [9]. However, the
development of any software system sees the creation of ar-
tifacts beyond the actual source code, such as requirements
and design documents, system documentation, mailing list
discussions, bug reports, etc. While such non-source arti-
facts enclose valuable information about the system they
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document, they are often informal, free text, natural lan-
guage documents, and therefore non-trivial to process.

Free-form natural language artifacts (e.g., documentation,
wikis, forums, e-mails), intended to be read both by sys-
tem developers and by users, often reference -implicitly or
explicitly- other artifacts, such as source code or bug reports.
However, reliably finding the traceability link between arti-
facts is an issue that the software engineering research com-
munity is still trying to address. Moreover, it is difficult to
compare the effectiveness of such approaches, as often there
is no established benchmark.

We focus on recovering the traceability link between e-
mails and source code artifacts. Mailing lists are employed
by developers and users to discuss various topics, ranging
from low-level concerns (e.g., bug fixes, refactoring) to high-
level resolutions (e.g., future planning, design decisions). E-
mails provide additional metadata (author, date and time,
threading, etc.) that enable further analyses, such as the
social interaction between participants [8], geographic anal-
ysis [23], the behavior of developers and users [20], the cor-
relation between mailing lists development activity [7].

In a preliminary work [3], we devised a set of lightweight
methods, based on regular expressions, to establish the link
between e-mails and software artifacts. We evaluated them
in terms of precision and recall considering one single Java
system. In this paper we overcome a number of limitations of
our previous work, resulting in the following contributions:

• An extensive and publicly available1 benchmark and
toolset for recovering traceability links between e-mails
and source code artifacts. We created our benchmark
by analyzing the mailing lists of six different software
systems written in four different programming langua-
ges. For each system we manually annotated a statis-
tically significant number of e-mails.

• A comprehensive evaluation of linking techniques. We
evaluated and compared, in terms of precision and
recall, different linking methods, ranging from light-
weight grep-style approaches to more complex approa-
ches from the information retrieval (IR) field.

Structure of the paper. In Section 2, we review re-
lated work. In Section 3, we present our benchmark, how
we created it, and Miler, its supporting tool infrastructure.
In Section 4 we illustrate the lightweight linking approaches,
while in Section 5 we present the information retrieval tech-
niques. In Section 6 we show and discuss the results achieved
by each technique. We draw our conclusion in Section 7.
1See http://miler.inf.usi.ch/

http://miler.inf.usi.ch/


2. RELATED WORK
Researchers proposed several techniques to deal with the

issue of traceability between source code and non-source ar-
tifacts. We focus on methods that use information retrieval
(IR) techniques to automatically retrieve the missing links.

Probabilistic and Vector Space Model (VSM). An-
toniol et al. experimented with two different IR models to
retrieve the links between code and documentation [1]: a
Probabilistic IR Model and a Vector Space IR Model. The
former computes a ranking score based on the probability
that a document is related to a specific source code com-
ponent, while the latter calculates the distance between the
vocabulary of all the documents and a code component.

They analyzed two small software systems: The first is
LEDA (Library of Efficient Data Types and Algorithms),
a C++ library of 208 classes, totaling 95 kLOC. The docu-
ments to link were 88 manual pages automatically generated
through scripts that extract comments from the source files:
names of functions, parameters, and data types present in
those files were also present in the manual pages. Each class
was described by at most one manual page, while 53% (110)
of the classes were not described at all. 78 out of 88 man-
ual pages (89%) were relevant, the remaining ones contained
basic concepts and algorithms. There were 98 links overall.
The second system was implemented by students, and had
95 classes, of which 60 were considered in the study. The
classes were matched with functional requirements written
beforehand. There were 58 links overall. They used the col-
lection of the documents as the corpus in which to find the
missing links, and every single source code file as the“query”.
Each document was pre-processed to ease the linking task:
they converted any letter to lowercase, removed stop-words
(i.e., articles, punctuation, numbers, common words, etc.),
and performed stemming on the result (i.e., converting plu-
rals into singulars, transforming verbs into their infinitive
form, etc.). In addition to this, they also extracted the list
of identifiers from the source code, removed the language
keywords, and split compounded words (e.g., ClassName
into class name). They chose to disregard comments.

In both case studies, results revealed a better performance
overall of VSM over the probabilistic approach.

Latent Semantic Indexing (LSI). Marcus et al. pro-
posed a solution based on LSI [19]. LSI is based on a Vector
Space IR Model that takes into consideration that a word
always appears in a context. This additional information
provides a set of mutual constraints that determines mean-
ing similarity in sets of words.

They evaluated the effectiveness of their technique on the
same systems considered by Antoniol et al., adopting an in-
verse approach: they used the collection of the source code
files as the corpus in which to find the link, and each docu-
ment as the “query”. As text pre-processing, they removed
non-textual tokens from documents, converted any letter to
lowercase, and split compounded words in the source files
while also keeping the original form (i.e., ClassName be-
comes classname class name). They considered source code
comments inside as relevant. Finally, as LSI does not use
a predefined vocabulary or a predefined grammar, it was
not deemed necessary to perform the stemming process, i.e.,
there was no morphological analysis.

