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ABSTRACT. A differentiable orientation preserving map of odd prime
period on a closed oriented differentiable manifold gives rise to two invari-
ants taking values in a Witt group of bilinear forms. One is globally defined
in terms of the rational cohomology of the manifold and the other is locally
defined in terms of the fixed point set and its normal bundle. We show that
these two invariants are, in fact, equal and apply this result to relate the struc-
ture of the manifold to that of the fixed point set and the quotient space.

Let M*" be a closed oriented differentiable manifold and T be an orientation
preserving diffeomorphism of M of odd prime period p. Using the representation
T* of Z,, in H?"(M; Q), Conner and Raymond [8] defined a torsion element
q(T, M) in the rational Witt ring W(Q). This is an invariant of the equivariant
cobordism class of the action and vanishes if the action is fixed point free; hence
it may be expressed in terms of the fixed point set and the action of Z, inits
normal bundle. Conner and Raymond gave such an expression for p = 3. In [4]
we announced a formula for all odd primes. The purpose of this paper is to
give the details of the proofs along with some additional background and appli-
cations.

An essential factor in the proof is the relationship between rational forms
and forms on finite abelian groups. This approach has also been effective in dealing
with other problems [1], [2]. Here we use it to relate the peripheral invariant for a
compact bounding (4n — 1)-dimensional manifold V,an element of W(Q) de-
fined in [8], to the linking form on the torsion subgroup of H2*(V; Z).

§1 contains the requisite algebraic material on bilinear forms and Witt
groups. In the second section the peripheral invariant is defined and is shown to
correspond to the negative of the linking form in the Witt group of finite forms.
The formula expressing q(7, M) in terms of the fixed point data is established in
§3 and applied to prove the following:

(3.3) If T* is the identity on H*"(M; Q), then

@) forp =3 (mod 4), sgn M = sgn F (mod 4);
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170 J. P. ALEXANDER, G. C. HAMRICK AND J. W. VICK
() forp=1 (mod 4), sgn M = sgn F = sgn F) (mod 2); and
sgn F+ (1 —p)mod 8, if p=3mod4,
(36) ssnM—p - sgn(M/T) = {sgn F,(5—p)mod 8, ifp=1modS8§,

sgn Fo(1 —p)mod 8, if p=5mod8,
where F, and F, are prescribed disjoint closed subsets of the fixed point set F
WithFy UF, =F.

In [5] we used the Atiyah-Singer Index Theorem to show that (3.3) (a) actu-
ally holds for any diffeomorphism T of odd period having T* = identity on
H>"(M; Q).

1. Bilinear forms. In this section we collect a number of techniques which
are useful in studying rational bilinear forms. A symmetric form (V, f) consists
of a bilinear map f: ¥V x ¥V — M such that f(v, v') = f@v', v) for all v, v’ €V,
where M may be Q, Z or Q/Z and the corresponding V will be a finite dimension-
al rational vector space, a finitely generated free abelian group or a finite abelian
group. A form is nonsingular if the adjoint map f: V— Hom(V, M) given by
f () [v'] = f(v, V') is an isomorphism. If 4 C V, denote by A" the set of all
elements that annihilate 4,

Al ={(vEV|fv,a)=0foralla€ 4}.

A form (V, f) is called metabolic if there exists a subgroup U C V such that U =
U*. Two forms (V, f) and (V', f') are isomorphic if there exists an isomorphism
¢: V — V' such that f'(¢(v), o(W)) = f(v, w) for all v, w € V. The orthogonal
direct sum of (V, f) and (V', f') is defined in the obvious way and denoted by
NI, ).

Define an equivalence relation on nonsingular forms by setting (V, f) ~
(V', f') if there exist metabolic forms (U, g) and (U’, g’) such that (V, /) L (U, g)is
isomorphic to (V', f') L (U', g'). The set of equivalence classes forms a group W(M)
with group operation given by orthogonal direct sum. W(M) s the Witt group of
rational, integral or finite formsas M = Q, Z or Q/Z, respectively.

(1.1) LEMMA. If V is metabolic and U C V is a submodule with U C U+,
then there exists a submodule U with UC U=UT*'.

