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Abstract Recent studies have shown that the complexi-

ties of the surface features in mountainous terrain require a

re-assessment of climate impacts at the local level. We

explored the importance of surface-air-temperature based

on a recently published 50-m-gridded dataset, versus soil

variables for explaining vegetation distribution in Swedish

Lapland using generalised linear models (GLMs). The

results demonstrated that the current distribution of the

birch forest and snowbed community strongly relied on the

surface-air-temperature. However, temperature alone is a

poor predictor of many plant communities (wetland, mea-

dow). Because of diminishing sample representation with

increasing altitude, the snowbed community was under-

sampled at higher altitudes. This results in underestimation

of the current distribution of the snowbed community

around the mountain summits. The analysis suggests that

caution is warranted when applying GLMs at the local

level.
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INTRODUCTION

A growing number of approaches have been proposed to

investigate potential climate change impacts on vegetation

distribution. One approach uses statistical methods such as

the generalised linear model (GLM), the generalized

additive model, classification tree analysis or an ensemble

of several models (Araújo et al. 2005) to correlate current

distributions of plant species with a range of climatic

variables and then project possible distributions under

various climate scenarios. Applications of such models at

the broad scale provide valuable scenarios for our under-

standing of the factors-driving global vegetation distribu-

tions, but their accuracy at the local level, especially for

plant communities of areas with complex topography such

as mountains and wet depressions, is often questioned

(Trivedi et al. 2008; Randin et al. 2009).

It has been suggested that if statistical models are to be

applied at the local level, the extent (the quantity of the

data) and/or the scale (the quality of the data) of the study

area need to be improved (Thuiller et al. 2004; Menke et al.

2009; Barbet-Massin et al. 2010; Braunisch and Suchant

2010). However, it is difficult to strike the balance between

a proper spatial extent and scale in such models. On one

hand, the macroscale model studies need to focus on the

broad scale (Araújo et al. 2009), as a restricted study area

will not capture the species potential distribution. This can

lead for example to an over-prediction of the local

extinction rates at the southern edge of a species’ distri-

bution (Barbet-Massin et al. 2010). On the other hand, the

precision of climate/distribution data is reduced at the

coarser scale. Macroscale models will underestimate the

complexity of climate impacts at the local level (Trivedi

et al. 2008; Randin et al. 2009).

Underestimating the complexities of the surface envi-

ronment features in mountainous terrain may render many

conclusions arising from macroscale (tens of kilometres’

scale) studies inapplicable at the local level. For example,

the extinction risks of alpine vegetation were exaggerated

at the macroscale (Thuiller et al. 2004; Pearson et al. 2006;

Botkin et al. 2007), because the macroscale climate data

used was biased against local climate experienced by

alpine plants. Other studies have shown that the accuracy
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of the modelling projection will be substantially improved

by including topoclimatic variables (i.e. based on elevation

ranges) (Luoto and Heikkinen 2008). In addition, the

modelling of fine-grained spatial variation in warming may

be more important at the finer landscape scale (Ashcroft

et al. 2009). In many cases, a combination of biotic and

topoclimatic variables may produce the best projection of

vegetation distribution (Luoto and Heikkinen 2008).

Mountains are not the only feature of complex topog-

raphy that controls the spatial distribution of surface-air-

temperature and vegetation. Small-scale depressions and

specific hydrological conditions that create wetlands pro-

vide added complexity (Reddy and DeLaune 2008). In the

Arctic, proximity to the sea, and even sea ice conditions

affect land surface temperatures (Hanna et al. 2004; Bhatt

et al. 2010) and proximity to a large lake in the sub-arctic

affects land surface temperatures with unknown effects on

the vegetation distribution (Zhenlin et al. 2012).

The complexity of such factors at the landscape level in

the context of current and projected climate changes

require a re-assessment of progress in vegetation modelling

approaches. The use of bioclimatic models is one approach.