The results were slightly improved with respect to the ap-

proach by Antoniol et al., especially for LEDA: There were
more documents in the corpus and the same entity identifiers
were used in both the source code and the documents.

Hayes et al. asserted that IR techniques must not substi-
tute the human decision-maker in the linking process, but
should be used to generate an appropriate list of candidate
links [13]. They show how they used the three IR algorithms
proposed by Antoniol et al. and Marcus et al. (Vector Space
Model, Vector Space Model with a simple thesaurus, and
LSI) to trace requirements-to-requirements and aggregate
candidate links to be evaluated by software analysts. They
validated the algorithms on two systems of similar size to
the ones used by Antoniol et al. (one of circa 20 KLOC of C
code and 455 documents, and the other with 58 documents).

Lormans et al. used LSI to find traceability relations be-
tween requirements, design documents, and test cases [17].
They evaluated the effectiveness of LSI in terms of precision
and recall on two small case studies.

Natural Language Processing (NLP). Baysal et al.
tried to correlate discussion archives (i.e., the e-mails in
mailing lists) and source code [4]. They looked for a cor-
relation between discussions and software releases. First,
they recovered information about the system applying data
mining techniques on its release history and the discussion
archives. Then, they used Natural Language Processing
methods to search for a correlation. They presented two
significant case studies: a visualization tool (a Java system
with 144 files and an archive of 495 e-mails) and Apache Ant
(a Java system with 667 java files and an archive of 67,377
e-mails). Baysal et al. did not manually inspect the systems
of their case studies to verify the quality of their results.

Reflections. While all approaches led to relevant results,
they incur an inevitable bias because of the small number
of analyzed systems, the small size of the systems, and the
low number of artifacts. The only exception is the work by
Baysal et al., where however there was no manual inspection
of the results to verify their quality. We argue that for any
approach to have a solid validation, a benchmark is needed,
against which any approach can be tested.

3. BENCHMARK
The areas in which IR techniques have proven useful (e.g.,

management of scientific and legal literature, web searches)
are supported by a set of well-designed, robust, and univer-
sally accepted benchmarks. Such benchmarks are publicly
available and distributed via the infrastructure of the Text
REtrieval Conference series (TREC), sponsored by the Na-
tional Institute of Standards and Technology (NIST) and
the US Department of Defense (DARPA) [22]. They keep
evolving and now include retrieval tasks for many different
kinds of information (e.g., spam, genomic data).

However, software systems have traits that distinguish
them from the standard IR domains. For example, soft-
ware artifacts form document collections orders of magni-
tude smaller than standard IR corpuses. Also, although the
developers’ knowledge is contained in identifier names and
code comments, developers write them in a terse technical
language. As a consequence, we cannot assume, without
prior verification, that IR techniques would work with the
same performances in the software engineering field. Specific
benchmarks for software engineering need to be devised.
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Sample

E-Mails Size
E-Mails with 

a Link

ArgoUML
argouml.tigris.org

Freenet
freenetproject.org

JMeter
jakarta.apache.org/jmeter

System
URL

A UML modeling tool developed over the course of 

approximately 9 years.

A peer-to-peer software for anonymous file sharing, and 

for browsing and publishing ``freesites'' (web sites 

accessible only through Freenet).

A desktop application designed for load and stress 

testing of Web Applications. The first release was done 

in 1999.

Java Jan 2000

Apr 2000

Feb 2001

Total

Links

Description Language
Creation

Mailing Lists

Java

Java

Augeas
augeas.net

A configuration file editing tool, which parses 

configuration files and store them into a tree for 

successive modifications.

C Feb 2008

Away3D
away3d.com

A realtime 3D engine for Flash, written in ActionScript, 

an object-oriented programming language compliant 

with the ECMAScript Language Specification.

ActionScript 3 May 2007

Habari
habariproject.org

A blogging platform, written in object-oriented PHP 5.
PHP 5 Oct 2006

Table 1: The software systems considered for the benchmark

3.1 Data set
To create our benchmark to validate the effectiveness of

automatic linking techniques, we analyzed six unrelated soft-
ware systems written in four different languages. They are
all open-source and both the source code and the mailing
lists are freely accessible. Table 1 details the systems.

We release this benchmark, so that other researchers can
benefit from it to analyze new techniques. It does not re-
quire any special infrastructure to be used, it can be im-
proved, and is easily extensible with additional data.

