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Chapter 8

Linking Foliar Traits to Belowground 
Processes

Michael Madritch, Jeannine Cavender-Bares, Sarah E. Hobbie, 

and Philip A. Townsend

8.1  Framework

Remote sensing (RS) of belowground processes via aboveground ecosystem 
properties and plant foliar traits depends upon (1) the ability to quantify ecosystem 
productivity and relevant plant attributes—including plant chemical composition 
and diversity—and (2) tight linkages between above- and belowground systems. 
These linkages can occur through the effects of aboveground inputs into below-
ground systems and/or through relationships between above- and belowground 
attributes and, in turn, between belowground relationships between plant roots and 
microbial communities and processes (i.e., �ne-root turnover, mycorrhizal associa-
tions). The increasing ability of remotely sensed information to accurately measure 
productivity, ecologically important plant traits (Serbin and Townsend, Chap. 3, this 
volume; Wang et  al. 2019), and plant taxonomic, functional, and phylogenetic 
diversity (Wang et al. 2019; Schweiger et al. 2018; Gholizadeh et al. 2019) creates 
new opportunities to observe terrestrial ecosystems. While the focus of RS tools is 
generally on aboveground vegetation characteristics, the tight linkage between 
above- and belowground systems through productivity and foliar chemistry means 
that many belowground processes can be inferred from remotely sensed informa-
tion. Here, we focus on how the productivity and composition of foliar traits in plant 
communities in�uence belowground processes such as decomposition and nutrient 
cycling. We speci�cally consider foliar traits that are increasingly measurable via 
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airborne RS. Using two case studies, one in a clonal aspen (Populus tremuloides) 
forest system and one in a manipulated grassland biodiversity experiment, we dem-
onstrate that plant foliar traits and vegetation cover, as measured via plant spectra 
(Wang et  al. 2019), can provide critical information predictive of belowground 
processes.

8.2  How Are Belowground Processes and Microbial 

Communities In�uenced by Aboveground Properties?

Belowground processes—including decomposition and nutrient cycling, which are 
mediated by microbial biomass, composition, and diversity—are heavily in�uenced 
by both the amount and chemistry of aboveground inputs. Quantifying the amount 
and quality of foliar components is a major aspect of trait-based ecology, which 
seeks to use functional traits, rather than taxonomic classi�cation, to determine 
organisms’ contributions to communities and ecosystems. Trait-based ecology has 
inherent strengths, including the ability to consider biological variation across both 
phylogenetic and spatial scales (Funk et al. 2017). While there is a range of accepted 
trait-based approaches in plant sciences (Funk et al. 2017), the emergence of the 
leaf economic spectrum (Wright et al. 2004) and the whole plant economic spec-
trum (Reich 2014) has clearly demonstrated that plant traits are important to ecosys-
tem processes across multiple biological and spatial scales. Further, employing a 
trait-based approach to explore the relationships among plant function, biodiversity, 
and belowground processes allows us to take advantage of recent advances in RS to 
accurately measure plant traits across large spatial scales.

 A. Decomposition and Nutrient Cycling—The productivity, composition, and 
diversity of aboveground communities in�uence belowground processes, in part 
through decomposition of leaf litter (Gartner and Cardon 2004; Hättenschwiler 
et al. 2005), root litter (Bardgett et al. 2014; Laliberté 2017), and root exudates 
(Hobbie 2015; Cline et al. 2018) and also through effects on soil organic matter 
(SOM) properties (Mueller et al. 2015) and soil physical structure (Gould et al. 
2016). Several seminal reviews outlining the importance of biodiversity to eco-
system function (BEF) have focused speci�cally on the afterlife effects of litter 
diversity on decomposition (Hättenschwiler et al. 2005; Gessner et al. 2010).

 B. Microbial Community Composition—Variation in the quantity and quality of 
organic inputs into belowground systems drives variation in belowground 
microbial communities and functioning (de Vries et al. 2012). Differences in 
aboveground communities are mirrored by those in belowground communities 
(Wardle et  al. 2004; De Deyn and van der Putten 2005; Kardol and Wardle 
2010). Across multiple spatial and taxonomic scales, variation in belowground 
microbial communities is driven by variation in plant traits associated with the 
leaf economic spectrum (de Vries et  al. 2012). In general, fungi dominate 
decomposition of complex, low-quality substrates, while bacteria favor labile, 
high-quality substrates (Fig.  8.1, Bossuyt et  al. 2001; Lauber et  al. 2008). 
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 Microorganisms release extracellular enzymes, which degrade organic mole-
cules outside of their cells, and likely differ among groups of microorganisms 
(Schneider et al. 2012). As a consequence, microbial composition and diversity 
are expected to in�uence decomposition and nutrient cycling. Most litter decom-
position appears to be driven by fungal members, with Ascomycota dominating 
early degradation of cellulose and hemicellulose, followed by colonization by 
lignin- degrading Basidiomycota (Osono 2007; Schneider et al. 2012). Although 
lignin decomposition is dominated by fungal groups, some bacteria also degrade 
lignin (Kirby 2006; López-Mondéjar et al. 2016). Bacteria not directly involved 
with litter decomposition target the low molecular weight carbohydrates pro-
vided by fungal-derived extracellular enzymes (Allison 2005). The degradation 
of aromatic polyphenolics is largely limited to fungal member of the 
Basidiomycota phylum (Floudas et  al. 2012). The wide structural variation 
among tannins (see section on carbon (polyphenols) results in a wide range of 
effects on speci�c microbial members (Kraus et al. 2003).

