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Abstract. Detected photons originating from classical light beams can be described either by
means of photon statistics or by means of photocurrent statistics on a semiclassical basis. The
statistical parameters of these two descriptions have, up to now, only been related to each other
using vague, effective-time-constant arguments. We show that these relations are invalid for the
general case of time-varying stochastic photon rates and arbitrary detector impulse responses
and derive generally valid linking equations for the ensemble average, the shot noise variance
and the excess noise variance of the photon statistics and the photocurrent statistics due to a
random optical field. The derivations are based on a general definition of the time average that
allows an elegant treatment in the Fourier domain.

1. Introduction

The statistics of detected photons contained in classical light beams have been investigated
by several authors using semiclassical methods. The results are either expressed in terms
of photon statistics or in terms of photocurrent statistics. Both statistics have a common
starting point: the (generally stochastic) rate of photon arrjvalgn(z). If the detected
electromagnetic field possesses an adequate classical description, the photon rate can be
shown [1-3] to be proportional to the intensity of the electromagneticsfieefom this

photon rate one can calcul@itthe probability P, 7 (n) of finding exactlyn photons in the

time interval f,t 4+ T, which follows a Poisson process or a doubly stochastic Poisson
process whose ensemble averageg,r)., and variancea,flvr, can be shown to equal

(ner)e = (WD), @)
and
0n = (W + 0% @

using the abbreviation
h t+T
(VVt’,JT)e = / (Aph(‘f))e dr. 3)
t

1 E-mail address: pwinzer@nt.tuwien.ac.at

1 Symbols appearing in bold denote stochastic processes throughout this work.

§ With ‘intensity’ we denote the squared magnitude of the complex envelope of any field quantity fulfilling the
wave equation and being of dimensiond/m—1.

|| For a detailed derivation the reader is referred to appendix A or [4].
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The first term on the right-hand side of (2) is known st®t noiseand the second is
called excess noiseit is due to the stochastic electromagnetic field [4-6]. If the field is
deterministic, the light intensity (and therefore also the photon rate) has a variance of zero,
which in turn makes the excess noise term in (2) disappear.

Instead of calculating the counting statistics of detected photons, one can also calculate
the statistics of the random curreiit) produced in a photodetector. This is done using a
linear superposition of elementary impulse respohses

i(t) = lim Z X, h(t — kAL (4)
k=—00

whereh(t) is the detector’s response to a single photoelectron evenXanid a random
variable that can either—with a well defined probability—take the value one, meaning that
a photon is detected ink{, kr + At], or zero, meaning that there is no detection in that
interval.

Using this model, the ensemble average of the current can be expressed as

(E(®))e = (A(®))e % h(2) ©)
where the symbok denotes a convolution,

(o]

x(@)*y(t) = / x(t)y@t —1)dr

—00

and

(1) = nApn(t) (6)

is the photoelectron rate (s the detector’s quantum efficiency). The variance of the current
then reads (cf [2, 8])

o2 (1) = (A1) x h2(1) + // Ca(t, T) h(t — T) h(t — 7)) dr dr’ (7
whereCy(z, T’) is the autocovariance (),

CA(r, T) = (A AT))e = (A(D)e (AT))e-

Note that both the ensemble average and variance are time dependent in the general case,
i.e. we have to deal with non-stationary stochastic processes. (The widely used formula for
shot noiseai2 = 2e(t). By, is only obtained if the photon rate is stationary and additionally
has a bandwidth that is much smaller than the detector bandwidth (cf [9]).) For a precise
treatment and to avoid any confusion, it is thus important to wrfte) and not justs?, as
often found in the literature.

As in equation (2), the first term of the right-hand side of (7) represents shot noise,
whereas the second term is excess noise due to the randomnass.of(If the field is
deterministic, the autocovariance of the photon rate vanishes and the shot noise term is the
only one remaining in (7).)

The striking similarity between the statistical parameters of the two different statistical
descriptions of detected photons invokes the question of whether there are linking equations
between the means and variances of the two descriptions, i.e. between equations (1) and
(5) on the one hand and (2) and (7) on the other. Many authors (see e.g. [7,10-12])
have established such linking equations using a vague, effective-time-constant argument,
neglecting the fact thaApn(r) may be either a deterministic and time-varying or even a

1 For a detailed derivation the reader is referred to appendix B or [2, 7].



Photon statistics and photocurrent statistics 645

stochastic (and not necessarily stationary) quantity. The equations used by the cited authors
are of the form

(1)) = %U(nr,n)e ®)

andf
62
ol (1) = —5n(n.7,). ©)
Th
where e denotes the elementary charge &afid stands for the effective duration of the
detector’s impulse response.

