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Abstract

Background: Although there is an enormous number of textual resources in the biomedical domain, currently,
manually curated resources cover only a small part of the existing knowledge. The vast majority of these information
is in unstructured form which contain nonstandard naming conventions. The task of named entity recognition, which
is the identification of entity names from text, is not adequate without a standardization step. Linking each identified
entity mention in text to an ontology/dictionary concept is an essential task to make sense of the identified entities.
This paper presents an unsupervised approach for the linking of named entities to concepts in an ontology/dictionary.
We propose an approach for the normalization of biomedical entities through an ontology/dictionary by using word
embeddings to represent semantic spaces, and a syntactic parser to give higher weight to the most informative word
in the named entity mentions.

Results: We applied the proposed method to two different normalization tasks: the normalization of bacteria
biotope entities through the Onto-Biotope ontology and the normalization of adverse drug reaction entities through
the Medical Dictionary for Regulatory Activities (MedDRA). The proposed method achieved a precision score of 65.9%,
which is 2.9 percentage points above the state-of-the-art result on the BioNLP Shared Task 2016 Bacteria Biotope test
data and a macro-averaged precision score of 68.7% on the Text Analysis Conference 2017 Adverse Drug Reaction test
data.

Conclusions: The core contribution of this paper is a syntax-based way of combining the individual word vectors to
form vectors for the named entity mentions and ontology concepts, which can then be used to measure the similarity
between them. The proposed approach is unsupervised and does not require labeled data, making it easily applicable
to different domains.

Keywords: Text mining, Natural language processing, Named entity normalization, Entity linking, Entity
categorization, Bacteria biotopes, Adverse drug reactions, Word embeddings

Background

Currently, the vast majority of the biomedical resources

are in unstructured form which originate from an assort-

ment of different resources that incorporate nonstandard

naming conventions, which makes the required informa-

tion difficult to use and understand [10]. Ontologies help

researchers to overcome these kinds of difficulties and

help researchers facilitate the vast amounts of biomed-

ical knowledge available [41]. An ontology can provide
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a unique identifier for describing information for each

entity, which solves the heterogeneity problem and pro-

vides standardized and homogeneous data [39].

Linking named entities in text through an ontology is an

essential process to make sense of the identified named

entities [11]. When an ontology/dictionary containing a

set of entities E and a text containing a set of entity men-

tions M are given, entity linking is the task of mapping

each named entity mentionm in the given text to its corre-

sponding entity e in the given ontology/dictionary, where

m ∈ M and e ∈ E [40]. This task is also called entity
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normalization, entity grounding, or entity categorization,

which are used interchangeably throughout this paper.

Figure 1 demonstrates a sample text with annotated bac-

teria habitat (biotope) mentions, which are represented

in bold and Fig. 2 demonstrates a sample portion from

Onto-Biotope, which is an ontology for bacteria habitats.

Given a sample text with annotated habitat mentions, the

aim of habitat entity normalization is to link the mentions

through the Onto-Biotope Ontology. For instance, “pedi-

atric”, “respiratory”, and “children less than 2 years of age”

are habitat entity mentions. The concept that is associated

with the “pediatric” habitat mention in the Onto-Biotope

ontology is “pediatric patient”, the one associated with the

“respiratory” habitat mention is “respiratory tract part”,

and for “children less than 2 years of age” it is “pediatric

patient”.

The association between the entity mention “pediatric”

and the ontology concept term name “pediatric patient”

can be relatively more easily detected due to the lexical

similarity between them. Similarly, the habitat mention

“respiratory” and the ontology concept “respiratory tract

part” also share a common word, making them lexically

similar. However, lexical similarity may not always exist

between entity mentions and concept term names or con-

cept synonyms. For example, there is no lexical similarity

between the habitat mention “children less than 2 years of

age” and ontology concept term name “pediatric patient”,

which calls for the utilization of semantic similarity.

Entity normalization can also be performed through a

dictionary. For instance, the sample sentence “In Study 3,

67% of patients treated with ADCETRIS experienced any

grade of neuropathy.” states a relation between the drug

mention “ADCETRIS” and adverse drug reaction men-

tion “neuropathy”. The adverse drug reaction mention

“neuropathy” can be normalized to the “peripheral neu-

ropathy” term in the Medical Dictionary for Regulatory

Activities (MedDRA) [7].