PrOOF. We prove this for rational or finite forms. The result for integral
forms is a consequence of the rational case. First note that if A and B are sub-
modules of ¥ then (4 + B)* = A1 N B and (4 N B)L = AL + BL. Since Vs
metabolic there exists a submodule S C ¥V with S =St. Let U= Ut n (U + S).
Then U C U and
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U =UHY+U+8S)=U+U'nsh
=WUtnNn)+UNSH=UnU+5Y)
=UinWU+s)=0 0O
(1.2) Lemma. [V, f] = 0 in W) if and only if (V, ) is metabolic.
ProoF. If [V, f] = O there exist metabolic modules W and W' such that
ViW=W' Let UC W be a submodule such that U= U*in W. By (1.1)
thereisaUC V1 Wsuchthat UCT=U'in VL W. Now if (v, w)EU then
w annihilates U, hence w € U, Since U C U it follows that (v, 0) EU. So if § =
VN T then § C St in V. On the other hand if v € S§* then (v, 0) annihilates S

and U, hence it annihilates U, Thus S * C S and V is metabolic. The other impli-
cation is trivial. O

(1.3) LEMMA. If [V, f] € WM) and U C UL C V are submodules, then
[V, f1 = [UYU, f'] where f' is the form induced by f.

ProoF. We must show that (V, f) L (UY/U, — f') is metabolic. Let 8:
Ut — V L UY/U be given by 8(v) = (v, v + U). Then

(fL (= DO, 0W) =f@v)-f'@+Uv+U)

=f@,v)-fu,v)=0.
Consequently 8(U*) is contained in its annihilator. Suppose x € 8(U*)* and
write x = (v, v’ + U). x annihilates everything of the form (u, 0 + U) where
u €U, hence f(v,u) = 0 and v € UL. For any u € U4,
0=(fL(-f )N 0@W) =1, u) - fQ, u)=f(@ -, u).

So the element v — v’ in ¥ lies in (U')' = U and v =v' mod U. Thus x €
6(U*) and 8(U') is equal to its own annihilator. O

Suppose (¥, f) is a rational form. An integral lattice L C V is a free Z-
module such that L ® Q = Vand f(x, y)EZ forallx,y EL. LetL* ={x €
VIf(x,y) EZ for all y € L}, the dual lattice for L. L™ is isomorphic to
Hom(L, Z), and since f is nonsingular, the induced map f:L — Hom L Z)is
compatible with the inclusion L C L*. L*/L is a finite abelian group which

carries a nonsingular form given by f(x + L, y + L) = p(f(x, y)) where p: 0 —
Q/Z is reduction.

(1.4) LEMMA. The correspondence (V, f) +— (L™ /L, f) defines a homo-
morphism 3: W(Q) — W(Q/Z).

ProOOF. We must show that the Witt class of the finite form is independent
of the lattice chosen and that 8 vanishes on metabolic modules. If Lyand L,
are lattices in ¥, we can find a lattice L, N L, which is contained in both. So
we assume that L, C L,. It follows that L, €L, CLy CLY. fG=L}/L,
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and H = L,/L,, the annihilator of Hin G is H* = L}/L,. Now H C H" so by
(1.3) the form on G = L}/L, is Witt equivalent to the form on HY/H ~L}/L,.
Hence [V, f] is independent of the choice of lattice.

Now suppose (¥, f) is metabolic, so there exists a subspace U= Ut C V.
If L is an integral lattice in ¥ then U N L* is a summand of L*. Note that

UNLtY=UL+ L) =U'=U since L*)' =0.

Furthermore, (U N L*)* = U + L. It is clear that any element of U + L gives

integer values on U N L*. Conversely, suppose x gives integer values on U N L+

and write L* = (UN L*) ® K. We can find y that annihilates U N L* and

agrees with x on K. Then x = y + (x — y) expresses x as an element of U + L.
Consider the subgroup H = (U N L*)+ L)L CL*/L. His clearly self-

annihilating. If z + L € H*! then z is integer valued on U N LY, hence z €

U+ Landz+ L €H. Therefore H= H* and 3[V, f] is metabolic. O

(1.5) THEOREM ([9]). The sequence

0— WEZ) = W) -2 w@/z) — 0
is exact, where i[V, f] = [V®Q, f®1].

REMARK. A similar theorem, most elegantly proven, appears in Milnor and
Husemoller [9]. Their proof obtains as a by-product the much deeper fact that
W(Z) ~ Z via the signature and thus the sequence splits. Our approach differs
in that we employ finite forms which will be the key to our topological applica-
tions in the next section.

