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Abstract

Short term food security issues require reliable crop forecasting data to identify the population at risk of food insecurity and

quantify the anticipated food deficit. The assessment of the current early warning and crop forecasting system which was

designed in mid 80’s identified a number of deficiencies that have serious impact on the timeliness and reliability of the data.

We developed a newmethod to forecast maize yield across smallholder farmers’ fields in Tanzania (Morogoro, Kagera and Tanga

districts) by integrating field-based survey with a process-based mechanistic crop simulation model. The method has shown to

provide acceptable forecasts (r2 values of 0.94, 0.88 and 0.5 in Tanga, Morogoro and Kagera districts, respectively) 14–77 days

prior to crop harvest across the three districts, in spite of wide range of maize growing conditions (final yields ranged from 0.2–

5.9 t/ha). This study highlights the possibility of achieving accurate yield forecasts, and scaling up to regional levels for

smallholder farming systems, where uncertainties in management conditions and field size are large.
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1 Introduction

Crop yield forecasts provide a distribution of expected yield

prior to crop harvests (Basso and Liu 2019). Knowing the

expected yield of major food commodities in advance of har-

vesting is critical for national food security (Jayne and Rashid

2010; Stone and Meinke 2005). At a national level, food pro-

duction forecasts are used for to make decisions on importing

or exporting food commodities and their trading prices

(Delincé 2017). Food policies regarding trading affect nation-

al food supply and food security in Africa (Wright and Cafiero

2011; Sitko et al. 2018). At a field level, food supply is deter-

mined by crop productivity. In-season crop yield forecasts

provide management suggestions to optimize resource use

efficiency (e.g. nitrogen fertilizer) and to achieve yield poten-

tial at a field level (Raun et al. 2005; Zinyengere et al. 2011).

Many countries have institutional infrastructure for opera-

tional crop yield forecasts for strategic planning. Government

agencies are involved in providing information about field

conditions, crop status and weather conditions to release mul-

tiple stage yield forecasts before planting, during the growing

season, and prior to harvest (Gennari and Fonteneau 2016).

The assessment of the current early warning and crop fore-

casting system which was designed in mid 80’s identified a

number of deficiencies that have serious impact on the time-

liness and reliability of the data (Basso and Liu 2019; Gennari

and Fonteneau 2016; Luo et al. 2011).

There are three major approaches to forecasting crop yield:

expert-based assessments (e.g. interviews and field surveys), sta-

tistical models, and process-based models (Basso and Liu 2019).

Interviews with farmers can provide subjective expectations on

end-of-season yield (Nandram et al. 2014; Pease et al. 1993).

Field surveys with crop cutting provide objective yield estimate

prior to harvesting. Statistical models apply different techniques

(regression, Bayesian approaches, machine learning techniques)

to relate historical yield records to historical within-season

agrometeorological variables, variables derived from remotely

sensed vegetation indices and/or crop simulation model outputs

to predict yield based on the growing-season information
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(Johnson 2014; Lobell et al. 2015). Crop simulation models pro-

duce not only end-of-season yield but also yield distributions

based on crop genotypes, soil conditions, typical management

practices, and in-season weather based on historical climate or

weather forecasts, or by assimilating remotely sensed informa-

tion (Arkin et al. 1980; Jones et al. 2017; Kadaja et al. 2009;

Reynolds et al. 2000).

Despite the extensive studies on yield forecasting method-

ology, most of the work has been done for developed nations

where fields are likely to be large with one single crop per

growing season, while only a small fraction of the literature

has focused on yield forecasting methods for smallholder

farming systems, either pure stands or intercropping (Basso

and Liu 2019). Much work done so far in yield prediction has

explored the use of statistical agrometeorological models,

where yield is forecasted based on in-season agronomic (e.g.

leaf area index, fertilizer use, and planting date) and meteoro-

logical data, either from observations or derived from satellites

(Basso and Liu 2019; Choularton and Krishnamurthy 2019;

Coughlan de Perez et al. 2019). Because the accuracy is

constrained by the ranges of agrometeorological conditions

that were included in the model development, the scalability

of the statistical models to different years, to other regions and

to other crops is limited (Katz 1977). A few researchers have

used process-based model with previous seasonal weather da-

ta to provide yield forecasts for sorghum in Burkina Faso

(Mishra et al. 2008), and within-season satellite-derived rain-

fall estimate for maize yield forecasting in South Africa and

Kenya (Lourens and De Jager 1997; Reynolds et al. 2000).

