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Abstract

Background: 'Omics' tools provide novel opportunities for system-wide analysis of complex
cellular functions. Secondary metabolism is an example of a complex network of biochemical
pathways, which, although well mapped from a biochemical point of view, is not well understood
with regards to its physiological roles and genetic and biochemical regulation. Many of the
metabolites produced by this network such as higher alcohols and esters are significant aroma
impact compounds in fermentation products, and different yeast strains are known to produce
highly divergent aroma profiles. Here, we investigated whether we can predict the impact of
specific genes of known or unknown function on this metabolic network by combining whole
transcriptome and partial exo-metabolome analysis.

Results: For this purpose, the gene expression levels of five different industrial wine yeast strains
that produce divergent aroma profiles were established at three different time points of alcoholic
fermentation in synthetic wine must. A matrix of gene expression data was generated and
integrated with the concentrations of volatile aroma compounds measured at the same time points.
This relatively unbiased approach to the study of volatile aroma compounds enabled us to identify
candidate genes for aroma profile modification. Five of these genes, namely YMR2/0W, BATI,
AADI0, AAD 14 and ACSI| were selected for overexpression in commercial wine yeast, VINI3.
Analysis of the data show a statistically significant correlation between the changes in the exo-
metabome of the overexpressing strains and the changes that were predicted based on the
unbiased alignment of transcriptomic and exo-metabolomic data.

Conclusion: The data suggest that a comparative transcriptomics and metabolomics approach can
be used to identify the metabolic impacts of the expression of individual genes in complex systems,
and the amenability of transcriptomic data to direct applications of biotechnological relevance.

Background phenotypical traits such as fermentation performance,
Commercial wine yeast strains have been selected to meet ~ general stress resistance, the profile of aromatic com-
specific requirements of wine producers with regard to  pounds produced, the ability to release enzymes or man-
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noproteins of oenological relevance and many more [1].
As a result, more than 200 different yeast strains, almost
exclusively of the species Saccharomyces cerevisiae are cur-
rently produced and sold in the global industry. Many
research and development programs have focused on
improving specific aspects of wine yeast strains [1]. How-
ever, many of the relevant traits are of a polygenic nature,
and our understanding of the genetic and molecular regu-
lation of complex, commercially relevant phenotypes is
limited [2]. In this paper, we investigate the possibility of
using a holistic systems biology approach to identify
genes that impact on volatile aroma compound produc-
tion during fermentation. The approach is based on com-
bining comparative transcriptomics and aroma
metabolomics of five commercial wine yeast strains that
produce significantly different aroma profiles.

During alcoholic fermentation, Saccharomyces cerevisiae
strains convert sugars to ethanol, but also produce a large
number of volatile aroma compounds, including fatty
acids, higher alcohols and esters (table 1). Many of these
compounds are important flavor and aroma compounds
in wine and beer, and different strains of S. cerevisiae are
well known to impart significantly different aroma pro-
files to the final product.

The metabolic pathways responsible for the production of
these compounds are responsive to many factors includ-
ing the availability of precursors, different types of stress,
the cellular redox potential and the energy status of the
cell [3-11]. These pathways are not linear, but rather form
a network of interlinked reactions converging and diverg-
ing from shared intermediates (figure 1). Moreover, inter-
mediates are not only shared between the different
'‘branches' of aroma compound production, but also with
other pathways related to fatty acid metabolism, glycoly-
sis, stress tolerance and detoxification to name a few.

Most of the genes encoding the enzyme activities of the
aroma network are also co-regulated by transcription fac-
tors that are related to total nitrogen and amino acid avail-
ability [12]. Thus the nutritional status of the cell as well
as the nutrient composition of the growth media through-
out fermentation plays a vital role in determining the

Table I: Exo-metabolites measured in this study
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aroma profile produced by the fermenting yeast. A further
complication is due to the fact that very little is known
about the kinetics of individual enzymes involved in these
pathways. What is clear is that a number of these enzymes
are capable of catalyzing both the forward and reverse
reactions, depending on the ratios of substrates to end
products, as well as the prevailing redox balance of the cell
[13-15]. The various dehydrogenase- catalyzed reactions
which are integral to most branches of aroma production
are particularly sensitive to the ratios of enzyme co-factors
such as NAD and NADH, with obvious ramifications
regarding the directionality of various key reactions [16].
This intricate lattice of chemical and biological interac-
tions makes interpretation of individual gene and enzyme
contributions problematic in the context of aroma com-
pound production as a whole (figure 1). Indeed, individ-
ual parts of the system can combine and interact in
unexpected ways, giving rise to emergent properties or
functions that would not be anticipated by studying a sin-
gle part of the system. Such systems are thus irreducible,
and cannot be understood by dissection and analysis of a
single part at a time. In recognition of the complex and
intricate nature of this process we have sought to follow
an 'omic' approach in the study of aroma compound pro-
duction.

In the present study our goal was to compare the aroma-
relevant exo-metabolomes of five industrial yeast strains
at three different stages of fermentation, and to align these
data with gene expression data obtained through microar-
ray-based genome-wide transcription analysis. This ena-
bled the incorporation of gene expression levels and
aroma compound production into multivariate statistical
models. By using these models as a predictive tool various
genes were identified as potential candidates for overex-
pression in order to increase/decrease the levels of key
aroma compounds during fermentation. To verify
whether genes whose differential regulation appeared
most strongly linked to the differences observed in the
aroma profiles of different strains were indeed impacting
on aroma compound metabolism, five of these genes
were individually overexpressed in one of the industrial
strains. The data indicate that these genes indeed
impacted significantly on the aroma profiles produced by

Primary metabolites Organic acids Higher alcohols Esters Acids Fatty Acids

Glucose Citrate Methanol Ethyl Acetate Valeric Acid Octanoic Acid

Fructose Malate Propanol Hexyl acetate Propionic Acid Decanoic Acid

Glycerol Acetate Isoamyl alcohol Isoamyl Acetate Iso-Valeric Acid Ethyl Caprylate

Ethanol 2-Phenyl Ethanol 2-Phenylethyl Acetate Iso-Butyric Acid Ethyl Lactate
Isobutanol Butyric Acid Ethyl Caprate
Butanol
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Diagrammatic representation of pathways associated with aroma production and links to associated meta-

bolic activities. Dashed arrows are used when one or more intermediates or reactions are omitted. Red font is used to iden-
tify relevant aroma compounds. Full gene names and functions can be viewed in the appendix. The main pathway for the
production of higher alcohols is known as the Erlich Pathway [3]: it involves three basic enzyme activities and starts with the
deamination of leucine, valine and isoleucine to the corresponding o.-ketoacids. Each o-ketoacid is subsequently decarboxy-
lated and converted to its branched-chain aldehyde [4-6]. The final step is an alcohol dehydrogenase-catalyzed step which
could potentially be catalyzed by the seven putative aryl alcohol dehydrogenase genes [7], and the seven alcohol dehydroge-
nase genes [8]. Finally ester formation involves the enzyme-catalyzed condensation reaction between a higher alcohol and an
activated acyl-coenzyme A [9-1I]. Fatty acids are derived from fatty acid biosynthesis, but can also be produced as intermedi-

ates of the higher alcohol and ester producing pathways [9].

the modified strains. Moreover, the pattern of changes
observed was significantly correlated to the pattern pre-
dicted through the comparative analysis of transcriptome
and metabolome. The data therefore clearly support our
hypothesis that direct comparative analysis of transcrip-
tomes and metabolomes can be used for the identification
of genes that affect specific metabolic networks and for
predicting the impact of the expression of such genes on
these networks.