In spite of their robustness, as with all vegetation model-

ling approaches there are a number of uncertainties and

assumptions in bioclimatic models, depending on the

choice of modelling techniques (Pearson et al. 2006), the

quality of modelling input data (Wiens et al. 2009) or

important processes such as population dynamics or

migration (Brooker et al. 2007). Theoretically, the input

data need to be well distributed throughout the species’

geographical range as well as its complete environmental

envelope (Franklin 2009). In reality, the extent of a study is

often truncated due to practical or geographical limits, and

these limits therefore result in a biased representation of a

species’ geographical range in the input data. This bias

limits the wider applicability of bioclimatic models (Menke

et al. 2009; Barbet-Massin et al. 2010). However, the

impact of the bias on model projection depends on the

magnitude of the variability in the input data compared to

that of the species’ full geographical and environmental

ranges (Kadmon et al. 2004).

As mountains can be considered to be cone shaped, with

decreasing land surface with increasing elevation, the

proportion of observations of alpine species at the summit

will be smaller than their actual distributions within the

same climatic space in low-elevation areas. Accordingly,

random sampling will tend to under-sample high elevation

areas, and thus by sampling randomly one will more often

include low-elevation areas (Fig. 1). This, in turn, results in

a ‘climatic bias’, denoted as ‘the sampling bias with respect

to climatic conditions in the observations available for a

particular species’ (Kadmon et al. 2003). While the impact

of sampling strategies (and thus their associated bias) on

model projections was discussed by Hirzel and Guisan

(2002), to the best our knowledge, the influence of such

local-level climatic bias among the mountains has never

been tested.

A 50-m resolution temperature model, based on historical

measurements from 1913 to 2010 in Abisko, northern Swe-

den (Zhenlin et al. 2011), provided a unique opportunity to

explore if vegetation distribution is related to fine-scale

surface-air-temperature variation that is affected by local

landscape features other than topography, for example

proximity to a large lake. In this study therefore, our aims are:

(a) to explore the importance of surface-air-temperature and

soil variability as drivers of the vegetation distribution at

50-m resolution and (b) to assess sampling errors due to

diminishing sample representation with increasing altitude.

Our specific questions are: (a) to what extent are surface-air-

temperature and soil variability at 50-m resolution associ-

ated with the current distribution of sub-arctic plant com-

munities in a sampling area with complex topography? and

(b) How does the topographically biased sampling affect the

projection of the current vegetation distribution through the

geographic range sampled?

We emphasise first that this study is not intended to

generate a model to use in projections of future vegetation

distribution but simply seeks to address the security of the

foundations on which such projections are built. Second,

(a)

(b)

(c)

Fig. 1 Conceptual diagrams of the restricted sampling and incom-

plete sampling at different altitudes: a complete sampling.

b Restricted sampling. c Incomplete sampling. Grids with the dotted

lines are the hypothetical distribution while grids with the solid lines

are the actual distribution. The hypothetical distribution represents the

potential distribution without space limits
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the spatial scale of 50 m was appropriate to reflect the

quality for existing vegetation distribution data: concep-

tually, temperature at even smaller scales (e.g. mm) is

appropriate for seed germination but our choice of 50-m

scale is based on availability of a recently published, pio-

neering surface-air-temperature dataset as well as similar

scale vegetation and soil data, and is sufficient to describe

the distribution of major vegetation patches in the study

area.

MATERIALS AND METHODS

Study Area

The study area is within the Torneträsk catchment

(68�210N, 18�490E), which covers a region of 700 km2

around the Abisko Scientific Research Station (ANS) in the

sub-arctic zone of Fennoscandia (Fig. 2). There have been

long-term human activities in this region such as reindeer

herding, fishing and hunting. Although human activities

have increased as the construction of the railway was

completed in 1902, it is still considered to be one of the

least disturbed natural areas in Europe. The east part of the

catchment lies in the rain-shadow of the Norwegian

mountains. As a result, there is a pronounced ocean-con-

tinental gradient from west to east in this region. The soil in

this region is mainly dominated by bare rocks and mor-

aines, with sporadic peatlands. The soils are nutrient-poor

in the west–east direction but nutrient rich in the central

part. These climatic and edaphic conditions are associated

with a distinctive vegetation composition and distribution:

the most widespread plant communities are the birch forest

(i.e. Betula pubescens ssp. czerepanovii), heath vegetation

[e.g. Arctostaphylos alpines (L.) Sprengel, Arctostaphylos

uva-ursi (L.) Sprengel, Betula nana L., Empetrum her-

maphroditum ssp. nigrum], meadow [e.g. Bistorta vivipara

(L.) Gray, Calamagrostis lapponica (Wahlend.) Hartm.,

Filipendula ulmaria (L.) Maxim, Geranium sylvaticum L.],

and snowbed [e.g. Carex bigelowii Torr. ex Schwein,

Cassiope hypnoides (L.) D. Don, Gnaphalium supinum L.],

with other sparse plant communities such as bogs with and

without mosses (e.g. Dicranum fuscescens, Kiaeia Starkei,

Oligotrichum hercynicum, Pohlia spp., Polytrichum hy-

perboreum). The local forest limit is at an altitude range of

about 550–650 m in the western part and 700–800 m in the

eastern part, and the birch forest grades into the heath type

at higher altitudes (Callaghan and Karlsson 1996).

Data

This study used 50-m resolution monthly average gridded

surface-air-temperature data (1913–2010) for the Abisko

region (Zhenlin et al. 2011). This dataset represents the

(a) (b)

Fig. 2 a Vegetation map of the Abisko region. Other denotes glaciers, built-up areas and bare rocks. b The pattern of mean annual temperature

during 1913–2010 of the Abisko region. White areas denote waters
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latest development of a surface-air-temperature distribution

model and is built on empirical equations and a digital

elevation model (DEM, Swedish National Land Survey).

The dataset is output from this model based on: (1) gridded

ERA-40 reanalysis data from European Centre for Med-

ium-Range Weather Forecasts representing the large-scale/

synoptic macroclimatology around the Abisko region; (2)

surface-air-temperature observations from a long-term

(40 years) network of 20 surrounding meteorological sta-

tions belonging to the Swedish Meteorological and

Hydrological Institute (SMHI) or the Norwegian Meteo-

rological Institute and 20 short-term (2 years) temperature

loggers and (3) key microclimatic characteristics of the

temperature distribution (i.e. exposure, aspect, lake effect).

Output from the model was validated by independent

temperature measurements, with an estimated error of 1 �C

(Zhenlin et al. 2011). Due to the lack of high-altitude

temperature measurements, the original model was limited

to an altitude range of 335–800 m a.s.l. However, in this

study, the same model was assumed to be applicable for the

whole region, therefore the temperature data were devel-

oped for the whole altitude range of 335–1555 m a.s.l. The

uncertainty of this will be discussed later.

Principal components analysis (PCA) was used to avoid

multi-collinearity while keeping the monthly variance of

the temperature variables. The sum of the first and second

principal components (T-PCA1 and T-PCA2) represented

98.4 % of the total variance in the temperature variables

(79.7, 18.6 %, respectively), with T-PCA1 and T-PCA2

capturing the temperature pattern during the summer and

mainly from the winter, respectively (Table S1 in Elec-

tronic Supplementary Material).

The vegetation data were interpreted from the vegeta-

tion map by Metria May 1998 (25-m scale), produced by

the Swedish National Land Survey from colour infrared

photography and field visits (Tomas 1998). The lake

Torneträsk, streams, water, and island within the lake were

excluded from the map. For each 50-m grid, the presence/

absence information was recorded from the vegetation

map. To reduce the complexities of the research while

keeping most of the information relevant to this study, the

map were simplified into the eight categories of plant

communities listed in Table S2 (Electronic Supplementary

Material). The soil data were derived using cartography

data from the Geological Survey of Sweden (Rodhe et al.

1999). Compared to the vegetation data, the quality of the

soil data is relatively poor. Soil types with coverage of

\0.1 % were removed. Each soil type’s potential for sup-

plying moisture and nutrients for plant growth was sub-

jectively assessed into five categories (Table S3 in

Electronic Supplementary Material).