E-mail archives. All the projects have active mailing
lists discussing different topics. We focus on development
mailing lists, because they have the highest density of infor-
mation about code entities and thus of the links we strive
to find. As we had no prior details about the distribution of
traceability links in e-mail archives, we employ random sam-
pling without replacement (as opposed to other techniques,
e.g., stratified random sampling) to extract reliable sample
sets from the populations of the e-mails. We establish the
size (n) of such sets with the following formula [24]:

n =
N · p̂q̂

`

zα/2

´2

(N − 1) E2 + p̂q̂
`

zα/2

´2

Since the proportion (p̂) of the e-mails referring a specific
entity of the source code is not known a priori, we consider
the worst case scenario (i.e., p̂ · q̂ = 0.25). We have popu-
lations that –from a statistical point of view– are relatively
small, so we included the finite population correction factor
in the formula: It allows us to take the population size (N)
into account (e.g., 20,554 e-mails for JMeter). We keep the
standard confidence level of 95% and error (E) of 5%, i.e.,
if a specific source code entity is cited in the f% of the sam-
ple set e-mails, we are 95% confident it will be cited in the
f% ± 5% of the population messages. This only validates
the quality of this sample set as an exemplification of the
population; it is not directly related to the precision and
recall values presented later, which are actual values based
on manually analyzed elements.

This resulted in the sample sizes (n) shown in Table 1.
The column “E-Mails with a Link” counts the number of
e-mail with at least one reference to a code entity. “Total
Links” sums all the links retrieved from these e-mails.

Source code. The other ingredient of our benchmark is
the source code of the systems. We consider all the e-mails
since the inception of the mailing lists, so we also consider
any system release throughout the system’s history. When
available, we took official releases as our milestones (e.g., for
JMeter or ArgoUML), otherwise we used the “checkout by
date” feature of the version control system (i.e., we retrieved
the committed source code in 3 months intervals, starting 3
months after the repository creation).

We are interested in linking e-mails with source code en-
tities (i.e., classes in object-oriented systems, functions and
structures in procedural language systems), so we do not
consider source files as the unit for documents (as opposed
to Antoniol et al. and Marcus et al.), but we strive for a
finer granularity.

We parse the source code, extract the model, and find the
links between model entities and e-mails.

Linked
System
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132

37,878

18,252

67517

11

9 2,351

20 16

8,042

12

30

20

60

124 1,105
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2,396
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Releases

Number of Entities

First

Release

Last

Release
Total

ArgoUML

Freenet

JMeter

Habari

Augeas

Away3D

Table 2: Source Code Entities per Software System

Table 2 lists the collected data.
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Figure 1: Infrastructure

For this experiment we created Miler, the infrastructure
shown in Figure 1. For each system, we extract the e-mails
from the mailing list archive in which they reside and im-
port them in our infrastructure according to the e-mail meta-
model we implemented. We parse the source code of each re-
lease and create a system model complying to FAMIX, a lan-
guage independent meta-model for procedural and object-
oriented code [12].

Once the models are ready, we link the messages and the
source code. Message linking produces FAMIX models in
which each entity is annotated with the reference to any e-
mail treating it. The model containing manually inferred
links is our oracle; it is compared to the models produced
by the automatic techniques.

3.3 Creation of the benchmark
The creation of the benchmark consisted in reading all

the e-mails in the sample set and annotating them with the
source code entities they treat. We built a web application
in Miler to assist this task. Figure 2 shows its main page,
after a user logs in.

I

II

III

IV
V

Figure 2: Benchmark Creation Web Application

It has the following components:

• The Systems panel (I) shows the list of the software
systems that are loaded in the application and must
be analyzed for creating the benchmark.

• The Mails panel (II) keeps the user updated on the
number of e-mails for each system that have been read
over the total number of e-mails to analyze.

• The Navigation panel (III) lets the user retrieve any e-
mail by its permalink (displayed in the e-mail header).

• The main panel (IV) contains the e-mail header (i.e.,
subject, author, date, mailing list) and its body. Sen-
tences quoted from other e-mails are colored according
to the quotation level: This increases the e-mail read-
ability and the quality of the analysis.

• The Annotation panel (V) contains the list of already
related entities and an autocompletion field (Figure 3).

The autocompletion field helps the user when annotat-
ing the e-mail: The user can see any entity whose name
includes the letters she inserted, and the autocompletion
avoids typos since only entities actually in the system can
be related. The panel shows how entity names are colored
folowing a special convention: Entities are black if belonging
to the last release before the e-mail date; light-grey if be-
longing to an older release; blue if implemented in the first
release after the e-mail date; and light blue if released later.
For example, consider the user typing “ObjectContainer3D
(Figure 3). The autocompletion menu shows the homony-
mous entities in three colors: “[..]proto::ObjectContainer3D”
is displayed lightgray, because it is older than the current re-
lease; “[..]containers::ObjectContainer3D” is blue: it will be
released in the next version; “[..]scene::ObjectContainer3D”,
is black, as in the current release. This helps the reader in
the choice of the most appropriate entity.

Figure 3: Web Application: Autocompletion menu

Six members of our research group, with several years of
programming experience, inspected the sample set. The e-
mails were randomly divided in overlapping sets, resulting
in 51% of the messages analyzed by two people. A complete
agreement was reached on 92% of these messages, with the
remaining annotations featuring small differences: Almost
all the divergences were caused by one of the two reviewers
missing to annotate a link that was actually present in the
e-mail. All the errors were corrected.