Results

Fermentation kinetics and metabolite formation
Fermentation behaviour of all five strains in our condi-
tions followed typical wine fermentation patterns. All five
strains fermented the synthetic must to dryness within the
monitored period, broadly followed similar growth pat-
terns (figure 2) and showed similar rates of fructose and
glucose utilization as well as ethanol and glycerol produc-
tion (figure 3). This is to be expected, as all five strains are
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Growth rate (frame A) and CO, release (frame B) of the five commercial wine yeast strains during alcoholic
fermentation. Values are the average of 4 biological repeats + standard deviation.

widely used in the wine industry and are optimized for
fermentation performance.

On the other hand, the strains did show significant varia-
bility regarding the volatile organoleptic compounds pro-
duced during fermentation (tables 2, 3, 4), suggesting that
these 'secondary' pathways of higher alcohol and ester
production are less conserved between different strains.

In general, the aroma compounds produced all showed a
steady increase in concentration in the synthetic must
over time, although the most active period of aroma com-
pound accumulation appears to be in the earlier stages of
fermentation. For the most part, compounds such as
methanol, isoamyl alcohol, butanol, ethyl caprylate are
only detectable in the fermentation media by day 5 of fer-
mentation (table 3), whereas others such as diethyl succi-
nate can only be detected at the end of fermentation (table
4). In general, the higher alcohols and their correspond-
ing esters are present throughout fermentation at the
highest concentration in the medium (tables 2, 3, 4). The
aroma profiles of the DV10 and EC1118 strain are very
similar, while the BM45 and 285 strains also produce sim-
ilar exometabolomic signatures. The aroma compounds
that are proportionally the most variable between strains
are propanol, isobutanol, ethyl caprylate, acetic acid, pro-
pionic acid, butyric acid, ethyl caprate, diethyl succinate,
valeric acid, 2-phenylethyl acetate, octanoic- and decanoic
acid, as well as ethyl lactate, which is completely absent in
the BM45 and 285 strains (table 4).

Microarray analysis

The divergent aroma profiles of the different strains were
mirrored by variable gene expression patterns. Since the
Affymetrix DNA chips used for the analysis were designed
based on the sequence of the laboratory yeast BY4742, a
primary concern related to the quality of the microarray
data. Both the internal controls and the expression of
housekeeping genes were in keeping with international
MIAME compliancy standards. Most notably, variation
between independent biological repeats was negligible,
giving us confidence in the reliability and reproducibility
of our microarray analysis. Furthermore, changes in gene
expression during the course of fermentation matched up
well to data from related microarray analysis for the
EC1118 [17] and VIN13 strains [18].

Between different time points approximately 1000-1500
genes significantly increased or decreased in expression
(within the criteria specified in the materials and methods
section) for the five yeast strains in our study. At the time
points considered, the variation in gene expression
between the different strains was in the range of about 50~
400 transcripts. Strains that appear to be most similar to
one another on a gene expression level were the EC1118
and DV10 strains, as well as the BM45 and 285 strains.
The VIN13 strain was least similar to any of the other four
strains. This pattern is in line with the differences
observed in aroma production for all of these strains.

Numerous and substantial changes in the expression of

genes involved in pathways that lead to the production of
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Fermentation kinetics of the five yeast strains used in this study: Glucose utilization (A), fructose utilization
(B), glycerol production (C) and ethanol production (D). All y-axis values are in g.I-! and refer to extracellular metabo-
lite concentrations in the synthetic must. Values are the average of 4 biological repeats + standard deviation.

volatile aroma compounds were evident both between
strains at comparable stages of fermentation and for indi-
vidual strains at different fermentative stages. To identify
relevant transcriptional variation in the context of aroma
compound production, PCA analysis and PLS1 and PLS2
models were constructed for the compounds in tables 2,
3, 4 using the transcriptomic data as X variables. Tran-
scriptomic data from days 2 and 5 were used for modeling
purposes as these time points represent the period when
the accumulation rate of most aroma compounds is at a
maximum. From these models, transcripts with a strong
positive or negative loading were selected for further in
depth statistical analysis. The corresponding ORFs,
together with a brief annotation, are listed in the addi-
tional data files [see Additional data file 1].

The general intrastrain trend revealed a decrease in the
transcript levels of enzymes involved in the synthesis of
aromatic and branched-chain amino acids, while tran-
script levels encoding aldehyde and alcohol dehydroge-
nases, as well as certain acetyltransferases were generally
increased. Fold changes for differentially expressed tran-
scripts, both between different strains at either day 2 or
day 5 of fermentation and between day 2 and day 5 in
individual strains, can be viewed as additional material
[see Additional data file 2].

Multivariate analysis of metabolite concentrations and
gene expression data

Figure 4 shows a PLS2 plot which depicts the variation/
relationships between all the measured aroma com-
pounds as well as the 70 genes selected for multivariate
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Table 2: Volatile alcohols and esters present in the fermentation media at day 2 of fermentation

