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Linking electronic structure calculations to generalized

stacking fault energies in multicomponent alloys
Anirudh Raju Natarajan 1✉ and Anton Van der Ven 1✉

The generalized stacking fault energy is a key ingredient to mesoscale models of dislocations. Here we develop an approach to

quantify the dependence of generalized stacking fault energies on the degree of chemical disorder in multicomponent alloys. We

introduce the notion of a “configurationally-resolved planar fault” (CRPF) energy and extend the cluster expansion method from

alloy theory to express the CRPF as a function of chemical occupation variables of sites surrounding the fault. We apply the

approach to explore the composition and temperature dependence of the unstable stacking fault energy (USF) in binary Mo–Nb

alloys. First-principles calculations are used to parameterize a formation energy and CRPF cluster expansion. Monte Carlo

simulations show that the distribution of USF energies is significantly affected by chemical composition and temperature. The

formalism is broadly applicable to arbitrary crystal structures and alloy chemistries and will enable the development of rigorous

models for deformation mechanisms in high-entropy alloys.
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INTRODUCTION

The effect of compositional fluctuations and configurational
ordering on the properties of a dislocation is a long-standing
problem in materials science1–3. Experimental and computational
studies of complex-concentrated alloys, also referred to as “high-
entropy alloys”4–6, have revealed that dislocation motion, core
structure, and stacking fault energies can vary significantly with
the local ordering of chemical species7–11. Even chemically similar
alloys can have drastically different mechanical properties12. Rapid
changes in mechanical properties due to minor variations in
chemistry undoubtedly have their origin in atomistic deformation
mechanisms. Models that are able to link the properties of a
dislocation to the degree of long-range and short-range chemical
ordering in multicomponent alloys are therefore necessary to
provide fundamental insights about the role of chemistry on
mechanical properties.
The generalized stacking fault energy (GSF), commonly referred

to as the γ-surface, plays an important role in quantifying
dislocation properties2,13–15. The GSF energy is equal to the work
required to displace two halves of a perfect crystal relative to each
other along a particular crystallographic plane. It is an essential
ingredient in Peirls–Nabarro16–18 and phase-field models19–22 of
dislocations, where it is used to assess the energy penalty due to a
disregistry between the adjacent crystallographic planes across
the slip plane of a dislocation. The GSF energy can also provide
qualitative insights about dislocation core structures and preferred
partial dislocation structures23.
Here, we develop a method that rigorously captures the

dependence of the GSF energy on the degree of ordering in
multicomponent alloys. We extend the cluster expansion
formalism of alloy theory to describe the energy of displacing
and cleaving two halves of a crystal relative to each other as a
function of descriptors of the degree of chemical order. We then
apply the method to a study of unstable stacking fault (USF)
energies in the binary Mo–Nb alloy and use Monte Carlo
simulations to quantify the average USF energy as a function of
temperature and composition. Our study shows that the GSF

energy of the Mo–Nb alloy has both a strong composition and
temperature dependence.

RESULTS

Formalism

Two parts of a crystal can be shifted relative to each other by a
vector r! that is parallel to a glide plane as shown in Fig. 1a or the
crystal can be cleaved by a distance δ perpendicular to the glide
plane as in Fig. 1b. The gliding of the two parts of the crystal
relative to each other results in a planar fault. The energy per unit
area as the two halves of a crystal are shifted relative to each other
by r! is conventionally referred to as the GSF energy. It can be
defined to be the glide energy either at fixed δ or at a value of δ
corresponding to zero tractions perpendicular to the glide plane.
Throughout we will use periodic boundary conditions.
The GSF energy of a single component crystal is a periodic

function over the space of two-dimensional glide vectors r!.
Translating the two halves of a crystal by a full lattice vector
recovers the unfaulted bulk crystal. Each point in the two-
dimensional glide space r! that coincides with a translation vector
will therefore have the same GSF energy. Figure 2a shows a (001)
glide plane of a body-centered cubic (bcc) crystal. The corre-
sponding two-dimensional glide vector space for the (001) glide
plane of bcc is shown in Fig. 2b with glide vectors that recover the
bulk bcc crystal shown as squares. Glide vectors that differ from a
lattice translation produce a bicrystal with a planar fault. The
introduction of a planar fault usually increases the energy of the
crystal.
The GSF energies of multicomponent alloys differ from those of