Annotators did not differentiate between links only present
in text quoted from previous messages and present in the
new content of the e-mail. This allows the usage of this
benchmark as a general case of textual information contain-
ing source code identifiers and discussions.



3.4 Evaluation
To compare the effectiveness of all the approaches, we

measure two well known IR metrics for the quality of the

results [18], namely precision (Precision = |TP |
|TP+FP |

) and

recall (Recall = |TP |
|TP+FN|

). TP (true positives) are elements

correctly retrieved, FN (false negatives) correct elements
not retrieved, and FP (false positives) elements incorrectly
presented as correct. We can describe precision as the frac-
tion of the retrieved links that are correct, and recall as the
fraction on the total number of correct links. The union of
TP and FN is empty in those benchmark e-mails that have
no reference to source code entities. In these cases, the recall
value cannot be calculated. Likewise, automatic approaches
can find no link between an e-mail and source code, so the
precision value cannot be evaluated. To overcome these is-
sues, we calculate the average of TP , FP , and FN , on the
entire dataset, and measure the average precision and re-
call from those values. This solution also takes into account
the impact of false positives on precision, when the set of
benchmark references is empty. Precision (P ) and recall
(R) trade off against one another, so we also use F-measure,
their weighted harmonic mean:

F =
1

α 1
P

+ (1 − α) 1
R

, β2 =
1 − α

α
−→ F =

(β2 + 1)PR

β2P + R

In this formula, β decides the weighting of precision and
recall. We chose to emphasize neither recall nor precision
by using a β value of 1 to obtain the balanced F measure.

4. LIGHTWEIGHT LINKING
In this section we show how we apply the best performing

lightweight techniques presented in our preliminary work [3].
We investigate whether the results we obtained are still valid
in this extended case study, and we show a new lightweight
technique for the other programming languages we consider.

Entity name, case sensitive. The simplest way to
reference entities from an e-mail is using their names. In
object-oriented programming languages (such as Java, Ac-
tionScript, and PHP5), developers use CamelCasing as a
widely accepted behavior to define class names. It consists
in capitalizing the first letter of a class name and adding
additional words to the first putting the initial letter capi-
talized within the compound.

System Precision Recall F-Measure
ArgoUML 0.27 0.68 0.38
Freenet 0.17 0.70 0.27
JMeter 0.15 0.73 0.25
Away3D 0.32 0.74 0.44
Habari 0.40 0.41 0.41
Augeas 0.09 0.72 0.15

Table 3: Entity name, case sensitive

The results achieved for all the object-oriented systems
are similar, as shown in Table 3. We obtained a lower pre-
cision with Freenet and JMeter, because they have a higher
number of class names that are dictionary words (e.g., Node
or Client for Freenet, Cut or Copy for JMeter). We expected

low performances for Augeas: since it is written in C, iden-
tifier names are lowercase both for functions and structures,
thus the performances are consistent with those achieved for
the other systems when not using case sensitivity.

Mixed approach. As seen in JMeter and Freenet results,
classes whose name is a single dictionary word are the most
problematic for the linking process. In our previous work
we achieved the best results using a mixed approach based
on the following intuition: Since class names usually repre-
sent abstractions of real-world objects, it is common prac-
tice to give them common dictionary names, such as Node
or Client. However, programmers often need to use multi-
ple words to name an abstraction, and since empty spaces
are not allowed, they compound words through camel cas-
ing (e.g., the entity name ObjectContainer is formed by the
dictionary words “object” and “container”). However, com-
pounded words are not part of a common dictionary, so we
use this trait to distinguish cases in which a stricter match-
ing is required. Programmatically, we distinguish compounded
words from single words simply by counting the number of
capital lettersr. Two or more capitals constitute a com-
pounded words, so we use the case sensitive match on the
entity name, otherwise the following regular expression.2

(.*) (\s|\.|\\|/) <packageTail> (\.|\\|/)
< EntityName > ((\.(java|class|as|php|h|c))|(\s))+ (.*)

This regular expression exploits the characteristic in the
naming convention of source code files. It requires the pres-
ence of the last part of the package in which the entity re-
side (such information is easily retrievable once having the
FAMIX model of the system) before the entity name itself,
which must be then followed by a source code extension or
any kind of separator. When used alone, this regular ex-
pression results in a high precision but a very low recall.

System Precision Recall F-Measure
ArgoUML 0.64 0.61 0.63
Freenet 0.59 0.59 0.59
JMeter 0.59 0.65 0.62
Away3D 0.40 0.54 0.46
Habari 0.83 0.09 0.17
Augeas 0.14 0.02 0.04

Table 4: Mixed with regular expression, c.s.

Table 4 shows that the results we previously obtained on
a single Java system are still valid in other unrelated Java
systems: both Freenet and JMeter reach a precision of 0.59
and a recall which is the same or higher.