Day2 Threshold Odor VINI3 ECII18 BM45 285 DVI10
Ethyl Acetate 12 Apple, Pineapple, fruity, solvent, 4.87 £ 1.22 738+072 732107 543127 732+194
balsamic
Methanol 0+ 0.00 0+ 0.00 0+ 0.00 42.59 +3.08 41.72 + 4.08
Propanol 306 Alcohol, ripe fruit, stupefying 27.16 £ 11.35 21.04 £4.26 20.87 +£2.08 1924 +2.60 23.15+ 6.42
Isobutanol 74 Alcohol, nail polish 57+ 125 6.77 £0.63 83 +0.8lI 728+ 040 7.04x0.6l
Isoamyl Acetate 60 Solvent marzipan, malt bd bd bd bd 0.05 + 0.01
Butanol 50 Medicinal, wine-like bd bd bd bd bd
Isoamyl alcohol 2654 £551 31.23+274 3039+3.12 2731 +1.87 31.09+474
Hexyl acetate 0.67 Apple, cherry, pear, floral bd bd bd bd 0.01 £0.01
Ethyl Lactate 150 Fruity, buttery bd bd 4.08 £ 0.07 bd bd
Ethyl Caprylate 0.58 sweet pear banana bd bd bd bd 0.05 £ 0.03
Acetic Acid Vinegar 549 + 56 766 + 19 841 +22 756 + 32 733 £ 60
Propionic Acid 1.59 + 0.62 155011 1.78+032 1.7+£035 1.74 £ 0.15
Iso-Butyric Acid 8.1 Rancid butter cheese 0.75+0.11 0.6 +£0.03 0.62+0.05 056007 0.7+0.04
Butyric Acid 2.2 Rancid cheese, sweet 1.10 + 0.27 1.19 £ 0.06 1.03 £+0.06 0.96 + 0.09 1.23 + 0.08
Ethyl Caprate 0.5 Brandy fruity grape floral 0.02 £ 0.0l 0.07£0.03 0.09+0.00 0.09+001 0.1l £0.0l
Iso-Valeric Acid 0.7 Rancid cheese putrid 0.36 + 0.08 033+0.13 028+0.04 0.27+0.04 0.340.05
Diethyl Succinate 1.2 Fruity, melon bd bd bd bd bd
Valeric Acid SWEATY 0.22 £ 0.05 029 +£0.04 0.26+0.08 0.29+006 0.29+0.06
2-Phenylethyl Acetate 1.8 rosy honey fruity 0.22 + 0.05 051 £0.03 032+£0.03 033+003 057003
2-Phenyl Ethanol 200 Rose, honey 9.07 +£2.37 128 £ 041 1338+ 1.07 1488+ 1.33 1267 % 1.36
Octanoic Acid 10 Fatty, rancid, oily, soapy faint 0.81 + 0.04 1.57+0.05 1.0l £005 [.11£0.07 1.74+0.08
fruity
Decanoic Acid 6 Fatty, rancid 0.66 = 0.07 146 £0.02 1.06+0.12 122+0.13 1.7x0.11

* Values are expressed as mg.L-! and are the average of 4 biological repeats + standard deviation. Metabolites present at concentrations below the

detection limit are indicated by "bd".

modeling purposes. These genes were selected due to their
varying expression levels between different strains as well
as different time points during fermentation. Also, we
selected genes whose annotation suggested that they may
have a role in aroma compound production, such as
enzymes whose sequence suggests a role in redox reac-
tions, central carbon metabolism, and amino acid uptake
and metabolism (GO and MIPS classification).

The X-Y scores and loading plots (figure 4) are clearly use-
ful in representing the overall 'structure’ of the entire data-
set, and are pointing out possible connections between
specific compounds/groups of compounds and certain
genes. Likewise, scores plots proved a neat way of validat-
ing the general design and data generated by our experi-
mental setup/process (figure 5). The samples of
independent biological repeats for each of the 5 strains
group together closely at both time points. All five strains
also clearly segregate into two clusters based on the stage
(time point) of fermentation. For example, in the first
frame it is clear that the stage of fermentation is the major
source of variation (PC1) and strain identity is the source
of the second-greatest explained variation (PC2), while
this pattern is reversed in frame B.

Of the 22 volatile aroma compound measured in this
study, 13 were amenable to PLS1 modeling (using tran-

scriptome data) based on our selected criteria for model
validation (slope > 0.8; Y-var explained > 75%). The
details of these models are summarized in a table that can
be viewed as additional material [see Additional data file
3].

Overexpression of selected genes

Of the genes listed in the tables presented in the supple-
mentary material, five were chosen for in-depth analysis
due to their significant contributions to the respective pre-
diction models for several of the important higher alco-
hols and esters, as well as their amenability to easy
cloning and vector construction. These genes were BAT1,
AAD10, AAD14, ACS1 and YMR210W. AADI10 and
AAD14 encode aryl alcohol dehydrogenases which are
believed to be responsible for the putative role of degrad-
ing the complex aromatic compounds in grape must into
their corresponding higher alcohols [7]. BAT1 encodes a
mitochondrial branched-chain amino acid aminotrans-
ferase that is involved in catalyzing the first transamina-
tion step of the catabolic formation of fusel alcohols via
the Ehrlich pathway [19]. The YMR210 gene codes for a
putative acyltransferase enzyme (similar to EEBI and
EHT1) and is believed to play a role in medium-chain
fatty acid ethyl ester biosynthesis. Lastly, the ACS1 gene
(encoding an acetyl-coA synthetase isoform) codes for the
enzyme responsible for the conversion of acetate to acetyl-
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Table 3: Volatile alcohols and esters present in the fermentation media at day 5 of fermentation

Day5 Threshold Odor VINI3 ECIII8 BM45 285 DVIo

Ethyl Acetate 12 Apple, Pineapple, 15.8 £ 443 16.923 + 422 1437 + 1.49 1454 + 1.9 23.87 +2.21
fruity, solvent,
balsamic

Methanol 15.80 + 4.49 36.13+£626 0+0.00 29.89 + 34.7 3442 + 1684

Propanol 306 Alcohol, ripe fruit, 77.11 £20.23 55.58+7.76 31.67 +6.38 35.19 £7.65 58.1 £5.38
stupefying

Isobutanol 74 Alcohol, nail polish 8.96 + 2.15 11.98 + 0.63 13.57 + 1.60 11.54 + 0.85 11.66 + 0.60

Isoamyl Acetate 60 Solvent marzipan, malt 0.1 + 0.04 0.09 £ 0.0l 0.07 £ 0.01 0.07 £ 0.0l 0.10 £ 0.01

Butanol 50 Medicinal, wine-like 095+ 0.11 0.89 + 0.05 0.7 £ 0.06 0.77 £ 0.05 0.98 + 0.02

Isoamyl alcohol 57.02 + 10.92 6146 £ 652 5146 £598 49.32 £ 3.95 67.15 + 8.09

Hexyl acetate 0.67 Apple, cherry, pear, 0.01 £0.02 0.16 £ 0.0l 0.1 £0.01 0.04 £ 0.0l 0.16 £ 0.0l
floral

Ethyl Lactate 150 Fruity, buttery 433+0.14 424 +0.12 bd bd 4.48 + 0.06

Ethyl Caprylate 0.58 sweet pear banana 0.08 £ 0.02 0.11 £0.02 0.07 £ 0.01 0.07 £ 0.00 0.09 £ 0.0l