pure elements. The periodicity of the GSF energy that characterize
a single component crystal is generally broken in a multi-
component alloy. This is illustrated for a particular ordering of
red and green atoms on bcc in Fig. 3a. A glide of the upper half
of the crystal relative to the lower half by a [100] translation vector
of the underlying bcc crystal structure results in a different
ordering of red and green atoms. Though the bcc crystal structure
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is recovered, a planar defect referred to as an anti-phase boundary
has been created. The energy of the crystal before and after the
glide by a bcc translation vector is therefore no longer the same
since the arrangement of red and green atoms has changed. Two
lattice translations along the (001) plane are required for the
example of Fig. 3a to recover the original ordering. Figure 3b
shows the symmetry in the two-dimensional space of glide
vectors r!, with blue squares corresponding to the original
ordering and yellow squares corresponding to orderings with an
anti-phase boundary. For the particular ordering in Fig. 3a, glide
vectors along the [010] direction do not change the ordering and
the energy remains unchanged.
The example of Fig. 3a shows that it is necessary to track the

degree of order in a multicomponent alloy since glides by a
translation vector of the underlying parent crystal structure can
change the arrangement of chemical species in the crystal. The
state of ordering in a multicomponent solid can be described
mathematically by assigning occupation variables to each site of
its crystal. Consider a large crystal with N sites (assuming periodic
boundary conditions), where each site can be occupied by one of
two chemical components A or B. Any ordering of A and B atoms
on this crystal can be represented with an occupation vector
σ
!¼ fσ1; σ2; � � � ; σNg, where σi is an occupation variable that
takes the value of +1 if site i is occupied by A and a value of −1
otherwise. The labels i refer to sites in a reference crystal that is
not deformed. For the purpose of tracking the configuration of a
deformed crystal, we map each site of the deformed crystal onto
the nearest site of the reference crystal. A particular configuration
of A and B atoms, σ!1 , for example, may then be converted into a
new configuration σ

!
2 upon application of a glide that coincides

with an elementary translation vector of the underlying parent
crystal structure. A second glide by another translation vector may
convert σ

!
2 into σ

!
3 . The changes in configuration upon

application of glides coinciding with parent crystal translations
can be represented in the two-dimensional glide space of r! as
schematically illustrated in Fig. 4a. Since the energy of the crystal
depends on how the A and B atoms are arranged, it will also vary
upon the application of a glide that is equal to a parent crystal
translation. This is schematically illustrated in Fig. 4b.

Fig. 1 Shifting and separating a bi-crystal. Schematic figure
showing the possible ways to shift two rigid solid blocks relative
to each other once a particular slip plane has been defined.

Fig. 2 Glide vector space of a pure element. a Schematic figure
showing the (001) cut-plane on a conventional bcc crystal. b The
two-dimensional glide vector space formed by the relative transla-
tions that recover the perfect bulk crystal. The energy of a pure bi-
crystal is periodic, with the same energy being recovered at glide
vectors shown with squares in the figure.

Fig. 3 Glide vector space of an ordered phase. a Schematic figure
showing a periodic ordering on bcc. Upon translating the top and
bottom parts of the crystal by a conventional bcc lattice vector
(indicated by the thick black arrow), a different local ordering arises
in the vicinity of the cut-plane. The planar defect is akin to the well-
known “anti-phase” boundaries in metallurgy. b The two-
dimensional glide vector space for the ordering shown in a. Squares
with the same color correspond to the same ordering and hence the
same energy.

Fig. 4 Glide vector space of a bi-crystal. a Schematic two-
dimensional glide vector space for a bicrystal, with four different
orderings arising at full lattice translations, corresponding to
squares. b Schematic energy of a bicrystal being sheared to
transform between three orderings labeled σ1, σ2, and σ3. The bulk
configurational contribution is labeled Eavg.
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While the gliding of two halves of a crystal by a translation
vector of the parent crystal changes the configuration of the alloy
and therefore its energy, most of the change in ordering is
restricted to the vicinity of the glide plane. The local arrangements
of A and B atoms far away from the glide plane are unaffected by
the glide since those regions have simply been translated rigidly.
Chemical interactions in an alloy typically decay over a distance of
several nanometers when maintaining the solid in a constant state
of strain. The contribution to the energy of the crystal due to a
particular arrangement of A and B atoms far away from the glide
plane will be identical in two configurations, σ!1 and σ

!
2 , related

by a glide since the local degree of ordering at those large
distances from the glide plane are identical in both configurations.
It is only in regions within the chemical interaction range of the
glide plane where the local degree of order is different that an
energy difference arises. This motivates the separation of the GSF
energy into an average configurational energy and a “config-
urationally-resolved planar fault energy” (CRPF) that is a local
excess energy. The energy, E, of a bi-crystal (shown schematically
in Fig. 4b with an initial ordering σ

! that is translated by r! and
separated by a distance δ can then be written as

Eð r!; δ; σ!Þ ¼ ECRPFð r!� r!1; δ; σ
!