Even if the named entities are given, linking the iden-

tified named entities to a unique concept identifier in an

ontology/dictionary is not a trivial task in the biomedical

domain. There are many challenges in the task of named

entity linking through an ontology or a dictionary, two

of which are the variety and ambiguity problems of the

named entities [4]. A named entity may appear in different

surface forms in a given text, which is called the vari-

ety problem. Furthermore, two named entities with the

same surface form may have different semantic meanings,

which is called the ambiguity problem. Linking of named

entities for the biomedical domain has another big chal-

lenge besides these two common problems in the general

Fig. 1 Sample text. Sample abstract of [21] with habitat entity mentions annotated
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Fig. 2 Sample ontology. A sample portion from the Onto-Biotope
ontology

natural language processing domain. In the biomedical

domain, the training data is relatively smaller and the

number of the ontology/dictionary categories that should

be considered is larger compared to many other domains

in natural language processing [6]. This poses a challenge

for the standard supervised classification algorithms. For

example, there are 2,221 semantic categories in the Onto-

Biotope ontology, while the available training set contains

only 747 entity mentions, and 16,295 words. For adverse

drug reaction normalization, this situation is worse since

there are 22,499 MedDRA dictionary terms.

In this paper, for the ontology based normalization

of the named entity mentions in text, we propose an

unsupervised approach, which utilizes both semantic and

syntactic information. The proposed approach uses word

embeddings learned from large unlabeled text to cap-

ture semantic information and syntactic parsing informa-

tion to re-rank the candidate ontology/dictionary concept

terms. The proposed approach is tested on two different

data sets, which are the BioNLP Shared Task 2016 Bacteria

Biotopes (BB3) categorization sub-task data to normalize

habitat entities through the Onto-Biotope ontology and

the Text Analysis Conference 2017Adverse Drug Reaction

data to normalize adverse drug reactionmentions through

the MedDRA dictionary. On both data sets, the proposed

normalization method with syntactic re-ranking achieved

better performance than the normalization method with-

out syntactic re-ranking. Furthermore, we obtained the

new state-of-the-art results with 2.9 percentage points

above the previous best result for the Bacteria Biotopes

(BB3) categorization sub-task.

Related work

Several approaches have been proposed for biomedical

entity normalization for different types of biomedical

entities including genes/proteins [20, 32, 36, 46], bacte-

ria biotopes [6, 13, 23, 37, 43], and diseases [14, 28].

Early systems tried to link the entity mentions to the

knowledge base entities by utilizing dictionary look-up

and string matching algorithms [16, 36]. Some studies

[14, 23] used hand-written rules to measure the mor-

phological similarity between entity mentions and ontol-

ogy/dictionary entities, while others [17] automatically

learned patterns of variations of the entities. Machine-

learning based approaches, which learn the similarities

between biomedical entity mentions and ontology con-

cept names from labeled training data have also been

proposed and applied as a solution to the normalization

task of various biomedical entities such as diseases [28].

Most previous studies focused on utilizing morphologi-

cal information for named entity normalization. However,

morphological similarity alone is not adequate to nor-

malize biomedical entities, which generally have forms

different from the concept terms that they should be

tagged with [6]. Word embedding models, which learn

distributed representations of words from large unlabeled

corpora, are promising approaches for capturing seman-

tic information [34]. They have been successfully used in

several recent Natural Language Processing (NLP) tasks

including the biomedical domain [3, 8, 35, 42]. Recently,

word embeddings have also been used for the task of

biomedical named entity normalization. Li et al. [30]

proposed a convolutional neural network (CNN) architec-

ture leveraging semantic and morphological information,

which handles the biomedical entity normalization task

as a ranking problem. In the proposed method, firstly

candidates are generated using hand-crafted rules, and

then they are ranked according to semantic and morpho-

logical information, which are represented by a CNN-

based model. Experiments on two benchmark datasets

(the ShARe/CLEF eHealth dataset and the NCBI disease

dataset) showed that semantic information is beneficial

for the biomedical entity normalization task as well as

morphological information. However, the requirement of

hand-crafted rules and labeled data makes the adaptation

of this method to different domains harder and time-

consuming. Cho et al. [9] proposed a semi-supervised

approach that facilitates word embeddings to represent

semantic spaces for normalizing biomedical entities such

as disease names and plant names and obtained promis-

ing performance. This method requires a domain specific

corpus and dictionary. Therefore, the adaptation of it to other

domains isnoteasy, if there are no such resources available.