Both the vegetation and the soil maps were corrected

to the Swedish grid system (RT 90 25), first digitized as

vectors, and then converted to 50 9 50-m grid cells to

match the scale of the temperature dataset. While we do

not have detailed coverage data of each plant commu-

nity/soil type at each gridcell, the presence/absence

information was derived for each vegetation and soil

type by the ArcGIS grid module, and stored in a binary

layer.

Our surface-air-temperature model output is more

appropriate to use here than also recently available satellite

(thermal infrared) temperature scans because the latter: (1)

only show relative temperature changes and are not based

on actual surface temperature measurements; (2) variously

measure surface skin and canopy temperatures depending

on the vegetation cover of the ground area being observed,

so are not consistent in their depiction of (near)-surface

conditions; (3) are only available for a relatively short time

period of the last two to three decades or so at most, giving

a limited meteorological baseline and (4) have many

missing gaps caused by adverse weather conditions (cloud

cover) precluding surface viewing.

Statistical Analysis

Spatial Autocorrelation

Spatial autocorrelation can overestimate the degree of fit-

ness in linear models. One strategy to reduce its effect is to

resample the whole map at a distance where the spatial

autocorrelation becomes negligible. Moran’s I test (Rangel

et al. 2006) was used to measure the degree of spatial

autocorrelation within a neighbour matrix. According to

Moran’s I test, the spatial autocorrelation for the datasets in

this study decreased monotonically after a lag of four grid

cells (200 m). Consequently, the original datasets were re-

sampled so that no grid cells were closer than 200 m both

in the west–east and the north–south directions, and the

spatial autocorrelation was assumed to become negligible

thereafter.

Multi-collinearity

Hierarchical partition (HP) analysis was adopted to select

those climate and soil variables, which independently

explained the most variation in the vegetation distribution

(Chevan and Sutherland 1991). The significance of the

variables in the HP analysis was tested by 1000 random-

izations of the variables using the 95 % confidence limit of

the z scores (z = [observed value - mean (randomiza-

tions)]/sd (randomizations), z[=1.65) (Mac Nally 2002;

Kuhn et al. 2004). Consequently, only those variables that

had significant impact on the vegetation distribution were

included in the later analysis.
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The Generalized Linear Model (GLM)

The GLM with a binomial distribution and logistics link is

one of the most common methods to explore current cli-

mate/bioclimate variables that best explain species or

vegetation distributions. To capture the potential nonlinear

relationship while reducing data complexities to interpret

the biological significance of higher order variables,

polynomial terms up to the second order were included in

the model.

In the GLM model, to reduce the model complexities,

only those variables showing a significant relationship with

the presence/absence of each plant community were

entered into the model. The final model was selected by

Akaike’s information criterion (AIC) derived from the

stepwise-based algorithm (Akaike 1973). Second, the Area

Under the Receiver Operating Characteristic Curve (AUC)

was used to assess the models’ performance (Fielding and

Bell 1997). Third, the original probability surface was kept

for the model evaluation. The projected response curves

were used to describe the probability of plant communities’

occurrence in relation to environmental variables (Thuiller

et al. 2004), and compare with the actual probability of

plant communities’ occurrence from the vegetation pres-

ence/absence data.

Variation Partitioning

Variation partitioning has been used often to identify the

relative influences of independent variables in the model

(Desdevises et al. 2003). In this study, the coefficients of

the determination of the binary logistic regressions,

Nagelkerke Pseudo R-Square (Nagelkerke 1991), were

taken as measures of the percentage of the variation

explained by different combinations of the variables,

namely (1) both the temperature and the soil variables; (2)

the temperature variables and (3) the soil variables.

All the variables, except the vegetation presence/

absence data, were scaled according to their root-mean-

squares, to simplify the comparison of the effects from

different variables. The PCs, combined with non-continu-

ous explanatory soil variables, helped to avoid potential

correlation between the main effects in the further analysis.