1Þ þ Eavgð r!; σ!1; σ
!

2; σ
!

3Þ:

(1)

In this expression, ECRPFð r!� r!1; δ; σ
!

1Þ is the CRPF energy,
with σ1 being one of the three nearest orderings on the perfect
crystal for the glide vector r! as schematically illustrated in Fig. 4a.
The glide vector r!1 converts σ

! to σ
!

1. The average configura-
tional energy, Eavg, is related to the energy of the three nearest
configurations as schematically shown in Fig. 4a, and is defined as

Eavgð r!; σ!1; σ
!

2; σ
!

3Þ ¼ ð1 � w2 � w3ÞEð σ1
�!Þ þ w2Eð σ2

�!Þ þ w3Eð σ3
�!Þ;

(2)

where Eð σ!1Þ, Eð σ
!

2Þ and Eð σ!3Þ are the energies of the σ
!

1, σ
!

2,
and σ

!
3 orderings in the perfect crystal. The weights w2 and w3 are

related to the glide vectors by:

w2 w3½ � ¼
r!12

r!13

" #�1

ð r! � r!1Þ; (3)

where r!12 is the glide vector relating configurations σ
!

1 and σ
!

2

and r!13 connects σ
!

1 to σ
!

3.
Rigorous statistical mechanics calculations of the temperature

and composition dependence of the GSF energy require the
evaluation of Eð r!; δ; σ!Þ across all possible decorations of the bi-
crystal. This can be computationally intractable when using
quantum mechanical techniques. Surrogate models informed
from a small set of quantum mechanical calculations that
accurately reproduce the bulk and CRPF energies for arbitrary
configurations are thus needed to bridge the gap. In the rest of
this section, we review the cluster expansion formalism to
describe the configurational energy of crystalline solids and
subsequently extend it to describe the CRPF energy as a function
of configurational ordering.
As shown by Sanchez et al.24, the configurational energy Eð σ!Þ

in a multicomponent solid with a particular crystal structure can
be expanded in terms of cluster basis functions according to

Eð σ!Þ ¼ V0 þ
X

α

Vαϕαð σ
!Þ; (4)

where Eð σ!Þ is the energy of σ
!, Vα are expansion coefficients,

referred to as effective cluster interactions, and the ϕαð σ
!Þ are

cluster basis functions. For a binary alloy, the cluster basis
functions are defined as

ϕαð σ
!Þ ¼

Y

j2α

σj; (5)

where α refers to a cluster of sites in the crystal, such as pair

clusters, triplet clusters etc. The Vα are determined by the
chemistry of the alloy. In most alloys, chemical interactions decay
beyond a maximum length and cluster size and the cluster
expansion of Eq. (4) can be truncated. Clusters related to each
other through a symmetry operation in the undecorated crystal
have the same expansion coefficient. Strategies that rely on
genetic algorithms25, cross-validation26, bayesian regression27,
neural networks28, and quadratic programming29 have been
succesfully applied to generate high-fidelity cluster expansion
models trained to first-principles calculations. The resulting lattice
models are typically used in conjunction with statistical mechanics
tools such as Monte-Carlo simulations to calculate temperature
and composition dependent thermodynamic properties of multi-
component solids.
The cluster expansion of Eq. (4) is only valid for a fixed parent

crystal structure. In the context of GSF energy surfaces, it can only
be used to describe the energy of the bicrystal for glide vectors r!

that recover the underlying parent crystal structure. This includes
the energies of Eð σ!1Þ, Eð σ!2Þ, and Eð σ!3Þ appearing in the
expression of average configurational energy Eavg as defined by
Eqs. (2), (3), and appearing in Eq. (1). We next extend the cluster
expansion approach to describe the CRPF energy of Eq. (1).
We first simplify the problem by exploiting well-established

analytical expressions of energy-versus-separation curves to
describe the dependence of the CRPF on δ. For most metals,
the energy versus separation curve can be accurately represented
with the universal binding energy relation (UBER) of Rose et al.30,31

according to

ECRPF ¼ ECRPF0 � 2κ �1 þ 1 þ
δ � δ0

λ

� �

exp �
δ � δ0

λ

� �� �

;