Acetic Acid Vinegar 1306.24 £ 7424 879.5+22.00 1000.58 +27.72 703.33 +43.78 1105.93 +24.80

Propionic Acid 2.18 £0.35 2.32+0.28 2.15+0.29 201 £0.22 252 +0.19

Iso-Butyric Acid 8.1 rancid butter cheese 0.58 £ 0.12 0.58 + 0.04 0.59 £ 0.04 0.54 £ 0.04 0.76 £ 0.04

Butyric Acid 2.2 rancid cheese, sweet 1.97 £ 041 2.50 £ 0.15 1.53 £0.30 1.57 £ 0.31 2.77 £ 0.62

Ethyl Caprate 0.5 brandy fruity grape 0.25 + 0.05 0.32 + 0.03 0.18 £ 0.03 0.2 £0.02 0.33 £ 0.05
floral

Iso-Valeric Acid 0.7 rancid cheese putrid 0.59 £ 0.11 0.62 + 0.04 0.53 + 0.08 054 +0.16 0.66 + 0.05

Diethyl Succinate 1.2 Fruity, melon bd bd bd bd bd

Valeric Acid SWEATY 0.57 £ 0.25 0.38 + 0.07 0.23 £ 0.02 0.26 + 0.03 0.39 £ 0.03

2-Phenylethyl 1.8 rosy honey fruity 0.33 £0.03 0.63 £ 0.02 0.35 £ 0.02 0.32 £ 0.03 0.68 £ 0.05

Acetate

2-Phenyl Ethanol 200 Rose, honey 12.71 £ 2.47 1498 + 0.58 16.35+ 1.68 17.21 £ 0.83 16.33 £ 0.87

Octanoic Acid 10 Fatty, rancid, oily, 0.95+0.2 1.43 +0.05 0.9 £ 0.08 0.88 + 0.09 1.59 +0.09
soapy faint fruity

Decanoic Acid 6 Fatty, rancid 1.5+ 041 2.86 + 0.38 1.32 £ 0.15 1.42 +0.13 3.0l £0.22

* Values are expressed as mg.L-! and are the average of 4 biological repeats + standard deviation. Metabolites present at concentrations below the

detection limit are indicated by "bd".

coA, which is an intermediate or reactant in several of the
aroma compound producing pathways [20].

An in-house BAT1 overexpressing strain was already avail-
able for use [21]. For the other 4 genes, a multi-copy over-
expression plasmid-based cloning strategy was employed
to allow for maximum gene expression and rapid charac-
terization of the transformed VIN13 strains.

Fermentations were carried out as before with the 5 trans-
formed cell lines and a VIN13 control. Samples for HPLC
and GC-FID analysis were taken at the same time points,
namely days 2, 5 and 14 of fermentation. No significant
differences were observed regarding the glucose and fruc-
tose utilization of the overexpression strains during fer-
mentation (Data not shown). Slight differences were
found for ethanol production, while some changes in
glycerol production were evident for the different strains

(Figure 6).

Figure 7 depicts the aroma compound concentrations at
the end of fermentation (day 14) only, as this is the most

important time point from an enological perspective.
Aroma profiles for days 2 and 5 can be viewed as addi-
tional data [see Additional data file 4].

Four of the five overexpressing strains showed significant
changes in the aroma profiles produced at the end of fer-
mentation. Only the YMR210W overexpressing strain did
not show any changes, and is therefore not included in the
figures below. We did not further investigate whether this
absence of changes in aroma production is due to prob-
lems with the expression construct or reflects the absence
of aroma-related activity of the gene product.

Significant differences were evident in the aroma profiles
of the four transformed yeast strains under consideration.
We investigated whether the observed changes in aroma
compound concentrations at the end of fermentation can
be reconciled with the anticipated changes based on mul-
tivariate prediction models. Figure 8 represents the quali-
tative alignment of real vs. predicted changes in aroma
compound concentrations. Only aroma compounds with
statistically reliable PLS models (test-set validation; slope
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Table 4: Volatile alcohols and esters present in the fermentation media at day 14 of fermentation

Dayl4 Threshold Odor VINI3 ECII18 BM45 285 Dvio
Ethyl Acetate 12 Apple, Pineapple, fruity, solvent, 29.56 + 7.56  28.79 + 1.83 2358 +2.42 2324+ 187 2783+ 1.1l
balsamic
Methanol 68.39 + 4.8 62.3+20.12 7087 £7.02 63.92+449 62.18+6.2l
Propanol 306 Alcohol, ripe fruit, stupefying 8323+ 1334 535+749 39.72+4.13 41.63+£5337 64.14+6.96
Isobutanol 74 Alcohol, nail polish 1127 £+280 1544 +1.30 1958+203 1518+ 1.15 1533+0.76
Isoamyl Acetate 60 Solvent marzipan, malt 0.10 £ 0.03 0.09 £+ 0.0l 0.07 0.0l 0.06 +0.00 0.09 + 0.01
Butanol 50 Medicinal, wine-like 1.36 £ 0.14 126 £0.08 1.02+0.18 1.03 +0.05 1.32 £ 0.04
Isoamyl alcohol 6729+489 71441254 68.17+881 61.59+425 7686+ 6.50
Hexyl acetate 0.67 Apple, cherry, pear, floral 0.05 + 0.04 0.14£0.01 0.1 £0.00 0.1 £0.00 0.14 £ 0.00
Ethyl Lactate 150 Fruity, buttery 3.86 £0.19 3.96 £0.04 bd bd 3.92 £ 0.09
Ethyl Caprylate 0.58 sweet pear banana 0.07 £+ 0.00 0.11 £0.01 0.07+0.01 0.07 £0.0l 0.13 £ 0.01
Acetic Acid Vinegar 1616 + 158 1061 +120 1197 +133 838+ 114 1251 £ 71
Propionic Acid 1.96 £ 0.39 284+022 218+047 2.19+024 341045
Iso-Butyric Acid 8.1 rancid butter cheese 0.74 £ 0.16 0.81 £0.079 0.7 £0.09 063+ 1.02 £0.12
Butyric Acid 2.2 rancid cheese, sweet 2.27 + 0.66 4+0.23 237 +0.62 235+042 396 £0.29
Ethyl Caprate 0.5 brandy fruity grape floral 0.24 £ 0.04 0.45+0.01 021 £0.04 0.26 +0.04 0.45 £ 0.03
Iso-Valeric Acid 0.7 rancid cheese putrid 074+ 0.11 095+0.11 071 +0.15 0.67 £0.05 1.01 £0.11
Diethyl Succinate 1.2 Fruity, melon 0.09 + 0.02 0.17+£0.02 0.05+0.03 0.04+0.0I 0.16 £ 0.03
Valeric Acid SWEATY 0.26 + 0.03 049+0.11 0.26+0.03 0.26 +£0.04 0.41 +0.04
2-Phenylethyl Acetate 1.8 rosy honey fruity 0.35 £ 0.06 0.55+0.04 026+0.04 027 +0.05 0.61 +0.05
2-Phenyl Ethanol 200 Rose, honey 1188291 1724+0.69 16.68+254 1733+£228 1798+ 142
Octanoic Acid 10 Fatty, rancid, oily, soapy faint 0.65 + 0.08 1.07+0.12 051 +0.14 065+0.18 1.28 + 0.09
fruity
Decanoic Acid 6 Fatty, rancid 0.84 + 0.29 147 £0.07 064+0.11 0.89+0.19 1.52 £ 0.19

* Values are expressed as mg.L-! and are the average of 4 biological repeats + standard deviation. Metabolites present at concentrations below the

detection limit are indicated by "bd".