A number of community-wide challenges including the

BioCreative Challenges [1, 2, 22, 29, 47] and BioNLP

Shared Tasks [13, 24, 25, 37], which have been conducted
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to assist the progress of research in biomedical text min-

ing, also addressed the task of biomedical entity nor-

malization. The Bacteria Biotope task, whose ultimate

aim is information extraction regarding bacteria and their

habitats, was first addressed in the BioNLP Shared Task

2011 [5, 25], and has been conducted in 2013 [6, 37]

and 2016 again since then. We evaluated our proposed

approach on the BB-cat subtask of the 2016 edition of

the Bacteria Biotope task, which addressed the normal-

ization of habitat entity mentions in PubMed abstracts

using the OntoBiotope ontology [13]. In the official task,

the teams TagIt [12] and LIMSI [18] proposed rule-based

methods, while BOUN [43] proposed a similarity-based

method that utilizes both approximate string match-

ing and cosine similarity of word-vectors weighted with

Term Frequency-Inverse Document Frequency (TF-IDF).

According to the official results, the best precision (62%)

for habitat mention normalization was obtained by the

BOUN system.

The bacteria habitat mention normalization problem

continued to attract the attention of the researchers after

the shared task. CONTES is a recently proposed semi-

supervised method for linking habitat entity mentions

through the Onto-Biotope ontology [15]. The system

is based on word embeddings that are induced from

PubMed by utilizing the Word2Vec tool. The cosine sim-

ilarities between term vector representations and concept

vector representations are calculated to find themost sim-

ilar ontology concept to the given entity mention. They

applied the proposed normalization method to the test

dataset of the Bacteria Biotope 2016 Task 3 (BB-cat), and

obtained comparable results to that of the state-of-the-art

for the task of Bacteria Biotopes categorization. CONTES

contains a transformation step to make comparable the

term vectors and the entity vectors which are represented

in different dimensions. The need for the transformation

step makes the method semi-supervised, since it requires

labeled data for training the prediction model. Recently,

Mehryary et al. [33] used TF-IDF weighted vector space

representation for the named entity categorization of bac-

teria biotopes. Each ontology concept name and each

entity mention is represented with a TF-IDF weighted

vector considering each concept name in the ontology as

a separate document and calculating IDF weights based

on these names. The ontology concept with the highest

cosine similarity is assigned to a given entity mention.

Although they achieved state-of-the-art results in the nor-

malization task, the TF-IDF based scheme has limitations

in capturing the semantic relations between the ontology

concepts and entity mentions, since it is primarily based

on the surface forms of the words.

Besides the Bacteria Biotopes normalization task, we

also evaluate our approach on the task of normalizing

Adverse Drug Reaction (ADR) mentions in drug labels to

the MedDRA terms. We use the recently provided data

set from the Text Analysis Conference (TAC) 2017. Differ-

ent types of data sources such as electronic health records

[19], scientific publications, and social media data [38] and

different types of lexicons such as the Unified Medical

Language System (UMLS) [31] and the side effect resource

(SIDER) [44] have been used to extract ADRs from text.

Many of these studies proposed a lexicon-based match-

ing approach for ADRs recognition. Although a number

of studies have been conducted to automatically identify

ADRs in text and map them through a dictionary using

NLP techniques, as far as we know the normalization of

the ADRs through a dictionary has not been studied as a

separate task without named entity recognition.

Methods

We developed a semantic similarity based unsupervised

method for entity linking through an ontology/dictionary,

the workflow of which is displayed in Fig. 3. Given a set

of documents with annotated named entities and a cor-

responding ontology, the normalization task is done in

two steps. In the first step, the semantically most sim-

ilar ontology concepts are generated as candidates, and

in the second step, the candidates are re-ranked accord-

ing to the syntactic-based weighted semantic similarities.

The details of our approach are described in the following

subsections.