In this work we establish very general equations linking the ensemble average and the
variance of the photon statistics to the ensemble average and the variance of the photocurrent
statistics. To accomplish this task, we use a solid definition of the time average, making
use of some properties of the Fourier transform. All our derivations will take into account
arbitrary stochastic photon rates. We show that (8) and (9) are wrong in general; they only
hold in the limit of a stationary stochastic or of a constant deterministic optical intensity. For
equation (9) to be valid, the time—bandwidth product of the photodetector, defined below,
additionally has to be minimum, which puts some restrictions on the detector's impulse
response. An example at the end of the paper, which assumes a stochastic photon rate, will
demonstrate the validity of the relations obtained.

To clearly differentiate between ensemble average, time average and realization of a
stochastic process, the notation is as follows: a stochastic pregessppears as a bold
characterx(¢) being any realization of it. The ensemble average is expresseéd(gs.,
whereas the time average is either writterw&s or, equivalently,(x (7));.sc-

2. Definition of time averages

In this section we will give a solid definition of time averages, valid for all signals of
physical interest for which temporal averaging makes sense. In other words, we consider
either time-limited signalg (¢) with duration7 or time-unlimited signalsc(#) possessing
an infinite amount of energy Time-unlimited signals containing a finite amount of energy
(e.g. a Gaussian pulse) will not be considered here, as the concept of time averaging is
meaningless in that case; in order to include such signals into our theory, they have to be
made time limited by means of windowing and are then of the same typé as

It is important to note that there are, in fact, two independent definitions of the time
average operator, namely

) 1 T/2
(X))o = lim T /mx(t) dt (10)
for time-unlimited signals and

1 T/2
(XMO)r = 7/ X(t)dr (11)

T/2

1 The photocurrent’s variance is sometimes edenivedusing (9).
i As we use the Fourier transform extensively, it has to be emphasized that time-unlimited signals can be Fourier
transformed using the theory of distributions.
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for time-limited ones. Let us first consider the time average for time-unlimited signals: The
weight of the Dirac impulse in the spectrum oft) at w = 0, X(0), is equal to (10). To
see this, we write (10) in the form

T/2
x())r.00 = I|m —/ / X (jw) € dow dr (12)
T—oo T T/2 27‘[
where X (jw) denotes the Fourier transform ofz),
X (jw) = / x(1) €7 dr. (13)

Equation (12) can then be shown to equal

sin(wT/2)

1 o0 .
(0o = 5 Jim f XG0

T—o00

dw (14)

where it is assumed that the limit and the integral expressions can be interchanged. The
sin(wT/2)/(wT/2) function equals 1 ar = 0, whereas it converges to zero at all other
frequencies ifT’ tends to infinity. Thus the only term surviving the integration is the weight

of a Dirac impulse centred ab = 0O, X(0): decomposingX (jw) into X(0)§(w) + X’(jw)

we get

(D) 100 = % T”L“oo/oo X(O)a(w)% do + % /OO K(jo fim _S'r;()‘;%z) do
= if((O). (15)
2

Let us now consider the case of a time-limited sigi@l). If we makex(¢) periodic
with period T we get a new, time-unlimited signalz); its time average then reads

1, .1t
(Xx(®))r.oo = ZX(O): lim ?/ x (1) dr

T—o00 —-T/2

*k+D1T

N
=m, 2N + 1T £ fkT X(r)dr = (X(D)r.1 (16)

where N is a positive integer. ThuSl/Zn))?(O) can be interpreted as the time average of
the time-limited signak (¢)t.
When speaking about time averages we will therefore solely use the unified definition

S 1.
x(1) = (x(D)) 1,00 = ZX(O) (17)

and assume tacitly that time-limited signals are made periodic, as explained above.

3. The linking equations

It was sketched in the introduction and is explained in detail in appendices A and B how
the ensemble averages and variances of the photon statistics and the photocurrent statistics

1 The procedure of making the sign&lt) periodic for the definition of a time average may look strange at first
glance. However, it will be seen below that it in fact unifies the derivations for time-limited and time-unlimited
signals.
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can be expressed for arbitrary stochastic optical fields. The results are

h
(nir)e = (WPp)e (18)
h
o= Wiet ohm (19)
< ” t.T
0'2 2
m.,7,shot On, r,excess

for the photon statistics and

(@2(1))e = (A())e x h(2) (20)
o2 (t) = (A(1))e * h2(1) + // Ca(t, T h(t — v) h(t — /) dr dt’ (21)
—2\,_z —00
Gi’ShOt(t) Uiz,excesgt)

for the photocurrent statistics.