>0.88; % RMSEP < 20) were taken into consideration. The
dashed lines indicate the relative loading weights of each
of the four genes (for each of the aroma compound mod-
els represented by the plot axes). The solid lines in the fig-
ures represent the log ratios of the actual aroma
compound concentrations normalized to the VIN13 con-
centrations of the particular compound.

To clarify, the predicted influence of a given gene on a par-
ticular compound is represented on a scale from -1 to +1,
based on statistical projections related to PLS loading
weights. On this scale a value of -1 suggests a strong prob-
ability of significant concentration decreases of a given
compound (for overexpression of the gene), while a value
of +1 is indicative of a strong positive correlation between
the expression levels of the gene of interest and the com-
pound in question. A value of zero indicates no expected
influence of gene expression on the relevant aroma com-
pound.

Likewise, log-normalization was carried out on the actual
metabolite concentrations measured in the overexpres-
sion strains to represent these values on a scale from -1 to
1, relative to the corresponding concentrations of the con-
trol fermentations. Figure 8 clearly shows that predicted
and real changes overlapped significantly.

Discussion

The aim of this study was to determine whether the tran-
scription profiles of the various strains during fermenta-
tion could be reconciled with the volatile aroma
compound production of these strains, and whether this
comparative analysis could be used to predict the impact
of individual gene expression levels on aroma com-
pounds and profiles.

The data generated by the overexpression of four of the
genes whose expression was statistically most significantly
linked to the production of aroma profiles suggest that
this approach has been successful. Indeed, overexpression
of the selected genes had a far reaching impact on the
aroma profiles produced by the fermenting yeast, and this
impact was generally well aligned with the impact pre-
dicted from the comparative omics analysis. Indeed, the
data aligned better than we, considering the significant
challenges when approaching complex systems, had
expected. Our data show that the metabolic changes
observed upon overexpression of three of the four genes,
AADI10, AAD14 and BAT1, were very significantly aligned
with the changes that were predicted from the alignment
of transcriptome and metabolome data alone. The predic-
tions, as can be seen from the alignment of predicted vs.
observed changes in metabolite levels in a qualitative
manner, indeed proved fairly reliable. The model was able
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PLS2 scores and loadings plot of all X and Y variables considered in this study, plotted as coordinates on a PCI

and PC2 plane.

to assign positive and negative influences on a particular
compound with relative accuracy. Although the extent/
magnitude of the increase/decrease is not always well
aligned with model values, the absolute direction of the
change holds true in most cases. An absolute alignment
would not be expected, since the level of expression in a
plasmid-based system can not be adjusted to the differ-
ences of expression observed between the different

strains. In the case of AAD10, only the influence of the
overexpression on decanoic acid was not in line with the
projection. Predictions for AAD14 and BAT1 were well
matched with the observed changes in metabolite pro-
files. Predicted and real changes did not match satisfacto-
rily in only one case, ACS1. Nevertheless, even in this case,
eight out of the thirteen compounds evolved in the pre-
dicted direction. It should also be noted that the expres-
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Figure 5
Scores plot for the ethyl caprylate (frame A) and octanoic acid (frame B) PLS| models.
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sion of this gene had generally a less severe impact on
changes in the aroma profile than those of the other three
genes.

Considering the complexity of the system, the rate of suc-
cess achieved in this study can be considered as highly sig-
nificant. To our knowledge, this is the first report to
exploit such an intra- and interstrain comparative
approach to identify genes that play a significant role in a
complex metabolic network.

While we were clearly able to identify genes with signifi-
cant impact on aroma compound production in a specific
industrial environment, and which in some cases had not
been previously directly linked to these pathways, the data
do not allow a firm conclusion on the exact metabolic role
of these genes. Indeed, the vast number of significant
changes to metabolite levels makes it difficult to identify
the specific 'point of influence' of any overexpressed gene
in a given pathway.

The increases/decreases in specific volatile compounds
seen for the VIN13(pBAT1-s) strain is in keeping with the
results reported in colombar fermentations [21]. The two
AAD gene overexpressing strains also showed interesting
trends: Both strains produced higher levels (at compara-
ble concentrations) of isoamyl alcohol, ethyl acetate,
butanol, ethyl caprylate, ethyl caprate and hexanoic acid.
However, noticeable differences can be seen in the levels
of isobutanol, 2-phenyl ethanol, propionic acid, isoamyl
acetate, ethyl hexanoate, isobutyric acid and isovaleric
acid, relative to the control and to one another. This is

indicative of the potential for the AAD genes to have over-
lapping yet distinct functional roles in the pathways lead-
ing to higher alcohol and ester production.

Overexpression of the ACS1 gene did not lead to such
numerous and substantial increases/decreases in volatile
production as was the case for the other three genes. Inter-
estingly, valeric and isovaleric acid were below detection
levels in these fermentations. Concentrations of isoamyl
acetate, ethyl acetate, butanol and butyric acid were signif-
icantly higher, and ethyl caprate lower relative to control
fermentations.

On the whole though, our analysis shows that the cross-
comparison of gene expression data with metabolite lev-
els has the potential to identify points of interest on a
genomic scale. This also opens new possibilities to design
improved yeast enhancement strategies for optimized
aroma production and fermentation performance.

Other genes of interest

Many other genes showed significant variation in expres-
sion between different strains and/or time points, as well
as high loadings on PLS models and strong negative or
positive correlations with specific aroma compounds.
These genes encode enzymes that either are known to par-
ticipate in aroma compound production, or have activi-
ties (either experimentally proven or suggested through
sequence alignments) that could suggest such roles. Here
we discuss some of the most relevant of these enzymes,
which fall into several categories, either according to their
place in a specific metabolic pathway such as the metabo-
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lisms of branched chain amino acids or of aromatic
amino acids, or based on their specific activity such as
dehydrogenases (in particular aldehyde and alcohol dehy-
drogenases) and acetyl transferases.