Consequently, the standardized regression slopes from the

GLM were comparable independent of the scales at which

the variables were measured. Statistical analyses were

performed with R using the packages Hier.Part, Presen-

ceabsence (Walsh and Mac Nally 2003; Freeman 2007)

and SPSS for other standard statistical analyses. A random

sample of 70 % of the dataset was used to calibrate the

model while 30 % of the dataset was used to evaluate the

modelling results.

RESULTS

Climatic Misrepresentation

Within the study area, 50.8 % of the snowbed community

was distributed around the mountain summits (colder cli-

matic space) (T-PCA1\-1.5), while the samples over the

same climatic space around the mountain summits (T-

PCA1\-1.5) only represented 13.8 % of the total sam-

ples (Fig. 3). It becomes obvious that the climatic mis-

representation of the snowbed community distribution in

this study violated the assumption that the input data need

to be well distributed along the whole environmental gra-

dient. This makes it necessary to evaluate further how the

GLM model performance will be affected by such climatic

misrepresentation of the input data.

Hierarchical Partition

The presence of the birch forest and snowbed community

can be significantly explained by the temperature/soil

variables, with up to 42 and 15 % of the total variance in

the distribution of each plant community explained: the

temperature variables were associated with 91 % of the

total explained variance for the birch forest, while the soil

variables explained much less (\10 %) of the total

explained variance (Fig. 4); the explained variance of the

snowbed community was in particular related to tempera-

ture (86 %), and far less to rock (6.7 %), till (6.7 %) and

fluvial sediment (\1 %).

The GLM

Based on the grid-by-grid accuracy measurement using

AUC values, the GLM agreed with the results from the

hierarchical analysis in that some plant communities, such

as the widespread birch forest and the more restrictedly

distributed snowbed community which occupied 28 % of

the whole area are well predicted and had AUC values up

to 0.93 and 0.88, respectively. The model performances for

other plant communities were, however, poorer, e.g. the

meadow, the dry heath and wetland species (AUC B 0.80,

Table S4 in Electronic Supplementary Material).

The relative effect of temperature during summer on

vegetation distribution was stronger than that during the

winter and differed among alpine and subalpine vegetation:

the birch forest tended to be more widespread the warmer

the summer, while the presence of the snowbed community

could be explained by the mild and shorter summers (Table

S5 in Electronic Supplementary Material). Both the rock

and the fluvial sediment were positively associated with the

presence of the snowbed community.
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Fig. 4 HP of the proportions of

explained variance in vegetation

distribution using temperature

and soil variables as explanatory

variables. Stars indicate

significant results (being outside

the 0.95 confidence range) after

1000 randomizations. FluSed

denotes the fluvial sediments as

in Table S3 (Supplementary

material). T-PCA1 denotes the

first component of the monthly

temperature. T-PCA2 denotes

the second component of the

monthly temperature. (T-

PCA1)2 denotes the square of

T-PCA1. (T-PCA2)2 denotes

the square of T-PCA2

Fig. 3 Frequency diagram of the ‘‘Presence’’/‘‘Absence’’/‘‘Total’’

grid cells at different climatic spaces. ‘‘Presence’’/‘‘Absence’’ grid

cells denote the proportion of grid cells with the presence/absence of

snowbed community. ‘‘Total’’ grid cells denote the proportion of grid

cells (presence ? absence). T-PCA1 denotes the first component of

the monthly temperature
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The GLM-predicted probability surfaces for the mod-

elled present vegetation distributions were compared with

the actual vegetation distribution (Fig. 5). Following Thu-

iller (2004), we present the response curves for the most

significant variables among all plant communities, i.e. the

first principle component for temperature (Fig. 6). For the

birch forest, the shape of the predicted response curve

agrees quite well with that of the actual response curve

(Fig. 6b). However, there are marked differences in the

tails of the response curve for the snowbed community: the

probability of occurrence for the snowbed community was

underestimated when the T-PCA1 was lower than -2.5

(Fig. 6a).