ProoF. If 3V, f] = 0, then the finite form on L*/L is metabolic. Let
H C L*/L be a subgroup with H = H*. Define K ={x€L*|x+LEH}. If
x €K then x + L € H which implies that x € K. Similarly K CK*,s0 K =
K*. Hence the form f restricted to the lattice K is integrally nonsingular and
V. f1 = [K®Q, flg ®1] is in the image of i. It is clear that d o i = 0 and
i is a monomorphism.

To show that 9 is onto we will compute the structure of W(Q/Z). For a
prime p let G( p) denote the p-primary part of G. A form on G splits canonically
into its primary parts G = G, 1 G(3) Lee+ 1 Gyl where only finitely
many terms are nonzero.

(1.6) LemMA. [G] = 0.in W(Q/Z) if and only if [G m] =0 forall
primes p.

Proor. Clearly [G p)] = 0 for all primes p implies [G] = 0. So suppose
[G] = 0. Then by (1.2), G is metabolic. Let K C G be a subgroup with K =
K*, hence also having |K|2 = |G|. If p" is the highest power of p dividing |K|,
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then K, is a self-annihilating subgroup of G(p) and

2 _2n
IK(p)I —P n—lG(p)l-
Hence [G p)] = 0 for each prime p. O

If F, denotes the field with p elements, p a prime, the group homomor-
phism F, — Q/Z sending 1 to 1 /p identifies F,, additively with the subgroup of
order p in Q/Z. A nonsingular bilinear form on a finite dimensional Fp vector
space may thus be viewed as a finite group form. This defines a homomorphism
¥+ WF,) — W(Q/Z) where W(Fp) is the Witt group [9].

(1.7) THEOREM. ¥ = ®p n[Jp: GBP W(EF,) — W(Q/Z) is an isomorphism.

Proo¥r. If (V, f)is a form over F, with wp([V]) = 0, then V contains a
subgroup U with U = U'. This U is also an Fp-subspace with dim U = % dim V.
Hence [FV'] = 0in W(F,) and ¥, is monic. It then follows from (1.6) that ¢
is monic.

Let (G, f) be a form on a group G of exponent p”. If n =1, (G, f)is in
the image of Y. If n > 1,let K =p"~!G. Thenforx,y €K, x =p"~'%,
y=p" 'yand f(x, y) = p*"~%f(X, )= 0in Q/Z. So K CK' and (G, ) is
Witt equivalent to (K'/K, f), a form on a group of exponent less than p”. Pro-
ceeding inductively, we see that G is Witt equivalent to a form on a group of ex-
ponent p and this form is in the image of ¥,- We conclude that ¢ is onto. O

Recall [9] the structure of W(Fp) is given by
(@) for p =2, W(F,) ~ Z,, generated by (1),;

(@ii) for p= 3 mod 4, W(F,) = Z,, generated by (1),;

(iii) for p =1 mod 4, W(F,) = Z, ® Z, with generating set (1), and
{a), where « is a nonsquare mod p.

To explain this notation, let Z, be the cyclic group of order n and let a be
an integer relatively prime to n. Then (a) , denotes the form (Z,, ) where
f(1,1) =a/n. Note that if b is relatively prime to n and b is a square mod n,
then (ab), is isomorphic to (a),. If a and b are relatively prime integers, then

(1), ={a), +(b), in W(Q/Z). Note that (1), = d(ab) where (ab) denotes
the 1-dimensional rational form with matrix (ab).

As a consequence of the structure of W(Q/Z), it is sufficient to show that
any finite form k), is in the image of d to conclude that 9 is an epimorphism.
We will construct a matrix for a rational form ¥ with 8(V') = (k),. This em-
ploys an algorithm due to Wall [10].

Assuming that (n, k) = 1 apply the Euclidean algorithm to n and k = k,:
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n =aoko +kl’
ko =alkl +k2,

km—l = o‘mkm +1,
k, =0y, 1+0.
Consider the rational form given by the diagonal matrix
nko
—kokq
k1k2

(18) .,
0 (" l)mkm—lkm
(_l)m'l"lkm

Since (k;, k;, ;) = 1 for each i we use the previous observation to conclude that
the image under 3 of this form is

But since n = k, (mod k), ko, = k, (mod k,), etc., this is just (k,), = (k), in
W(Q/Z). We conclude that 9 is onto and the proof of (1.5) is complete. [J
Note that the determinant of the matrix (1.8) is £n(k2k% - -« k2). If we
wished to have a nondegenerate integral form that gave (k), precisely rather
than up to Witt equivalence, we could perform simultaneous row and column

operations on (1.8) to produce the matrix

CL
(-1 (-1)"a, (-pm*!