A recent advance in the statistical models for yield fore-

casts for smallholder farmers was the development of regres-

sion models with growing-season weather, remotely sensed

vegetation indices, and crop simulation model outputs and

their applications to estimate final yield (Burke and Lobell

2017; Lobell et al. 2015). This approach relies on growing-

season weather information (e.g. rainfall in the last months of

the growing season) or vegetation indices (e.g. peak normal-

ized difference vegetation index) and provides yield estimates

before the end of the growing season.

The lead time and skills of maize yield forecasts are limited

for smallholder maize cropping systems in Africa. In most

studies, the yield forecast was delivered at harvest time but

not during the growing season (Basso and Liu 2019). One

attempt was made to forecast maize yield using

agrometeorological models, which were based on both climat-

ic variables from weather stations and vegetation indices de-

rived from satellite imageries, at initial and vegetative stage in

Kenya (Rojas 2007). The reported r-squared values from the

forecasted and observed yield regression model were mostly

less than 0.5 when the forecasts were made at vegetative or

reproductive stage (Mkhabela et al. 2005; Rojas 2007;

Schauberger et al. 2017). A few cases in Kenya and

Swaziland had higher correlation between the forecasted

yield, made a few months before harvest, and the final yield,

with r-squared values greater than 0.7 (Mkhabela et al. 2005;

Rojas 2007). Others used regression models to forecast yield

in Zimbabwe and Botswana at maturity based on climatic

variables (Manatsa et al. 2011; Vossen 1990) and satellite

derived vegetation indices (Kuri et al. 2014; Unganai and

Kogan 1998), and obtained adequate forecasting accuracy,

with r-squared values over 0.8. It has also been noted that

forecasting procedures, particularly when statistically based,

performed much worse when applied to smallholder farming

systems in Africa, compared to large farms in the US (Azzari

et al. 2017; Schauberger et al. 2017).

In this study, we present a new maize yield forecasting

method that provides yield forecast for governmental agencies

before the crop is harvested (14–77 days prior to harvest). The

objective of this paper was to develop and validate a new

method to forecast maize grain yield based on the integration

of field survey and crop simulation model in three regions in

the United Republic of Tanzania (Tanzania hereafter).

2 Materials and methods

2.1 Context of the research project

Accurate and reliable crop yield forecasting data to identify

the population at risk of food insecurity and quantify the an-

ticipated food deficit is a key policy concern of the

Government of Tanzania. The current forecasting system of

Tanzania presents a number of deficiencies that have serious

impact on the timeliness and reliability of the data.

Improvement of the crop forecasting system was one of

the actions identified under Strategic Objective 3 (“ratio-

nalize statistical operations and processes, improving

quality and relevance to users of agriculture statistics da-

ta”) of Tanzania Agricultural Statistics Strategic Plan

(ASSP) recently prepared and adopted by the government.

This research project, designed to develop a new and

practical method to provide accurate and timely crop yield

forecasts for the Government of Tanzania, was selected

under the framework of the Global Strategy to Improve

Agricultural and Rural Statistics coordinated by the

United Nations Food and Agriculture Organization (UN

FAO TCP URT 3504).

2.2 Descriptions of the new yield forecasting method

The new yield forecasting method presented in this study is

based on the integration of field based surveys and the

process-based crop simulation model SALUS (Systems

Approach to Land Use Sustainability) (Fig. 1).
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2.2.1 Description of the SALUS crop model

The SALUS model is a process-based crop simulation model

(Basso et al. 2006; Basso and Ritchie 2015). The model uses

daily weather information (minimum and maximum tempera-

ture, precipitation, and solar radiation), soil layer properties

(e.g. clay and silt content, bulk density, and organic carbon

content), management (e.g. planting dates, planting density,

and fertilization rates) and crop genetics parameters (growth

duration, maximum kernel number and filling rate) as inputs.

The model simulates agronomic outputs (e.g. yield, total bio-

mass, leaf area index) and environmental outcomes (e.g. ni-

trate leaching, greenhouse gas emission, water fluxes, soil

carbon dynamics) on a daily basis. The SALUS model was

adapted from the CERES model with various improvements

in the soil nutrient and soil water dynamics (Basso et al.