It is apparent that thinstantaneousalues of the statistical parameters, as expressed in
the above equations, cannot be directly related to each other. Their time averages, however,
can, as will now be shown. After having derived general formulae valid for arbitrary
stochastic fields, we will specialize for the case where the field is random and stationary or
deterministic and constant with respect to time; these cases will be found to be in agreement
with the formulae found in the literature, equations (8) and (9), if we additionally restrict
our attention to photodetectors whose time—bandwidth product is minimum.

3.1. The ensemble average

We will start establishing a link between the ensemble averages of the two statistical
descriptions. The time average of equation (20) is evaluated easily using the results of
the previous section,

1.
(i(0)e = 5 A0 H(O) (22)

if A(jw) andH (jw) are the spectra af\(r)), andh(z), respectively. Equation (18), on the
other hand, can be written in the form

t+T
D). = W), = n / Apn(D))e dr

= / ft —)A(T)) dr = f(2) * (A(D))e (23)
where f(¢) is a window function defined as
A = 1 -T<t<0 (24)
Fo = 0 elsewhere.

The temporal mean of the convolution in (23) can easily be evaluated using the Fourier
transform. If F(jw) denotes the spectrum gf(), we obtain

I 1. 1.
n(nyr)e = ZA(O) F(0) = ZA(O) T. (25)
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Combining (25) and (22) yields the desired link,

—_  nH(©)
(60). =

which is a general result for the ensemble averages of the two statistical descriptions. Note
that only thetime average®f the two statistics can be related to each other. This is the
most important difference between our equation (26) and (8). In the case of a random
but stationary optical field, the ensemble averages are time independent and, observing
H(0) = ¢, which holds for real, non-multiplying photodetectors, we arrive at (8). If the
optical field is deterministic and constant we, too, arrive at (8).

(nt.T>e (26)

3.2. The shot noise variance

As the variance of both stochastic descriptions splits additively into a shot noise part and an
excess noise part, we will treat the two terms separately. Assuming a real-valued function
h(t) and applying basic Fourier transform relations, the time average of the shot noise part
of (21) can be expressed as

- 1. A [>
ol spot) = 5 MO H'(0) = % f_ |H (jo) * deo 27)

whereH'(jw) stands for the Fourier transform bf(z). As the shot noise part of (19) equals
the ensemble average, we can use (23) directly; this yields the desired linking equation,

ool = = [ G o 0 8)
—00

In order to arrive at a relation similar to (9), we have to introduce a bandwidth definition
called the power equivalent width (cf [7]),

S0 1X (jo) |7 do

21 B, = - 29
2|X (jo) |20 (29)

and an appropriate definition of the time duration [13, 14],

® Jx(r)] dr)?
= Ul (30)
[oo 1x ()] dr
which satisfy the time—bandwidth product relation

B.T, > 1. (31)

The equality sign can easily be shown to hold for the important special case where
|H (jw)|max = |H(0)| andh(z) > 0 for all ¢, regardless of the pulse shape.

Using the above definitions together with the fact that the variance of the photon statistics
equals its mean, we arrive at

n|H (o)

Giz,shot(t) > T2 max (ne,7,)e- (32)
h

Note that we had to calculate the variance of the photon statistics for the effective temporal
duration of the detector’'s impulse respongg, for the sake of a fair comparison.
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Inequality (32)only reduces to an equality similar in form to (9) if we assume the
photodetector’s impulse response to be always posiideto have a spectrum that satisfies
|H(jw)lmax = |H(0)] = e. If we specialize further, assuming either a stochastic and
stationary or a deterministic and constant optical intensity, the time average operators
disappear, too, and we arrive at equation (9).