Data sets

Bacteria biotope entity normalization

In this study, we used the official data set that is provided

by the BioNLP Shared Task 2016 organizers for the Bac-

teria Biotope categorization subtask. Since our proposed

approach is unsupervised and does not require any train-

ing data, the training and development sets are used for

error analysis during the development of the system, and

the separate test set is used for evaluating the performance

of the proposed system. The data set provided by the

shared task organizers was created by collecting titles and

abstracts from PubMed, which contain general informa-

tion about bacteria and habitats. The data set, consisting

of 71 training, 36 development, and 54 test documents,

was manually annotated by the bioinformaticians of the

Bibliome team of MIG Laboratory at the Institut National

de Recherche Agronomique (INRA) [13].

Adverse drug reaction normalization

For Adverse Drug Reaction Normalization, we used the

official data set that is provided by the Text Analysis Con-

ference (TAC) 2017 organizers. The test set is used for

evaluating the performance of the proposed system. The

data set contains general information about drug labels

consisting of 101 training and 99 test documents, which

were manually annotated by the organizers.
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Fig. 3 System Workflow. Workflow of the Named Entity Normalization System

Preprocessing

In the preprocessing step, the annotated named entities

and the ontology concept names with their synonyms

are tokenized, and the stop words are removed from the

named entity mentions and the ontology concept names.

Furthermore, all non-ASCII characters are stripped from

both the named entities and the ontology concept names.

Word representations

Our proposed approach is mainly based on the assump-

tion that semantically similar words have similar vector

spaces. Based on this assumption, if the semantic similar-

ity of named entity mentions and ontology concept terms

can be computed, themost similar concept in the ontology

can be assigned as the normalized concept to the named

entity mention.

To compute the semantic similarity, each word is rep-

resented in the vector space as a real-valued vector using

a pre-trained word embedding model that is publicly

available [8]. The model has been trained leveraging word

vectors that were induced from PubMed by theWord2Vec

tool [34]. The trained model is applied to each word

to obtain the corresponding word vector. We used the

model variant with window size of 30, since it has been

shown to obtain higher performance in the biomedical

concept similarity and relatedness tasks in the previous

study by Chiu et al. [8].

Identifying the semantically similar ontology concepts

The vectors of the ontology concept terms and the ref-

erence named entities (i.e., the named entity mentions in

text) are computed in the same way as described below.

For each word in the named entities and ontology con-

cept terms, the vector representations are obtained by the

pre-trainedmodel as explained in the previous subsection.

For the multi-word named entities and ontology concepts,

the vector representations are computed by averaging the

vectors of their composing words. Figure 4 presents the
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Fig. 4 Sample multi-word expression. Computation of the corresponding real-value vector for a sample multi-word expression “a day-care center”,
where �e(t) is the word embedding vector for token t

computation of the vector representation for a sample

multi-word named entity “a day-care center” and shows

how the averaging is done. In the preprocessing step, the

stop-word “a” and the hyphen character are removed. The

tokens “day”, “care”, and “center” are considered and used

for averaging to compute the vector representation of the

multi-word named entity. Each token is represented with a

real-valued vector using the pre-trained word embedding

model that is explained in the previous subsection. The

real-valued vectors of the tokens comprising the multi-

word entity mention are summed to create a real-valued

vector, which is called �sum. At the end, �sum is divided by

the number of tokens other than the stop-words, which is

3 for the example entity mention, to obtain a normalized

real-valued vector for the multi-word named entity.

For each reference entity and for each ontology con-

cept term, a cosine similarity score is calculated to get

the semantic similarity between the related entity and

the ontology concept term. Since the vectors of ontology

concept terms and reference named entities are com-

puted in the same way, unlike the CONTES system,

there is no need for a transformation step for the vec-

tors in order to compute the similarity between them.

For each reference entity, ontology terms are ranked

according to the semantic similarity scores, the top k of

which are the candidates for syntactic weighting based

re-ranking.

We also investigated using word mover’s distance

(WMD), instead of cosine similarity. WMD is a distance

metric which represents text documents as a weighted

point cloud of embedded words and computes the dis-

tance between documents as the minimum cumulative

distance that words from a document need to travel to

another [27]. It is based on the idea that documents with-

out common words may convey similar meanings and

bag-of-words (BOW) is not enough to detect this kind of

similarity.