2016b). The three interconnected modules — crop growth

and development, soil nutrient dynamics, and water balance

modules — are the main components of the SALUS model.

SALUS initializes soil carbon, and nitrogen (N) pools using

the procedure developed by Basso et al. (2011). The SALUS

model does not have an explicit module to account for pest,

weeds and diseases. The detailed descriptions of the model

and key algorithms have been presented in Basso et al.

(2006), Dzotsi et al. (2013) and Ritchie and Basso (2008)

and Basso et al. (2018).

The SALUS model has been validated for various cropping

systems under different climatic conditions. It has been validated

to simulatemaize and pigeonpea aboveground biomass and grain

yield under the humid subtropical and the tropical savanna cli-

mate in Malawi (Liu and Basso 2017). Other SALUS model

testing includes grain yield (Basso and Ritchie 2015), soil water

content (Basso et al. 2010; Hamilton et al. 2015), soil carbon

(Cillis et al. 2018; Pezzuolo et al. 2017), and soil nitrate and

nitrate leaching (Basso et al. 2016a; Giola et al. 2012) under

theMediterranean and humid continental climates. For this study,

we tested SALUS model to evaluate its capability to reproduce

interannual maize grain yield at regional level (Fig. S1–2).

In this study, we ran SALUS using weather, crop, soil, and

management inputs that captured possible scenarios reported

by field surveys. The weather data in the study were based on

the 0.25°-resolution AgMIP climate forcing based on the

Modern-Era Retrospective Analysis (AgMERRA) dataset

and the 0.05°-resolution Climate Hazards Group InfraRed

Precipitation with Station (CHRIPS) dataset (Funk et al.

2015; Ruane et al. 2015). We extracted daily temperature

Fig. 1 Overview of the new yield

forecasting method based on the

integration of field surveys and

the SALUS crop simulation

model
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and solar radiation data in 1981–2010 from the AgMEERA,

and daily precipitation data from the CHIRPS gridded dataset.

We used three maize cultivars in the simulations to represent

short, medium and long duration cultivars (Fig. S3). We in-

cluded four options to describe soils: poor, medium, fertile and

extremely fertile (Table S1). Management practices (planting

densities, N fertilizer application rates irrigation amounts)

were reported by field survey information for the districts of

Morogoro, Kagera, and Tanga).

2.2.2 Field questionnaire survey

Currently, the Government of Tanzania collects in season in-

formation from farmers’ fields using 7 field questionnaire sur-

veys to monitor crop conditions and forecast crop yield and

production. We designed a simple questionnaire to collect

field data as model input on agronomic management, weather

and plant information.

Management information included data on number of

plants present in selected fields at the time of the field survey,

maize cultivar characteristics (short versus long duration),

planting time, planting density, fertilizers and irrigation

amounts and timing of applications. For the weather condi-

tions, we asked qualitative descriptions of the current

growing-season temperature and rainfall conditions when

compared to historical averages (options included: hotter than

normal, colder than normal, normal, drier than normal, wetter

than normal). For the plant conditions at the survey date, we

asked the enumerators to take photos of the maize plants

grown in the fields to detect presence of diseases, weeds and

insects. The questionnaire is available in the online supple-

mentary material.

During the season, data collection, both interviews and

field sampling, were conducted by 55 enumerators to com-

plete the questionnaire. A quadrant designmethodwas used to

collect planting density and plant condition information. One

or two experimental plots (6 × 6 meter) were first randomly

established at each sampling field. Quadrants were then

formed within the experimental plot. Planting density was

based on the number of plants across the four quadrants.

Two plants in each quadrant were randomly marked for the

end-of-season field survey. In the end-of-season field survey,

crop cut and kernel numbers were performed to estimate grain

yield. Cobs in the experimental plots were harvested and

weighed. The two plants previously markedwithin each quad-

rant were sampled for total number of kernels and kernel

weight. The kernel information was then converted to deter-

mine the grain yield.

2.2.3 Yield forecast method

The SALUS crop model was executed using a combination of

a series of soils, weather, genotypes and management

practices. The method searched for the simulation scenarios

that best represented the growing season conditions reported

by the field survey questionnaire, and the simulated yields of

the selected simulations served as one of the forecasted yields

depending on the remaining weather to reach crop maturity.

