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Abstract

Recent studies of functional connectivity networks (FCNs) suggest that the reconfiguration of brain network
across time, both at rest and during task, is linked with cognition in human adults. In this study, we tested
this prediction, i.e. cognitive ability is associated with a flexible brain network in preschool children of 3-4
years - a critical age, representing a ’blossoming period’ for brain development. We recorded magnetoen-
cephalogram (MEG) data from 88 preschoolers, and assessed their cognitive ability by a battery of cognitive
tests. We estimated FCNs obtained from the source reconstructed MEG recordings, and characterized the
temporal variability at each node using a novel path-based measure of temporal variability; the latter cap-
tures reconfiguration of the node’s interactions to the rest of the network across time. Using connectome
predictive modeling, we demonstrated that the temporal variability of fronto-temporal nodes in the dynamic
FCN can reliably predict out-of-scanner performance of short-term memory and attention distractability in
novel participants. Further, we observed that the network-level temporal variability increased with age,
while individual nodes exhibited an inverse relationship between temporal variability and node centrality.
These results demonstrate that functional brain networks, and especially their reconfiguration ability, are
important to cognition at an early but a critical stage of human brain development.

Keywords: brain network, dynamic functional connectivity, early childhood, individual differences,
connectome predictive modeling

1. Introduction

The preschool years, often considered as the “blossoming period” Brown and Jernigan (2012), is a critical
phase in human development because it is associated with the most dynamic and global changes in the brain’s
structure and functions Casey et al. (2005), yet our understanding of the functional brain network patterns
in preschool children is limited. This period is characterized by the onset of executive functions Diamond
(2006), memory Simcock and Hayne (2003) and most importantly, development of key skills such as language
Bannard et al. (2009); Skipp et al. (2002) and reading Lonigan et al. (2000). The structure and function of the
developing brain are closely related to behavior as well as cognitive and life outcomes Siugzdaite et al. (2020).
For example, the maturation of the prefrontal cortex drives the rapid development of cognitive flexibility,
a core component of executive functions, in the preschool years Buttelmann and Karbach (2017). Of note,
cognitive flexibility is related to academic achievement (e.g mathematics or reading skills) Yeniad et al. (2013)
and even temperament Quiñones-Camacho et al. (2019) in preschool children. Besides, neuroimaging studies
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of preschool children reveal associations between distinct brain activation patterns and individual differences
in behavior Quiñones-Camacho et al. (2019) and cognitive abilities Cantlon and Li (2013). Predicting
developmental and cognitive profiles from functional brain networks in preschoolers would be critically
relevant as these profiles are often related to children’s learning ability Siugzdaite et al. (2020), and this is
a principal aim of our current study.

The relevance of large scale whole-brain functional connectivity is widely established Bressler and Menon
(2010). For example, functional brain network patterns in adults can predict individual differences in
sustained attention Rosenberg et al. (2016), creativity Beaty et al. (2018) and personality traits Tompson
et al. (2018); Markett et al. (2018) and further could distinguish between health and disease Bassett and
Bullmore (2009). This network view assumes stationarity of the functional interactions while disregarding the
temporal dynamics; pairwise functional connectivity (FC) is usually computed over the entire data duration
(be it rest or task-related), leading to the estimation of a static network. Yet brain responses are transient
in nature, so static connectivity estimate smooths out the variations across time and the resulting static
network is widely different from the network at any of the time instants Allen et al. (2012). Importantly,
numerous studies in adults have shown evidence for the dynamic nature of FC characterized by the variations
of connection strengths, the sign of interactions or changes in node membership among modules Hutchison
et al. (2013) during task conditions as well as rest Calhoun et al. (2014). Further such transient nature
of brain network is reported to increase over development Chai et al. (2017), and directly related with
learning Bassett et al. (2011), task performance Shine et al. (2016); Keerativittayayut et al. (2018), executive
functions Medaglia et al. (2018), and in general, with healthy cognitive functioning Thomas Yeo et al. (2011)
including general intelligence Barbey (2018) and creativity Li et al. (2017); Sun et al. (2018) in adults.

Compared to studies in adults, research on the dynamic reconfiguration of the typically developing brain
is just beginning. For example, functional MRI (fMRI) analyses in a cohort of healthy children and young
adult participants (3 - 23 years) revealed that the variability in the functional topography could predict
individual differences in brain maturity Cui et al. (2020). In healthy children and adolescents (6-17 years),
dynamic FC analyses of resting-state fMRI revealed diverse functional brain states as compared to static
FC patterns Marusak et al. (2017); the participants also exhibited an age-related increase in variability
suggesting greater neural complexity with maturation Marusak et al. (2017). Recent studies on children
with autism spectrum disorder reported decreased variability of the default mode network (age group 3-7
years) He et al. (2018) and longer dwell times in disconnected global states (age group 6-10 years) Rashid
et al. (2018) as compared to typically developing children.

Based on these studies, we hypothesized that dynamic FC could predict individual differences in cognitive
abilities in preschool children. We investigated the dynamic FC networks (FCNs) of 88 preschoolers (36
- 59 months old) using Magnetoencephalogram (MEG) recordings acquired while they watched cartoon
videos. The children’s cognitive abilities were assessed by Kaufman Assessment Battery for Children (K-
ABC) tests Kaufman and Kaufman (1983), a widely used test battery for the assessment of intelligence and
achievement in young children Sotel-Dynega and Dixon (2014); Benson et al. (2019). In particular, we had
the following predictions (a) the dynamic FCN in children would be supported by mesoscale variations of
the neural regions that exhibit diverse functional roles across time, (b) the extent of variation associated
with each region would be modulated by its centrality in the network, (c) the temporal variability of the
dynamic FCN would increase with age in the preschool years, and (d) the deviations of functional states in
the dynamic FCN from the static FCN can predict performance on children’s cognitive abilities.

2. Materials and Methods

2.1. Participants

In total 88 preschool children (43 girls) with an age range between 35-59 months were recruited for this
study. All children were native Japanese children without previous or existing psychological or developmental
problems as verified by parents’ reports. All children were tested over two separate days; on the first day,
they performed cognitive tests (K-ABC) and were familiarized with the MEG environment, and the actual
MEG recording was performed on the second day. On both testing days, experimenters played with children
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along with the parents in order to ensure that the children felt comfortable and at ease in the laboratory. All
experimental procedures were fully explained to the parents before they agreed, in written informed consent,
to the participation of their child. The experimental protocol was approved by the Ethics Committee of
Kanazawa University Hospital and the experiment was conducted in accordance with the World Declaration
of Helsinki.

2.2. MEG recording

Magnetoencephalogram (MEG) was recorded with a 151-channel SQUID (superconducting quantum
interference device) whole head coaxial gradiometer MEG system specialized for children (PQ1151R; Yoko-
gawa/KIT, Kanazawa, Japan) in a magnetically shielded room. The custom child-sized MEG system allows
easy placement and effective positioning of the sensors so that head movement is appropriately constrained
(Johnson et al, 2010). The head position was determined by measuring the magnetic fields after passing
currents through coils placed at three locations on the head surface as fiducial points with respect to well-
defined locations (bilateral mastoids and nasion). During MEG recording, children were lying on the bed in
a supine position while watching a cartoon of their own choice that was selected before the recording. The
narration sound was delivered binaurally through a tube leading to speakers placed in front of the children.
An experimenter remained close by to ensure the comfort of the children and further to prevent movement
during the MEG recording. MEG data were sampled at a rate of 1 kHz and filtered with a 200 Hz low-pass
filter.

2.3. K-ABC scores

The children were administered the Kauffman Assessment Battery for Children (K-ABC) test Kaufman
and Kaufman (1983), which is a standardized test, based on the theoretical foundation of Luria’s Luria
(1966) to measure cognitive development in children between 2.5 to 12.5 years of age. The K-ABC includes
assessments of both intelligence and achievement, and is grounded in the theoretical foundation of

test was conducted separate from the MEG recording. The participant scores were recorded for four scales
- Sequential processing scale, Simultaneous processing scale, Mental processing scale and Achievement scale.