(_1)m+l (__l)m+lam+l/

which has determinant n.
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II. The peripheral invariant and linking forms. Suppose B*” is a compact
oriented differentiable manifold and M = 8B. If ¥ denotes the image of the
homomorphism

i*: H**(B, 3B; Q) — H*"(B; Q),
there is a symmetric nonsingular bilinear form f: ¥V x ¥V — Q given by

f@*E), *(y) = (x Ui'y, [B, 8B]) € Q

This form represents an element w(B) in W(Q) whose signature we denote by
sgn(B). Conner and Raymond [8] defined the peripheral invariant of M to be

per(M) = w(B) — sgn(B) * 1 € W(Q)

for any bounding (4n — 1)-manifold M. Here 1 denotes the multiplicative iden-
tity in W(Q).

To see that this is independent of the choice of B, suppose that B*" is
another compact oriented differentiable manifold with 38*" = M. Then B U,
— B is closed, oriented and

0=wBU, -B)-sgn(BU,, - B) - 1
= [w(B) —sgn(B) * 1] - [w(B) —sgn B - 1].

From the diagram

*

H*™(B, 3B, Z) —> H*"(B; Z)

Jo [
. %
H™(B, 3B; Q) —> H"(B; Q)

where a is the coefficient homomorphism, we see that ¥ contains a natural inte-
gral lattice L = image i * o « as well as its dual lattice Lt = (image @) N V.
Since the homomorphism 9: W(Q) — W(Q/Z ) maps the kernel of sgn: W(Q) —
Z isomorphically onto W(Q/Z), the peripheral invariant per(M) may be identified
with the induced finite form on L*/L. To compute the peripheral invariant we
relate it to a more familiar finite form on M.

For any closed oriented M4"~1 denote by G the torsion subgroup of
H*™M;Z). If x, y € G, then x = f(z) for some z € H2"~1(M; Q/Z ) where 8
is the Bockstein homomorphism for the coefficient sequence 0 — Z — Q —
Q/Z — 0. Using the pairing Z x Q/Z — QfZ, define A(x, y) =(z Uy, [M])€E
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Q/Z. \is the linking form of M, a symmetric nonsingular finite form represent-
ing an element L(M) € W(Q/Z).

(2.1) THEOREM. If M4"—! = 3B*" as above then per(M) = — L(M)
in W(Q/Z).

The proof will be preceded by a lemma. Letj: M — B be the inclusion
and define the following subgroups of G:

H={x €G|x = j*¢) for some § EH*"(B;Z)}, and
and
K = {x € G|x = j*() for some ¢ € Tor(H*"(B; Z))}.

Applying Poincaré duality, one can show that K is isomorphic to G/H.

(2.2) LemMMA. Under the linking form (A, G),H={x € GIMx, ) =0
forally €K). Thatis, H=K*'.

PrROOF. First we show that H C K1, Let x €K, y €H. In the diagram

I’y ]
H™-1(B; /7) < 101, Q2) 2> HOn B, M; /)

e . s

H(B;Z)—— H*"(M;Z)

there exist n, £ € H2"(B; Z) with i *(n) = x, i *(¢) =y and p EH?"~1(B; 0/Z)
with f(u) = x. Then

A, ) =@ Uy, IMD =) v itE), MDD
=(8i*w)V ¢ [B,M])=0.

So H C K*. But since K = G/H the nonsingularity of the form implies that
H=K'. O

The result shows that the class in W(Q/Z ) represented by the linking form
on G may also be represented by the induced form on H/K.

ProoF OF (2.1). Note that the lattice L may be identified via a with the
image of i *: H2"(B, M; Z) — H*"(B; Z)/ Torsion. Also its dual lattice L*
corresponds with the summand of H 2n(B; Z)/Torsion containing L as a subgroup
of finite index. Thus we have an exact sequence

0—L— LY — H/K—0.
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Now consider the following diagram

. ® "~
H'B, M; Q) —— H*®; Q)——H*(1; 0)

\° [« ]
H*®, M; 7)o 1B 2y—C 01 2)
Na I 8
8 H*®B; 0/Z) 8
J, voNe

H*B, M; QJZ) < H*(M; 0/Z)

If [£] and [n] are in H/K, pick u € H*"~Y(M; Q/Z) with f(u) = §. Then the
linking form on G induces the form on H/K given by

MIE]L, [n])=<(uUn, [M]) inQ/Z.