For each of the sampling fields, the yield forecasting algo-

rithm used the reported coordinates to identify historical

weather scenarios among the climate dataset, and then select-

ed years in which temperature and precipitation matched the

reported in-season temperature and precipitation characteris-

tics. The algorithm first grouped historical years into three

categories based on the 33.3th and 66.7th percentile values

of average seasonal temperature in 1981–2010. Years where

the in-season average temperature was less than 33.3th per-

centile of the average temperature in 1981–2010 were catego-

rized as colder than normal; years where the in-season average

temperature was more than 66.7th percentile of the average

temperature in 1981–2010 were categorized as hotter than

normal; years where the in-season average temperature was

between the 33.3th and 66.7th values was normal. Similarly,

years were also grouped into drier than normal, normal and

wetter than normal categories based on the 33.3th and 66.7th

percentile values of total seasonal precipitation in 1981–2010.

The algorithm then selected weather series where the temper-

ature and precipitation categories matched with the reported

in-season weather characteristics. In the cases where the no

historical record was found to match with both in-season tem-

perature and precipitation characteristics, the algorithm prior-

itized matching with the reported precipitation condition. The

algorithm narrowed management scenarios based on the re-

ported planted time, plant densities, and fertilizer and irriga-

tion applied. The yield forecasting algorithm used the reported

maize duration to exclude simulation scenarios in which the

duration did not match the reported value. The yield forecast-

ing algorithm used the overall evaluation of the field to select

soil used in the simulations. The reported stress level due to

water and nitrogen deficit, together with the photos taken dur-

ing the survey determined the overall field condition. We de-

veloped a protocol to evaluate the overall condition of maize

fields based on the photos and reported stress level. When a

field had maize with healthy dark green leaves and relatively

thick stalks, it was categorized as extremely good condition.

When the plant was mostly dark green but under minor stress,

it was categorized as in good condition. Medium condition

indicated plants with light green leaves and under nitrogen

and/or water deficit stress. Poor condition indicated short

plants with yellow-green leaves and thin stalks and were under

severe stress level. We used the photo to cross check the re-

ported stress level due to water and nitrogen deficit and biotic

stressors (i.e. weeds, pests and diseases). The selected simu-

lation scenarios (at least one simulation runs) contained com-

binations of the selected weather, management, crop and soil

scenarios, which resulted from the yield forecasting algorithm.
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Lastly, the simulated yields of the selected simulations were

adjusted based on the severity of insects, weeds and diseases.

We applied a 15% reduction to the simulated yield when the

severity of insects, weeds or diseases was reported minor, and

a 30% reduction when the severity was reported major

(Tollenaar et al. 1994). The simulated yields, with adjustment

for weeds and insects if reported, were the forecasted yield for

each sampling field.

2.3 Study sites and date collection

Themethodwas applied to three districts in Tanzania,Morogoro,

Kagera and Tanga. The study sites were selected by officials

from the Government of Tanzania and the UN FAO (Fig. 2a).

The three districts have equatorial climate but have distinct agro-

climatic characteristics (Kottek et al. 2006). Kagera is located in

northern Tanzania and has bimodal rainfall pattern, where short

rain starts in October and ends in December, and long rains start

in March and end in May. Tanga is located in northeastern

Tanzania and also has bimodal rainfall pattern. Maize is widely

cultivated in Tanga whereas banana is an important crop in

Kagera (Smale and Tushemereirwe 2007). Morogoro is located

in central Tanzania transitioning between bimodal and unimodal

rainfall (unimodal rainfall occurs between November and May)

(Paavola 2008).

A total of 92 sampling fields across three districts were

determined. Specifically, 28 sampling fields were located

across Morogoro, 39 across Kagera and 25 across Tanga.

The enumerators conducted within-season field questionnaire

surveys spanning from late April to June 2017 for Morogoro,

frommid-January to the end of February for Kagera, and from

late January to late March for Tanga. The majority of the

surveys were completed by end of May in Morogoro, and

by early January in Kagera and Tanga. Of the predetermined

sampling fields, 17 fields in Morogoro had maize plant that

were not mature during the in-season field survey, as well as

24 fields in Kagera and 21 fields in Tanga (Fig. 2b-c). For the

remaining fields, maize either reached maturity (11 fields in

Morogoro, 13 in Kagera and 4 in Tanga) or the field survey

was incomplete (two fields in Kagera), and thus they were not

included in the analysis. The 62 sampling fields were across

55 households in the three districts.