(6)

where ECRPF0 is the CRPF energy at the equilibrium separation δ0, 2κ
is the surface energy at infinite separation, and λ is related to the
curvature of the energy around the equilibrium separation. The
parameters ECRPF0 ; δ0; κ; and λ are all functions of the configura-
tion σ

! and glide vector r!. While Eq. (6) is that for the UBER curve,
alternate functional forms such as xUBER32,33 may also be
employed.
The dependence of ECRPF0 , κ, δ0, and λ on configuration σ

! can be
expressed as a cluster expansion. For example, ECRPF0 can be
written as

ECRPF0 ð r!; σ!Þ ¼ Γ0ð r
!Þ þ

X

α

Γαð r
!Þϕαð σ

!Þ; (7)

where the cluster basis functions, ϕα are the same as those
defined in Eq. (5), and where Γα are expansion coefficients that are
functions of the glide vector, r!. Similar to the cluster expansion of
Eq. (4), the expansion coefficients in Eq. (7) obey certain symmetry
properties dictated by the space group of the undecorated
bicrystal having undergone a glide r!. Since a glide of a bicrystal
by r! in general breaks symmetry, far fewer expansion coefficients
will be equivalent by symmetry than for the cluster expansion of
the undeformed parent crystal. For example, translation symmetry
in directions perpendicular to the glide plane are lost upon
application of a glide r!. Point clusters that are otherwise
equivalent by symmetry in the perfect crystal, are no longer
equivalent if they are at different distances from the glide plane.
The same holds true for multi-body clusters.
The cluster expansions of the parameters ECRPF0 , κ, δ0, and λ

appearing in Eq. (6) extend over all clusters of the bicrystal.
However, these cluster expansions should converge rapidly and
only clusters within the chemical interaction range from the glide
plane are likely necessary in a truncated cluster expansion. This
becomes evident when rearranging Eq. (1) to isolate the CRPF
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energy according to

ECRPFð r! � r!1; δ; σ
!

1Þ ¼ Eð r!; δ; σ
!Þ � Eavgð r!; σ

!
1; σ

!
2; σ

!
3Þ:

(8)

The above equation shows that the contribution to the energy
of the bi-crystal from regions far away from the glide plane is
removed when subtracting off the weighted average energy
Eavgð r!; σ

!
1; σ

!
2; σ

!
3Þ, since the configurations σ1, σ2, and σ3 have

chemical orderings that are identical (up to a translation vector) to
that of the bicrystal beyond the chemical interaction range of the
glide plane.
In summary, the parameterization of surrogate models that

accurately describe the GSF energies in multicomponent alloys
requires two separate cluster expansions. The first is a cluster
expansion of the formation energies of orderings over the parent
crystal structure. This cluster expansion is required to calculate the
average configurational energy, Eavg, in Eq. (1). Methods to
parameterize these models are well-established. A second cluster
expansion is necessary to describe the short-range CRPF energy. A
training dataset can be generated by first calculating the bi-crystal
energies, Eð r!; δ; σ

!Þ, for several symmetrically distinct orderings,
σ, glide vectors, r!, and separation distances, δ. The CRPF energies
for each of these configurations can then be calculated with Eq.
(8). The resulting CRPF energies for a fixed chemical ordering σ
then serve to train the adjustable parameters of Eq. (6), which can
then be cluster expanded according to Eq. (7) to describe their
dependence on the degree of chemical order. In most Peirls-
Nabarro-type models, the bi-crystal is assumed to be under zero
stress in the direction perpendicular to the fault. As a result the
GSF energy must be minimized relative to the slab separation
distance. Thus, the energy given by ECRPF0 in Eqs. (6, 7) is the
desired quantity when modeling dislocation properties with PN
models that assume zero tractions perpendicular to the
glide plane.