In sequential/successive processing, the stimuli are processed in a sequence, and the stimuli have an
inherent temporal order. The sub-tests for the sequential processing scale include word order (touching
series of objects in same order as named by the examiner), number recall (repeating a sequence of numbers
as said by the examiner) and hand movements (copying a sequence of taps on the table as performed by the
examiner with palm/hand). On the other hand, in simultaneous processing, all pieces of information are
available at once, which are integrated concurrently to arrive at a task solution. The sub-tests for simulta-
neous processing scale include triangles (assembling of colored rubber triangles to match an abstract image),
gestalt closure (meaningful interpretation of partially completed pictures) and face recognition (recognizing
the face shown by the examiner in a different (group) photograph). The sequential and simultaneous scales
characterize short-term memory and visual-spatial abilities respectively. The mental processing scale is a
composite of sequential and simultaneous processing scales where the latter has a greater influence. The
mental processing composite score is considered the global estimate of a child’s level of intellectual function-
ing. The achievement scales measure achievement and focus on applied skills and facts that were learned
from the school or home environment.

2.4. Preprocessing

MEG preprocessing was done using the FieldTrip toolbox Oostenveld et al. (2010) in MATLAB. For each
participant, the MEG data in each channel was band-pass filtered between 0.5 Hz and 45 Hz using a 4th
order Butterworth filter. The data was two-pass filtered to avoid phase distortions. Independent Component
Analysis (ICA) Hyvärinen and Oja (2000) was used to removing eye blink and heartbeat artifacts. The bad
channels were identified by visual inspection of the data and then interpolated using cubic splines from the
neighboring channels determined through Delaunay triangulation. The 3-minute long recording was again
visually inspected and bad segments were discarded. We discarded MEG data from a child if the duration

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.005074doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.005074
http://creativecommons.org/licenses/by-nc-nd/4.0/


of artefact free segment was less than 80 s, and this led to a loss of 14 participants, therefore leaving 74
MEG dataset (39 girls) for our analysis. For each participant, the preprocessed MEG was partitioned into
K segments of L = 80 sec duration (here, segments were generated with 50% overlap between successive
segments). Here, K depends on the total artifact-free data available and hence, varies across participants
between 1 to 3. In the rest of the paper, we refer to the multiple segments per participant as sessions.

2.5. Source reconstruction

The source reconstruction was performed using FieldTrip toolbox Oostenveld et al. (2010). For source
analysis, forward models were constructed using age-specific average MRI templates of 3-4 years old children
from Neurodevelopmental MRI database Sanchez et al. (2012). The forward model was computed sepa-
rately for 3 years and 4 years age groups using age-specific average MRI templates from the database. For
beamformer solution, the bandwise covariance matrix was calculated by considering the pre-processed data
of all subjects. The dipoles were assumed to be located at the voxels within the head boundary (only grey
matter was considered) on a 3D grid with 5 mm spacing. This resulted in 9023 and 9710 voxels for 3 and
4 years age-groups respectively, where sources were to be localized. In each of the six frequency bands, the
source activity was reconstructed first band-pass filtering the sensor data in that band and determining the
beamformer filter coefficients through Linearly Constrained Minimum Variance (LCMV) approach Van Veen
et al. (1997). The cortical reconstructions were parcellated into regions of interest (ROI) using according to
the LONI Probabilistic Brain Atlas (LPBA40) atlas Shattuck et al. (2008). This resulted in a total of 56
cortical regions of interest with 27 identical regions in each hemisphere (see Supplementary Table S1) for
list of regions along with their abbreviations). Subsequently, the first eigenvariate of reconstructed source
activity was computed in each ROI to obtain the representative time series. The first eigenvariate was com-
puted by projecting the reconstructed source activity in each ROI onto the first eigenvector after singular
vector decomposition (SVD). Hence, in each band, we obtained a total of 56 time series corresponding to
all cortical ROI in the source space.

2.6. Functional connectivity estimates

Functional connectivity (FC) estimates quantify the interdependence between brain activity at spatially
distinct locations. In this study, we used coherence to estimate the pairwise functional connectivity between
the source reconstructed time series. As the source space does not exhibit volume conduction effects,
coherence yields reliable estimates of connectivity. The static and dynamic connectivity was computed in
six frequency bands — Delta (0 - 4 Hz), Theta (4 - 8 Hz), Alpha (8 - 12 Hz), Beta-1 (12 - 20 Hz), Beta-2 (20
- 30 Hz) and Gamma (30 - 45 Hz) bands. Next, we briefly describe the computation of static and dynamic
FC matrices.

2.6.1. Computation of static connectivity:

The static connectivity was estimated for each session using Coherence between all pairs of ROI. To
estimate the static connectivity in each band, the MEG data was filtered according to the frequency band of
interest using a band-pass filter (4th order Butterworth filter). Let xB(t) and yB(t) denote the filtered data
of the ROI pair under consideration whose Hilbert transform is denoted as x̂B(t) and ŷB(t) respectively. The
corresponding analytic signals were then obtained as:

XB(t) = xB(t) + jx̂B(t), YB(t) = yB(t) + jŷB(t) (1)

Then, the pairwise connectivity CXY for the frequency band under consideration Cohen (2014) was
obtained as:

CXY =
|SXY|√
SXXSYY

(2)

where SXY =
∑

t XB(t)Y∗
B
(t), SXX =

∑

t XB(t)X ∗
B

(t) and SYY =
∑

t YB(t)Y∗
B
(t) are scalars and denote

the cross- and auto- power spectral densities in the considered frequency band B. Coherence takes values
between 0 and 1; CXY = 0 denotes that the time-series are linearly independent, while CXY = 1 denotes
perfect linear dependence. Since there are 56 ROI after parcellation, we obtain an undirected network with
weighted adjacency matrix of size 56 × 56.
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2.6.2. Computation of dynamic connectivity:

The time-varying connectivity was estimated by partitioning each session of the MEG data into overlap-
ping windows and computing the coherence (equation 2) in successive time-windows. This sliding window
approach requires the choice of the resolution (determined by window size) and overlap parameters. The
topology of the network depends (among other factors) upon the time-scale at which it is defined Horwitz
(2003). The window resolution must be fine enough to detect short duration events. However, choosing very
small window sizes is not feasible because it can lead to insufficient number of data points for estimating
the power spectra and in turn connectivity. For this reason, we constructed multiple temporal networks for
each session with different window sizes of M = 2.5, 5, 7.5, 10, 12.5 and 15 sec, with 50% overlap between
successive windows.

2.7. Computation of temporal variability

Here, we define the temporal variability of the nodes with respect to their dissimilarity to their role in
the static network. For each node, the proposed measure captures the deviation of the dynamic FC states,
which may reflect task-relevant network topologies, from the static FC. For node i of the dynamic FCN, it
is defined as:

δSP L,i = 1 − 1

T

T
∑

s=1

corr
(

lk

static
, lk

t

)

i = 1, 2, . . . , m (3)

where corr(.) denotes the Spearman rank correlation of the vectors; li
static is the (m − 1)-dimensional

vector comprising the shortest path lengths of node i to the rest of the nodes in the static network; li
t is the

vector of shortest path lengths during the time-window indexed by t in the temporal network. The measure
δSP L,i captures the extent to which the nodes differ from their average behavior as captured by the static
functional network. Higher the value of δSP L,i, higher the variability of node i. To obtain a feature value per
ROI per participant, we averaged the values across multiple sessions and window sizes for each participant.