The algorithm performs well with Away3D, reaching a F-
Measure value of 0.46. However, characteristics of this sys-
tem make the results for the precision lower that in it is for
the Java systems: (1) due to its rapid evolution many classes
are often moved between packages, however our algorithm
uses the package information only for non-compounded words.
In the other cases, all the possible classes with the same
name, but on different packages, are returned by the algo-
rithm; (2) in ActionScript, the programming language in
which Away3D is written, it is less common to mention a
class using its package.

2Names with capitals letters only, e.g., XML, are treated
using the strict regular expression.



Our algorithm applied on Augeas offers poor performances,
because the C language does not follow the camel casing
convention and does not have packages. The results on
Habari are also low, this is due to two intrinsic character-
istics of the system: (1) The majority of class names are
not compounded words, so the algorithm switches always
to the strict matching (which lowers the recall); (2) Names-
paces (i.e., packages) where only introduced in PHP 5.3, and
Habari developers do not use them in the releases consid-
ered, making the first part of the regular expression useless.

Punctuation. We reach better results for non-Java sys-
tems using the following regular expression3:

(.*) (:punct:|\s)+ <EntityName> (:punct:|\s)+ (.*)

The intuition behind it is that an entity name is written
as a single word separated from others by empty space or
connected to them through source code tokens (i.e., punc-
tuation). For example, let us consider the following text:

1. var data:Plane
2. Casting is not necessary in SmallTalk

Line 1 shows the declaration of the variable “data” in
Away3D. Although Data is one of the entities available, this
approach does not report a link, because of case sensitiv-
ity. Plane however is correctly matched. We: check case
sensitivity; count the capital letters (1); and use the above
regular expression, which reports Plane as a matching en-
tity, since it is surrounded only by punctuation and spaces.
In line 2 the name of the entity Cast partially matches the
word “Casting”. Due to the single capital letter, the regular
expression is used, and it refuses the match because of the
letter “i” after the last letter “t”.

System Precision Recall F-Measure
ArgoUML 0.35 0.68 0.46
Freenet 0.27 0.69 0.39
JMeter 0.30 0.72 0.42
Away3D 0.41 0.72 0.52
Habari 0.49 0.38 0.43
Augeas 0.15 0.64 0.24

Table 5: Mixed with new regular expression, c.s.

This simple variation in our approach gives higher out-
comes for all non-Java systems, as shown in Table 5. Augeas
increases both recall and precision, while Away3D and Habari
have a higher F-Measure due to increasing recall.

Reflections. The “grep-like” lightweight methods offer
speed, accuracy, and simplicity, but with some drawbacks:

• Strict matching. As the similarity between software
artifacts decreases, so does the performance of “grep-
like” methods. We reach interesting results in finding
the link between source code and e-mails because the
entities are mainly mentioned using their full name.
When this is not the case these methods are unusable.

• Bounded recall. The simple matching on the entity
name, not case sensitive, sets the upper bound for the

3“:punct:” is the POSIX standard matching all the punctu-
ation characters.

recall value. We could probably increase it, if we also
consider compounded names as written separated by a
space. However, since e-mails can discuss about enti-
ties without ever mentioning their names, these meth-
ods cannot reach a recall value of 1.

• No ranking. “Grep-like” methods return documents
without any ranking: A document either matches or
not the regular expression (or query). As a conse-
quence, developers who want to keep only relevant re-
sults must read all the returned documents.

• Behavior on large systems. Lightweight methods do
not require a pre-processing of the corpus in which to
find the links. This means that they are fast and eas-
ily implementable, however their efficiency is inversely
proportional to the number of documents. To make
them more efficient, one would need to build a special-
ized index on the corpus.

5. IR TECHNIQUES
The two Information Retrieval techniques we introduce

promise to overcome the limitations of grep-style approa-
ches. We briefly present them and then we test their effec-
tiveness and compare the results they reach to the ones we
obtained with lightweight approaches.

5.1 Vector Space Model
The vector space information retrieval models (VSM) rep-

resent the query and the documents in the corpus as term
vectors. The size of such vectors is the number of terms
present in the corpus vocabulary. If we consider a docu-
ment (d), the cardinality of the vocabulary (|C|), and the
number of times each term (ti) occurs in the document, we
can define the vector as: vd = [t1(d), t2(d), . . . , tC(d)].

Term vectors are aggregated and transposed to form the
Term Document Matrix, (tdm):

tdm =

D1 D2 · · · DN

t1 0 1 · · · 0
t2 0 0 · · · 4
.
.
.

.

.

.
.
.
. · · ·

.

.

.
tC 1 2 · · · 0

Researchers have proposed many forms of weighting to
take into account the relevance of terms in each document
(local weighting) and in all the corpus (global weighting). In
our experiment, we use a widely recognized IR weighting
method called tf-idf. Tf (term frequency) is used for the
local weighting: each cell contains the number of occurrences
for the document Dn divided by the number of terms in the
entire document. Idf (inverse document frequency) is the
global weighting: the more a term is common among all the
documents, the less it is weighted.

tfc,n =
dc,n

PC
i=1 di,n

idfc = log |D| − log |{d : tc ∈ d}| + 14

tf -idfc,n = tfc,n · idfc

4Since the idf value can be zero (i.e., a term is present in
all the documents), we add 1 to the formula.