A challenge in predicting belowground processes such as decomposition and 
nutrient cycling from the diversity and quality of leaf litter inputs is that such an 
approach must also consider the diversity and function of belowground microbial 
communities. Belowground mycorrhizal communities can increase net primary pro-
duction (NPP) and drive variation in plant communities (Wardle et al. 2004). Given 
the in�uence of plant traits on belowground processes, biodiversity may drive varia-
tion in decomposition through top-down (microbially driven) rather than bottom-up 
(substrate driven) forces (Srivasta et al. 2009). Several reviews have addressed the 
importance of belowground community diversity to ecosystem processes (e.g., 
Hättenschwiler et al. 2005; Gessner et al. 2010; Phillips et al. 2013; Bardgett and 
van der Putten 2014). Belowground diversity can in�uence aboveground factors 
such as NPP (Wardle et al. 2004; Eisenhauer et al. 2018) that then have important 
feedbacks to belowground processes. Decomposition is driven by a combination 
of both the microbial community and the quality and quantity of litter that those 
communities receive (e.g., Keiser et al. 2013; García-Palacios et al. 2016).

Fig. 8.1 Complex, recalcitrant compounds are typically degraded by fungi, while soluble, labile 
substrates are catabolized by bacteria
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8.3  Mechanisms by Which Aboveground Vegetation 

Attributes In�uence Belowground Processes

Aboveground community composition and vegetation chemistry are tightly linked 
with belowground communities through belowground inputs and subsequent 
decomposition and nutrient uptake (Hobbie 1992; Wardle et al. 2004). Plant bio-
mass, structure, and chemical composition are all important drivers of belowground 
processes to such an extent that plant traits may be the dominant control on litter 
decomposition, outweighing the in�uence of climate even over large spatial scales 
(Cornwell et al. 2008).

8.3.1  Total Aboveground Inputs

Standing aboveground biomass and NPP are among the most important attributes of 
vegetation that impact belowground systems (Chapin et al. 2002) and are widely 
measured via RS techniques with increasing accuracy (Kokaly et al. 2009; Serbin 
et al., this issue). Belowground respiration is tightly linked with aboveground pro-
ductivity (Högberg et al. 2001), and leaf litter can provide roughly half of organic 
inputs into some belowground systems (Coleman and Crossley 1996). The amount 
of aboveground biomass can be critical to litter decomposition (Lohbeck et  al. 
2015) and microbial community function and diversity (Fierer et al. 2009; Cline 
et al. 2018), and its in�uence may surpass the effects of plant quality, as measured 
by plant chemistry and functional traits (Lohbeck et al. 2015).

Plant traits related to biomass, such as leaf area index (LAI), are also linked to 
belowground processes, with belowground carbon (C) turnover peaking at interme-
diate LAI levels (Berryman et al. 2016; others). Importantly, LAI can be measured 
with RS products over large spatial scales (Serbin et al. 2014; Lausch et al., Chap. 
13 this volume, Morsdorf et al. Chap. 4). While there have been few explicit links 
of remotely sensed LAI to soil respiration (but see Huang et al. 2015), the concep-
tual link has been recognized for decades (Landsberg and Waring 1997). Other 
remotely sensed variables tightly coupled with biomass, including vegetation cover 
(Wang et al. 2019), also predict soil respiration (Fig. 8.4).

The effects of biomass on belowground processes have been recognized by ecol-
ogists employing RS to estimate belowground C stocks (e.g., Bellassen et al. 2011). 
Across large scales, aboveground biomass is generally correlated with belowground 
root biomass (Cairns et al. 1997). While aboveground biomass is commonly mea-
sured, the calculation of belowground biomass is less common and is often limited 
to estimates of shoot biomass as a simple proportion of aboveground biomass 
(Mokany et al. 2006). Nonetheless, the belowground estimates based on aboveground 
measurements can be useful for estimating above- and belowground C stores via RS 
products over large spatial scales (Saatchi et al. 2011). Allocation of C to below-
ground systems varies among systems, with annual grassland systems  differing 
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from forested biomes in their allocation patterns of NPP (Litton et al. 2007). There 
are also large differences in above- and belowground linkages according to site 
fertility. In fertile sites the majority of NPP returned to the soil as labile fecal matter, 
whereas in infertile systems most NPP returned as recalcitrant plant litter (Wardle 
et al. 2004).