GSF energies in Mo–Nb

In this section, we illustrate the above cluster expansion formalism
by investigating the composition and configuration dependence
of USF energies in the binary Mo–Nb alloy. The Mo–Nb alloy
adopts the bcc crystal structure at all compositions and forms a
disordered solid solution between room temperature and the
melt34–36. The Mo–Nb binary is of current interest since Mo and
Nb are both components of important bcc based high entropy
alloys37,38. Studies of the mechanical properties of Mo–Nb alloys
indicate that their strength is primarily controlled by the formation
and motion of screw dislocations and to some extent edge
dislocations39. The screw dislocations are formed along the 〈111〉
direction, and are known to spread on the {110} planes23. Much of
the physics of dislocations in Mo–Nb alloys is therefore directly
related to the USF energy in the {110} plane for a relative
displacement along the 〈111〉 direction. The USF energy serves as
a key input to model the motion and evolution of screw
dislocations in bcc alloys with phase-field dislocation dynamics40

and classical Peirls–Nabarro type models14,23,41.
The first step in describing the dependence of the GSF energy

on ordering is to construct a cluster expansion for the formation
energy of the binary bcc Mo–Nb alloy. Figure 5a shows the
formation energies of 847 symmetrically-distinct orderings on the
bcc crystal structure in the binary Mo–Nb alloy as calculated with
density functional theory (DFT). The formation energies are
referenced to bcc Mo and Nb at 0 K. More details about the DFT
calculations and the cluster expansion that was subsequently
trained to these energies can be found in “Methods” section. The
convex hull is outlined in black and shows that several ordered
phases are predicted to be stable at 0 K. The energies of the 847
orderings as predicted with a cluster expansion are also shown in
Fig. 5a as circles. The exceptionally low training error of 0.0008 eV/

atom and the excellent qualitative agreement between the
ground states as predicted with the cluster expansion and those
found with DFT suggest that the configurational energy of the
Mo–Nb binary alloy is well-described with a truncated cluster
expansion model. Figure 5b also shows the relaxed volume of all
orderings relative to that of bcc molybdenum. We find them to
vary almost linearly as a function of niobium composition, albeit
with a slight negative deviation in close agreement with Vegards
law42 (shown schematically by the dashed line in the figure).
The GSF energy surface of a Mo bcc bicrystal for the {110} glide

plane along the 〈111〉 direction is shown in Fig. 6a. The
introduction of a planar fault due to a glide results in an energy
penalty. The fault energy increases until it reaches a maximum at a
glide of 1/4〈111〉. This energy corresponds to the USF energy. As
the glide vector approaches a full lattice translation in the {110}
glide plane (corresponding to 1/2〈111〉) the energy decreases
until long-range bcc order is restored, where the energy becomes
equal to that of bcc Mo. In calculating the GSF as a function of the
glide vector r! of Fig. 6a, we first calculated the energy of the
bicrystal as a function of δ along the [110] direction to generate
decohesion curves for each value of r!. A particular example of
such a curve is shown in Fig. 6b. The DFT energies as a function of
δ (for fixed r!) were then fit to the UBER30, and the minimum of
each curve was used to construct the GSF of Fig. 6a.
A section of the GSF energy for the B2 ordering with a

composition of xNb= 0.5 is shown in Fig. 6c. Shifting the two
halves of a B2 bicrystal through a full lattice translation results in
an anti-phase boundary, which is accompanied by an increase of
the energy. Similar to pure molybdenum, an USF is found to exist
for a glide corresponding to half a translation vector. Figure 6d
collects the calculated USF energies for pure Mo, L21 (Mo3Nb,
MoNb3), B2 (MoNb), and pure Nb. We find a strong composition
dependence of the USF energies, with the values changing by
almost a factor of two with increasing niobium composition.
Furthermore, the USF energies vary non-linearly with composition,
suggesting that short and long-range order also plays a role in

Fig. 5 Formation energies and volumes in Mo–Nb. a Comparison
of the cluster expanded energies and formation energies calculated
from DFT in the binary Mo–Nb alloy on the bcc crystal structure.
b Relaxed volumes of orderings on bcc in the Mo–Nb binary alloy
relative to the volume of pure Mo bcc.

A.R. Natarajan and A. Van der Ven

4

npj Computational Materials (2020)    80 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



addition to the average concentration. Figure 6d shows the
energy at equilibrium separation for the sheared bicrystal.
The CRPF energies of 514 symmetrically distinct USF as

calculated with DFT is shown in Fig. 7. The CRPF values vary from

≈0.8 J/m2 for pure niobium to about 2.0 J/m2 in the binary alloy.
The spectrum of values at a particular composition is also found to
span a large range of values, suggesting that the state of order

among Mo and Nb plays a significant role in determining the CRPF
energies.
A cluster expansion was parameterized to describe the

dependence of the CRPF energies on the degree of Mo–Nb
ordering. A comparison of the DFT and cluster expanded CRPF
energies is shown in Fig. 8a. Details about the fitting procedure