The questionnaire we developed was coded in the Survey

Solutions application in both English and Swahili. Survey

Solutions is a computer-assisted personal interviewing soft-

ware developed by the World Bank. The trained enumerators

administered the field questionnaire survey using tablets with

the questionnaire coded in the Survey Solutions application.

The enumerators recorded the geographic location and sur-

veyed the physical characteristics of the within-season plant

(including planting density, stress level due to N, drought,

weeds, pests and diseases) condition. Other in-season infor-

mation (including weather characteristics and maize cultivar,

sowing time, irrigation and fertilization levels) were from enu-

merators’ interviews with the farmers or farm workers. The

complete survey was synchronized to the cloud storage. We

processed the within-season information immediately after we

received it through the cloud storage and provided the maize

Fig. 2 Sampling locations across Morogoro, Kagera and Tanga districts of Tanzania. aMap of Tanzania and the three districts, b spatial distribution of

sampling fields in Morogoro, c spatial distribution of sampling fields in Kagera and (c) spatial distribution of sampling fields in Tanga
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yield forecast for each of the sampling fields. We provided

yield forecasts ranging from 14 to 77 days prior to harvest.

The 25th and 75th percentile of the forecasting lead time was

30 and 55 days before harvest, respectively.

2.4 Accuracy assessment

We assessed the accuracy of the maize yield forecasts submit-

ted before harvest based on three accuracy indicators. We first

regressed the forecasted versus the observed yield and used

the coefficients of determination (R2) of the linear model to

evaluate the overall agreement between the yield forecasts and

yield observations.We then calculated the root mean square of

deviation (RMSD) based on the Eq. (1) to assess the deviation

of the forecasted values from the observed ones. The RMSD

value is sensitive to extreme values. Lastly, we calculated the

Mean Absolute Error (MAE) (Eq. (2)) to assess the accuracy

of our methodology. The MAE value represents the overall

error. It is a more direct representation of model biases and is

less sensitive to extreme values compared to the RMSD (van

der Velde and Nisini 2019; Willmott and Matsuura 2005).

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N−1
∑
i¼n

i¼1

F i−oið Þ2

s

ð1Þ

MAE ¼
1

N
∑
N

i¼1

F i−Oij j ð2Þ

where N is the total number of sampling fields, i is each sam-

pling field, F is forecasted yield and O is observed yield.

We showed the accuracy of the yield forecasts for all sam-

pled maize fields, regardless of the maize development stages

during initial visit, and the accuracy for sampled fields where

maize was present during the growing season.

3 Results

3.1 Descriptive statistics of within-season data
collection

More than 90% of the sampling fields across Morogoro,

Kagera and Tanga were smallholder (less than 2 ha farm area)

farming systems. The size of the fields ranged from 0.056 ha

to 7.49 hawith amedian value of 0.83 ha inMorogoro. For the

other two districts, all sampling fields were under 2 ha. The

field size was 0.19–1.30 ha with a median value of 0.47 ha for

Kagera and was 0.02–1.92 ha with a median value of 0.71 ha

for Tanga (Fig. S4).

Across the three districts, maize was at early to mid grain

filling stage for all sampling fields except for one field in

Morogoro, where maize was at vegetative stage during the

field survey. The agronomic and climatic conditions varied

across the sampling sites in the three districts.