8.3.2  Chemical Composition of Vegetation

Beyond variation in total organic inputs to soil, variation in plant chemical composi-
tion is critical to belowground ecosystem processes. The physiological traits that 
comprise the plant economic spectrum developed by Wright et  al. (2004) have 
important afterlife affects for belowground systems (Cornwell et al. 2008; Freschet 
et al. 2012; see review by Bardgett 2017). Variation in litter chemical quality can 
produce marked, long-term effects on litter decomposition rates and nutrient cycling 
in underlying soils, and litter quality has long been identi�ed as key factor in deter-
mining decomposition rates (Tenney and Waksman 1929). Litter chemistry gener-
ally mirrors canopy chemistry (Hättenschwiler et  al. 2008), making canopy 
chemistry a viable metric to estimate litter chemistry and subsequent belowground 
decomposition and nutrient cycling patterns. Aside from aboveground biomass, leaf 
nitrogen (N) and lignin content are often the dominant plant traits that drive varia-
tion in belowground process, particularly leaf litter decomposition (Aber and 
Mellilo 1982; Cadisch and Giller 1997), and both of these traits are readily derived 
from spectroscopy at multiple scales (Wessman et  al. 1988; Serbin et  al. 2014; 
Schweiger et al. 2018; Wang et al. 2019). RS of additional leaf traits important to 
belowground processes, such as plant secondary chemistry, is also increasingly 
measured via RS techniques (Kokaly et al. 2009; Asner et al. 2014; Serbin et al., 
this issue).

Nitrogen Foliar N is often the most important leaf trait driving variation in decom-
position across biomes (Diaz et al. 2004; Cornwell et al. 2008; Handa et al. 2014). 
In some biomes leaf N is the only known leaf trait associated with leaf decomposi-
tion among wide ranges of species (Jo et al. 2016). Because canopy N has a tight 
correlation with plant carbon capture through photosynthesis, aboveground biomass, 
and belowground processes such as decomposition and N cycling rates, it is among 
the most common canopy traits measured via RS platforms (Martin and Aber 1997; 
Wessmen et al. 1998; Kokaly and Clark 1999; Martin et al. 1998, 2008; Ollinger 
et al. 2002; Townsend et al. 2003; Kokaly et al. 2009; Vitousek et al. 2009; Ollinger 
et al. 2013).

Leaf N is directly linked to plant productivity because most plant N is associ-
ated with metabolically active proteins, including RuBisCo. Leaf N content is 
driven by a trade-off between the bene�ts of increased photosynthetic potential and 
the costs associated with acquiring N along with the increased risk of herbivory 
(Diaz et al. 2016). In addition, leaf N can be indicative of plant growth strategies 
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(Wardle et  al. 2004). Most short-term decomposition studies indicate that leaf N 
increases leaf litter decay (Cornwell et al. 2008). However, as decomposition pro-
gresses, leaf N may negatively affect the latter stages of decomposition, possibly due 
to interactions with ligni�ed substrates (Berg 2014; discussed in brief below).

Carbon quality (lignin) The second most abundant natural polymer following cel-
lulose is lignin, a complex phenolic polymer that wraps in and out of the structural 
polysaccharides in cell walls (Cadisch and Giller 1997). Due to its central roles in 
both aboveground biomass and belowground decomposition, lignin has been tar-
geted as an important plant trait for RS techniques (Wessman et al. 1988; Serbin 
et al. 2014; Serbin and Townsend, Chap. 3). While lignin is a polyphenolic com-
pound comprised of linked phenols (Horner et al. 1988), it is considered separate 
from other polyphenols because lignin is a primary structural component, whereas 
other polyphenols are a subset of secondary metabolites not directly involved 
with plant growth. The structure role of lignin and its low solubility also merit 
distinction from other polyphenolics when considering belowground processes 
(Hättenschwiler and Vitousek 2000). Lignin concentrations are negatively corre-
lated with decomposition rates (Meentemeyer 1978; Melillo et  al. 1982; Horner 
et al. 1988). The recalcitrant nature of lignin is due, in part, to its irregular structure 
and low energy yield, which largely limits its degradation to white-rot fungus 
members of Basidiomycota (Chapin et al. 2002).