On the other hand, suppose ¢ = i *(x) and = i *(»). We know that
i*a(x) = 0 so let z € H*"(B, M; Q) such that j *(z) = a(x). The form 5(f) on
H/K may be given by

8(f) ([E], ) =<z Vi*(y), [B, M])
={n(z2)Vy, [B, M]) mod Z..

Now A([¢], [n]) =<uUn, [M])=(8)Vy, [B, M]). So if we knew that
Te(z) = — 5(u), the two forms on H/K would coincide and the theorem would
follow. The fact that m,(z) = — 8(u) may be established by representing the
classes by cochains and chasing through the previous diagram. 0O

(2.3) COROLLARY. The peripheral invariant, per(M ), may be defined for
any closed oriented (4n — 1)-manifold and is an invariant of the oriented homo-
topy typeof M. O

If M*™ and K**~! are closed oriented manifolds then it may be checked
that per(M*™ x K4*~1) = sgn(M*™) + per(K**~1). However, the natural ex-
tension of this statement to bundles is false. For example consider the Hopf
fibration §! —83 — 52 and suppose T is a standard diffeomorphism of S3 of
period p preserving the fibres. Then S'/T — §3/T — $? has sgn(5?) + per(S'/T)
=0, but per(S2/T) # 0 as will be seen in the following examples.
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We now compute the peripheral invariant of a lens space. Let T be the
map of odd order p on 4! given by
T@ys .- 2) = (N1zy, ..., N202,,)
where A = ¢2™/P and (r,, p) = 1 for each i The quotient $**~!/T is the lens
space L**~Y(p; r,, .. .,r,,). The linking form on L4*~Y(p;r,, ..., r,,)

H2n(L4n—l) x H2n(L4n—l) — Q/Z

(T l

Z, x Z,————QZ

sends (1, 1) — a/p for some integer a prime to p.
(24) LemMa. If a €H*(L) > Z, is a generator and ~'(a) € H'(L; zZ,)
is its pre-image under the Bockstein isomorphism
B: H\(L;Z,) — H*(L; Z),

then, when reduced mod p, {8~'(a) * a®"~1, [L]) and a are equivalent modulo
squares.

ProOF. The element 1 € Z, > H?"(L) is of the form (Ka)" for some
integer K # 0 mod p. Let b be a cochain in $2%~ (L) such that b)=p*Ka)".
Then from the definition of the linking form we have

a=(bV Ka)’, [L]) mod p.
Now let K¢ € S'(L) be a cochain with 5(Kc) = p - Ka. Then
dKeUEKa)'"" HY=8Ko)UKay*"' =p - (Ka)".
So we may choose b = Kc U (Ka)*~! and we have
2=(KcVU Ka)y'""' U Ka)"*, [L]) mod p
=K*c U @*""1), [L]) mod p.

Since §(c) = pa, the mod p reduction of c is represented by B~ () and the
proof is complete. O

This result may be used to establish that for the lens space
L™= (p;1,...,1) the linking form is (l)p. The form for a general lens space may
be computed by relating it to this standard model. For L**~!(p;r,,...,r,,)
let I, be an integer with ;; = 1 modpfori=1,...,2n View S*—1! as
the join of 2n copies of §1, §47~1 = §1 x++. x g1,

We have two maps of period p on $47—1: T, in which the ith coordinate
is multiplied by A" and T, in which each coordinate is multiplied by A. De-
fine
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g wr xS T)— (S ' x- oS T)
to be the map whichon the ith coordinate is the standard map of degree /;. Theng
is equivariant since

8Ty (ys -5 2,,) =8\ 12y, ..., N202,)
=(()\’lzl)'1’ ., (l'znzzn)lzn)

1
= ()\z'll, e A2 =To8(zy, . . -, 25,)-
Ifl=1 <1,+++1,,,then (/, p) =1 and g induces a map
L Yoy, .. ) — L Y (p 1, ..., 1)

of degree I It follows that the linking form on L%”~!(p; Tys ... 5Ty, is given
by (D, =Aryry 221y,