The proposed measure in equation 3 is based on the measure of nodal temporal variability introduced
by Zhang et al. (2016). It is computed as below for node i in the temporal network:

νw,i = 1 − corr
(

wi
s
, wi

t

)

= 1 − 2

T (T − 1)

T
∑

s=1

T
∑

t=1,t6=s

corr
(

wi

s
, wi

t

)

i = 1, 2, . . . , m (4)

Here, wt
i = [wij ]j 6=i denotes (m − 1) dimensional vector corresponding to the node i, comprising the

connection weights from i to all other nodes at time t. Further, corr(.) denotes Spearman rank correlation
between vectors. The measure in equation 4 suffers from one significant drawback. Since the functional
architecture of the node at any instant is represented by its connection weights to other nodes

(

wt
i
)

, it
fails to capture the relevance/role of the node in context of the whole network. We illustrate this with an
example in Figure 1A.

In addition to the connection strengths of the node to its neighbours, the role of a node also depends on
the role of the nodes it is connected to. Hence, even though a network change does not specifically occur
at the node under consideration, it can modify how the node interacts with the rest of the network. To
address the drawback of νw,i, the proposed measure temporal variability (δSP L) is based on shortest path
lengths that take the global network topology into account. Here, the computation of δSP L is based on the
underlying assumption of connectedness of the graphs being compared. Since we use weighted graphs for
determining the shortest paths between nodes, the connectedness of the graph is not an issue. To extend
the use of the measure to binary graphs, thresholding the adjacency matrices while retaining the maximum
spanning tree may be performed.
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2.8. Measures of node centrality in static and dynamic FCN

To investigate the relation between the node’s centrality and its temporal variability we quantified the
former using the betweennes centrality measure. For a given node i, it is computed as the number of shortest
paths of the network passing through the node. For each participant, we computed the betweenness centrality
of all nodes of the static network and averaged the estimate across sessions, denoted BCstatic,i for node i. For
the dynamic network, we estimated the betweenness centrality of the nodes in each time-window k, denoted
BCk,i for node i. To characterize the stability of hub structure across time, we averaged the betweenness
measure for each node across time. The time-averaged node betweenness for node i (denoted 〈BCt,i〉) was
obtained as:

〈BCt,i〉 =
1

T

T
∑

k=1

BCk,i (5)

where T is the total number of windows. To obtain a single value for time-averaged betweenness for each
node per participant, we averaged the values across the multiple sessions and window sizes (2.5, 5, 7.5, 10,
12.5 and 15 sec) for each participant.

2.9. Connectome Predictive Modeling

Connectome predictive modeling (CPM) Shen et al. (2017) is a technique developed to predict individual
behavior from brain connectivity. The CPM model is built from available training data and makes predictions
on novel out-of-sample subjects. To determine whether network variability predicted KABC scores in novel
individuals, a leave-one-out cross-validation procedure was adopted. In each fold, features selected from
(n − 1) participants were used to build the regression model, and the prediction is made on the left out
participant. Given the brain connectivity data of a number of participants and target KABC scores, the
major steps followed during training are briefly outlined below:

• Standardized residuals as target scores: The scores of the training participants on the KABC
scale under consideration are regressed on age and gender and the residuals are obtained. For the
test data, the residual of the K-ABC scale after regressing out age and gender using the coefficients
determined during training. In the following steps, the standardized residuals are used as the target
scores for modeling purposes in CPM.

• Feature extraction: This step computes relevant features from the brain network of each participant.
Features represent a finite, compact representation of the functional connectivity networks (FCN). For
example, studies such as Rosenberg et al. (2016); Beaty et al. (2018) have employed the edge strengths
in the FCN as features. Here, we used the nodal temporal variability features (δSP L, eqn. 3) of the
participants. Since there are 6 bands and 56 ROI, the feature dimension for a given participant is
6 × 56 = 336.

• Feature selection: The correlation between the features and the scores is computed, and those fea-
tures that are significantly correlated at (P < α) are chosen. Since feature selection is performed in
every fold, the number of selected features varies from fold to fold. We used the Spearman rank corre-
lation of the features with the scores to perform feature selection with threshold of α = 0.01. Further,
CPM was performed considering positively and negatively correlated feature subsets seperately.

• Feature summarization: The selected features are summarized to obtain a single value per par-
ticipant in the training data. Here, we used the value of the sum of the features as the summary
measure.

• Model building: We used simple linear regression model to predict the target scores of the training
participants using their summarized features.
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The selected features are extracted from the test participant’s connectivity data and the trained model is
used to predict the scores on novel participants. The correlation coefficient between the predicted and actual
scores was used the performance metric; the higher the correlation the better the predictive capability of the
selected features. To quantify the extent to which the features can predict the scores of novel participants, the
correlation coefficient between the observed and predicted scores across folds (denoted ρCP M ) was computed.
Further, we performed non-parametric permutation tests to evaluate the significance of the predictions. In
each iteration of the permutation test, the target scores were shuffled, and the above procedure is followed
to compute ρi

CP M , where i indexes the ith iteration. We performed 500 iterations of permutation testing
to evaluate the significance. The P− value was calculated as the fraction of times ρi

CP M , i = 1, 2, . . . , 500
exceeded ρCP M .

2.9.1. Classification

In addition to CPM which evaluates the relevance of the features for predicting scores (regression), we
also considered the problem of correctly predicting the broad class a participant belongs to. Specifically,
we considered the binary classification problem — Low vs High for the KABC scales. Given residual scores
on any scale (after regressing out age and gender), Low and High classes were defined for the participants

by thresholding the scores; participants below and above the 1/3
rd

and 2/3
rd

quantiles respectively were
considered as Low and High. Leave-one-out cross-validation (LOOCV) was used to evaluate the classification
performance, where one participant is tested while pooling all other participants for training. The number
of participants considered for classification include (n = nHigh +nLow), which varies as n = 49 for sequential
scale and n = 51 for simultaneous scale. In each fold, the features from the training data were used to train
the classifier and predict the label of the test participant. This was repeated by keeping each participant
out for testing. For each considered feature type, Feature selection was performed using the same procedure
as in the case of CPM. The selected features1 were used to train the classifier. In our experiments, we
considered the following linear classifiers:

• Linear Discriminant Analysis (LDA): The LDA is a linear classifier which projects data onto a
lower-dimensional space, where the decision boundary is determined. For M classes, the projection is
performed to a M − 1 dimensional space, where the direction of projection is chosen to maximize the
between-class scatter while minimizing the within-class scatter.

• Support Vector Machine (SVM): The SVM is a binary classifier which learns the maximum
margin hyperplane in the feature space. It can also be used to learn non-linear decision boundaries by
employing the kernel trick. In this case, the features are transformed into a higher-dimensional space
and the linear decision boundary is learned. Projecting the decision hyperplane back to the original
feature space results in a non-linear decision boundary. We used the SVM classifier with linear kernel
and fixed cost parameter C = 100.

The overall classification performance of the features was obtained as the average accuracy across folds.
The classification performance indicates the proportion of participants classified correctly. Further, the
class-wise accuracy indicates the proportion of correctly classified participants from each class.

2.9.2. Empirical chance level

The chance level for a two class classification problem is 50% for a large sample size, but it may be
considerably higher for a small data set. Therefore, we estimated the equivalent chance level by taking the
sample size into account; assuming that classification errors follow a binomial cumulative distribution Com-

1For the binary classification problem, it is to be noted that correlations for feature selection were computed by including
the participants with scores in between the 1/3

rd and 2/3
rd quantiles along with the participants in the training data from Low

and High classes.
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brisson and Jerbi (2015). The empirical chance level is calculated as the statistically significant decoding
accuracy (at p < α) for classification accuracy:

Acce = binoinv (1 − αc, n, 1/c) × 100

n
(6)

where n is the number of samples, c is the number of classes, αc is the threshold for statistical significance.