Of the enzymes involved in branched chain amino acid
metabolism, BATI has been discussed above. Other genes
that encode enzymes in this pathway and that were iden-
tified in our study for their strong statistical link between
expression levels and the production of specific com-
pounds include LEU2, encoding a beta-isopropylmalate
dehydrogenase that catalyzes the third step in the leucine
biosynthesis pathway, and, to a lesser degree, LEUI,
which encodes an isopropylmalate isomerase [22,23].
Both of these genes showed a significant statistical corre-
lation with compounds such as isobutanol. Of the genes
involved in the metabolism of isoleucine and valine (Ilv),
only ILV5, which encodes an acetohydroxyacid reductoi-
somerase involved in branched-chain amino acid biosyn-
thesis [24], showed a very strong positive correlation with
almost all of the compounds analysed here, and, interest-

ingly, a negative correlation with ethanol, suggesting that
this gene could be an interesting target for metabolic engi-
neering.

While BAT1 expression showed a significant positive cor-
relation with a large number of the volatile compounds
measured in our study, the cytosolic isoform (BAT2) of
this enzyme showed no significant correlations with any
of these aroma compounds. Although this isoform is sup-
posedly highly expressed during stationary phase and
repressed during the logarithmic phase, BAT2 expression
levels in our study were found to stay constant, if not to
decrease slightly upon entry into stationary phase in com-
parison to the exponential phase at day 2. In addition,
BAT?2 expression levels were generally considerably lower
throughout fermentation when compared to BAT1I.

Of the genes involved in aromatic amino acid metabo-
lism, three, ARO1, which encodes a pentafunctional arom
protein, ARO7, which encodes a chorismate mutase
responsible for the conversion of chorismate to prephen-
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ate and AROS, which codes for an aromatic aminotrans-
ferase showed statistically significant correlations between
expression levels and metabolite production [25,26]. All
three genes showed a modest positive correlation (12 =
0.7) with 2-phenyl ethanol and mild negative correlations
with all the other compounds. Only octanoic acid showed
a very strong (r2 = 0.82) negative correlation with ARO8
expression at day 2 of fermentation. Despite its seemingly
crucial role, ARO10, which encodes a phenylpyruvate
decarboxylase corresponding to the first specific step in
the Ehrlich pathway did not show any noteworthy corre-
lations between its expression and any of the volatile com-
pounds in our study [27]. Of course the possibility of
translational or post-translational control of activity can-
not be excluded.

Several specific enzyme activities were also overrepre-
sented in our list. Such enzymes include many dehydro-
gensases. Aldehyde and alcohol dehydrogenases such as
those encoded by ALD5, ALD6, ADH6 and ADH7 showed
a substantial decline in expression levels between days 2
and 5 of fermentation, while others (such as ALD3, ALD4,
ADH?2 and ADH5) increased during this time. The distinct
expression patterns during fermentation reflects the differ-
ent regulatory mechanisms governing the expression of
these genes (i.e. expression of ALD3 is glucose-repressed
and stress-induced) and suggests that the different ALD
gene products have specific roles during different stages of
fermentation [28].

ALD4 and ALD5 (mitochondrial), and ALD3 and ALDG
(cytoplasmic) encode aldehyde dehydrogenases involved
in the conversion of acetaldehyde to acetate [29].

ALD4 encodes a mitochondrial aldehyde dehydrogenase
(utilizing NADP+ or NAD+) that is required for growth on
ethanol and conversion of acetaldehyde to acetate [29].
Expression of ALD4 is also glucose repressed, and
increases 2-4 -fold from day 2 to 5 of fermentation. ALD4
expression shows a very strong correlation to the amount
of hexyl acetate (R2 = 0.82) produced by the fermenting
yeast, as well as to ethyl acetate (0.77), isoamyl alcohol
(0.91) and isoamyl acetate (0.85).

ALDG encodes a constitutively expressed cytosolic alde-
hyde dehydrogenase (utilizes NADP+ as the preferred
coenzyme) and is required for conversion of acetaldehyde
to acetate [30]. Not surprisingly, ALD6 expression showed
a very strong positive correlation to the levels of acetic acid
produced by the fermenting cells (0.92). Also, expression
was very strongly inversely correlated to ethanol produc-
tion (R2=0.81). Interestingly, fairly strong positive corre-
lations were also evident for 2-phenyl ethanol (R2=0.79)
and 2-phenyl ethyl acetate (R2=0.67).

http://www.biomedcentral.com/1471-2164/9/530

ADHG6 encodes an NADPH-dependent cinnamyl alcohol
dehydrogenase family member with broad substrate spe-
cificity [31]. Expression was correlated very strongly with
isobutanol levels (0.81), isobutyric acid (0.86), propionic
acid (0.81), acetic acid (0.87) and 2-phenyl ethanol
(0.92). ADH4, ADH5 and ADH7 on the other hand
showed only modest correlations with the above-men-
tioned, or any other aroma compounds for that matter.

With respect to the aryl alcohol dehydrogenase family of
genes, the transcripts for AAD3, AAD10 and AADI14
showed the greatest variation in expression, both on an
intra- and interstrain level. Expression of AAD10 and
AAD14, for example, was increased more than twofold in
most of the strains at day 5 relative to day 2 of fermenta-
tion. No distinct physiological role has been established
for the products of these genes [7], but it is reasonable to
suspect that the consistent increase in their respective
transcript levels during the course of fermentation could
be associated with the increase in one or several of the
long chain alcohols or their acid counterparts as fermen-
tation progresses (tables 2, 3).

This hypothesis is supported by the data generated
through the overexpression of these genes. Indeed, over-
expression yielded changes to the aroma profile that were
very similar to those predicted from the alignment of tran-
scriptome and metabolome data sets. The expression of
AAD10 showed weak yet significant positive correlations
with a number of the aroma compounds. Expression of
AAD14 between different strains and time points was also
highly variable. Highest expression levels were noted for
the DV10 strain, and significant positive correlations with
ethyl acetate (0.67) and ethyl caprate (0.74) were
observed for this gene.

Acetyl transferases are another family of enzymes of rele-
vance to aroma compound metabolism [32]. However,
neither ATF1 nor ATF2, the two most prominent alcohol
acetyl transferases, showed statistically strong correlations
between expression levels and metabolite production.
EEBI1, on the other hand, which encodes an acyl-coenzy-
meA:ethanol O-acyltransferase and is responsible for the
major part of medium-chain fatty acid ethyl ester biosyn-
thesis during fermentation [33], showed weak negative
correlations with ethanol and other higher alcohols, and
a strong positive correlation for 2-phenylethyl acetate
(0.9) as well as octanoic acid (0.78). It is tempting to spec-
ulate that Eeb1p may thus be largely responsible for the
acetylation of 2-phenyl ethanol to produce 2-phenylethyl
acetate.