3.3. The excess noise variance

To combine the excess noise components of the two statistical descriptions we use the
generally valid relation

o2 = (%), — (x)? (33)

T e

and writeo? ,, as
Wr

+T 2 t+T
nzasvph = <</ A1) dr) > —</ A1) d‘L’>

4T 14T ‘ t +T ) +T
= <f / AT A )drdt’ — / f (AT))e (AT dr dr/>

+T 4T 00
:/ / Cx(r, ) dr dr':/f Ca(t, T ft =) f@t —1tHdrdr'. (34)

As before, f () denotes the time-window function (24). This equation can be interpreted
as a two-dimensional convolution (see appendix C).
Using (19) and the results of appendix C we obtain for the temporal meaﬁvm

2

2 2 2 S (i@ i (D) i ()y2
n Uﬁ/‘r,excessz n UWp,h. = E SC,\(lel ) _lel )|F(lel )]
’ i

A b i Asif@PT/2)

= e, (o, —joi) 2L T2 (35)
i w0

if SCA(jwl,jwz) denotes the weight of the Dirac impulse(at, w,) in the two-dimensional

spectrum ofC) (11, t2). Similarly, we get for the excess noise part of (21),

aiz,excesgt) = Z S‘Cx(ng)’ _jwii)”H(ij))'z' (36)

Combining (35) and (36) yields the desired link between the excess noise parts of (19) and
(21). A factor of proportionality, however, cannot be given in the general case. Only in
special cases, wherg:, (jw1, jwz) has a single Dirac impulse or only impulses with the
same weight on the straight linejj = —jw,, can such a factor be given. This is the case

in the example addressed in the next section.

4. Example

In this section we demonstrate the validity of the linking equations between the ensemble
averages, the shot noise and the excess noise according to equations (26), (28) and (35)
(36) considering an example. We will study the case where the sum of two identically
polarized and transversally homogenous optical fields, given by their (scalar) analytic
signalg Viexp(jwit) and Vo exp(jwat) exp(j¢), impinges on a photodetector (this is the

t The physical quantities represented by these signals are proportionalf nv!, as mentioned in the
introduction.
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case in a heterodyne set-up, for instaneg)andw, are the optical frequencies awfis a
random phase, equally distributed in fr]. The photon rate\pn(¢) then reads

Aph(?) = ,% |V expjwut) + Vzexpwar) explie)|”

A

" ho

according to (A3). The variablg denotes the area of detecti@nyepresents the arithmetic
mean of the two beating frequencies making up the photons’ energiegy@nrd w1 — w».

[V12 + V22 + 2V1V, coq Awt + d))] (37)

4.1. Photon statistics

Using (A2) and (37), the integrated photon rzﬂép; can be written in the form

41V,
Aw

A
WP = _—|:V12T + V2T +

= cos(3A0(2t + T) + ¢) sin(%AwT)]. (38)

As ¢ is equally distributed in [02r], the ensemble average and variancd?ﬁf? are

A
(WD), = —=[VIT + V3T] (39)
and
A2 8V2v2
2 172 i 1
O = s an Sir? (2AwT). (40)

This leads to a photon counting distribution of variance

2 ph 2 A 2 2 A? 8‘/12‘/22 in? (L
e = (Wip)e +opm = —[VIT + VZT] + T A S (3A0T) (41)
and mean
A
(nir)e = (W), = —[VET + V4T] (42)

according to (18) and (19). As usual, the first term of (41) represents shot noise and the
second is excess noise.

4.2. Current statistics

From (37) we get for the photoelectron rate

(1) = nApn(t) = ;l—g[vf + VZ 4 2ViVocoAwt + ¢)]. (43)
As we are dealing with a wide-sense stationary stochastic process in this example, the
ensemble average and variance are time independent, and the easiest way to determine the
variance of the photocurrent is to first calculate its spectrwwhich, integrated ovew,
gives the power of the stochastic process. Subtracting the squared ensemble average then
yields the variance.

 The spectrum of the photocurrent is given$iyjw) = [(A(1))e +Sx(jw)]| H (jw)|2, whereSy (jo) is the spectrum
of A(¢) and |H (jw)| is the Fourier transform af(z). A derivation of this formula can be found in [2, 8].
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Using the expression

Ra(7) = (}%)2([%2 + V]2 + 2(VaVo)? cos Awr)) (44)
for the autocorrelation oA(r) and

A@)e = %[vf + VZ] (45)
for its mean, we get
Si(jw) = [Vl + V2 + 22 = (271(Vl + V2)28(w)