Syntactic re-ranking

Our system without syntactic analysis is not adequate

alone to normalize entitymentions like “children attending

a day-care center”. Table 1 (Before re-ranking part) shows

the output of our system without syntactic re-ranking

for the sample entity mention “children attending a day-

care center”. The semantically most similar concepts to

the mention are found as “OBT:001423 medical center”,

“OBT:001801 clinic”, and “OBT:000259 research and study

center”, which are false positives. The correct concept is

“OBT:002146 child”, which is very similar to the headword

“children” of the mention “children attending a day-care
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Table 1 Semantically most similar concepts to the entity
mention “children attending a day-care center” with/without
re-ranking

Rank Concept Similarity score

Before Re-ranking

1 OBT:001423 medical center 0.8297

2 OBT:001801 clinic 0.7917

28 OBT:002146 child 0.6979

After Re-ranking

1 OBT:002146 child 0.7484

3 OBT:001801 clinic 0.6519

24 OBT:001423 medical center 0.5460

center”. As this example shows, if the system can identify

the most informative word in the reference entity men-

tion, the correct concept can be assigned to it (see Table 1

(After re-ranking part)).

We proposed a re-ranking module based on syntac-

tic parsing to identify the correct concept from among

the top k candidates returned by the word-embedding

based similarity ranking. The re-ranking module makes

use of the Stanford Parser (version 3.8.0) [26] to detect the

most informative word in the reference entity mention. It

computes the semantic similarity between the most infor-

mative words of the reference mention and the candidate

ontology concept, and re-ranks the top k semantically

most similar concepts.

The intuition behind our re-ranking approach is that the

entity mentions are noun phrases and the heads of the

noun phrases are the most informative words in the men-

tions. To obtain the corresponding head words, the part-

of-speech tags and syntactic parses of the entity mentions

are required. We used the Stanford Parser by providing

the entity mentions as input and obtaining the syntactic

parses composed of their constituent phrases as output.

Next, the syntactic parses are processed to find the most

informative words in the mentions by utilizing the algo-

rithm whose pseudo-code is given in Fig. 5. According to

this algorithm, the top level rightmost “noun” is searched

in the tree structured syntactic parse and assigned as the

head of the mention phrase. For example, for the sam-

ple mention “children attending a day-care center”, the

Stanford Parser generates the syntactic parse, which is

shown in Figs. 6 and 7. Figure 6 demonstrates the syn-

tactic parse with its constituent phrases and Fig. 7 shows

the tree view. The head of the sample mention is found as

“children” and the head of the concept name “OBT:001423

medical center” is found as “center” by leveraging the

algorithm.

Fig. 5 Pseudo-code. Algorithm for finding the most informative word in an entity mention whose syntactic parse is given as input. NP: Noun Phrase;
NN: Noun singular; NNS: Noun plural ; NNP: Proper noun singular; NNPS: Proper Noun plural
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Fig. 6 Sample syntactic parse. Syntactic parse of the Stanford Parser for the sample named entity mention “children attending a day-care center”

After the detection of the head words of the phrases as

“children” for the “children attending a day-care center”

entity mention and “center” for the “OBT:001423 medical

center” ontology concept name, the semantic similarities

are recomputed based on these new information. The sim-

ilarity scores of the concepts with unrelated head words

(e.g. “OBT:001423medical center”) will be lower and those

of concepts with related head words (e.g. “OBT:002146

child”) will be higher after the re-ranking phase (see

Table 1).

The mathematical formulation of the syntactic weight-

ing based similarity used for re-ranking is shown in

Equation (1), where SRR(m, c) is the final computed sim-

ilarity between mention m and candidate concept c,

and SS is the semantic similarity, in which mhead is the

head word of the mention m and chead is the head

word of the concept c, SS(m, c) is the similarity between

mention m and concept c computed as described in

“Identifying the semantically similar ontology concepts”

section, and w is a weighting parameter which can take

values between 0 and 1.

SRR(m, c) = (w ∗ SS(mhead, chead)) + ((1 − w) ∗ SS(m, c))

(1)

Fig. 7 Tree view of the sample parse. Tree view of the syntactic parse
of the sample named entity mention “children attending a day-care

center”

Results

In this section, the results of the proposed systems both

with and without re-ranking are presented.