and cluster expansion model are provided in the “Methods”
section. The USF energies are reproduced well by the cluster

expansion model with a fitting error of 0.016 eV per two-
dimensional unit cell of the (110) glide plane. The CRPF energies
of configurations that have compositions close to pure molybde-
num or niobium have a slightly higher error than configurations
with compositions closer to x= 1/2. We validated the model by
comparing cluster expansion predictions to DFT values of CRPF
energies for 38 stochastically enumerated orderings in a 16 atom
supercell. Figure 8b shows a good agreement between the model
predictions and the DFT calculations with a validation error of
0.013 eV per unit cell. The interactions within the CRPF cluster
expansion are relatively short-range as indicated by the sharply
decaying magnitude of the point correlations shown in Fig. 9.
Having fit a cluster expansion that accurately describes the USF

energy in the binary Mo–Nb system, we next investigated the
composition and temperature dependence of this energy. Grand-
canonical Monte-Carlo simulations at temperatures above 600 K
are found to be completely disordered at all compositions, in
agreement with experiment34. Snapshots of disordered config-
urations were collected from grand-canonical Monte-Carlo simula-
tions at 600 and 1000 K. Chemical potentials were chosen such
that the average composition of niobium was 0.25, 0.5, or 0.75. For
each Monte-Carlo snapshot, an USF was introduced in the cell and
the USF energy was evaluated with Eq. (1) using the cluster
expansions for the CRPF and the formation energy of the bcc
Mo–Nb alloy. An USF energy was calculated by introducing a fault
in every (110) layer within the simulation cell and for every h111i
direction within the plane.
Figure 10a shows a histogram of USF energies at three different

niobium compositions at a temperature of 1000 K. The USF
energies decrease with increasing niobium composition. This is in
agreement with the general trend of CRPF energies across
compositions in Fig. 7. Our results predict that the stacking fault
energies vary strongly with the average composition of the alloy.
The spectrum of USF energies at elevated temperatures are
normally distributed. The distribution is very sharply peaked at a

Fig. 6 GSF energies of orderings in Mo–Nb. a The GSF energy for a bcc Mo bicrystal translated on the (110) plane along the ½111� direction.
b The decohesion curves for a pure molybdenum crystal, cleaved along the (110) plane. The energy fit to the UBER is also shown in the dark
black line. c The GSF energy for a bcc B2 bicrystal translated on the (110) plane along the ½111� direction. d The unstable stacking fault
energies across the composition range, for an undecorated bcc crystal (xNb= 0.1), B2 (xNb= 0.5), and L21 (xNb= 0.25, 0.75) ordering.

Fig. 7 CRPF energies from DFT. The configurationally-resolved
planar fault (CRPF) energy in the Mo–Nb alloy for the {110} plane in
bcc with the slabs shifted relative to each other along the 〈111〉
direction. Each point corresponds to a symmetrically distinct
configurational ordering in the bi-crystal with a glide vector
corresponding to the unstable stacking fault.
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niobium composition of 0.25 with a slightly more broadened
distribution with increasing niobium composition.
We investigate the temperature dependence of the USF

energies in Fig. 10b. Grand-canonical Monte-Carlo calculations

were performed at temperatures of 600 K, and 1000K at chemical
potentials that corresponded to average alloy compositions of 0.5.
Figure 10b shows that the distribution of USF energies continues

to be normally distributed across a wide range of temperatures.
The magnitude of the fault energy decreases with increasing
temperature. The distribution of energies is also broadened with
increasing temperature. These results suggest that the average

USF energies vary strongly with niobium composition, while the
distribution of energy values is sensitive to the temperature.

DISCUSSION

We have developed a rigorous approach to describe the
dependence of generalized stacking fault energies on the degree
of ordering in multicomponent alloys. The approach relies on the
decomposition of the bicrystal energy into a long-range config-
urational contribution and a local planar fault energy, referred to
as a CRPF. The dependence of the CRPF on configuration is then
represented with a short range cluster expansion over sites within
a chemical interaction range of the glide plane, while the long-
range configurational contribution is captured with the conven-
tional cluster expansion as originally introduced by Sanchez
et al.24. The formalism is applied to quantify the USF energy in a
prototypical binary Mo–Nb alloy. Monte-Carlo calculations
informed by accurate configurational and CRPF cluster expansions
predict a strong composition and temperature dependence for
the average USF energy.
The tools we have developed here enable rigorous statistical