In Morogoro, more than 75% of the fields were monocul-

ture maize and four fields had maize intercropped with either

pigeonpea or field peas. Long-duration maize cultivars were

reported for 12 fields and the remaining five fields had short-

duration maize. The reported sowing time was between early

February and early March for most of the fields, and in mid

March for three fields. Maize planting density across the 17

sampling fields ranged from 1.0 plants/m2 to 5.7 plants/m2

with an average value of 2.8 plants/m2. Most of the fields

was unfertilized and rainfed. Irrigation was reported for two

fields and manure application was reported for one field. No

synthetic fertilizer was reported across the fields in Morogoro

(Fig. 3). Water deficit was not reported. No N deficit was

reported for 9 fields, minor N deficit for 7 fields and severe

N deficit for one field. During the in-season field survey,

weeds were not present for 8 fields, whereas the other 8 fields

experienced minor weed problems, and one field had severe

weed issues. Insects were not present in 12 sampling fields,

four fields had a minor insect problem and one field had a

severe insect problem. Only three fields were reported to have

minor disease issues and the remaining majority of fields did

not have disease problems. Based on photos taken during the

in-season field survey, one field was assessed in extremely

good condition with dense plants, healthy green leaves and

relatively thick stalks, eight fields were in good condition, four

fields were in medium condition with yellow spots on green

leaves and relatively thin stalks, and four fields were in poor

condition with short plants, very thin stalks and/or unhealthy

leaves (Fig. 4).

InKagera, slightlymore than half of the sampling fields (14 out

of 24 sampling fields) were pure maize stands and the remaining

fields were maize intercropped with banana (four fields), banana

and beans (one field), banana and cassava (one field), beans (two

fields), or cassava and beans (two fields). More than 60% of the

sampling fields (15 fields) had long-duration maize cultivars and

the remaining fields had short-duration cultivars. Early October or

late August were the predominant sowing times. The sowing time

was in early, mid or late September for a total of 7 fields. Maize

plant density was low across the sampling fields, ranging from 0.3

plants/m2 to 3.3 plants/ m2with an average value of 1.3 plants/m2.

Rainfed maize was reported for 23 out of 24 fields. A few fields

(four fields) had manure applications by the survey date and none

had synthetic fertilizer input. A majority of the maize fields were

had no water deficit whereas three fields were had minor water

deficit conditions (Fig. 3). Minor N deficit was reported for a

majority of the fields (22 fields) and only two fields had no N

deficit conditions. Half or more of the fields were reported to have

minor weed, insect and disease problems. Weeds, insects and dis-

eases were not reported in 7, 5 and 11 of the sampling fields in

each district, respectively. Severe weed, insect and disease prob-

lemswere reported for one or two fields.We assessed that 10 fields
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were in good condition, 9were inmedium condition and fivewere

in poor condition (Fig. 4).

Maize was grown in pure stands across the 21 sampled

fields in the Tanga district. Of the sampled fields, 14 fields

were sown with a short-duration cultivar and seven had long-

duration cultivar maize. Maize was sown in early October for

more than 90% of the fields and was planted in late September

for two fields. Maize plant density ranged from 0.4 plants/m2

to 3.6 plants/m2, averaging at 1.9 plants/m2. A majority of the

maize fields were rainfed and unfertilized. Irrigation was re-

ported for three fields. Manure application was reported for

two fields (Fig. 3). None of the sampled fields had synthetic

fertilizer input. Maize experienced minor water deficit condi-

tions in more than half of the fields, while severe water deficit

Fig. 4 Maize status, including water and N deficit, weed, insect and disease presence, and overall plant condition based on photos taken during in-season

survey across the three districts

Fig. 3 Reported maize growing conditions, including pure crop stands versus intercropping, maize duration, sowing time, plant density, irrigation and

manure use and growing season weather characteristics across the three districts
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stress was reported for four fields. A majority of maize fields

experienced minor N deficit and two fields had adequate N

supply. Most maize fields had minor or severe weed, insect

and disease problems. Overall, three fields were in extremely

good condition, four were in good condition, 9 were in medi-

um condition and five were in poor condition (Fig. 4).

Regarding in-season climatic characteristics, a majority of

the respondents in Morogoro reported hotter than normal and

drier than normal condition, one respondent reported colder

and drier than normal conditions, and the other three reported

normal temperature and rainfall conditions. By contrast, most

respondents in Kagera district reported average rainfall and

temperature conditions when compared to the historical norm,

three reported wetter and colder than the norm, and the other

three reported wetter but hotter conditions than the norm. For

Tanga, 13 respondents reported drier and hotter than normal

conditions, 7 reported average rainfall and temperature condi-

tions, and one reported drier and colder than the norm (Fig. 3).