III. Applications to periodic maps. Suppose M*” is a closed oriented dif-
ferentiable manifold and T is an orientation preserving diffeomorphism of M of
odd prime period p. There is a nonsingular symmetric rational bilinear form on
H?"(M; Q) given by f(x, y) = p{x Uy, [M]) € Q which is invariant under the
action of T™*. With respect to this inner product, the averaging operator T =
p~l1+T*+T* + ... + T*~1)js selfadjoint. Hence the image of T, the
set of vectors fixed by T*, is an orthogonal direct summand. Let V be the sub-
space of vectors fixed by 7%, and denote by w(T, M) the class in W(Q) repre-
sented by the restriction of fto V. Since the quotient map m: M — M/T in-
duces a monomorphism #*: H**(M/T; Q) — H*"(M; Q) onto V, we denote the
signature of w(T, M) by sgn(M/T).

Conner and Raymond [8] associated to such a periodic map an element of
W(Q) given by

a(T, M) = w(T, M) - sgn(M/T) - 1

where 1 € W(Q) is the unit. Note that q(7, M) lies in the kernel of the signa-
ture homomorphism and so can be viewed as an element of W(Q/Z). q(T, M) is
a cobordism invariant because if (M, T') bounds an action on a compact oriented
manifold (W*"*1, T) then the standard approach shows V admits an invariant
self-annihilating subspace whose dimension is % dim V. It follows that w(T, M)
= 0and sgn(M/T) = 0.

q(T, M) also vanishes on fixed point free actions. In this case M/Tisa
closed oriented manifold and w(T, M) is Witt equivalent to the middle dimen-
sional form on M/ T which is unimodular. Thus w(T, M) = sgn(M/T) + 1 and
q(T, M) =0.
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Since q(T, M) is a cobordism invariant that vanishes on fixed point free
actions, we know that it is determined by the fixed point set F C M and the
representation of Zp in its normal bundle.

We describe now another invariant defined in terms of the fixed set and
depending on a systematic method for orienting its equivariant normal bundle.

If p = 3 mod 4 then -1 is not a square mod p and we may give the normal
bundle to F a complex structure such that all eigenvalues of the action are of
the form e2™#/P where B is a square mod p. This complex structure on the nor-
mal bundle of F together with the orientation for M determines an orientation

for F.
If p =1 mod 4 we orient the fixed set arbitrarily and divide it into two

parts F, and F, as follows. For a given component of F, denote by e*"r1y p,
., €™ k/p the eigenvalues of the action in the normal bundle. Then if y, -
Y3 °°* Y is a square mod p we put the component in F,. If this product is not
a square mod p we put the component in F,.
Define an element of W(Q/Z) by

sgn F - (1), if p=3mod4,
q(T. M) = sgnFy (1), + sgn Fy{a), if p=1mod 4

where a is a nonsquare mod p. It is easy to see that g (T, M) vanishes if the
action bounds or if the action is fixed point free.
Our main objective is to prove

(3.1) TueoreM. (T, M) = G (T, M).

This was proved by Conner and Raymond for p = 3 and for weakly com-
plex involutions [8]. The general theorem for p = 2 appears in [1].

Consider the periodic map on CP(2) given by #[z,, z,, z,] = [z, A%z 1 22]
where A = ¢™!/P_ There are three isolated fixed points at which the representa-
tions may be described by (A, A1), (A1, A=2) and (A, A2), and the action of
t* in H(CP(2); Q) is the identity. In computing g(T x t, M x CP(2)) the con-
tribution from H2"*2(f; Q) ® HO(CP(2); Q) is clearly self-annihilating. A direct
consequence is that q(T x t, M x CP(2)) = q(T, M) in W(Q/Z).

For p = 3 mod 4 the orientations of the fixed points of ¢ are either
(=, +, +)if 2 is a square mod p or(—, —, —)if 2 is not a square mod p.
Hence the signature of the fixed set of T x ¢ is either sgn(F) or —3 sgn(F). On
the other hand for p = 1 mod 4, — 1 is a square mod p, so the parity of sgn F,
and sgn F, remain unchanged. Therefore

(T x t, M x CP(2)) = §(T, M).
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We conclude that in proving (3.1) we may assume that the codimension of F in
M is arbitrarily large.