The interaction of N and lignin during decomposition is not straightforward 
because N limits the early stages of decomposition, whereas lignin limits the latter 
stages of decomposition (Burns et al. 2013). Newly senesced leaves are composed 
largely of polysaccharides of holocellulose and lignin. High N availability will stim-
ulate holocellulose decomposition in the early stages of decomposition but will then 
retard lignin decomposition in later stages of decomposition leading to ligni�ed soil 
organic matter (SOM), potentially due to white-rot fungi favoring low N conditions 
(Berg 2014). The degradation of lignin is often a rate-limiting step during the later 
stages of decomposition because it protects cell wall polysaccharides physically and 
chemically (Talbot et al. 2012). Despite the changing roles that leaf N and lignin 
have over the course of decomposition, litter quality metrics such as C:N and lignin: 
N can explain variation in decomposition, with decomposition rates increasing with 
N in the early stages, but decreasing with N in the later stages, and decreasing with 
lignin (Fanin and Bertrand 2016).

While lignin almost universally retards decomposition, there is a large amount of 
variation within lignin compounds based on the proportion of speci�c monomers 
that varies across major plant groups (Thevenot et  al. 2010). Angiosperm lignin 
tends to degrade more quickly than does gymnosperm lignin due to the speci�c 
identities of constituting moieties of lignin in each species (Higuchi 2006). The 
compact nature of gymnosperm lignin subunits is thought to protect them from 
enzymatic degradation (Hatakka and Hammel 2010). Functional measurements of 
lignin are often made via either acid digestion or thioglycolic acid methods that can 
then be used to calibrate spectroscopic methods (Brinkmann et al. 2002; Schweiger 
et al. 2018).
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Carbon quality (polyphenols) In some ecosystems non-lignin carbon compounds 
(e.g., phenolics) explain more variation in decomposition than does either N or lig-
nin (Hättenschwiler et al. 2011). Phenolics are the most widely distributed class of 
secondary plant metabolites and interact strongly with several aspects of nutrient 
cycling (Hättenschwiler and Vitousek 2000). Simple phenolics can prime (Fontaine 
et al. 2007), while large complex polyphenolics can retard (Coq et al. 2010) decom-
position. Carbon quality—including the chemical composition of polyphenolics—
can be more important to litter decomposition than is litter nutrient concentration 
(Hättenschwiler and Jørgensen 2010). Plant polyphenolics can be accurately mea-
sured via near-infrared spectroscopy (NIRS; Rupert-Nason et al. 2013), and by air-
borne imaging spectroscopy (Kokaly et al. 2009; Asner et al. 2014; Madritch et al. 
2014; Serbin and Townsend, Chap. 3).

Though typically considered primarily for their aboveground defensive proper-
ties, phenolics in plant residues (leaf litter and roots) can have large in�uences on 
decomposition. Simple phenolics can increase soil respiration by providing a sim-
ple carbon source for microorganisms (Horner et  al. 1988; Schimel et  al. 1996; 
Madritch et al. 2007). Tannins are de�ned, in part, by their ability to bind to proteins 
(Bate-Smith 1975). The attributes of nonstructural polyphenolics that make them 
effective plant pathogen defenses also affect nonpathogenic fungi and microbes 
once litter enters the detrital food web; tannins do not discriminate between enzymes 
of plant pathogenic fungi or decomposing fungi. If tannins bind covalently with 
proteins to form polyphenolic-protein complexes, they become highly recalcitrant, 
and only basidiomycetes with polyphenol oxidase and earthworms can take advan-
tage of these complex N sources (Hättenschwiler and Vitousek 2000). The inhibi-
tory role of tannins on soil enzymes varies with speci�c tannin structure, which 
varies widely among species (Triebwasser et al. 2012). Tannins also have a limited 
ability to bind with carbohydrates and cellulose to form recalcitrant complexes 
(Horner et al. 1988; Kraus et al. 2003). The ability of polyphenolics to complex with 
proteins and other biochemicals is the primary method by which they in�uence soil 
respiration, litter decomposition, and soil N �uxes.