mechanics studies of the effects of short and long-range order on
the generalized stacking fault energies in multicomponent alloys.
For example, Fig. 11 compares the DFT CRPF energies, the
predicted CRPF distributions from Monte-Carlo simulations at
1000 K, and the CRPF energy as a function of composition for a
fully disordered random solid solution in the Mo–Nb binary. The
spread of the sampled CRPF energies at elevated temperatures in
disordered alloys is much smaller than the full range of values that
may exist across all symmetrically distinct arrangements of Mo
and Nb atoms. For instance, at a composition of xNb= 0.5, CRPF
values of distinct binary orderings vary by almost a factor of two
between 1–2 J/m2. In contrast, the Monte-Carlo simulations at the
same composition predict a distribution that is sharply peaked

Fig. 9 Point interactions in Mo–Nb. Point interaction terms of the
CRPF cluster expansion as a function of the layer number relative to
the fault.

Fig. 10 Temperature and composition dependent USF energies. a
The composition dependence of the unstable stacking fault
energies in the binary Mo–Nb alloy at 1000 K. The average unstable
stacking fault energies are collected in snapshots from grand-
canonical Monte-Carlo calculations at appropriate chemical poten-
tials. b The temperature dependence of the unstable stacking fault
energies at 600 and 1000 K at an average simulation cell composi-
tion of 0.5.

Fig. 8 CRPF cluster expansion. a Comparison of the calculated and
cluster expanded “configurationally-resolved planar fault” (CRPF)
energies. b Comparison of the cluster expanded CRPF model against
a hold out validation data set calculated with DFT.
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around 1.4 J/m2, with a spread of only 0.05 J/m2. This suggests that
properties of disordered alloys may be difficult to extract directly
from the spectrum of calculated CRPF energies without a
statistical mechanics treatment.
Figure 11 also shows that the CRPF energies sampled in the

Monte Carlo simulations at elevated temperatures and a mean-
field estimate are very similar. The mean-field estimate of Fig. 11
was calculated by substituting the correlations of a random alloy
in the cluster expansion of the CRPF. The mean-field approxima-
tion, therefore, neglects any long-range or short-range order that
may exist in the actual alloy and in the Monte Carlo simulations.
The fact that the mean-field estimate is very close in magnitude to
the Monte-Carlo averages suggests that short-range order does
not play a significant role in affecting the USF in the Mo–Nb alloy
at 1000 K. The spread of CRPF values, however, varies strongly
with niobium composition, suggesting that niobium rich environ-
ments have a slightly broader distribution of energies than
molybdenum rich environments.
The length-scale over which a dislocation core extends is a key

input when modeling dislocation motion and core structure.
Dislocations that are spread out over several atomic planes
contain large areas with misaligned local neighborhoods, while
narrow dislocation cores have only one or two atomic planes that
are dis-registered. The length-scale of this misalignment is directly
related to the areas that must be used to calculate GSF energies.
Within spread out cores, the statistical distribution of GSF energies
over large areas is required, while narrow dislocations only require
small areas. The GSF energies can be extracted across all length-
scales using the techniques described within this study. At the
atomistic limit, the CRPF energy (Eq. 8) can be re-written to
calculate the energy contribution from a single atomic plane, in a
manner similar to the site contribution to the total energy as
described by Natarajan and Van der Ven28. Combined with the site
energy contributions to the total formation energy, the GSF
energy distributions over a single atomic plane can be extracted
from Eq. (1). Over larger areas, these site energies must be
averaged and the distribution recorded over a “coarse-grained”
area, similar to the values shown in Fig. 10. In both scenarios,
importance sampling must be used to extract a set of statistically
meaningful configurations at the temperature and composition of
interest. The effects of long-range and short-range order naturally
arise from such a rigorous treatment. Such a dependence of the
GSF energy distribution on the area has been recently reported by
Zhao et al.43.

The formalism presented in this study brings us closer to a truly
rigorous multi-scale model of dislocation motion and evolution in
multicomponent alloys. In conjunction with techniques to
estimate the effect of configurational disorder on transport
coefficients44–46, structural phase transitions47, surface and bulk
thermodynamics48–50, this formalism expands our palette of
models to naturally account for the mechanical behavior of
engineering materials. Phase-field models of dislocation motion
can describe the motion, formation, and structure of dislocations
in a variety of crystal structures and material systems. As we move
into complex multicomponent alloy chemistries, formalisms that
can estimate the GSF energies across vast composition spaces and
elevated temperatures are crucial to establishing a rigorous link
between electronic structure calculations and phenomenological
theories of mechanical properties of materials.