In our experiment, the e-mails form the corpus and the
source code entities are the queries. First we take the e-mails
and normalize their text by removing punctuation and stop-
words –very common words that are not useful to distinguish
documents, such as conjunctions or prepositions. Contrary
to Antoniol et al., we achieve better precision results avoid-
ing the stemming step. The stemming clusters words with
the same root (e.g., the terms “model” and “models” are
reduced to the root “model”) augmenting the recall of the
query, but also severely decreasing the precision. For exam-
ple, considering Plugin and Plugins, two classes in Habari,
if stemming was performed then the same links would be
inferred for both classes. This would have highly increased
the false positives.

Once the matrix is created, it is possible to evaluate a
free-form text query on it. Any query is handled as a new
document that is compared to the documents in the matrix.
The“closest”documents to the query are returned as results.

First, a new document vector must be created with cells
populated by the terms in the query (only words that are
already in the corpus are considered). Once the query vector
(q) is obtained, we evaluate the similarity between it and the
vectors (d) of the documents in the corpus. We compute it
evaluating the cosine of the angle between the vectors [5]:

cosθn =
dT

n q

||d||2 ||q||2
=

C
X

i=1

dc,nqc

v

u

u

t

C
X

i=1

d2
c,n

v

u

u

t

C
X

i=1

q2
c

Any document for which the distance is less than the re-
quired threshold is returned as a candidate match.

5.2 Latent Semantic Indexing (LSI)
Synonymy and polysemy are the two main problems shared

by all the previous techniques. Because of synonymy, a docu-
ment can reference an entity in many different ways, beyond
its formal and common identifier. For example, ArgoUML
developers often use the name “NSUML” when referring to
the class NSUMLModelFacade. Because of polysemy, when
common dictionary words are used as names for source code
entities, it is more difficult to distinguish them.

The aim of LSI is overcoming these two issues by spot-
ting the relationships between terms, in order to disclose
the latent semantic structure of the corpus and recognize its
topics [10]. LSI builds these underlying relationships by con-
sidering words co-occuring in multiple documents. Instead
of depending on individual words to locate documents, it
uses such topics to find relevant documents. Documents are
no longer represented by vectors of term frequencies but by
vectors of topics inferred from the co-occurences of these
terms (e.g., if the terms “NSUML” and “ModelFacade” oc-
cur together often, a document containing “NSUML” only
might still be returned if the query is “ModelFacade”).

LSI starts where VSM approaches stop: given a term-
document matrix, it outputs a reduction through Singular
Value Decomposition (SVD). SVD is a technique originally
used in signal processing to reduce noise while preserving
the original signal [15]. LSI assumes that the original term-
document matrix is filled with the noise generated by syn-
onymy and polysemy, so the reduction is a model of the
corpus with such noise lowered.

As for the previous technique, the e-mails form the cor-
pus and LSI uses a term-document matrix that is generated
through an identical pre-processing step (i.e., we remove
punctuation and extremely common words, and we do not
perform any stemming on words). SVD reduces the vec-
tor space model in less dimensions, while at the same time
preserving as much information as possible about the re-
lationships between terms. The dimension of the resulting
matrix is equal to the number (k) of topics to be considered.
Finding the right value of k is crucial to obtain the appro-
priate results from LSI usage: In search engines it mainly
ranges between 200 and 500, while in the analysis of source
code topics for clustering, it usually ranges between 20 and
50 [15]. Researchers are still investigating how to determine
it [14]. After the resulting reduced matrix is computed, we
can query it using any external document. As for the previ-
ous approach, we consider the query as a vector and evalu-
ate its similarity to other documents using the cosine of their
angles. To index the query, a näıve, but slow, approach is re-
computing the entire SVD matrix with the query document
added to the matrix and extract its vector. Instead, we use
topic inference techniques to recover the topic composition
of the query document based on its term frequency [6].

5.3 Results
We explore the impact of different settings for the param-

eters of VSM and LSI: (1) discussing the impact of topics for
LSI; (2) exploring the various query types for both approa-
ches; (3) measuring the best distance thresholds; and (4)
investigating the role of corpus size. We performed an ex-
haustive comparison of all parameter combinations, but we
outline here general trends only.