In addition to their in�uence on decomposition, nonstructural polyphenolics 
(which do not include lignin) in�uence N cycling by binding to and promoting 
retention of N-rich compounds including ammonium, amino acids, and proteins 
(Hättenschwiler and Vitousek 2000). Ayres (1997) suggested that condensed tan-
nins may be more important to N cycling than to herbivore defense, since con-
densed tannins frequently have no anti-herbivory activity. Hättenschwiler et  al. 
(2011) also proposed that polyphenolics, and tannins in particular, may be an impor-
tant N conservation and recovery strategy for some species. This appears to be the 
case in Populus tremuloides systems, where high-tannin genotypes recovered more 
N than did low-tannin genotypes, especially when under severe herbivory (Madritch 
and Lindroth 2015). The high reactivity and branching structure of reactive hydroxyl 
sites also allow polyphenolics to complex with clay particles in soil and thereby 
in�uence several micronutrients in addition to N (Schnitzer et al. 1984).
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Variation in plant phenolics is driven by several interacting factors. In general, 
polyphenolic concentrations in foliage are highest during the summer months 
(Feeny 1970). Summer coincides with both the onset of herbivory and the highest 
levels of photosynthetic activity. Herbivory-induced polyphenolic production is a 
well-documented aspect of plant-insect interactions (Herms and Mattson 1992; 
Baldwin 1994). The composition and quantity of phenolics vary among taxa at 
small and large phylogenetic scales. At large phylogenetic scales, condensed tan-
nins are common in woody plants but almost absent in herbaceous species (Haslam 
1989). At narrow phylogenetic scales, the concentration of polyphenolics is also 
under genetic control, and often there is considerable variation within the same spe-
cies that can have important in�uences on belowground processes including litter 
decomposition and nutrient cycling (Lindroth et al. 2002; Schweitzer et al. 2005; 
Madritch et al. 2006, 2007).

8.3.3  Plant Diversity

Plant diversity, which can be accurately remotely sensed at some spatial scales 
(Wang et al. 2019; Gholizadeh et al. 2019), can in�uence belowground processes 
through its effects on productivity as well as on chemical diversity (Meier and 
Bowman 2008). Belowground diversity may be intrinsically linked to aboveground 
diversity because high plant diversity may provide a high diversity of litter quality 
and quantity to belowground systems that subsequently result in a high diversity of 
decomposers (Hooper et al. 2000). The speci�c relationship between aboveground 
plant communities and belowground microbial communities is context, system, and 
scale dependent (De Deyn and van der Putten 2005; Wu et al. 2011; Cline et al. 
2018). For instance, Chen et al. (2018) found that plant diversity is coupled with soil 
beta diversity but not soil alpha diversity in grassland systems. Nonetheless, if 
aboveground diversity is indeed linked to belowground diversity, then aboveground 
estimates of plant diversity and plant traits could provide robust estimates of below-
ground processes.

Early work that focused on the in�uence of aboveground species diversity on 
litter decomposition yielded idiosyncratic results (Gartner and Cardon 2004; 
Hättenschwiler et al. 2005), with some studies reporting no effect of plant species 
diversity (e.g., Naeem et al. 1999; Wardle et al. 1999; Wardle et al. 2000; Knops 
et al. 2001), some reporting unpredictable results (Wardle and Nicholson 1996), and 
some reporting positive effects of plant species diversity on litter decomposition 
(Hector et  al. 2000). Similar to aboveground processes, BEF studies that link 
aboveground diversity with belowground processes initially focused on aboveg-
round species diversity (Scherer-Lorenzen et  al. 2007; Ball et  al. 2008; Gessner 
et al. 2010). The idiosyncratic relationship between species diversity and below-
ground processes led others to identify aboveground functional diversity and com-
position as more important to belowground processes than species diversity (Dawud 
et al. 2017).
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Foliar chemistry  is relevant to biodiversity and ecosystem functioning studies 
because plant chemistry varies widely among and within species and can in�uence 
belowground microbial communities and biogeochemical cycles (Cadisch and 
Giller 1997; Hättenschwiler and Vitousek 2000). It follows that variation in foliar 
traits important to decomposition (e.g., tannin concentration) will affect below-
ground microbial communities and the basic biogeochemical cycles that sustain 
forested ecosystems. Some studies have supported a chemical diversity approach 
toward elucidating the belowground effects of aboveground diversity (Hoorens 
et al. 2003; Smith and Bradford 2003). Epps et al. (2007) demonstrated that account-
ing for chemical variation was more informative regarding decomposition than was 
species diversity. While the usefulness of trait-based dissimilarity approaches 
remains somewhat equivocal (Frainer et al. 2015), there is increasing support for 
such trait-based approaches in explaining variation in leaf litter decomposition 
(Fortunel et al. 2009; Finerty et al. 2016; Jewell et al. 2017; Fujii et al. 2017). Handa 
et al. (2014) found that variation in leaf litter decomposition across widely different 
biomes was largely driven by commonly measured leaf traits such as N, lignin, and 
tannin content. At large scales, species traits rather than species diversity per se 
appears to at least partially drive variation in decomposition and belowground 
nutrient cycling.