Evaluation metrics

Evaluation for bacteria biotopes

For evaluation of the bacteria biotopes entity normaliza-

tion predictions, we used the official on-line evaluation

service to compute the precision score, which is the official

measure used to rank the submissions in the BioNLP

SharedTask 2016Bacteria Biotopes categorization sub-task.

In the BioNLP Shared Task 2016 Bacteria Biotopes cate-

gorization sub-task, entities have been given and the par-

ticipants were required to predict the normalization of the

entities. In the official on-line evaluation, for each normal-

ized Habitat entity, Wang similarity W [45] is calculated

with s = 0.65 to measure the similarity between the ref-

erence and the predicted normalization. Wang similarity

is the Jaccard index between the two sets of the predicted

and the reference concept ancestors with a weighted fac-

tor ds, where d is the distance between the corresponding

concept and the ancestor, and s is a parameter between 0

and 1. The submissions are evaluated with their Precision

values:

Precision =
∑

Sp/N (2)

where Sp is the total Wang similarityW for all predictions

[13], and N is the number of predicted entities.

Evaluation for adverse drug reaction

For evaluation of the adverse drug reactions entity nor-

malization predictions, we computed the macro-averaged

andmicro-averaged scores for precision, recall and f-score

measures. True positives (TP), false positives (FP), and

false negatives (FN) are calculated by comparing the pre-

dicted normalization concept with the reference normal-

ization concept in the gold standard via exact matching.

To compute Micro-average scores, the true positives,

false positives, and false negatives of the system are

summed up for all drug labels to get the statistics (Eqs. 3

and 4).N is the total number of drug labels in the data set.
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Micro − average Precision =

N∑
c=1

(TPc)

N∑
c=1

(TPc + FPc)

(3)

Micro − average Recall =

N∑
c=1

(TPc)

N∑
c=1

(TPc + FNc)

(4)

On the other hand, the macro-averaged scores are com-

puted as the average of the individual precision and recall

values obtained on each drug label (Eqs. 5 and 6).

Macro − average Precision =

N∑
c=1

(Precisionc)

(N)
(5)

Macro − average Recall =

N∑
c=1

(Recallc)

(N)
(6)

Results for bacteria biotopes

Table 2 shows the results of our proposed approach with

and without syntactic re-ranking. The results show that

the system with the syntactic re-ranking module achieves

a higher performance. Recall that the proposed system

without re-ranking computes the vector representations

for the multi-word entities by averaging the vectors of

their composing words. On the other hand, the proposed

systemwith syntactic re-ranking computes the vector rep-

resentations by giving higher weights to the head words.

This means that instead of averaging the vector repre-

sentations, giving higher weights to the most informative

words is a more suitable way for vector representations of

multi-word entities.

Table 3 presents a comparison of the proposed sys-

tem, named as BOUNEL (BOUN Named Entity Linker),

with the prior work on the task of habitat named entity

normalization. We compared our results with the previ-

ous systems that are tested on the BioNLP Shared Task

2016 BB cat subtask test set. We computed two differ-

ent baseline results; the BASELINE-1 assigns the exact

match of the term in the ontology. In case of non-existence

of an exact match, BASELINE-1 assigns the term to the

root concept of the Onto-Biotope ontology hierarchy,

Table 2 Results for the system with and without syntactic
re-ranking

System Train Dev

Before Re-ranking 0.601 0.629

After Re-ranking 0.648 0.677

Precision values for the training and development data sets are reported. k is set to
5 and w is set as 0.25 for the re-ranking module

Table 3 Comparison with previous systems for the
normalization task of bacteria biotopes

System Precision

BOUNEL(Our system) 0.659

TURKU [33] 0.630

BOUN [43] 0.620

CONTES [15] 0.597

LIMSI [18] 0.438

BASELINE-2 0.322

BASELINE-1 0.225

Precision values for the test data set are reported. k is set to 5 and w to 0.25 for the
proposed system (BOUNEL) based on the results on the training and development
sets

which is “bacteria habitat” concept. On the other hand,

BASELINE-2 assigns all terms to the “bacteria habitat”

concept without searching for an exact match. The results

show that our system obtained a score of 65.9% which

is higher than both of the baselines BASELINE-1 and

BASELINE-2. Our proposed method also obtained higher

scores than all other previously proposed methods on the

bacteria biotope normalization task, achieving the new

state-of-the-art results.