3. Results

In the following, we investigate spatial distribution of temporal variability and age-related differences
in dynamic FC of children, and the relation between the node’s variability in the dynamic network and its
centrality. To test the role of dynamic FC in cognition, we evaluated connectome predictive modeling Shen
et al. (2017) with the KABC scales using nodal temporal variability measures as features, and presented
classification performance of the features - i.e., the ability to categorize children as being Low or High on
their cognitive test scores. Finally, we validate our results with alternative measures of nodal temporal
variability Zhang et al. (2016).

3.1. Temporal variability of brain regions

For each node in the dynamic FCN, we formulated the temporal variability measure denoted δSP L,i for
node i (equation 3) as the dissimilarity of the network architecture within each window with respect to the
static network. This captures the network deviations with respect to its manifestation over longer scales
(tens of seconds as opposed to few seconds in each window). Hence, higher temporal variability of a node
implies that it visits multiple diverse network configurations across time, that are not evident in the static
network. In contrast, lower temporal variability suggests that the node maintains close to the intrinsic
functional architecture (corresponding to the static network) across multiple time-scales. Also, δSP L,i takes
into account the fact that even though a network change does not specifically occur at the node i, it can
modify how the node interacts with the rest of the network (see Figure 1).

3.1.1. Spatial distribution

Figure 2a shows the spatial distribution of temporal variability as measured by δSP L,i, averaged across all
frequency bands and participants. The regions are ranked by their average temporal variability in Figure 2c.
The association areas in the posterior parietal and the occipital regions exhibited the highest variability while
the temporal and the frontal regions showed much less variability. Figure 2b shows the covariation of δSP L,i

between nodes, averaged across bands. The matrix entries were computed as the pairwise Spearman rank
correlation of the nodes’ temporal variability. We found two distinct clusters of covarying nodes, comprising
the nodes in the posterior parietal, occipital regions in one cluster and the frontal, temporal and sub-cortical
regions in the other.

3.1.2. Age and gender effects

The overall temporal variability, δ̄SP L, obtained by averaging δSP L,i across all nodes and frequency bands,
was found to be positively correlated with participant’s age (Spearman ρ = 0.3844, P < 0.001, n = 74), but
no significant differences were observed between boys and girls (t(74)= 0.753, P = 0.454, two-sided). Of note,
we observed similar findings in individual frequency bands (see Supplemental Figure S1 and Supplemental
Table S2).

3.2. Hub structure and temporal variability

To investigate the hypothesis that temporal variability of nodes is associated with their centrality, the
latter was estimated using the time-averaged betweenness centrality of the nodes of the dynamic FCN (see
equation 5). Figure 3a and 3b show the nodes ranked from the highest to lowest group-averaged betweenness
of static (BCstatic) and dynamic FCN (〈BCt〉), respectively. Here the hub nodes (centrality ≥ 1 standard
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deviation above mean) are found to be similar for the case of both the static and time-averaged betweenness
measures. The time-averaged betweenness, 〈BCt〉, exhibits nearly perfect linear correlation (Spearman
ρ = 0.99, P < 10−7, n = 56) with the node-betweenness of the static network, BCstatic. This suggests that
the hub structure in the dynamic network exhibits a stable pattern across time, which is similar to that of
the static FCN.

Comparing the ranking of temporal variability (Figure 2c) and betweenness centrality (Figure 3a,b), it
is evident that the regions exhibiting high centrality correspond to those exhibiting low temporal variability,
and vice versa. This is verified in Figure 3, and the results suggest that temporal variability of the nodes
is negatively correlated to their time-averaged betweenness (Spearman ρ = −0.7, P < 10−7, n = 56). This
relationship is also consistent in individual bands (see Supplementary Table S3).

However, this observed negative correlation between the hub-structure and the temporal variability is
in contrast to earlier studies such as Allen et al. (2012) and Honey et al. (2007) which reported that
connections of nodes which exhibit high connectedness (i.e., hubs) tend to fluctuate the most. We suggest
that these differences could arise due to the different approaches towards quantifying temporal variability.
For example, Honey et al. (2007) measured temporal variability as the extent to which the hub centrality
varies across time. To enable comparison, we quantify variation of hub-centrality as the standard deviation
of the node-betweenness across time (denoted SDi for node i). In Figure 3d, it is observed that the group-
averaged variation in centrality across time is indeed positively correlated to the node centrality (Spearman
ρ = 0.98, P < 10−7, n = 56). However, normalizing the variation (i.e.,CVi = SDi/〈BCt,i〉) reveals negative
correlation with respect to the node centrality (Spearman ρ = −0.95, P < 10−7, n = 56, Figure 3e). Similar
observations were also made by Shen et al. (2015), who noted that although hub regions are highly variable
in their functional roles at finer timescales, they are not as variable as would be expected by their high
centrality.

3.3. Connectome Predictive Modeling

To determine whether network variability predicted KABC scores in unseen participants, a leave-one-
out cross-validation procedure along with (CPM) Shen et al. (2017) was adopted. In each fold, features
selected from (n − 1) participants were used to build the regression model, and the prediction was made
on the left-out participant. Here, we used the nodal temporal variability features (δSP L, Eqn. 3) of the
participants. Since there are 6 frequency bands and 56 ROIs, the feature dimension for a given participant
was 6×56 = 336. In each fold, we selected those features which were correlated (Spearman rank correlation,
P < 0.01) with the target scores. Further, CPM was performed by separately considering positively and
negatively correlated feature subsets. We used a simple linear regression model to predict the target scores
of the training participants using the selected features. The standardized residuals of the K-ABC scales
(after regressing out age and gender) were used as the target scores for modeling purposes in CPM. The
selected features were extracted from the test participant’s FCN and the trained model was used to predict
the scores on novel participants. The correlation coefficient between the predicted and actual scores was
used as the performance metric; the higher the correlation the better the predictive ability of the selected
features.

Table 2 shows the results of CPM using temporal variability features, δSP L to predict standardized
residuals (after regressing out age and gender) of the K-ABC scales. Here, we report the Spearman rank
correlation (ρ) between the predicted and observed scores across the folds of leave-one-subject-out cross-
validation. We assessed the significance of the correlations using P−values computed from 500 iterations of
non-parametric permutation testing. For the simultaneous and achievement scales,the correlations are not
reported since no features were selected for some of the folds and a model could not be built.

For the sequential scale, the predictions of regression using δSP L are significant at P < 0.05 (uncorrected
P−values) for positively correlated features; Figures 4a,b show the relation between the predicted and target
scores across folds. The positively correlated features exhibit greater predictive power and larger in number
than the negatively correlated ones. The features positively correlated (P < 0.01) with the standardized
residuals are listed in Table 3.We observed that all the correlated features are from high frequency bands
(beta-2 and gamma) and from the left hemisphere; they are primarily from prefrontal cortex (inferior, middle
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and superior frontal gyri, gyrus rectus, lateral orbitofrontal gyri), temporal areas (inferior, middle, superior
temporal gyri), and deeper brain regions (hippocampus, caudate, putamen, insular cortex).

For the mental processing scale, the number of positively correlated features also dominated the nega-
tively correlated ones. For the positively correlated features, the relation between the predicted and target
scores across folds is shown in Figures 5a,b; the features could weakly predict the scores though the predic-
tions did not attain statistical significance. On the other hand, using both positive and negatively correlated
features yielded the best model; relation between the predicted and target scores across folds is shown in Fig-
ures 5c,d. We noted that the predictions obtained using multiple selected features in the model (as opposed
to summarizing them) yield relatively better predictions. This may be due to complementary information
offered by the features, in which case, their sum does not faithfully reflect all the information offered by the
features. Table 4 shows the features correlated to the target scores at P < 0.01. The positively correlated
features are from left temporal areas (inferior, middle, superior temporal gyri), and deeper brain regions
(hippocampus, caudate, putamen, insular cortex), while on the other hand, the left parahippocampal gyrus
exhibits negative correlation with the scores.