If N denotes an equivariant closed tubular neighborhood of F in M, we de-
note by w(T, N) the element of W(Q) given by the obvious inner product on the
image of

H¥™(N/T, aN/T; Q) — H**(N/T; Q)

and by sgn(7, N) its signature. Theorem 1.3 of [8] gives the following relation
in W(Q),

per@QN/T) =w(T, N) — sgn(T, N) - 1 - q(T, M)

Since we can assume that the codimension of the highest dimensional component
of F is greater than 2n, it would follow that H**(N/T; Q) ~ H*"(F; Q) =0
and hence that g(T, M) = — per(dN/T). We will have completed the proof of
(3.1) if we can show

(3.2) ProrosITION. —per(ON/T) = q (T, M).

Recall [7] that the action (T, M) is equivariantly cobordant to an action in
which the normal bundle to each component of the fixed set splits equivariantly
into a sum of line bundles. So we assume this is true for F and let 47— 2 pe
a component of F with normal bundle ¢, @ -+« ® &, where the action of Z in
¢, is multiplication by Nr 1 <r<k A=e*"/P, For each r choose an mteger
I, with 1, j, =1 (mod p).

Let z’ =( @& be the line bundle given by the / -fold tensor prod-
uct and define an action of Z on E’ by multiplication by A in each fibre. For
each r there is a map of sphere bundles 6,:SE)— S(s ") given by 8,(v) =
(v ® -+ - ®v). This map is equivariant since

0,(T() = 6,N"@) = (Nrw) ® « - - ® Nr(v))
=N rw®:- @) =Av® - Bv)
= T(6, ).

Note that on fibres the map 6, is of degree /,.
Now take the fibre join

SE) *5G;) +++ +5G) =5(Bg,) = o

where N is an equivariant tubular neighborhood of F. Similarly there is the
fibre join
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SEY) * e #SES) = s(eas)

where N' is the appropriate disk bundle, and the join 6, * <+ + 0, gives an
equivariant bundle map 6: aN —> ON’. On each fibre the degree of 8 is [ =

I'Il‘_l I, while on the base it has degree 1. A spectral sequence argument shows
that 6: 9N — 3N’ has degree / and hence so does the map on the quotient 6/T":
aN/T — aN'/T.

To understand how this relates the linking forms, first note that W(Zp) isa
module over W(Z, p)) where Z ) is the integers localized at p. The product
sends ([V], [G]) into the element [V ® G] in W(Z,). If (/, p) = 1 then [{D]
€ W(Z(p)) and we will denote [(I}] + [G] by ! ® [G]. Note that I ® (), =
1B),.

Now 6/T gives a map of fibrations

L2k-1 5 [2k-1

|

aN/T — ANIT

F4n—2k _ F4n—2k
that is a (2k — 2)-equivalence. Since we can assume that 4n — 2k <2k — 4, it
follows that 2n < 2k — 2 and hence (§/T)*: H*"(dN'/T;Z) — H?*"(dN/T;Z)
is an isomorphism. If L' and L denote the respective linking forms, we have

LO/TY ), O/T)*(y) =1+ L'(x, »).

Since H*"(dN'/T; Z) is all p-torsion, we have per (N/T) = 1 ® per(dN'/T).

We may now employ the technique of Conner and Raymond [8, §2] to
AN'/T. Restated in terms of finite forms, they show that per(dN'/T) = sgn Fe (1,.
Thus for the equivariant normal bundle N of F we conclude that per(N/T) =
sgn Feu Y

Recall the conventions for orienting the fixed set. For p =3 mod 4, —1 is
not a square, so we choose a complex structure for the normal bundle in which
all eigenvalues are of the form A7 where r; is a square mod p. Then [ is a square
mod p, {1}, = (1), and

per@N/T) = 3 sgn F + (1), = sgn F - (1),
F
For p =1 mod 4, we orient in any way and place Fin Foifry ++-rjisa
square mod p and in F; if not. Then
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per@N/T)= 3 s F(1), + T sgn F (o),
Fer, Fer,

=sgn F « (1), +sgn Fy - (a)y,,
where a is not a square mod p. These cases fully describe g(7, M) and we con-
clude that (T, M) = q(T, M). O

An immediate consequence of (3.1) is the following corollary.

(3.3) CoroLLARY. If (T, M) is as above and T* is the identity on
H?*"(M; Q) then

(@) for p =3 (mod 4), sgn M = sgn F (mod 4);

(b) for p=1 (mod 4), sgn M = sgn F = sgn F, (mod 2).

PrOOF. Since T * s the identity, ¢(T, M) = sgn(M) * (1),,and the con-
clusions follow from (3.1) and the structure of W(Z p). 0

Using different methods we have shown [5] that the conclusion in (3.3)(a)
holds for all T of odd period.