METHODS

Density functional theory calculations

Total energies of crystals were calculated within the generalized gradient
approximation to desity functional theory as parameterized by
Perdew–Burke–Ernzerhof51 and implemented in the Vienna Ab-Initio
Simulation Package52. The projector augmented wave (PAW) method
was used to describe the interaction of valence electrons with core states.
The PAW potentials treated the semi-core s electrons as valence states. The
planewave cutoff was set to 480 eV and an automatic k-point grid with 42
k-points Å−1 were used for Brillouin zone integration. The total energies of

configurations in a structure corresponding to the USF along the ½111�
direction within the (110) plane was calculated with a static calculation.
The separation distance between the two crystal halves was set to 0.15Å
at the pure Mo composition and all lattice parameters were homo-
geneously scaled based on Vegards law42. The composition dependence of
the lattice parameters are informed from the benchmark calculations
shown in Fig. 5b. The equilibrium separation δ was found to vary with
composition, however a separation scaled by the volume of the crystal

relative to that of pure Mo defined as ~δ ¼ δ=ð V
VMo

Þ
1
3 was found to be

independent of composition, as shown in Fig. 12. Initial GSF energy
calculations were performed with the multishifter code53.

Cluster expansions

Cluster expansion Hamiltonians were parameterized with the clusters
approach to statistical mechanics (CASM) software package47,54–56.
Symmetrically distinct configurations were generated on the parent bcc
and USF structure with the CASM software package. All configurations in
symmetrically distinct supercells containing up to six atoms were
enumerated in bcc. All configurations were enumerated in the primitive
structure containing the USF with 8(110) layers. Three hundred and
seventy-seven stochastic orderings were also generated in cells containing
16 atoms. Two separate cluster expansions were subsequently trained.
Clusters on the bcc crystal structure were chosen from a pool of pairs,
triplets, and quadruplets with a maximum length of 10.3, 8.3, 7.3Å with
the genetic algorithm informed with a 10-fold cross-validation score.

Fig. 11 Comparison of CRPF energies from mean-field and Monte-
Carlo simulations. The figure shows the DFT calculated CRPF
energies compared to the energies from a mean-field approxima-
tion and the distribution of values from grand-canonical Monte-
Carlo simulations at 1000 K. The distributions from Monte-Carlo
simulations are shown as violin plots with the breadth of the plot at
a given niobium composition corresponding to the relative number
of configurations with that CRPF energy.

Fig. 12 Separation distances in ordered Mo–Nb phases. The figure
shows the separation distances (δ) at the minimum energy for the
unstable stacking fault of the ordered phases in Fig. 6d.
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The resulting RMSE was 0.0008 eV/atom with a cross-validation score of
0.0008 eV/atom. The clusters for the USF energy included pairs and triplets
with a maximum length of 7.3 and 5.3Å. DFT calculations were used to
parameterize the cluster expansion Hamiltonian with the L1 regularization
to least squares. The regularization parameter was chosen with a 10-fold
cross-validation metric.

Monte-Carlo simulations

Grand-canonical Monte-Carlo calculations were performed with a simula-
tion cell containing 16[110] layers and a total of 1600 atoms across a range
of chemical potentials and temperatures. Configurational snapshots were
extracted from the Monte-Carlo simulations every ten passes after the
system was determined to be equilibrated. Within each snapshot, the CRPF
was calculated with the CRPF cluster expansion by introducing a planar
fault within a (110) layer. The USF energies were recorded for each (110)
plane in the simulation cell for a planar fault obtained by translating the
two crystal halves along every 〈111〉 direction in the plane. At least 32,000
USF energies were collected for a single composition from the ensemble of
configurations generated with Monte-Carlo simulations. The stacking fault
energies were subsequently calculated by dividing the activation energy
by the area of the (110) plane in a simulation cell with a lattice parameter
scaled in accordance with Vegards Law.

DATA AVAILABILITY

The data is available upon reasonable request from the authors.

CODE AVAILABILITY

The tools to parameterize cluster expansions and perform Grand-Canonical Monte

Carlo calculations are available within the CASM software package47,54,55. Structures

to calculate the generalized stacking fault energies can be enumerated with the

multishifter software package53. Code to evaluate the cluster expanded GSF energies

around a slip plane of arbitrary orderings will be shared upon reasonable request.
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