EHTI1 encodes an acyl-coenzymeA:ethanol O-acyltrans-
ferase that plays a role in medium-chain fatty acid ethyl
ester biosynthesis, but also contains a known esterase
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activity [33]. EHT1 expression increased somewhat as fer-
mentation progressed and inter-strain expression at both
day 2 and 5 of fermentation varied significantly. Interest-
ingly, EHT1 expression showed a fairly strong inverse cor-
related with 2-phenylethyl acetate (R2 = 0.74) and
octanoic acid (R2= 0.75), as well as a weaker yet signifi-
cant inverse correlation with decanoic acid (R2 = 0.59).
This could indicate that the esterase activity of Ehtlp
could predominate under certain conditions.

YMR210W encodes a putative acyltransferase with simi-
larity to both Eeblp and Ehtlp, and may have a minor
role in medium-chain fatty acid ethyl ester biosynthesis
[33]. Expression was positively correlated with ethyl ace-
tate (0.74), ethyl caprylate (0.85) and isoamyl acetate
(0.78).

In addition to these relatively well studied acetyltrans-
ferases, the mRNA levels of the AYTI gene, encoding a
transferase of unknown substrate specificity, also showed
considerable variation at different fermentative stages
[34].

Conclusion

The impact of these individual genes on aroma com-
pound metabolism has to be assessed individually. How-
ever, from the data presented here, it is clear that an
analysis based on the comparison of transcriptome and
metabolome data derived from different commercial
yeast strains can help to identify genes that most signifi-
cantly impact a metabolic network in specific environ-
mental and industrial conditions. Our over-expression
analysis of five genes that were randomly selected from
the list of ORFs identified for their statistically significant
impact on aroma production also clearly suggests that the
method has significant predictive power regarding the
reorientation of metabolic flux through the network in
response to changes in gene expression levels. Indeed, for
four out of five selected genes, BAT1, AAD10, AAD14 and
ACS1, the match between predicted and real changes is
highly significant. This is the first study linking metabolic
networks to transcriptome analysis through the compara-
tive analysis of different wine yeast strains.

Methods

Strains. media and culture conditions

The yeast strains used in this study are listed in table 5. All
are diploid Saccharomyces cerevisiae strains used in indus-
trial wine fermentations. Yeast cells were cultivated at
30°C in YPD synthetic media 1% yeast extract (Biolab,
South Africa), 2% peptone (Fluka, Germany), 2% glucose
(Sigma, Germany). Solid medium was supplemented
with 2% agar (Biolab, South Africa).

http://www.biomedcentral.com/1471-2164/9/530

Table 5: Strains used in this study

Strain Source/Reference

VINI3 Anchor Yeast, South Africa
ECIII8 Lallemand Inc., Montréal, Canada
BM45 Lallemand Inc., Montréal, Canada
285 Lallemand Inc., Montréal, Canada
DVIO Lallemand Inc., Montréal, Canada
VINI3(pBAT I-s) Lilly et al., 2006

Fermentation media

Fermentation experiments were carried out with synthetic
must MS300 which approximates to a natural grape must
as previously described [35]. The medium contained 125
g/L glucose and 125 g/L fructose, and the pH was buffered
at 3.3 with NaOH.

Fermentation conditions

All fermentations were carried out under microaerophilic
conditions in 100 ml glass bottles (containing 80 ml of
the medium) sealed with rubber stoppers with a CO, out-
let. The fermentation temperature was approximately
22°C and no continuous stirring was performed during
the course of the fermentation. Fermentation bottles were
inoculated with YPD cultures in the logarithmic growth
phase (around ODg,, = 1) to an ODg,, of 0.1 (i.e. a final
cell density of approximately 106 cfu.ml-1). The cells from
the YPD pre-cultures were briefly centrifuged and resus-
pended in MS300 to avoid carryover of YPD to the fer-
mentation media. The fermentations followed a time
course of 14 days and the bottles were weighed daily to
assess CO, release and the progress of fermentation. Sam-
ples of the fermentation media and cells were taken at
days 2, 5 and 14 as representative of the exponential, early
stationary and late stationary growth phases respectively.
It should be stressed that early stationary phase in these
conditions is metabolically active, since growth arrest is
due to ethanol toxicity. Sugar levels and fermentative
activity are still high at this stage.

Growth measurement

Cell proliferation (i.e. growth) was determined spectro-
photometrically (Powerwavey, Bio-Tek Instruments) by
measuring the optical density (at 600 nm) of 200 pl sam-
ples of the suspensions over the 14 day experimental
period.

Analytical methods — HPLC

Culture supernatants were obtained from the cell-free
upper layers of the fermentation media. For the purposes
of glucose determination and carbon recovery, culture
supernatants and starting media were analyzed by high
performance liquid chromatography (HPLC) on an
AMINEX HPX-87H ion exchange column using 5 mM
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H,SO, as the mobile phase. Agilent RID and UV detectors
were used in tandem for peak detection and quantifica-
tion. Analysis was carried out using the HPChemstation
software package.

Analytical methods — GC-FID

Each 5 ml sample of synthetic must taken during fermen-
tation was spiked with an internal standard of 4-methyl-
2-pentanol to a final concentration of 10 mg.l-'. To each
of these samples 1 ml of solvent (diethyl ether) was added
and the tubes sonicated for 5 minutes. The top layer in
each tube was separated by centrifugation at 3000 rpm for
5 minutes and the extract analyzed. After mixing, 3 pl of
each sample was injected into the gas chromatograph
(GQ). All extractions were done in triplicate.

The analysis of volatile compounds was carried out on a
Hewlett Packard 5890 Series II GC coupled to an HP 7673
auto-sampler and injector and an HP 3396A integrator.
The column used was a Lab Alliance organic-coated, fused
silica capillary with dimensions of 60 m x 0.32 mm inter-
nal diameter with a 0.5 pm coating thickness. The injector
temperature was set to 200°C, the split ratio to 20:1 and
the flow rate to 15 ml.min-!, with hydrogen used as the
carrier gas for a flame ionisation detector held at 250°C.
The oven temperature was increased from 35°C to 230°C
at a ramp of 3°C minl.

Internal standards (Merck, Cape Town) were used to cali-
brate the machine for each of the compounds measured.