3.4. Classification using temporal variability measures

For the sequential and mental processing scales, the features found to significantly predict the scores
were also evaluated in a machine learning based classification framework to assess their ability to predict
the participant categories (Low vs High) on an individual basis. Leave-one-out cross-validation was used
to evaluate the classification performance of the selected features (feature selection follows same procedure
as in CPM) using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. The
classification accuracy indicates the proportion of participants classified correctly. Further, the class-wise
accuracy indicates the proportion of correctly classified participants from each class. A classifier model is
deemed useful if the classification accuracy substantially exceeds the empirical chance level Combrisson and
Jerbi (2015) (see equation 6), i.e. the expected classification accuracy if the class-labels of the test data
were randomly assigned.

Figure 4 shows the results of CPM along with classification performance for positively correlated δSPL,i

features using LDA, and SVM (linear) classifiers for sequential processing scale. In addition to evaluating
the results of classification using sum of selected features (with feature summarization, Figure 2a), we also
considered selected features as a vector input to the classifier (without feature summarization, Figure 2b). It
is seen that the latter case performs better resulting in classification accuracy (69.387% with LDA, 79.59%
with SVM) that substantially exceeds the empirical chance level (61.22%) with balanced class-wise accuracy.
Together with the results of CPM, this suggests that the selected features are robust predictors of scores,
as well as class labels, on sequential scale in novel or unseen participants.

Figure 5 shows the results of CPM along with classification performance for the mental processing scale
for (a,b) positively correlated δSPL,i features (c,d) both positively and negatively correlated δSPL,i features. It
is seen that the only the latter features supplied as vector input to the classifier could significantly predict the
class label, yielding classification accuracy of 74% and 80% with LDA and SVM classifiers respectively and
exceeds the empirical chance level (62%). This suggests that both positive and negatively correlated network
dynamics are important to distinguish low and high-scoring children mental processing scale. Moreover,
the inability of the summarized features to classify the participants suggests that the constituent features
comprise complementary information.

3.5. Comparison to other measures of temporal variability

To validate our results, we also repeated our experiments with the measure of temporal variability
proposed in Zhang et al. (2016), computed as νw,i for node i (see equation 4). The overall temporal variability
measured using δ̄SP L was found to be positively correlated to that measured using ν̄w (Spearman ρ =
0.794, P < 10−7). Also, the group-averaged correlation between δSP L,i and νw,i was statistically significant
for all frequency bands even after Bonferroni correction (see Supplementary Table S3), suggesting that both
measures show similar patterns of variation across the regions of interest. The regionwise distribution of
νw,i is shown in Supplemental Figure S2.
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The results of connectome predictive modeling using νw features for KABC scales (standardized residuals)
yielded similar interpretation for sequential scale as δSP L features (See Supplemental Tables 2, S5). The
results of classification are shown in Supplemental Figure S3. For the mental processing scale, the results
of CPM did not attain statistical significance.

Discussion

In this study, our principal hypothesis was that dynamic functional connectivity network (FCN) would
be linked to development and cognitive abilities of preschool children; we focused on preschoolers because it
is a critical phase in our development associated with dramatic changes in the brain. We examined dynamic
functional brain networks obtained from source reconstructed MEG recordings of 3-4 year old children. We
found that the parietal-occipital regions manifested high variability. The overall temporal variability of the
functional brain networks increased with age, even within the narrow age-range we considered. At the nodal
level, the temporal variability of the brain regions exhibited an inverse correlation with the time-averaged
betweenness centrality measure. Importantly, by using connectome predictive modeling and machine learn-
ing based classification frameworks revealed that the temporal variability of the brain regions could reliably
predict the performance of children’s cognitive abilities, as measured by the K-ABC standardized assessment
tests. Finally higher performance on the sequential processing scale was associated with relatively higher
variability of regions in the left frontal-temporal areas, while higher performance on the mental processing
scale was associated with higher variability of left temporal regions and lower variability of the left parahip-
pocampal gyrus. Taken together, these findings provide critical evidence supporting our hypothesis and
further demonstrate that the cognitive abilities can be reliably predicted from a child’s unique dynamical
functional connectivity profile.

Temporal variability of brain regions:
We recorded MEG from children while they watched Japanese animation videos and studied the recon-

figuration of their functional brain networks across time. Data acquisition during movie watching improves
compliance in young children, thus reducing movement artifacts in the recordings. Also, it allows the
recording of neural activity during the viewing of naturalistic stimuli Cantlon and Li (2013) and enhances
brain-behavior correlations Vanderwal et al. (2018) and test-retest reliability Sonkusare et al. (2019).

In our analyses, we formulated the temporal variability measure (equation 3) of each node in the dynamic
FCN to capture the deviations of the node’s role at each time from the static network. This measure is
motivated by earlier studies that report measurable differences between static FCN and snapshots of the
dynamic FCNAllen et al. (2012); Marusak et al. (2017, 2018). Moreover, any network level change can
potentially influence how a node interacts with the rest of the network. For this reason, the proposed
measure of temporal variability (δSP L), adapted from Zhang et al. (2016), is based on the shortest path
lengths that take the global network topology into account. It captures variations in the node’s role across
time with respect to that in the static network.

Also, the temporal variability was computed using a sliding window with short windows of duration 2.5 to
15 seconds. Compared to fMRI, neuroimaging techniques such as MEG and EEG can probe the fluctuations
in dynamic connectivity at faster and behaviorally relevant time scales De Pasquale et al. (2010); de Pasquale
et al. (2012); Dimitriadis et al. (2018) and reflect the transitions between FC microstates Koenig et al. (2005);
Dimitriadis et al. (2013). Together with fMRI studies, which consider window duration of usually 30 seconds
or more (e.g., Zhang et al. (2016); Sun et al. (2018); Li et al. (2017); Keerativittayayut et al. (2018), our
results suggest that the dynamics of cortical FC take place at multiple time-scales. Besides, theoretical
models of neuronal dynamics simulated such rich structure in the dynamics of cortical FC based on known
anatomical connectivity of macaque neocortex Honey et al. (2007); Ghosh et al. (2008); Deco et al. (2009).

Our findings show that parietal and occipital regions of the child brain comprising the inferior parietal
lobule (supramarginal, angular gyri) and bilateral visual cortex (inferior, middle, superior occipital gyri),
exhibit the highest temporal variability during movie watching. The sensorimotor areas (pre-central, post-
central gyri), medial visual cortex (cuneus, lingual gyrus), and posterior parietal areas (superior parietal
gyrus, precuneus) rank next in their variability. The findings suggest greater variability of the primary
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sensory and unimodal regions involved in sensory functioning. Of note, our observations differ from those
in adults Zhang et al. (2016), where primary sensory areas exhibited the least variability across time in the
eyes-closed resting state. To account for differences in the choice of measures, we verified the spatial patterns
of temporal variability using the measure in Zhang et al. (2016) (see Eq4 in SI Methods) and observed that
this did not influence our findings.

Existing studies show that the temporal dynamics of FC during naturalistic viewing differ from resting-
state Li et al. (2019). Unlike the resting-state, the viewer engages with the stimuli continuously while watch-
ing movies/cartoons, integrating information across time. In this context, the relatively greater variability of
the primary sensory regions likely facilitates the neural representation of continually changing visual inputs
at short time-scales. Our observations are consistent with investigations of dynamic FC patterns during
movie watching in children and adolescents Li et al. (2019).

Age-related increase in temporal variability:
We observed an age-related increase in temporal variability, suggesting that the presence of larger number

of functional states may underlie greater variability in older children which might enable higher cognitive
functions. Such interpretation is consistent with increased dynamic fluctuations of FC with age Marusak
et al. (2017), and positive associations between the number of expressed FC states. Moreover, McIntosh
et al. (2008) found that brain signal variability increases with age and that greater variability is correlated
with higher cognitive performance.