Results for adverse drug reactions

Table 4 presents the results of the proposed system before

and after syntactic re-ranking for the task of adverse drug

reactions entity normalization on the Text Analysis Con-

ference 2017 Adverse Drug Reaction training and test data

sets. We used the same values for the parameters of the

re-ranking module as the bacteria biotope normalization

task (k=5 and w=0.25). Since there is no prior work on

Table 4 Results of the proposed method with/without
re-ranking on the adverse drug reaction normalization task

Baseline Before Re-ranking After Re-ranking

Training set

Macro-average Precision 0.999 0.737 0.742

Macro-average Recall 0.522 0.732 0.736

Macro-average F-score 0.686 0.735 0.739

Micro-average Precision 0.999 0.728 0.730

Micro-average Recall 0.513 0.723 0.725

Micro-average F-score 0.665 0.726 0.728

Test set

Macro-average Precision 0.999 0.683 0.687

Macro-average Recall 0.494 0.677 0.681

Macro-average F-score 0.661 0.675 0.684

Micro-average Precision 0.999 0.682 0.686

Micro-average Recall 0.489 0.675 0.680

Micro-average F-score 0.657 0.678 0.684

Precision, recall and f-score values for the training and test sets are reported
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the task of adverse drug reactions entity normalization

task on the same data set, we compared our results with

the baseline. We computed baseline results by assigning

the mention to the exact match of the term in the Med-

DRA dictionary. As the results on Table 4 demonstrate,

the new system with syntactic re-ranking obtained higher

precision, recall, and f-measure scores on both the train-

ing and test data sets than the system without syntactic

re-ranking. Furthermore, the new system with syntactic

re-ranking achieved significantly higher recall than the

baseline, as a result achieving higher f-measure scores.

Discussion

Bacteria biotopes

Table 5 shows the performance of the proposed system

without syntactic re-ranking for returning the correct

concept from the ontology among the top k ranked candi-

dates. For example, when k = 1, the concept assignment

is considered correct, only if the correct concept is ranked

first by the system. On the other hand, when k = 10, the

concept assignment is considered correct, if the correct

concepts is ranked in the top ten by the system. These

results motivated the development of the re-ranking mod-

ule, since as k increases, the precision of the system also

increases. The goal of syntactic re-ranking is to re-rank

the top k retrieved candidate concepts, so that the correct

concept moves to the first rank, as in the example shown

in Table 1.

Table 6 demonstrates the results of our proposed

approach with syntactic re-ranking, when the top k can-

didates retrieved by the system without re-ranking are

provided as input to the re-ranking module. As the results

show, for values of k = 10, k = 15, k = 20 and k =

25, the results are nearly the same on the training and

development sets, which means that after a threshold of

k = 5, different values of k make no big difference in the

results. Therefore, based on the results on the training and

development sets, k is chosen as 5 empirically.

We also investigated the effects of using different sim-

ilarity/distance metrics, word mover’s distance (WMD)

and cosine similarity. The results show that the system

with cosine similarity achieved better precision scores

than the system with WMD on both the training (WMD:

58.6%; Cosine: 60.1%) and development (WMD: 49.0%;

Cosine: 62.9%) data sets.

Table 5 Prediction performance of our system without syntactic
re-ranking among the semantically most similar top (k = 1, 5, 10,
20, 25, 50) concepts

k 1 5 10 15 20 25 50

Train 0.614 0.656 0.672 0.711 0.726 0.738 0.831

Dev 0.655 0.683 0.725 0.753 0.789 0.804 0.894

Precision values for the training and development data sets are reported when the
reference concept is among the top k

Table 6 Results for the system with syntactic re-ranking for the
different number of semantically most similar top (k = 5, 10, 15,
20, 25, 50) concepts

k 5 10 15 20 25 50

Train 0.648 0.634 0.637 0.639 0.640 0.643

Dev 0.677 0.668 0.667 0.667 0.668 0.632

Precision values for the training and development data sets are reported when the
reference concept is at the first rank after re-ranking the semantically most similar
top (k = 5, 10, 15, 20, 25, 50) concepts

Table 7 shows the effect of the parameter w, which is

used in Equation 1 to give weights to the most informative

words (head of the noun phrase) with the ultimate aim to

calculate the similarity between the named entity mention

phrases and the reference ontology terms. As the results

show, for w = 0.25 our proposed approach obtains higher

precision on both the training and the development sets.