Variation Partitioning

In total, the variables explained 54.7 % of variance in the

distribution of the birch forest, and 28.7 % of that in the

snowbed community (Table 1). Compared to the soil

variables, the temperature variables explained more of the

variance in the vegetation distribution, especially for the

birch forest (38.9 %) and snowbed community (20.6 %).

For distributions of the wetland species, willow, wet heath,

extreme dry heath and meadow, the explained portions of

the variance were quite low. There were also some joint

effects between temperature and soil variables for the

distribution of the snowbed community and birch forest (up

to 6.9 %) (Table 1).

DISCUSSION

Accurate representation of current vegetation distribution

hinges on adequate sampling of the entire environmental

range of conditions. However, data on all possible envi-

ronmental conditions that affect vegetation are rarely if

ever available and thus these factors affecting the current

distributions of vegetation may not be fully understood.

Our findings illustrate that caution is warranted when

applying a GLM at the local level. For example if only

restricted distribution data is available this may result in a

truncated response curve and misrepresentation of the

current, and therefore also future vegetation distributions.

In our study, the GLM model is driven by fine-scale

topoclimate data. However, due to the conical geometry of

the mountains (Fig. 3), the restricted sampling of the

snowbed community among the mountains is not repre-

sentative of the snowbed community’s potential distribu-

tion, which extends into high Arctic regions (Walker et al.

2005). Such misrepresentation results in a truncated

response curve and underestimation of the current distri-

bution of the snowbed community at the mountain sum-

mits. This is the first study, however, that focuses on

uncertainties raised from the input data of the fine-scale

GLMs rather than on uncertainties in the macroscale

models.

Nevertheless, within even a restricted vegetation geo-

graphical range, it is still possible to build a useful veg-

etation model if the aim is to understand the local drivers

of the vegetation distribution (Franklin 2009). Previous

studies have shown that such local-scale models are dif-

ferent from macroscale models in at least two aspects

(Trivedi et al. 2008; Randin et al. 2009). First, the het-

erogeneous topoclimate at the local level, for example

resulting from different slopes, aspects, hollows etc. are

likely to provide refugia for local species (Ashcroft et al.

2009). Studies that include topoclimate variability or

topographic indices have therefore improved the projec-

tion of vegetation distribution (Illán et al. 2010). Second,

biotic interactions (e.g. dispersal and interspecific com-

petition) may play vital roles in determining the persis-

tence of species at the local level (Heikkinen et al. 2006).

The potential importance of biotic interactions has been

advocated in a number of studies incorporating population

dynamics processes (Travis et al. 2006; Brooker et al.

2007). While detailed information regarding biotic inter-

actions will be difficult to quantify even at the local level,

it is well known that in Abisko, biotic interactions such as

herbivory and disturbance can over-ride climate controls

on growth and range expansion (Van Bogaert et al. 2011)

while facilitation of tree seedlings by shrubs has been

demonstrated at treeline (Grau et al. 2012). However,

such biotic interactions were not components of our

current model.

In this study, topoclimate was ranked most highly in the

variance explained in the GLM model (Table 1). The low

explanatory power of the soil variables in Table 1 (\5 %)

is not unexpected due to the poor quality of the soil map.

With a more detailed investigation of the soil properties,

both the edaphic and the climatic factors are likely to have

substantial impacts on the vegetation distribution (Dar-

mody et al. 2004). Our results are consistent with previous

studies suggesting that climate, especially temperature is

crucial for vegetation distribution over this region (Edenius

et al. 2003), while influences from the soil, land use and

topography are expected to shape the heterogeneity of the

vegetation distribution at a local level (Darmody et al.

2004). For example, the peatland occurs mostly in open,

relatively flat and slightly raised areas (Lang et al. 2009).