Of note, the age-group considered in our study is in the range of 36-59 months as we focused only
on preschoolers, but this is a narrow age group as compared to Marusak et al. (2017)(7 - 16 year olds)
and McIntosh et al. (2008)(8-15 year and 20-33 year olds). Yet, the association between age and temporal
variability even in this narrow age group may be attributed to the continuously changing structural network
during the preschool years Casey et al. (2005). Early childhood involves rapid neural network development
in the brain associated with cognitive and sensory functioning. We suggest that the age-related increase
in temporal variability reflects the structural changes in the brain network, that facilitates the dynamic
switching among a repertoire of functional states. This possibility is supported by the findings by Tang
et al. (2017) that suggest that (structural) brain networks become optimized with age to support diverse
brain states. Nevertheless, further studies are needed to determine the nature of influence between structure
and function in very young children.

Relation to hub structure: We characterized the topology of nodes in the static/dynamic FCN using
the betweenness centrality. The hubs of the dynamic FCN (identified using time-averaged betweenness cen-
trality) corresponded to the hubs of the static FCN, with a distributed pattern across the brain (sub-cortical
structures, superior frontal, lingual gyri, insular cortex, precuneus). Notably, the hub regions overlap with
the structural and functional hubs in late childhood (5 - 10 years) Oldham and Fornito (2018). Our obser-
vations suggest that dFC microstates are constrained by the underlying structural hubs, which also result
in a stable hub-structure across time. This is consistent with recent evidence from fMRI studies in adults,
that suggest that dynamic network transitions through various functional metastates whose hubs overlap
with that of the structural network Zhao et al. (2019). Further, from a neurodevelopmental perspective,
though the structural hubs of the brain are well in place by around 2 years of age Hagmann et al. (2010),
the functional hubs shift from being localized in primary sensory and motor areas perinatally to a more
distributed pattern in association areas in later years (review in Oldham and Fornito (2018)), reflecting the
development of higher-order cognition during this period Casey et al. (2005).

Importantly, we found that the network variability was negatively correlated to the node centrality. This
suggests the existence of a core-periphery structure, whose hubs form a stable core and periphery nodes
engage/disengage with the core. Such a hypothesis is compatible with the findings of "dynamic core" which
found that the hub nodes participate in a number of networks across time facilitating the integration of
information de Pasquale et al. (2012); Cole et al. (2013); Schaefer et al. (2014). On the other hand, the
periphery nodes lie mainly in the primary sensory areas that bring in the information from the external
environment to be interpreted by the brain. The role of peripheral nodes in exploring the dynamical
repertoire is also evident in computational studies such as Gollo et al. (2017); here, the authors simulated
large-scale fMRI dynamics over known anatomical connectivity of a participant cohort, and found that the
local stimulation of periphery regions exhibited larger changes in functional connectivity patterns (of the
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region with respect to the rest of the brain) as compared to the hub regions.
Relation to cognitive abilities: The temporal characteristics of functional brain network patterns

are robustly related with the scores on sequential and mental processing scales of preschool children, while
no such clear relationships are observed for simultaneous and achievement scales. We observed classification
accuracy in the range of 70 − 80%, similar to those reported by other developmental studies that used
resting state functional connectivity patterns to predict symptom severity Uddin et al. (2013), diagnostic
group membership Greene et al. (2016); Chen et al. (2016), and even age Pruett Jr et al. (2015).

In the K-ABC battery, sequential processing involves solving problems with a serial order or sequence of
input; for example, the problems in the sequential processing subset are associated with tasks such as word
order, number recall and hand movements Kaufman and Kaufman (1983). These tasks require primarily the
encoding of information into a short-term memory followed by subsequent recall, therefore, the score on the
sequential processing scale is weighted heavily by short-term memory and attention-distractability Bracken
(1985); Das (1984). For achieving a high score on the sequential scale, it is essential to maintain multiple
items in working memory, against possible interference, for later retrieval and this maintenance phase requires
continuously updating the stimuli representation in memory, a process that could be linked to higher network
reconfiguration across time. Indeed, this was observed in our findings, and the regions that were positively
correlated with this sequential scale were primarily from the auditory and language processing areas (left and
right STG, left IFG, MTG), visual processing areas (left and right ITG), left prefrontal cortex (SFG, MFG,
ObFG), insular cortex (INS) and sub-cortical regions (CAU, PUT, HIP). Of note, the higher the temporal
variability, the more functional communities the brain region will be connected to across time Zhang et al.
(2016), thereby allowing a flexible switching between competing network configurations Friston (2000).

Interestingly, our temporal variability measures did not show any clear association with scores on the
simultaneous processing scale that requires a holistic or Gestalt approach for integrating inputs to solve
problems. The simultaneous processing needs continuous integration of sensory inputs across time, possibly
favoring stable network configurations for cognitive processing. Of note, it is emphasized earlier Luria
(1976) that the sequential and simultaneous scales are not hierarchical, i.e. one is not more complex than
the other Hickman (2008), but see Bracken (1985). Our results therefore emphasize the fact that different
mechanisms of dynamic FC underlie sequential and simultaneous information processing, and this would
have subsequent implications on accommodating individual differences in children’s learning styles Ayres
and Cooley (1986). Further, lower scores on sequential processing scale but with comparable scores on
simultaneous processing scale are sometimes associated with children with fragile X syndrome Kemper et al.
(1988), ADHD subtype Jonsdottir et al. (2005).

We did observe relationships between temporal variability of FCN and mental processing scale, which
combines both sequential and simultaneous processing scales and is a measure of a child’s overall level of
cognitive processing McGill and Spurgin (2016). Interestingly, we observed that for the mental processing
scale, both positive and negatively correlated network dynamics are important to distinguish between low
and high-scoring children. The high scorers on this scale were associated with higher reconfiguration of left
temporal brain regions and lower reconfiguration of the left parahippocampal region.

Limitations and future scope: While this study represents an important role of temporal networks
in the cognitive development of very young children, much remains to be explored, both empirically and
methodologically, towards a comprehensive understanding of dynamics of functional network and its role
in development Kaiser (2017). For example, future longitudinal studies along with model-driven analysis
approaches could help revealing the causal role of network variability. Further, here we focused on the
neuronal oscillations belonging to classical frequency bands and assumed that the functional network asso-
ciated with each band to be separated. However, these oscillations are not necessarily independent, instead
fast and slow oscillations do interact with each other, enabling a flexible communication and an efficient
information transfer between distant brain regions Bonnefond et al. (2017); recent empirical evidence do
provide correlated evidence of cross-frequency coupling as a neural measure of intelligence in adults Gągol
et al. (2018); Pahor and Jaušovec (2014), and future research should look at the inter-network coupling be-
tween interacting neuronal oscillations in children. Further, our MEG data were recorded when the children
were watching cartoon of their own choice. This framework of data collection is being increasingly used in
neuroimaging studies with young children Richardson et al. (2018), one limitation is that we cannot dis-
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criminate between task-driven and intrinsic contributions to the temporal variability of FCN. For example,
the negative correlations between left parahippocampal region and mental processing scale might reflect a
combination of both intrinsic changes in network structure and increasing stability of the cartoon-driven
response in the selected region. Future studies could aim revealing individual contributions of task-driven
and intrinsic connectivity by collecting both functional task data and resting state activity from the same
child. Finally, we have demonstrated that variability in brain responses seems to be cognitively beneficial
at an early stage of development, but excessive variability has specific clinical consequence Dinstein et al.
(2015), so it remains an open question whether there exists an optimal degree of reconfiguration ability of
functional network in order to support the cognitive flexibility in young children.