Impact of the number of topics. The number of topics
impacts both the results of the approach and the time for
corpus indexing and query comparison. The quality of the
results and the computation time increase with the number
of topics. However, the quality decreases when the number
of topics overcomes a certain threshold. We are interested
in finding the minimal but still effective number of topics.
Figure 4 plots the best F-Measure values obtained with LSI,
by number of topics and query type. We see a performance
plateau after 200 topics, and a maximum around 250 topics.
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Figure 4: LSI, F-Measure by topics and query type

Most effective query type. We considered three dif-
ferent kind of queries generated from the entity to search
links for: (1) the entity name; (2) the entity name and the
package in which it resides; (3) the whole source code of the
entity. The entity name query is the best performing, while
the others provide too much noise (Figure 4). We obtained



consistent results using VSM with tf-idf.
Optimal distances. Considering the F-Measure as the

indicator of overall performance, in Figure 5 we see that the
best distance threshold for VSM with tf-idf is in the 0.85–
0.91 range.
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Figure 5: VSM, tf-idf: F-Measure by distance

For LSI the results are less conclusive (Figure 6): The
optimal distance is heavily dependent on the system (e.g.,
for Freenet is in the 0.25–0.35 range, while 0.6–0.8 for Habari
and 0.9–1 for Augeas), thus one must discover the optimal
distance for each case.
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Figure 6: LSI: F-Measure by distance

Use of full/partial corpus. We computed the results
detailed above using only the manually annotated emails
included in the benchmark as the corpus. However, unlike
regular expressions, Information Retrieval techniques are af-
fected by the corpus used. A larger corpus might signifi-
cantly change weightings of VSM with tf-idf, and alter top-
ics inferred by LSI. On the one hand, the topic descriptions
and weightings could be more accurate, on the other hand
there might be much more noise. To test this, we used VSM
and LSI to index the entire mailing list content and have a
full corpus. Then, when running the benchmark, we kept
only the documents also in the benchmark as valid results,
discarding the others. Our tests show that using a full cor-
pus has a harmful effect for both approaches: VSM’s results
are much lower, while LSI’s performance seems to improve
only with a very large number of topics. Unfortunately, large
numbers of topics (3,000 or more) are very expensive to com-
pute when generating the approximate matrix and also in-
crease the time needed for the distance computation, i.e., it
took more than 24 hours5 to obtain the approximate matrix
from a complete mailing list using a fast C implementation
of SVD6. Linking a single class to the same complete mailing
list using lightweight approaches takes seconds. Moreover,
results are worse than with a restricted corpus: with 100

5on a dual quad-core Intel Xeon server with 42GB of RAM
6http://tedlab.mit.edu/ dr/SVDLIBC/

topics the maximum F-Measure value reached is 0.06, 0.19
with 1,000 topics, and 0.24 with 3,000 topics.

Overall results. Table 6 shows the overall results with
optimal parameters (entity name as a query type, best over-
all distance, restricted corpus, 200-300 topics for LSI).. As
expected, IR methods achieve higher recall values than light-
weight methods, but at a significant cost in precision. F-
Measure values for LSI outperform VSM with tf-idf results,
but are still far from the performance of the lightweight
methods.
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Table 6: VSM and LSI results, optimal parameters

Both the techniques applied on Augeas still offer poor
results. Before applying the techniques on all the systems we
pre-processed the text –converting it to lowercase–, thus case
sensitivity cannot be the cause. However, many components
(such as executables or configuration settings) have names
identical to source code entities (functions and structures);
they can be distinguished only by understanding the context
in which they are mentioned.

6. DISCUSSION
Figure 7 summarizes the bests results obtained by all

approaches. The crosses plotted on the graph represent pre-
cision and recall of each approach, while the areas of the
bubbles are proportional to the F-Measure. Bubble bor-
ders differentiate the approaches: Full for the lightweight
approach, thick dashes for VSM with tf-idf, and thin dashes
for LSI. F-measure ranges are: 0.24–0.63 for regular expres-
sions (choosing the regular expression according to the lan-
guage ofthe system); 0.14–0.33 for VSM with tf-idf; and
0.14–0.53 for LSI. As it emerges from the graph, the light-
weight methods based on regular expressions outperform in-
formation retrieval approaches consistently. Indeed, authors
of e-mails often mention source code entities by name, hence
the benefit of accounting for indirect references (the higher
recall of LSI and VSM), is offset by their sensibility to noise
(much lower precision). The ranking of the approaches is
stable between different projects: for example, if we con-
sider Augeas, which has low values for all the rankings, the
lightweight approach is still the best performer, followed by
LSI, and finally by VSM. This order is preserved when con-
sidering all the systems.

However, several additional aspects must be taken into ac-
count before drawing conclusions. We discuss each approach
individually, before issuing our overall recommendation.
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Figure 7: Overall Precision, Recall and F-Measure

Lightweight approaches. Our lightweight approaches
are more language-dependent (with respect to other tech-
niques): Our first mixed approach reached equivalent results
on all the three Java systems, however the results for other
systems are relatively more distant. This is caused by the
“strict part” of the lightweight approach, i.e., the regular
expression, since it heavily relies on common conventions
and intrinsic syntactical characteristics of the programming
language. To overcome this issue, it is necessary to devise
appropriate regular expressions capable of taking into ac-
count the syntactic features of the programming language
of the system for which links must be found. We showed
how, with a simple change, it is possible to achieve good
results also in non-Java systems. However, when naming
conventions are not followed and entities are not mentioned
by name, this technique offer poor results, as shown by the
outcome on the Augeas system, developed in C.