For the distribution of the snowbed community, snow

cover is obviously an important factor (Björk and Molau

2007) and technologies such as digital photography, pro-

cess modelling and remote sensing be used to determine

changes in snow cover and may provide additional

improvement for this study (Christiansen 2001; Dankers

and De Jong 2004; Liston and Hiemstra 2010).
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Many uncertainties with regard to the use of bioclimatic

models arise from either the modelling techniques or the

input data. While we are aware of the uncertainty due to the

choice of the modelling techniques, such uncertainties are

beyond the scope of this study and indeed have been dis-

cussed elsewhere (Heikkinen et al. 2006). Here, we mainly

focus on the uncertainties raised by the climate/vegetation

distribution data. The 50-m resolution surface-air-temper-

ature data adopted here is a development of a well-based

temperature dataset derived from the combination of

climatology datasets at different scales. Both the macro-

scale climatology from the synoptic-scale climate dataset

and the microclimatology from surrounding weather sta-

tions were integrated in this dataset, which therefore partly

addressed the problem of the over-simplification of the

microclimatology. Besides this, part of the validation

temperature data is collected from re-samplings at the same

locations after more than 20 years (Zhenlin et al. 2011).

However, notwithstanding our effort to improve the quality

of the temperature data, some uncertainties remain. For

(b)(a)

(d)(c)

Fig. 5 Comparison of the actual and projected probability of

occurrence for the vegetation distribution; a the actual probability

of occurrence of the snowbed community, b the projected probability

of occurrence of the snowbed community, c the actual probability of

occurrence of the birch forest and d the projected probability of

occurrence of the birch forest
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example, our understanding of the surface-air-temperature

at high altitudes is still poor in present temperature data

due to the lack of high-altitude meteorological stations

above 800 m a.s.l (Zhenlin et al. 2011). Moreover, surface-

air-temperature is not an adequate substitute for climate as

a whole, as other climate variables such as precipitation,

wind etc. are known to be important as regulators of veg-

etation distribution but are not available as fine-scale

datasets. Nor did we account for the influence of the snow

cover, vegetation canopies, together with the local topo-

graphical and hydrological conditions that complicate the

interaction in the energy exchange system among the

mountains at scales down to centimetre resolution.

The quality of vegetation distribution data also affects

the validity of the modelling results of this study.

Depending on the data availability, the vegetation model

can be built at either a community or species level. One of

the main arguments in favour of the modelling at a com-

munity level is the difficulty to get detailed data such as

spatial distributions at a species/plant functional type level

due to the limits of both time and economic resources.

Consequently, the grouping of plant species at a commu-

nity level with similar long-term responses to environ-

mental changes reflects a realistic trade-off between the

information and the structural complexity.

It is important for stakeholders to have predictive

models/assessments of climate change impacts so they can

adapt to changes, for example in local ecosystem services.

We have not produced such a model, but we have quan-

tified the extent to which vegetation distribution is related

to temperature and soil variability at the local level and

identified the local complexity of achieving this. We have

shown how caution is needed when modelling present

vegetation distribution at the local level and have estab-

lished some high-resolution databases on which future

local-scale models can be developed.
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Araújo, M.B., W. Thuiller, and N.G. Yoccoz. 2009. Reopening the

climate envelope reveals macroscale associations with climate in

European birds. Proceedings of the National academy of

Sciences of the United States of America 106: E45–E46.

Ashcroft, M.B., L.A. Chisholm, and K.O. French. 2009. Climate

change at the landscape scale: Predicting fine-grained spatial

heterogeneity in warming and potential refugia for vegetation.

Global Change Biology 15: 656–667.

Barbet-Massin, M., W. Thuiller, and F. Jiguet. 2010. How much do

we overestimate future local extinction rates when restricting the

range of occurrence data in climate suitability models? Ecogra-

phy 33: 878–886. doi:10.1111/j.1600-0587.2010.06181.x.

Bhatt, U.S., D.A. Walker, M.K. Raynolds, J.C. Comiso, H.E. Epstein,

G. Jia, R. Gens, J.E. Pinzon, et al. 2010. Circumpolar arctic

tundra vegetation change is linked to sea ice decline. Earth

Interactions 14: 1–20. doi:10.1175/2010ei315.1.

Björk, R.G., and U. Molau. 2007. Ecology of alpine snowbeds and the

impact of global change. Arctic, Antarctic, and Alpine Research

39: 34–43.
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