In experimental systems, plant communities with high biodiversity result in high 
above- and belowground productivity (Tilman et al. 2001). The additional biomass 
that an ecosystem produces in diverse assemblages over what is expected from 
monocultures is called “overyielding” and has been documented in both grassland 
and forest experiments (Grossman et al. 2018; Weisser et al. 2017). The additional 
productivity results from several mechanisms acting simultaneously in more diverse 
communities, such as reduced pathogen attack, reduced  seed limitation, and 
increased trait differences leading to “complementarity” in resource uptake (Weisser 
et al. 2017). Complementarity in resource use, particularly light harvesting, results 
in more ef�cient use of limiting resources and greater productivity (Williams et al. 
2017). Similar patterns of greater productivity with higher diversity are observed in 
forest plots globally (Liang et al. 2016) although such patterns are scale dependent, 
and do not necessarily hold at large spatial extents (Chisholm et al. 2013). In natu-
rally assembled grasslands, the relationship may not necessarily hold consistently 
(Adler et  al. 2011). An open question, then, is the extent to which diversity and 
productivity are linked at large spatial scales in ecosystems globally. This is a ques-
tion that can reasonably be addressed with remotely sensed measures of biodiversity 
and ecosystem productivity if scaling issues are appropriately considered (Gamon 
et al., Chap. 16). Plant diversity in�uences the quality of inputs and may allow for 
niche partitioning among functionally different microbes and may also in�uence 
productivity, the source of inputs of organic matter available to microbes, and 
microbial  diversity. Through these linkages, foliar diversity has the potential to 
in�uence microbial diversity and function and hence belowground processes (Cline 
et al. 2018). The extent to which diversity and productivity, measured aboveground, 
can predict belowground microbial and soil processes is a question that is ready to 
be tackled at a range of scales across continents.
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8.4  Case Studies

8.4.1  Remote Sensing of Belowground Processes via Canopy 

Chemistry Measurements

Plants act as aboveground signals for belowground systems. As such, RS of plant 
spectra can provide information about belowground systems. Plant spectra can pro-
vide a wealth of biological information important to plant physiology and commu-
nity and ecosystem processes across multiple spatial scales (Cavender-Bares et al. 
2017). Some researchers have used direct spectral measurements (e.g., NIRS) for 
direct measurements of soil characteristics (reviewed by Stenberg et  al. 2010; 
Bellon-Maurel and McBratney 2011; Soriano-Disla et  al. 2014), and there are 
limited examples of remotely sensed spectroscopic measurements of soils (reviewed 
by Ustin et al. 2004; Cecillon et al. 2009). Here we focus on remotely sensed spec-
tral measurements of plant communities as a surrogate for belowground processes. 
The optical surrogacy hypothesis (sensu Gamon 2008) argues that plant spectra can 
serve as a surrogate for important belowground processes.

Direct spectral measurements have been used to assess belowground processes for 
decades. For instance, direct NIRS of leaf litter can be used to predict decomposition 
rates in a variety of systems (Gillon et al. 1993; Gillon et al. 1999; Shepherd et al. 
2005; Fortunel et al. 2009; Parsons et al. 2011). RS of canopy traits to predict below-
ground processes is becoming increasingly useful. Spectroscopic measurement of 
δ15N is of particular interest for ecosystem processes (Serbin et al. 2014) because 
stable N isotopes can provide important information regarding ecosystem N cycling 
(Robinson 2001; Hobbie and Hobbie 2006). RS of forest disturbance (e.g., �re sever-
ity) and subsequent belowground processes is relatively common (e.g., Holden et al. 
2016). Sabetta et al. (2006) used hyperspectral imaging to predict leaf litter decom-
position across four forest communities. Fisher et al. (2016) were able to distinguish 
between arbuscular and ectomycorrhizal tree-mycorrhizal associations using spectral 
information gleaned from Landsat data. While the above examples focus on remotely 
sensed spectral information, remotely sensed forest structural information developed 
from lidar data can also provide information about belowground systems, as Thers 
et al. (2017) were able to use remotely sensed lidar data to estimate belowground 
fungal diversity. The growing number of examples that employ remotely sensed data 
to provide information about belowground systems points to the potential of plant 
spectra to be used as surrogates for ecosystem processes.

8.4.2  Forest Systems: Aspen Clones Example

An example of optical surrogacy in practice is illustrated by work completed in 
trembling aspen (Populus tremuloides) systems across the Western and Midwestern 
USA. Trembling aspen is the most widespread native tree species in North America 
(Mitton and Grant 1996) and is an ecologically important foundation species across 
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its native range (Lindroth and St. Clair 2013). Aspen is facing large and rapid 
declines in intraspeci�c biodiversity because concentrated patches of aspen are cur-
rently experiencing high mortality rates in North America (Frey et al. 2004; Worrall 
et  al. 2008). This phenomenon, commonly referred to as sudden aspen decline 
(SAD), leads to the death of apparently healthy aspen stands in 3–6 years (Shields 
and Bockheim 1981; Frey et al. 2004). These natural history traits, combined with 
the ecological and economic signi�cance of the species, make trembling aspen an 
ideal system to employ RS techniques to estimate genetic diversity and the conse-
quences thereof for belowground processes.