Conclusion

In summary, we provide novel evidence that the dynamical nature of the individual specific functional
network topography is refined during development in preschool children and is further linked to their cog-
nitive abilities. Specifically, we found that the children’s scores on a cognitive battery could be predicted
to a significant extent using a connectome predictive modeling framework with proposed measures of nodal
temporal variability. Further, by using machine learning based cross-validation analysis, we could classify a
children as being Low or High, based on her cognitive score, with an accuracy ranging between 70 − 80%.
These findings demonstrate the relevance of temporal networks in establishing brain-to-cognition relation-
ship at a critical phase of early development. Given the increasing evidence of potential links between
functional topography and neurodevelopmental disorders Cui et al. (2020); Siugzdaite et al. (2020), we sug-
gest future research to further explore the reconfiguration ability in preschoolers in targeted behavioural
interventions Diamond et al. (2007).
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Table 1: The table shows the details of the participants’ age and K-ABC scores.

Parameter Range mn±s.d

Age (in months) 36 − 59 48.36 ± 6.99
Sequential scale 60 − 145 98.97 ± 15.56
Simultaneous scale 53 − 128 100.4 ± 14.89
Mental Processing scale 60 − 132 100.1 ± 14.15
Achievement scale 62 − 156 103.4 ± 16.01

Table 2: Results of Connectome Predictive Modeling with δSP L features: The results of CPM were evaluated using
leave-one subject-out nested cross-validation (LOOCV), the correlated features (at p < α) in each fold were used to predict
the score of the test subject using simple linear regression. Table shows the Spearman rank correlations (ρ values) between
predicted scores and observed scores at two different thresholds of α = 0.05, and α = 0.01, along with the average no. of
selected features across folds, denoted n. Here, the P −values were computed using non-parametric permutation tests.

K-ABC scale
Sign of
correlation

nSel

CPM with
feature summarization

CPM without
feature summarization

Spearman
ρ value

P value
Spearman
ρ value

P value

Sequential scale
Positive 13.41 0.366 0.02 0.451 0.006
Negative 0 - - - -
Both 13.41 0.366 0.024 0.451 0.012

Simultaneous scale
Positive 0 - - - -
Negative 0.04 - - - -
Both 0.04 - - - -

Mental Processing
scale

Positive 5.68 0.325 0.048 0.306 0.058
Negative 0.92 - - - -
Both 6.59 0.272 0.096 0.368 0.022

Achievement scale
Positive 0 - - - -
Negative 0.08 - - - -
Both 0.08 - - - -

Table 3: The table shows the temporal variability features (computed using δSP L) correlated to the sequential scale at
p < 0.01.

Region Band Spearman ρ

L superior frontal gyrus Beta-2 0.3
L middle frontal gyrus Beta-2 0.331
L lateral orbitofrontal gyrus Gamma 0.312
L gyrus rectus Beta-2 0.305
L superior temporal gyrus Gamma, Beta-2 0.495, 0.388
L middle temporal gyrus Gamma 0.401
L inferior temporal gyrus Gamma, Beta-2 0.481, 0.345
L insular cortex Gamma, Beta-2 0.343, 0.327
L caudate Beta-2 0.299
L putamen Gamma, Beta-2 0.323, 0.318
L hippocampus Gamma 0.416
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Figure 1: Feature extraction:(a) Toy example:Figure shows snapshots of a weighted temporal network(with nodes A to
G) at time instants t1 and t2. The thickness of the edges indicate the edge strength. Comparing the graphs, it is seen that
the connection strength increases from time t1 to t2. Considering only the connections of each node, it is seen that nodes C
and D vary between the two instants while others are invariant. However, owing to the topology of the network, the edge
(from C to D) also modulates interactions among the other nodes; for example, though A,B are not directly connected by
edges to D,E,F,G they can interact with them through C. Hence, any change of edge strength also affects them. In order
to capture such variations at the global level which influence temporal dynamics at individual nodes, we propose a measure
based on shortest path lengths (see eqn. 3).(b)Computation of temporal variability: In each frequency band, the static
and dynamic FCNs are estimated from the source-reconstructed MEG. The static connectivity is computed over the entire
session while the dynamic connectivity using a sliding window approach using coherence. For computation of dFC, we consider
windows of size 2.5s to 15s in steps of 2.5s with 50% overlap between adjacent windows. Using the adjacency matrices of the
static and dynamic FCN, we compute the pairwise shortest path lengths between nodes. The temporal variability of ith region
(denoted δSP L,i) captures the temporal variation of the node with respect to the static network. In addition, νw,i Zhang et al.
(2016) captures the variations in the functional architecture of the node i across time considering its connection strengths to
other nodes. However, it may be invariant to global network changes that influence a node’s interactions with others.
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Table 4: The table shows the temporal variability features (computed using δSP L) correlated to the mental processing scale
at p < 0.01.

Region Band Spearman ρ

L superior temporal gyrus Gamma 0.401
L middle temporal gyrus Gamma 0.344
L inferior temporal gyrus Gamma 0.412
L parahippocampal gyrus Beta-1 -0.322
L insular cortex Gamma 0.309
L hippocampus Gamma 0.358
cerebellum Beta-2 0.302

Figure 2: Temporal variability wrt static network: (a) Region-wise variation of the temporal variability measure, δSPL,i

averaged across all bands (b) Co-variation of temporal variability between node pairs: Figure shows the pairwise Spearman
correlation coefficient between the average nodal temporal variability (c)The regions of the brain ordered by their average
temporal variability measure in descending order. The full labels of the abbreviations are listed in Supplemental Table S1
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Figure 3: Relation to time-averaged betweenness centrality of dynamic network, 〈BCt〉: In the following plots, the
group averages are performed across bands and participants. (a) The regions of the brain ordered by their mean BCstatic in
descending order. The bars in dark cyan are the identified hubs, they represent the nodes scoring ≥ 1 standard deviation above
the mean on the centrality measure (b) Same as (a) with 〈BCt〉 (c) Relation to temporal variability, δSPL: The group averaged
centrality (〈BCt〉) exhibits negative correlation (Spearman ρ = −0.7, p < 10−7, n = 56) with the temporal variability of nodes
(d) & (e) relation to variation of node centrality across time (SD) and its normalized version CV respectively (For a given
node i, SDi and CVi are computed as the standard deviation and coefficient of variation of time-resolved betweenness BCt,i

across time). The 〈BCt〉 measure exhibits positive and negative correlations with SD and CV respectively. This suggests that
though the hub nodes exhibit high variation, this variation is low when compared to their connectivity.
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Figure 4: Out-of-sample testing for sequential scale: The results of CPM and binary classification were evaluated
using leave-one subject-out nested cross-validation (LOOCV). In CPM, the correlated features (at p < 0.01) in each fold were
used to predict the score of the test subject using simple linear regression. In addition, the classifier models were built on the
training data using correlated features and used to predict the label of the test participant as being Low or High. The top
panel shows results of CPM and classification for temporal variability features (δSP L) (a) when selected features in each fold
are summarized (b) when all selected features were used for model building. The scatter plots show the correlation between
the observed and predicted scores on the sequential scale across the folds of LOOCV (both Pearson’s r and Spearman’s ρ
are reported along with the least-squares fit line (red)). The bar plots show the overall and class-wise classification accuracy
using two linear classifiers namely, linear discriminant analysis (LDA) and support vector machine (SVM). In the bar plots,
the dashed line represents the empirical chance level (see eqn. 6).