+21(ViV2)’[8(0 — Aw) + 8(w + Aw)])} |H (jo)|? (46)

for the spectrum of the photocurrent. The symb@b) denotes the Dirac impulse.
The mean of the stochastic procegs) can be obtained directly from (20) using (45).
This yields

nA A|H(O
@), = (i), = h_[vl + vz]/ h(z)dr %[v1 + VZ]. (47)
The variance of(¢) can then be calculated to be
02(0) = 02(1) = (1)), — (i) = — / SiGje) doo — (5(1))2
nA
= 2|H (jo)|maxloBi + 2(V1V2) ( ) |H(jAw)? (48)

where B, is defined in (29) andly stands for(nA/h@)[VZ + VZ]|H(0)|. The first

term of the right-hand side of (48) is attributable to shot noise only, which can be seen
considering the situation where the phasis deterministi¢. Under the realistic assumption
|H(0)| = |H (jw)|max We thus have the relations

fshol?) = 21H (0)| 1o By, (49)

and

S nA
9, excesgt) =2(V1V2) < ) |H(JACU)| (50)

Applying the linking equations (26) and (28) to the pairs (42)(47), (41) + (49)
shows that they are valid for this example. In order to show the validity of {3%36),
we calculate the spectrum of the autocovarianca@j. This yields

o A\?
Sey (jor, joz) = (7:’—5> A2 VRV (w1 + Aw) + (w1 — Aw)]8 (w1 + w2). (51)

1 In order to demonstrate the generality of the linking equations, we do not sub$ttu® = e, which would

be true if a detector without any filtering in the electrical regime were employed.

1 In this case we gebiz(t) = 2|H(0)|IoB;, for the variance of the process, which is pure shot noise, as no
randomness is introduced by the optical field.
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S(‘}V((Dl 50‘)2)

Figure 1. The two-dimensional Fourier transforfiz, (jo1, jw2) has two Dirac impulses on the
line w1 = —wp.

As depicted in figure 1, there are two Dirac impulses with equal weights on the straight
line w1 = —w,. This means that the sums in (41) and (49) can be reduced to a factor of
proportionality and the final link for this example reads

2

2 H 2 >
Uiz,excesgt) =n"|H(JAw)| moﬁj,excess

5. Conclusion

We have shown that the traditional linking equations between the ensemble averages and
shot noise variances of the photon statistics and the photocurrent statistics, equations (8)
and (9), areonly valid in the special case where the optical field is either random and
stationary or deterministic and constant with respect to time. For equation (9) to apply, we
additionally have to demand that the impulse response of the detector fulfils the minimum
time—bandwidth producB, 7), = % which is the case for impulse responses that are always
positive and possess a spectral maximune at 0. We have derived linking equations that

are valid for arbitrary time-varying stochastic photon rates and arbitrary detector impulse
responses. The traditional formulae are reproduced if the above restrictions are met.

The major point in our results is that it is only possible to relatetiime average®f
the statistical parameters but not their instantaneous values in the general case. A careful
definition of the time average in this context allows an elegant treatment in the Fourier
domain.

Apart from a generalization of the linking equations for the ensemble averages and
the shot noise variances, a relation has been found between the excess noise terms of the
photon statistics and the photocurrent statistics. Under certain restrictions imposed on the
autocovariance function of the photon rate, even a multiplicative factor linking the two
variances can be given.

The validity of the equations obtained has been demonstrated in an example related to
optical heterodyning.
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Appendix A. Photon statistics

In this appendix we will give a compact derivation of the ensemble average and variance
of the photon counting statistics for a stochastic, but classical, optical field.

It can be shown (see e.g. [4]) that the number of photons contained by a coherent optical
field, i.e. a field with deterministic classical field quantities, form a random point process
that is Poisson distributed. The probability of detecting exacthhotoelectrons in the time
interval [t,t + T], P, r(n), is therefore given by

(th)n
Prr(n) =~ exp(~W/}) (A1)
t+T .
WPy = / Apn(7) dr (A2)
t

whereipn(?) is the photon rate of the coherent electromagnetic fieltis related to the
real part of the complex Poynting vector of the optical fidl¢;, ), by

1 e -
Aph(t) = 7;/:41(”’ 1) dr (A3)

where A denotes the area of detection andstands for the optical frequency.
Using the total probability theorem, also known as Mandel’'s formula (see e.g. [4]), the
total probability of detecting exactly photons in the time intervak [t + At] becomes

o (WP exp(— WP
P,,T(n>=f M) X0 o)
0

n!

Py (WD) dWPy (A%)

wherep,, (WPh) is the probability density o . The result of this integration is known

t,T ’ B
as a doubly stochastic Poisson distribution [4, 5]. The mean and variance of the doubly
stochastic distribution can now be calculated to be

(nir)e = (WP, (A5)
and
On = (W + 07 . (A6)

The first term of this equation is the fundamental shot noise also encountered in the
case of a deterministic electromagnetic field and the second term, the excess noise, is due
to the randomness of the optical field.