Aspen typically reproduces clonally, often creating a patchwork of clones with 
many ramets (Fig. 8.2). Aspen clones vary widely in canopy chemistry traits that are 
important to belowground processes such as litter decomposition (Madritch et al. 
2006). Several studies have highlighted the importance of plant genetic diversity to 
ecosystem processes (Madritch and Hunter 2002, 2003; Schweitzer et  al. 2005; 
Crutsinger et  al. 2006; Madritch et  al. 2006, 2007) and community composition 
(Wimp et al. 2004, 2005; Johnson and Agrawal 2005). These recent advances dem-
onstrate that genetic diversity affects fundamental ecosystem processes by in�uenc-
ing both above- and belowground communities (Hughes et al. 2008). The natural 
history traits of aspen, its clonal nature, genetically mediated variation in canopy 
chemistry, and the concomitant wide range of variation in foliar traits make it an 
ideal model system for RS of biodiversity.

Madritch et  al. (2014) described how remotely sensed spectroscopic data from 
NASA’s AVIRIS platform can be used to describe aboveground genetic and chemical 
variation in aspen forests across subcontinental spatial scales. This work built upon past 
work that demonstrated the ability of imaging spectroscopy to detect both aboveground 
chemistry (Townsend et al. 2003) and biodiversity (Clark et al. 2005) and employed 
imaging spectroscopy to discriminate intraspeci�c, genetic variation in aboveground 
chemistry and diversity. Because of the tight linkages between aboveground and below-
ground systems and because of the large variation in secondary chemistries important 
to belowground processes in aspen, this project also demonstrated the ability to predict 
belowground process via RS of forest canopy chemistry. Figure 8.3 illustrates both the 

Fig. 8.2 Aerial photo 
showing color 
differentiation of 
genetically distinct aspen 
clones. Genotypes can be 
detected rapidly via remote 
sensing techniques
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direct linkages between RS and canopy chemistry (A) and the subsequent indirect link-
ages to belowground function (B) and the microbial community (C). The indirect link-
ages represent the optical surrogacy hypothesis. Belowground attributes are not 
measured directly via RS, but rather RS of the forest canopy was able to provide detailed 
information regarding belowground process.

8.4.3  Experiment Prairie Grassland System: Cedar Creek 

Example

Vegetation differences between prairie and forested ecosystems have important con-
sequences for above- and belowground linkages. Detrital inputs in forests are domi-
nated by leaf litter, whereas they are dominated by root exudates and turnover in 

Fig. 8.3 Imaging spectroscopy links to several layers of ecological processes in aspen forests. (a) 
Partial least squares (PLS) prediction (pred) for condensed tannin concentration from AVIRIS data 
compared to observed (obs) tannin. (b) PLS prediction (pred) for soil b-glucosidase activity com-
pared to observed (obs) b-glucosidase. (c) PLS prediction from AVIRIS spectra for bacterial diver-
sity compared to observed bacterial diversity, where bacterial diversity is the �rst axis of an NMDS 
ordination of amplicon sequencing of rDNA (525f and 806r primers). (Tannin and soil enzyme 
data are from Madritch et al. (2014))
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prairie systems that are frequently burned. We employed a parallel application of 
spectroscopic imagery to assess above- and belowground diversity and functioning at 
the grassland biodiversity experiment located at Cedar Creek Ecosystem Science 
Reserve (Tilman et al. 2001). Rather than a monospeci�c forest canopy, the grassland 
experiment consisted of replicated diversity treatments ranging from 1 to 16 peren-
nial grassland species in 9 m × 9 m plots. This work had more technical challenges 
associated with it compared to the aspen forest project due to the inherent complexity 
of a mixed species system and the small spatial scale of the experimental plots.

The relationship between plant diversity and aboveground biomass in the Cedar 
Creek BioDIV experiment is well documented (Tilman et al. 2001, 2006). Schweiger 
et al. (2018) further demonstrate that both plant diversity and function are measur-
able via remotely sensed spectra within the experiment and that spectral diversity 
predicted productivity. Wang et al. (2019) used AVIRIS imagery to map functional 
traits across the experiment. Remotely sensed productivity and functional trait com-
position can thus be tested for linkages with belowground processes. In this system, 
the quantity of inputs had a large impact on fungal composition and diversity (Cline 
et al. 2018). Productivity, measured as annual aboveground biomass, given that it is 
annually burned, can be accurately detected as remotely sensed vegetation cover 
(Fig. 8.4a; Wang et al. 2019, following the method of Serbin et al. 2015). Remotely 
sensed vegetation cover, in turn, predicted fungal diversity, measured as operational 
taxonomic unit (OTU) richness (Fig.  8.4b), and cumulative soil respiration 
(Fig. 8.4c). In addition to the total organic matter inputs to the soil, chemical com-
position also in�uenced belowground microbial communities. For example, 
remotely sensed %N (Wang et al. 2019) was positively correlated with soil micro-
bial biomass (Cavender-Bares et al., unpublished manuscript).