3.2 Maize yield forecasts

Our proposed method was able to accurately forecast maize

yield before the harvest across the three districts under varying

conditions. Maize yield ranged from 0.74 to 5.63 t/ha with an

average value of 2.36 t/ha and standard deviation of 1.2 t/ha in

Morogoro. The forecasted yield captured the variations in the

reported final yield, with an r2 value of 0.88. The RMSD value

between the forecasted yield and the reported yield was 0.47 t/

ha and the MAE value was 0.36 t/ha (Fig. 5a).

Maize yield in Kagera was low, 0.19–1.94 t/ha with an

average value of 0.94 t/ha and standard deviation of 0.51 t/

ha. Using our proposed method, we were able to closely fore-

cast the final yield for most fields (r2 = 0.5). The RMSD was

0.38 t/ha and the MAE was 0.25 t/ha (Fig. 5b).

For Tanga, where all maize fields were monoculture, maize

yield ranged from 0.28 to 5.84 t/ha, with an average value of

2.03 t/ha and standard deviation of 1.59 t/ha. The forecasted yield

closelymatchedwith the reported yieldwith r2 value of 0.94. The

RMSD value between the forecasted and the reported yield was

0.43 t/ha and the MAE value was 0.32 t/ha (Fig. 5c).

4 Discussion

Forecasting grain yield before harvest for smallholder farming

systems has been a major challenge for scientists and govern-

ment officials working on this important topic. Crop simulation

models suppliedwith daily weather observation till the forecast-

ing date combined with historical observations for the remain-

ing growing season, weather analog or seasonal weather fore-

cast have been used to generate yield forecasts (Hansen and

Indeje 2004). Due to lack of extensive weather station network

in Africa, weather observations are limited and seasonal climate

forecasts have low skills (Sheffield et al. 2014; Singh et al.

2018). Quality real-time weather data was not publicaly acces-

sible for our studied site. Intead of relying on real-time weather

data to simulate in-season crop growth and development, we

used descriptive in-season weather characteristics from the field

questionnaire survey to select analog years in long-term reanal-

ysis climate datasets (AgMERRA and CHIRPS). This was the

first study, to the authors’ knowledge, that linked field surveys

with a crop simulation model to forecast crop yield. The other

innovation featured in our study was the use of digital photos,

taken with inexpensive and widely available mobile computer

tablets. The photos were used to assess growing season plant

conditions, including nutrient and water deficit levels, and

weed, insect and disease issues. These photos provided valu-

able mid-season information for experts to cross validate the

answers reported by the enumerators in the field survey ques-

tionnaire. We also implemented a simple reduction factor to

consider the effect of biotic stress (weeds, diseases and pests)

on yield, which was not simulated by cropmodels but prevalent

in smallholder farms.

We demonstrated that it was feasible to make accurate yield

forecasts by collecting both subjective and objective in-season

yield assessment as well as running the crop simulation mod-

el. The use of subjective evaluation of field condition in yield

forecasts has been employed by the US Department of

Agriculture and has been documented in the literature (Pease

et al. 1993; USDA 2012). Our methodology produced accu-

rate yield forecasts for smallholder farming systems (less than

2 ha) across three districts in Tanzania one to two months

Fig. 5 Comparisons between the forecasted yield and reported final yield across aMorogoro, bKagera and c Tanga (note that the ranges for both axes in

a–c differ)
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before harvest (r2 values of 0.94, 0.88 and 0.5 in Tanga,

Morogoro and Kagera districts, respectively). The accuracy

of our method was much higher than most of the yield-

forecasting studies for Africa. The r2 values between the fore-

casted yield and final yield were mostly under 0.5 when fore-

casts were made during maize vegetative to reproductive

stages (Abo-Shetaia et al. 2005; Mkhabela et al. 2005;

Schauberger et al. 2017) with an exception of Unganai and

Kogan (1998), where regional maize yield in Zimbabwe was

accurately forecasted (r2 > 0.9) by the peaked Temperature

Condition Index and Vegetation Condition Index derived from

the Advanced Very High Resolution Radiometer satellite.

There were a few studies reported comparably accurate yield

forecasts at maturity (r2 > 0.8) but our method offered accurate

forecasts 1–2 months before harvest (Manatsa et al. 2011;

Rojas 2007; Vossen 1990). Basso and Liu (2019) has provided

a comprehensive review on crop yield forecasting methods

and their accuracy.

Despite that statistical-based models could provide accu-

rate crop yield forecasts for smallholder fields in African

countries (e.g. Manatsa et al. 2011; Rojas 2007), statistical

yield forecasting model may not be applicable to growing

conditions that are beyond the model development boundary.