VSM. The VSM with tf-idf approach does not reach high
values even considering the best outcome for each system.
It also suffers of serious performance issues when used in
very large corpuses, since it must store all the vocabulary of
the corpus in the term-document matrix. For example, per-
formance seriously decreased when we used it on the entire
e-mail population of JMeter (20,554 e-mails) both to build
the tdm and to compute distances between vectors.

LSI. Theoretically, LSI should not suffer from perfor-
mance issues when used in large corpuses as it reduces the
size of the matrix to the approximate one, which has a lower
rank. However, in practice, computing the approximate ma-
trix of a very large corpus is very expensive. If using the
same number of topics used in a small corpus, the results
are not maintained. We measured how, for source code to
e-mails linking, it is necessary to increase the number of
topics when having a larger corpus to improve results. Even
impractical number of topics (computing 3,000 topics took
more than 24 hours) did not provide good results when the
entire mailing list was indexed. For this reason, LSI suffers
from the same scalability problems as VSM. This issue was
also reported in other applications of LSI to standard IR
corpuses [11].

Hence, our final recommendation is that the IR approa-
ches we tried are too heavyweight and still not accurate
enough to be worth the investment. In addition, they do
not help to solve the problem that code entities are often
referred to in ways other than their actual names. The best
approach to link email and source code is using regular ex-
pressions, while being careful that these are tailored to the
programming language in use.

6.1 On The Threats to Validity
Construct Validity. Threats to construct validity are

concerned with whether what one measures is what one in-
tends to measure. In our case, there could be several rea-
sons why the links established between the emails and the
source code as part of the benchmark are incorrect. We
rely on human judgment to annotate the emails, which is a
potentially error-prone process. To alleviate this issue, two
different judges annotated 50% of the emails we inspected.
When measuring the agreement between them, we found an
overlap of 92%, where the 8% of disagreement was due to
one judge missing one link in some emails. We corrected
these errors in the set of email that was inspected twice.
We expect the same low proportion of missing links in the
other half of the sample, which may affect the accuracy of
the results. To address this issue further, we plan to have
additional judges review the emails inspected only once.

Another issue is the domain knowledge of the judges. Be-
ing unfamiliar with the reviewed systems, they may miss
some implicit references (e.g., abbreviations) to entities that
a seasoned developer of the system might understand. A
qualitative evaluation of our benchmark that involves sys-
tem developers could measure the effect of this threat.

Statistical Conclusion. Threats to statistical conclu-
sion are concerned with whether we have enough data to
support our claims with a reasonable confidence. We took
samples of e-mail populations that were representative with
a 95% confidence and a 5% error level, which are standard
values. On the number of links, our corpus has 2,749 mail-to-
code links, about 20 times as many as in Antoniol’s study [1].

External Validity. Threats to external validity are con-
cerned with the generalizability of the results. The approa-
ches we tried may show different results when applied to
other software systems. To alleviate this, we chose 6 sys-
tems with unrelated characteristics. The systems are devel-
oped from separate communities and are implemented in 4
different programming languages in two paradigms, object-
oriented and procedural. The sizes of the systems, and of
their mailing lists both varied by one order of magnitude. In
general, we found that if approach A performs better than
approach B on a system, it tends to perform similarly on all
the systems. There is one caveat: Lightweight approaches
based on regular expressions are language-specific.

There are however some aspects in which our selection is
not representative: We only consider open-source systems.
Usage patterns may vary in the industry. In particular, mail-
ing lists often occupy a central role in the development of
open-source systems, which may not be the case in systems
developed in a more centralized and confidential fashion.
Finally, we have not analyzed truly large-scale systems (our
largest system has around 2,000 classes): we cannot confirm
that our results are similar in these cases. In particular,
we expect the VSM and LSI approaches to become more
resource-intensive as systems and email sets grow in size.



7. CONCLUSION
E-Mail archives enclose significant information on the soft-

ware system they discuss. We dealt with the problem of re-
covering traceability links between e-mails and source code.
We showed the need for a benchmark to assess linking approa-
ches against and presented Miler, the tool infrastructure we
created to build a statistically significant benchmark of links
between e-mail and source code over six software systems.

We evaluated different automated approaches to retrieve
these links: Lightweight methods based on capturing pro-
gramming languages elements with regular expressions, and
two Information Retrieval approaches. We tested all approa-
ches against the benchmark we created and measured their
effectiveness in terms of precision, recall and F-measure.

The results we obtained show how, for this task, “less
is more”: The lightweight methods consistently and signifi-
cantly outperform the IR approaches in all six systems. The
reason is that in e-mails entities are often referred to by
name, not synonyms, and source code is rare.

Our future work is twofold: (1) since naming conventions
greatly improve the linking, easing their usage when writing
emails is critical, and (2) we will exploit these links; we have
already shown their usefulness for bug prediction [2].
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