Statistical analysis of metabolite data

T-tests and anova analyses were conducted using Statistica
(version 7). HCL and KMC clustering were carried out
using TIGR MeV v2.2 [36].

Microarray analysis

Sampling of cells from fermentations and total RNA
extraction was performed as described [37]. Probe prepa-
ration and hybridization to Affymetrix Genechip® micro-
arrays were performed according to Affymetrix
instructions, starting with 6 ug of total RNA. Results for
each strain and time point were derived from three inde-
pendent culture replicates. The quality of total RNA,
cDNA, cRNA and fragmented cRNA were confirmed using
the Agilent Bioanalyzer 2100.

Transcriptomics data acquisition and statistical analysis

Acquisition and quantification of array images and data
filtering were performed using Affymetrix GeneChip®
Operating Software (GCOS) version 1.4. All arrays were
scaled to a target value of 500 using the average signal
from all gene features using GCOS. Genes with expression
values below 12 were set to 12 + the expression value as

http://www.biomedcentral.com/1471-2164/9/530

previously described in order to eliminate insignificant
variations [38].

Variable (gene) selection is important for the successful
analysis of gene expression data since most of the genes
are unchanged and irrelevant to the prediction and analy-
sis of phenotypic measurements. These non-informative
genes should be removed before further analysis. One
approach is by significance analysis of microarrays [39].
Determination of differential gene expression between
experimental parameters was conducted using SAM (Sig-
nificance Analysis of Microarrays) version 2. The two-
class, unpaired setting was used and genes with a Q value
less than 0.5 were considered differentially expressed.
Only genes with a fold change greater than 2 (positive or
negative) for inter- or intra- strain comparisons were taken
into consideration.

Multivariate data analysis

In terms of design, the samples represent the different fer-
mentations (three independent replicates for each of the
five strains) at different time points. The variables consid-
ered are the expression levels of the pre-selected genes
(genes with a potential and established role in aroma
compound metabolism according to GO and MIPS func-
tional classification) as well as aroma compound concen-
trations in the synthetic must. The patterns within the
different sets of data were investigated by principal-com-
ponent analysis (PCA), while the correlations between
different sets of data were determined by using partial
least-squares (PLS) regression (The Unscrambler; Camo
Inc., Corvallis, Oreg.). PCA is a bilinear modeling method
which gives a visually interpretable overview of the main
information in large, multidimensional datasets. By plot-
ting the principal components it is possible to view statis-
tical relationships between different variables in complex
datasets and detect and interpret sample groupings, simi-
larities or differences, as well as the relationships between
the different variables [40].

PLS regression is a bilinear modeling method for identify-
ing the variations in a data matrix for explanatory or pre-
dictive purposes [41]. By plotting the first PLS
components one can view main associations between X
variables and Y variables and also relationships within X
data and within Y data. PLS2 analysis was conducted
using all X and Y variables considered in our study. For
predictive purposes, PLS1 models were constructed for
individual Y variables to increase model-specificity and
reliability.

The data were analyzed by using test-set validation with
centered data and the variables were weighted according
to their standard deviations. One strain was used as the
test segment at each of the time points. Day 2 and 5 data
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Table 6: Description of plasmids used in this study

http://www.biomedcentral.com/1471-2164/9/530

Plasmid Name Relevant genotype Reference
pDM-PhR-YMR210W 2 u LEU2 TEFI; PhR322 TEFI PGKp YMR210W PGK This study
pDM-PhR-AAD 10 2 p LEU2 TEFI; PhR322 TEFI PGKy AAD10 PGK+ This study
pDM-PhR-AAD |4 2 u LEU2 TEFI, PhR322 TEFI PGKy AAD 14 PGK; This study
pDM-PhR-ACSI 2 u LEU2 TEFI, PhR322 TEFI; PGK; ACSI| PGK This study

were considered together as representative of the full
scope of fermentation variability as the period from the
start of fermentation until day 5 represents the period of
maximum aroma compound production.

The Y variables were the respective aroma compounds
measured and the X variables were the gene expression
levels of the gene set that was pre-selected for analysis
[42]. Genes were selected based on known or putative
functions related to amino acid transport, metabolism,
regulation etc, as well as other enzymatic or regulatory
activity in pathways leading to the production of higher
alcohols and esters. The same set of genes (X variables)
was used for each of the different PLS1 models.

Overexpression constructs and transformation of VINI3
All plasmids used in this study are listed in table 6. Stand-
ard procedures for the isolation, cloning and modification
of DNA were used throughout this study [43,44]. All
enzymes for cloning, restriction digest and ligation reac-
tions were obtained from Roche Diagnostics (Randburg,
South Africa) and used according to supplier specifica-
tions.

The primers listed in table 7 were used to amplify the cod-
ing regions of the various genes by the PCR technique.
Genomic DNA from the DV10 strain was used as the tem-
plate. Eshericia coli DH5a (GIBCO-BRL/Life Technolo-
gies) was used as the host for the construction and
propagation of the plasmids listed in table 6. Sequencing

Table 7: Sequences of the primers synthesized in order to
amplify genes relevant to the present study

Primer Name Sequence (5'-3")

PhR322F GATCCACGTCGGTACCCGGGGGATC
PhR322R GATCGCGATCGCAAGCTTGCAAATTAAAGCC
YMR210f AACGCTGGTAAACTTCCAGAGA

YMR210r GGCGAAGCTTTTCACGTTTT

AADI0f ATGCTTTTTACCAAGCAGGC

AADI0r CATCAAACTGTGTGTGTAAGCG

AAD | 4f ACCAATTAGCTGAACGGCTTTG

AAD l4r ATTTGCACACACTCGGTGGATA

ACSIf AAAGACATTGCCCACTGTGCT

ACSIr CACGAAAAAAAAAAAGTCGTCA

of all plasmids was carried out on an ABI PRISM auto-
mated sequencer. All plasmids contain the dominant
marker PhR conferring phleomicin resistance (PhR), and
were transformed into host VIN13 cells via electropora-
tion [21,45].
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Additional file 1

Identified ORFs and functional description. The table lists all ORFs
whose expression pattern correlated significantly with aroma compound
production. A short functional annotation is also provided.
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Additional file 2

Inter- and intra-strain differences in expression levels of all identified
ORFs. The three tables show the differences in expression levels of identi-
fied ORFs between different strains at day 2 (Table 1) and at day 5 (Table
2) of fermentation, and differences between day 2 and day 5 in individual
strains (Table 3).
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Additional file 3

Summaries of PLS1 models. The table summarises PLS1 models used for
interpretation and selection of genes for overexpression.
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Additional file 4

Comparison between metabolites produced in the strains overexpress-
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ual ORFs at day 2 and day 5 of fermentation.
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