Crop simulation models have an advantage over statistical

models regarding capabilities of representing crop growth

and development under climate change (Lobell and Asseng

2017; Jones et al. 2017). Our approach of integrating crop

simulation modeling and surveys provides a framework to

develop new yield forecasting methodology for other sites

and other crops during other years. Our approach can be ap-

plied to forecasting maize yield in Tanzania under the long-

term climate change conditions as well. To apply our method

to maize yield forecasts in another country or region, one

needs to identify proper soil information and to determine

historical or in-season climate to cover the growth conditions.

In this study, we focused on maize, the dominant staple food

crop in Tanzania. Our yield forecasting procedure, nonethe-

less, can be applied to other crops, as long as the crops of

interest can be simulated by the crop model. Regardless of

crops of interest, the field questionnaire survey should include

plant density, within-season information about weather, crop

growing status (including stress levels due to weeds, pests,

diseases, and N and water deficiency), and soil information.

Our approach has a few limitations. First, it was

constrained by the trained enumerators’ ability to conduct

field questionnaire surveys. While enumerator availability

may not be the constraining resources in developing countries,

field campaigns can be labor intensive and time consuming.

Second, the yield forecast product resulted from this study

was subject to the quality of the questionnaire response. Our

algorithm relied on the subjective evaluation of the weed,

disease and pest presence and the overall plant status assess-

ment. In addition, AgMERRA weather dataset, which

provided temperature and solar radiation input for the yield

forecasting algorithm, had a limited temporal coverage, from

1980 to 2010. AgMERRA dataset may not be adequate to

forecast crop yield with the rapid changing climate since the

weather analog assumption will be violated as we are moving

to a new climate regime. National Aeronautics and Space

Administration Prediction Of Worldwide Energy Resource

(NASA POWER) provides daily weather data since 1997

(https://power.larc.nasa.gov). The NASA POWER dataset

may be an alternative to AgMERRA, though the POWER

dataset has a coarser spatial resolution (0.5 arc degree).

There are a few sources of uncertainties in our study.

Though the soil and maize cultivar information we used for

crop modeling and for creating yield database before the field

questionnaire surveys adequately represented soils and maize

cultivars in Tanzania, we did not have on-site soil data by

depths across our study sites or the genetic parameters of

cultivars grown in the sampling fields. There were uncer-

tainties in soil and plant parameters of the SALUS model.

The other uncertainty was the evaluation of in-season photos

taken by enumerators. Different interpretation of the photos

can lead to different forecasted maize yields. Another source

of uncertainty was the final grain yield. Due to the logistics of

the field survey, we asked for kernels number and cob weight

but we did not shell maize cobs to weigh the kernel. We found

inconsistencies between estimated yield based on kernel num-

ber and estimated yield derived from cob weight and planting

density across the sampling fields, perhaps due to precipita-

tion event before conducting the final field survey and mois-

ture contribution to the cob weight. Due tomissing cob weight

and the quality of the cob weight, final grain yield was esti-

mated based on total kernel number.

To overcome the limitations of field questionnaire survey,

high resolution commercial remote sensing imageries that are

increasingly available to research use may provide within-

season vegetation status and information about management

practices (e.g. planting date). Two research advances are needed

to achieve accurate yield forecasts at the regional level using the

proposed framework. First, high resolution cultivated crop maps

are required to scale up our proposed framework. Second, veg-

etation status, planting date and plants density needs to be ex-

tracted from high resolution satellite imageries, such as

PlanetScope and SkySat (https://www.planet.com).

5 Conclusions

We have presented a new method that integrates within-

season field survey and crop simulation modeling to forecast

yield for smallholder farming system. We applied our pro-

posedmethod to forecast maize yield at field scale across three

districts in Tanzania, where maize was cultivated under differ-

ent planting densities, varied intercropping plants and distinct
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growing-season weather conditions. The results showed that

we achieved accurate yield forecasts across diverse maize

fields. This study provided the most accurate field-level yield

forecasting method for smallholder farming systems in

Tanzania to date, which is a critical piece of information to-

ward understanding areas within regions affected by food

shortages or overproduction, leading to more informed deci-

sion by government officials.
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