Appendix B. Photocurrent statistics

Expanding the Poisson distribution (Al) in a Taylor series for small valugs efAt¢, the
probability of finding exactly one photon in a time interval{+ Ar] can be written as

P[one photon in{, t + Ar]] = Apn(r) At + O(A1) (B1)
where O denotes the Landau symbol.

T Any realizationx(r) of a stochastic process(r) can be regarded as a deterministic function. Thg(r) can
be considered to be the photon rate associated with either a coherent optical field or with one particular realization
of a stochastic field.
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If the photons impinging on a detector obey Poisson or doubly stochastic Poisson
statistics, it can be shown [7, 15] that the photoelectrons produced in a detector with
guantum efficiencyy, too, obey Poisson or doubly stochastic Poisson statistics; only the
photon rateipn(t) has to be substituted by the photoelectron vet® = nipn(r). From
(B1) we thus get for the probability of observing a single photoelectrom,inHf Ar],

P[one photoelectron ine [t + Ar]] = A(r) At (B2)

if Ar is small enough to negle@(At).
As the detected photons form a stochastic process, the photocurrent has to be modelled
as a stochastic process, too. Following [7], the current can be put as

i(r) = lim > Xih(t — kAt (B3)
k=—00

where X} is a discrete random variable that takes the value 1 if a photoelectron is produced
in [kz, kt + At] and O if there is no detection in that time interval. The functign) denotes
the system’s impulse response.

As equation (B2) is only valid for a coherent field or for a particular realization of a
random field, the total probability theorem again has to be employed,

PIX, = 1] = / PLX, = 1 A = ] pa, Gup) g (84)

—0Q

where A, stands forA(kAr), pa, (1) is its probability density andP[A|B] is the usual
abbreviation for ‘the probability of evemt under the condition thaB is satisfied’.

Performing some rather lengthy calculations on (B3), the ensemble average of the current
becomes

(2@®)e = (A@))e x h(2) (BS)
and the variance follows as

o2 (t) = (A1) x h2(1) + ffoo Ca(t, T)h(t — 1) h(t —t/)drd’  (B6)

where the symbok denotes a convolution,

e}

x(@)x y(t) = / x(t)y(t —1)dr

—00

and Cy(z, t’) is the autocovariance function of the stochastic process
Ca(r, T) = (A(@) A(T))e = (A(D))e (A(T))e-

Like the variance of the photon statistics, the photocurrent statistics’ variance splits
additively into two parts. The first one, also present in the case of a deterministic
electromagnetic field, is solely due to the quantized nature of light; it is called shot noise.
The second term can be ascribed to the random optical field; it is excess noise.

Appendix C. The two-dimensional Fourier transform

We have to evaluate the time average of a sigrial given in the form

a(t) = //oo b(r,t) f(t—1) f(t — ) dr dr'. (Cy)
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This equation can be treated using the two-dimensional Fourier transform
Sl . .
X(jowr, jwp) = // x(t1, 1) g Joh gTlenl dry dr, (C2)
—00
and its inverse
1 0 ; ;
x(t1, 1) = ) // X(ja)l, ]a)z) geis goal da)l d(,z)z (CS)
Vb4 oo
using the following procedure: first, we define the functidfy,, r,) as
oo
a(t, ) = // b(t,t) f(t1 — 1) f(to — ') dr dr’. (C4)
—o0

It can be shown that the two-dimensional Fourier transform (C2) @f, t,) can be written
as
A'(jo1, jw2) = B(jwn, jw2) F(jw1) F(jw2) (C5)

where B(jw1, jwz) denotes the two-dimensional Fourier transformbof, r2) and F(jw)
stands for the one-dimensional Fourier transformfof). This is a generalization of the
(one-dimensional) convolution. The time average:@f) = a’'(¢, t) then follows to be

o 1 T/2
a(t) =Tlim 7/ a(t,r)dr

—> 00 7T/2
1 © o sinf(w + w)T/2]
= A(jws, | dw; d
o //;oo (jo1, jw2) Am (011 ) T2 w1 dwy
which, using (C5) and the arguments leading to (14), can be simplified to yield
a(®) =Y By, —jw)|F (o)) (C6)

if f(¢) is real. The sum has to be taken over the weights of all Dirac impulses in the
two-dimensional spectrum @f(z1, t2) lying on the straight linev; = —w;.
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