During the error analysis of the proposed system with

syntactic re-ranking on the training and development sets,

we realized the existence of falsely normalized mentions,

which are possessive prepositional phrases (PPP). These

phrases include compound noun phrases in the “NP of

NP” form. For example, the entity mention “throats of

two healthy children” is composed of two noun phrases

“throats” and “two healthy children”, where the first NP

“throats” is the only informative NP for normalizing

the entity mention to the correct concept “OBT:000374

throat”. As a result of this fact, a syntax rule is added

before re-ranking to strip the non-informative words fol-

lowing “of” from the entitymentions, if they are possessive

prepositional phrases.

Adverse drug reactions

Although experimental results showed that the new sys-

tem with syntactic re-ranking obtained higher precision

scores on both data sets than the system without syntac-

tic re-ranking, the improvement of the new system on the

Text Analysis Conference 2017 Adverse Drug Reaction

(ADR) data set is lower compared to the improvement

that is achieved on the BioNLP Shared Task 2016 Bac-

teria Biotopes data set. Error analysis revealed two main

sources of errors, which are more prevalent in the ADR

data set. The first source of errors is the usage of abbrevia-

tions and acronyms as entity mentions, which are hard to

Table 7 Results for the system with different weights for the
most informative words (w = 0, 0.25, 0.50, 0.75)

w Train Dev

0 0.614 0.655

0.25 0.648 0.677

0.50 0.648 0.669

0.75 0.632 0.661

Precision values for the training and development data sets are reported
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normalize without incorporating the context of the men-

tions. For example, in the training set, there are entity

mentions such as “sjs” and “ten”, which are acronyms

that should be normalized to the corresponding con-

cepts “Stevens-Johnson syndrome” and “Toxic epidermal

necrolysis” in the MedDRA dictionary. Rare words are the

second source of errors. Although the word embedding

model, which is used to calculate the semantic similarities,

has been learned from PubMed articles, there may still

exist out of vocabulary words, which are rare. For example,

for the ADR mention “Neoscytalidium infections”, the

“Neoscytalidium” word does not exist in the model that is

used to calculate the word embeddings. In that case, the

semantically most related concepts are found incorrectly

by the proposed system considering only the existing

word “infections” as “Nosocomial infection”, “Opportunis-

tic infection” and “Granulicatella infection”, while the

correct concept is “Neoscytalidium infection”.

Conclusion

In this study, we introduce an unsupervised approach

for biomedical entity normalization through an ontology

by utilizing word embeddings and syntactic re-ranking.

The proposed approach is applied to the normalization

problem of the habitat entities through the Onto-Biotope

ontology and the adverse drug reaction entities to the

MedDRA dictionary, and tested on the BioNLP Shared

Task 2016 Bacteria Biotopes data set and the Text Anal-

ysis Conference 2017 Adverse Drug Reaction data set,

respectively. The new system with syntactic re-ranking

obtained higher precision scores on both data sets than

the systemwithout syntactic re-ranking. Furthermore, the

system achieved a precision score of 65.9% on the BioNLP

Shared Task 2016 Bacteria Biotopes data set, which is

2.9 percentage points above the current state-of-the-art,

demonstrating that it is as effective as supervised and

semi-supervised approaches for biomedical named entity

normalization.

Our proposed approach with syntactic re-ranking

(named as the BOUNEL system) uses the Stanford Parser,

which is a supervised parser. However, BOUNEL is unsu-

pervised in the sense that it does not require training data

manually annotated with entity mentions and their cor-

responding concepts in the ontology. Furthermore, the

Stanford Parser has not been re-trained using biomedi-

cal data, but the off-the-shelf parser pre-trained with the

Penn Treebank has been used. Therefore, the proposed

approach can be easily adapted for normalizing different

types of biomedical entities.

As future work, we will investigate incorporating the

context of the reference entity mentions in text into

the vector representations. Error analysis over the train-

ing sets revealed that the proposed approach is more

successful for the normalization of entity mentions whose

constituent words have semantic meanings, compared

to the entity mentions which contain abbreviations,

acronyms, or rare words. We believe that incorporating

context information may improve the performance of the

system for such entity mentions.
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