8.4.4  Challenges and Future Directions

Employing plant spectra to predict belowground processes has both caveats and 
advantages over traditional belowground sampling. One important caveat is that any 
prediction of belowground processes requires a solid understanding of the linkages 
between above- and belowground processes in any given system. Examples in the 
literature that link remotely sensed attributes of aboveground systems with below-
ground systems remain scarce, in part, because of the historic separation of the two 
disciplines. It is unclear how well remotely sensed plant attributes will predict 
microbial and soil processes across ecological systems. In the above forest example, 
aspen forests were generally uniform in canopy coverage. It was also a single- 
species system where leaf structure remained consistent across the study area, 
despite the large spatial sampling scheme. Consequently, most of the variation in 
aspen spectral signal was likely due to variation in canopy chemistry and biomass 
rather than leaf structure. Lastly, in this temperate forest system, leaf litter accounts 
for a large fraction of inputs into belowground systems, compared to systems such 
as Cedar Creek that are burned frequently and where �ne-root turnover dominates 
belowground inputs.
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RS of aboveground properties poses further challenges that include separating 
the spectral signals important to canopy chemistry from those of physical properties 
of the forest canopy (Townsend et al. 2013). Larger challenges lie in the lack of 
accessibility of RS data and processing techniques to the broader ecological research 
community.

Several issues of scale present challenges to the application of RS to below-
ground systems. Large knowledge gaps remain in connecting the small spatial scale 
observations of traditional �eld studies with the large spatial scale observations of 
airborne or satellite RS platforms (Asner et al. 2015; Gamon et al., Chap. 16). In 
addition, there is a large mismatch in the spatial heterogeneity between above- and 
belowground systems, with belowground systems being notoriously heterogeneous 
across small spatial scales (Bardgett and van der Putten 2014). The majority of 
variation in belowground processes may be due to small, local-scale factors rather 
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than large-scale factors such as climate (Bradford et al. 2016). In addition to issues 
associated with spatial scale, there are large spans in the scales of biodiversity and 
time. Speciose aboveground systems may contain upward of 600 species ha−1 (Lee 
et al. 2002), whereas soils contain many thousands of microbial “species” per gram 
of soil, with large numbers of endemics (Schloss and Handelsman 2006). Linking 
function to diversity remains a challenge in both systems and particularly in below-
ground systems where the functional role of the vast majority of species is unknown 
(Krause et al. 2014). Likewise, large differences in temporal scales exist between 
above- and belowground systems, with leaf responses to sunlight occurring on the 
order of seconds (Lambers et al. 1998), while the turnover of soil organic matter can 
take years to centuries (Bardgett and van der Putten 2014). Variation in temporal 
scales across systems is particularly important given that the importance of biodi-
versity to ecosystem processes increases with temporal scale (Cardinale et al. 2012; 
Reich et al. 2012).

Irrespective of RS, there are shortcomings associated with belowground 
measurement. For example, belowground measurements that use enzyme activity 
potentials as indicators of microbial function are widespread, but they are known to 
have numerous limitations (Nannipieri et al. 2018). Likewise, microbial diversity 
estimates based upon amplicon sequences of bacterial 16s rDNA have their own 
methodological and interpretive limitations (Schöler et al. 2017). Nonetheless, both 
enzyme activities and amplicon sequencing techniques provide useful information 
about belowground systems and are used widely enough to be compared across 
studies as long as protocols are consistent.

Advantages of using remotely sensed spectral properties of aboveground vegeta-
tion to predict belowground processes lie within the data-rich nature of imaging 
spectroscopy and the consequent ability to measure many more traits of the canopy 
than would otherwise be feasible with traditional benchtop methods. In Madritch 
et al. (2014), only four canopy traits were considered using traditional wet chemis-
try techniques (leaf tannin, N, C, lignin). These canopy foliar traits were expectedly 
well correlated with belowground processes. However, plant spectra themselves 
were better correlated with belowground processes than were plant leaf traits 
(Madritch et al. 2014). This strong relationship between plant spectra and below-
ground processing existed because the plant spectra provided quantitative informa-
tion about many plant traits that were not measured via wet chemistry techniques. 
Potentially dozens of leaf traits important to belowground processes could be con-
veyed by plant spectra. The ability of plant spectra to capture many foliar attributes 
quickly and accurately is a large reason why plant spectra are useful for predicting 
belowground processes. In addition, identifying which regions of plant spectra are 
most variable and correlated with belowground process allows researchers to use 
spectra to identify plant traits important to soil processes. In short, the potential for 
RS products to link above- and belowground systems is promising but faces consid-
erable obstacles.
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