Before giving a final application we introduce another algebraic concept.
Denote by W(Z(z)) the analogous Witt group for modules over Z,,, the integers
localized at 2. If (V, f) is such a form, there is an element u € ¥ such that
f@, v)=f(v,v) mod 2 for all v € V. The class u is a Wu class for (V, f). Its
existence follows from the fact that when tensored with Z,, the form remains
nonsingular and the function v — f(v, v) becomes a homomorphism into Z,.
The class u is not unique, any other Wu class will be of the form (u + 2w) for
some w € V; however, f(u, u) is well defined mod 8:

fa+2w,u+2wy=fu,u)+ 4fw, w) +4f(u, w)
=f(u, u) + 8f(w, w) (mod 8).
In the same manner as (1.5) there is a split short exact sequence

0—>WZ)—WZ,)— D wz,)— 0.
p odd prime

Define a homomorphism A: W(Zm) —Z; by A(V, f)=sgn V - f(u, u) where
u is a Wu class for (V, f).

(34) Tusorem ([9)). If IV, f] € W(Z,) lies in the image of W(Z) —
W(Z,,) then sgn V = f(u, u)y mod 8. O

It follows that the image of W(Z) in W(Z(z)) lies in the kernel of 4. Hence
there is an associated homomorphism 4 and a commutative diagram
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W(Z(zy) W(Z,)

\ P odd prime

The value of 4 on the various generators is given by

(3.5) PROPOSITION. A > =( ~p)mod 8 and Z(a)p =(5-p)
mod 8.

PROOF. It is clear that we can pull back (1), to the form (p} in W(Z(z)),
and that 4A(p) = (1 — p) mod 8. The form ¢ a), requues more care. We prove
the result by induction on the prime p.

First for p = 3 we may take @ = — 1 so that {a}; pulls back to (—3) and
A(-3)=—1+3=5 -3 (mod 8). This clearly will work for any p =3 mod 4.

Now let p > 5 be a prime, p = 1 mod 4, and assume the result is true for
all odd primes less than p. First we claim there is an odd prime g < p which is
a quadratic nonresidue mod p. If not then all odd integers less than p as well as 0
are quadratic residues. But 4 is also a quadratic residue and this gives (p + 3)/2
quadratic residues, which is too many.

So let g be a quadratic nonresidue mod p, ¢ an odd prime. Then (l)

(p)g + (q)p Now p = 1 mod 4 so by quadratic reciprocity p is a quadratlc non-
residue mod ¢q. Hence

(1)q =(a), +{a),
and
1-pg=A(1),, = Ala), +4(a), = (5 - q) + A(a), mod 8,
This gives
Z(a)pEl ~-pq+q-5=1—-pg+q-p-5+p
=(1+¢) 1 -p)-(5-p) mod8.

But 4|(1 — p) and 2|(1 + q); henceZ(a)p =—(5 —p)=5 - p mod 8, be-
cause 5 — p =0 mod 4. This proves (3.5). O

Now consider A(w(T, M) — sgn(M/T) + 1). If @ is a Wu class for the
form on H2"(M; Q) then note that @ + T*7 + T*25 + + -+ + T*~ 17 is also
a Wu class. Thus we may assume that the Wu class u is fixed by T* and hence
is also a Wu class for V. Therefore
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= AW(T, M)) — sgnM/T) * 1)
=AW(T, M))=sgn V - f(u, u)
= sgn(M/T) — plu, u)
=sgn(M/T) - p sgn M mod 8.

On the other hand -
sgn F + A(1),, p =3 mod 4;

A(q(T M) = sgnFo.Z(Up‘l'SgﬂFnZ'(a)P’ P =1 mod 4.

Applying (3.1) and (3.5) we have
senM/T)-psgn M=sgn F+ (1 —p)mod 8, p=3mod4;
sgn(M/T) —p sgn M =sgn Fy(1 — p) + sgn F,(5 — p)mod 8, p =1 mod 4.

Using the fact that p2 =1 mod 8 we may multiply the above congruences by
— p to yield a new proof of the following result of Conner [6].

(3.6) THEOREM.
sgn F(1 —p) mod 8 ifp=3mod 4
sgn M — p - sgn(M/T)= { sgn F,(5—p) mod 8 ifp=1mod 8

sgn Fo(1 - p) ifp=5Smod8. O
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