Figure 5: Out-of-sample testing for mental processing scale: The results of CPM and binary classification were
evaluated using leave-one subject-out nested cross-validation (LOOCV). In CPM, the correlated features (at p < 0.01) in each
fold were used to predict the score of the test subject using simple linear regression. In addition, the classifier models were
built on the training data using correlated features and used to predict the label of the test participant as being Low or High.
The top panel shows results of CPM and classification for positively correlated temporal variability features (δSP L) (a) when
selected features in each fold are summarized (b) when all selected features were used for model building. The scatter plots
show the correlation between the observed and predicted scores on the mental processing scale across the folds of LOOCV
(both Pearson’s r and Spearman’s ρ are reported along with the least-squares fit line (red)). The bar plots show the overall
and class-wise classification accuracy using two linear classifiers namely, linear discriminant analysis (LDA) and support vector
machine (SVM). In the bar plots, the dashed line represents the empirical chance level (see eqn. 6). Bottom panel, (c) and (d):
same as (a) and (b) for for both positively and negatively correlated temporal variability features.
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Table S1: Names and abbreviations of 56 cortical ROIs

Region Abbreviation

L superior frontal gyrus L-SFG
R superior frontal gyrus R-SFG
L middle frontal gyrus L-MFG
R middle frontal gyrus R-MFG
L inferior frontal gyrus L-IFG
R inferior frontal gyrus R-IFG
L precentral gyrus L-PrCG
R precentral gyrus R-PrCG
L middle orbitofrontal gyrus L-MObFG
R middle orbitofrontal gyrus R-MObFG
L lateral orbitofrontal gyrus L-LObFG
R lateral orbitofrontal gyrus R-LObFG
L gyrus rectus L-REC
R gyrus rectus R-REC
L postcentral gyrus L-PoCG
R postcentral gyrus R-PoCG
L superior parietal gyrus L-SPG
R superior parietal gyrus R-SPG
L supramarginal gyrus L-SMG
R supramarginal gyrus R-SMG
L angular gyrus L-ANG
R angular gyrus R-ANG
L precuneus L-PCUN
R precuneus R-PCUN
L superior occipital gyrus L-SOG
R superior occipital gyrus R-SOG
L middle occipital gyrus L-MOG
R middle occipital gyrus R-MOG
L inferior occipital gyrus L-IOG
R inferior occipital gyrus R-IOG
L cuneus L-CUN
R cuneus R-CUN
L superior temporal gyrus L-STG
R superior temporal gyrus R-STG
L middle temporal gyrus L-MTG
R middle temporal gyrus R-MTG
L inferior temporal gyrus L-ITG
R inferior temporal gyrus R-ITG
L parahippocampal gyrus L-PHG
R parahippocampal gyrus R-PHG
L lingual gyrus L-LING
R lingual gyrus R-LING
L fusiform gyrus L-FFG
R fusiform gyrus R-FFG
L insular cortex L-INC
R insular cortex R-INC
L cingulate gyrus L-CING

(To be continued)
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Region Abbreviation

R cingulate gyrus R-CING
L caudate L-CAU
R caudate R-CAU
L putamen L-PUT
R putamen R-PUT
L hippocampus L-HIP
R hippocampus R-HIP
cerebellum CBM
brainstem BSM
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Table S2: The relation between δSP L and age, gender of participants

Band
Correlation
with age (in months)

t-test for age
(3- vs 4-year olds)

t-test for gender
(Boys vs girls)

Spearman ρ p-value t-statistic p-value t-statistic p-value
Delta 0.3190 0.0056 -1.7480 0.0847 0.2950 0.7688
Theta 0.4050 0.0004 -2.8040 0.0065 0.9460 0.3472
Alpha 0.3280 0.0043 -1.5520 0.1249 1.0100 0.3161
Beta-1 0.0710 0.5470 -0.1900 0.8498 0.5790 0.5641
Beta-2 0.3920 0.0006 -3.9890 0.0002 0.5550 0.5809
Gamma 0.3070 0.0078 -2.3350 0.0223 0.0070 0.9948

Table S3: The table shows the Spearman rank correlation between the group-averaged temporal variability measure, δSP L,i

with νw,i, 〈BCt〉i (time-averaged betweenness). Here, ∗ indicates p < 0.001,∗∗ indicates p < 0.0001

.

Band
Correlation
with νw,i

Correlation
with 〈BCt〉i

Delta 0.916∗∗ −0.783∗∗

Theta 0.852∗∗ −0.792∗∗

Alpha 0.685∗ −0.747∗∗

Beta-1 0.284 −0.635∗

Beta-2 0.624∗ −0.571∗

Gamma 0.611∗ −0.538∗

Table S4: Results of Connectome Predictive Modeling with νw features:

K-ABC scale
Sign of
correlation

nSel

CPM with
feature summarization

CPM without
feature summarization

Spearman
ρ value

P value
Spearman
ρ value

P value

Sequential scale
Positive 21.81 0.414 0.002 0.417 0.004
Negative 1.08 0.196 0.186 0.198 0.158
Both 22.89 0.393 0.024 0.443 0.008

Simultaneous scale
Positive 0.01 - - - -
Negative 0.07 - - - -
Both 0.08 - - - -

Mental Processing
scale

Positive 7.89 0.071 0.22 0.169 0.148
Negative 1.3 - - - -
Both 9.19 0.024 0.374 0.124 0.294

Achievement scale
Positive 0.01 - - - -
Negative 1.8 - - - -
Both 1.81 - - - -
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Table S5: The table shows the temporal variability features (computed using νw) correlated to the sequential scale at p < 0.01.

Region Band Spearman ρ

L superior frontal gyrus Gamma, Beta-2 0.341, 0.331
L middle frontal gyrus Beta-2 0.384
L middle orbitofrontal gyrus Beta-2 0.428
L lateral orbitofrontal gyrus Gamma, Beta-2 0.37, 0.355
L gyrus rectus Beta-2, Gamma, Beta-1 0.379, 0.334, 0.315
L superior temporal gyrus Gamma, Beta-2 0.365, 0.341
L middle temporal gyrus Beta-2, Gamma 0.432, 0.349
L inferior temporal gyrus Gamma, Beta-2 0.327, 0.308
L insular cortex Gamma, Beta-2 0.472, 0.424
L cingulate gyrus Beta-2 0.329
L caudate Beta-2 0.299
L putamen Beta-2, Gamma 0.383, 0.355
L hippocampus Gamma 0.363

Table S6: The table shows the temporal variability features (computed using νw) correlated to the mental processing scale
at p < 0.01.

Region Band Spearman ρ

L middle frontal gyrus Gamma 0.335
L lateral orbitofrontal gyrus Gamma 0.301
L supramarginal gyrus Beta-2 0.306
L superior temporal gyrus Gamma 0.32
L middle temporal gyrus Beta-2 0.383
L inferior temporal gyrus Beta-2 0.303
L parahippocampal gyrus Alpha -0.328
L insular cortex Gamma, Beta-2 0.35, 0.299

27

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 25, 2020. ; https://doi.org/10.1101/2020.03.24.005074doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.24.005074
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S1: Region-wise variation of the temporal variability measure, δSP L,i, i = 1, 2, . . . , 56 in individual bands
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Figure S2: Temporal variability using Zhang et al. (2016): (a) Region-wise variation of the temporal variability
measure, νw,i averaged across all bands (b) Co-variation of temporal variability between node pairs: Figure shows the pairwise
Spearman correlation coefficient between the average nodal temporal variability (c)The regions of the brain ordered by their
average temporal variability measure in descending order. The full labels of the abbreviations are listed in Supplemental
Table S1

Figure S3: Out-of-sample testing for sequential scale: The results of CPM and binary classification were evaluated
using leave-one subject-out nested cross-validation (LOOCV). In CPM, the correlated features (at p < 0.01) in each fold were
used to predict the score of the test subject using simple linear regression. In addition, the classifier models were built on the
training data using correlated features and used to predict the label of the test participant as being Low or High. The top
panel shows results of CPM and classification for temporal variability features (νw) (a) when selected features in each fold
are summarized (b) when all selected features were used for model building. The scatter plots show the correlation between
the observed and predicted scores on the sequential scale across the folds of LOOCV (both Pearson’s r and Spearman’s ρ
are reported along with the least-squares fit line (red)). The bar plots show the overall and class-wise classification accuracy
using two linear classifiers namely, linear discriminant analysis (LDA) and support vector machine (SVM). In the bar plots,
the dashed line represents the empirical chance level (see eqn. 6).
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