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Abstract

Efficient access to information contained in online scientific literature collections is essential for life

science research, playing a crucial role from the initial stage of experiment planning to the final

interpretation and communication of the results. The biological literature also constitutes the main

information source for manual literature curation used by expert-curated databases. Following the

increasing popularity of web-based applications for analyzing biological data, new text-mining and

information extraction strategies are being implemented. These systems exploit existing

regularities in natural language to extract biologically relevant information from electronic texts

automatically. The aim of the BioCreative challenge is to promote the development of such tools

and to provide insight into their performance. This review presents a general introduction to the

main characteristics and applications of currently available text-mining systems for life sciences in

terms of the following: the type of biological information demands being addressed; the level of

information granularity of both user queries and results; and the features and methods commonly

exploited by these applications. The current trend in biomedical text mining points toward an

increasing diversification in terms of application types and techniques, together with integration of

domain-specific resources such as ontologies. Additional descriptions of some of the systems

discussed here are available on the internet http://zope.bioinfo.cnio.es/bionlp_tools/.

Introduction
Life science research is characterized by the production of

large and heterogeneous collections of biological data, includ-

ing protein and genomic sequence data, expression profiles,

and protein structure coordinates [1]. Although these data

types represent an important fraction of existing biological

information, they are often not amenable to direct human

interpretation. A significant amount of information is

encoded in the form of natural language, the main vehicle

through which humans transmit and exchange information

[2]. Most of the biological discoveries are communicated by

means of scientific publications, patents, or reports, with an

increasing number of them accessible via the worldwide web

as electronic texts. Natural language is used to communicate

information in a variety of other biological resources, includ-

ing controlled vocabulary terms used for gene product anno-

tations (for example, Gene Ontology [GO] terms) as well as in

database records, such as in UniProt, which contain com-

ments, keywords, or descriptions [3].

Structured database entries are designed to enable efficient

data retrieval, exchange, and analysis. There has been a ten-

dency to enrich annotation records of many of the existing

expert-curated databases with previously missing but
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biologically relevant aspects by incorporating new fields or

extending the inventory of terms used to describe these

aspects. In parallel, new manually curated databases have

been developed that cover a range of previously neglected

biological entities, such as microRNAs or disease-associated

single nucleotide polymorphisms; other new databases focus

on highly specialized topics that are not sufficiently covered

in general expert-curated databases [4]. Although the impor-

tance of more extensive annotations is becoming apparent,

this is also associated with significant increase in curation

workload, which slows down the manual annotation process.

Even if general annotation databases such as UniProt - which

stores a set of annotations linked to over 134,000 literature

citations (February 2008) - are of great practical value, such

databases are generally only capable of covering a small frac-

tion of the biological context information that can be encoun-

tered in the literature. Crucial details of experimental

conditions can still only be found in the underlying articles,

making direct pointers to evidence passages from the litera-

ture especially important for interpreting existing

annotations.

The bottom line is that biological databases alone cannot cap-

ture the richness of scientific information and argumentation

contained in the literature; neither can databases provide

support for the novel ways in which scientists will interrogate

these databases. Even if curators of biological databases were

able to keep up with the ever increasing volume of literature,

biologists would still need text mining to link the database

entries to the evidence and the argumentation contained in

the literature.

The rapid accumulation of new publications, which must be

processed by human curators for extraction of both new dis-

coveries and revision of existing ones, represents an addi-

tional challenge for keeping biological databases up to date

[5]. Traditional manual literature curation is only feasible for

a small number of articles and a fraction of journals. The set

of manual annotations derived from the literature also serves

as the basis for so-called 'electronic annotations', in which

functional information of curated entities is automatically

transferred to other biological entities (without direct human

curation) using computational sequence similarity methods

[3].

Online literature collections such as PubMed, with over 70

million queries every month and over 17 million publications,

are of crucial importance to both the experimental biologists

and biomedical researchers, as well as to specialized users

such as database curators. Centralized literature repositories

like PubMed face double-exponential growth rates [6], which

can be partially explained by inclusion of an increasing

number of new journals, special issues or conference pro-

ceedings, and previously unindexed publications. Addition-

ally, some journals have also augmented the number of

articles included per issue, and - for those journals available

only in electronic format - the only limitation in terms of

number of accepted articles is the required effort involved in

the peer-review process.

Efficient information retrieval (identification of relevant doc-

uments, given some search criteria) is essential to the bio-

medical research community [7], as large biomedical

literature databases are being used as a resource for clinical

decision support in evidence-based clinical practice, provid-

ing useful information for diagnostic aids [8]. Specific search

strategies have been devised for optimal retrieval of relevant

clinical studies to assist clinicians in performing efficient and

targeted literature searches for specific medical subdomains

[9,10]. Experimental biologists are making use of the scien-

tific literature for multiple stages within the scientific discov-

ery process. Knowledge extracted from previous publications

is used to define the biological question or to select the actual

target being studied, to extract information relevant for

experimental set up (for example, biological conditions,

parameters, and protocols), or to locate relevant resources

(for instance, methodological systems or data repositories).

After generating and analyzing the experimental results,

information derived from the literature is essential to under-

stand and interpret the resulting data, in order to draw con-

clusions about new discoveries. Finally, the results are

communicated to the scientific community using publica-

tions in peer-reviewed journals.

For the pharmaceutical industry, text-mining systems are a

valuable resource as part of drug discovery and target selec-

tion systems, but also for identifying adverse drug effect

descriptions [11]. The pharmaceutical industry uses informa-

tion technology applications to improve their competitive

intelligence and knowledge management strategies, typically

processing not just the scientific literature but also informa-

tion contained in other textual data collections such as inter-

nal reports, patents, and newswire [12].

Modern biology is a dynamic, continually evolving research

discipline, in which existing research topics and trends

change rapidly over time [13]. For governmental institutions

it is crucial to have a global view of the current research state

and to monitor trends from the increasing number of scien-

tific publications in order to ensure optimal resource alloca-

tion [14]. Publishers examine the literature to find domain

experts for specific topics for the peer-review process and to

ensure that their publications contain novel scientific discov-

eries, detecting potential cases of plagiarism. Tools such as

Déjà vu, which uses text similarity calculations to detect

duplicate citations from PubMed, can determine the novelty

of publications [15]. The biomedical literature can also serve

as a resource to build social networks of research collabora-

tions using co-author citation analysis. Web-based applica-

tions such as PubNet are able to provide a graphical

visualization of co-author networks derived from citations

[16].
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Overview of current literature data resources
Several efforts have been undertaken to provide access to

published medical and life science journal information, and

make this information electronically accessible to the public

through the worldwide web [17]. Most of these initiatives can

be classified into one of three main categories.

1. Centralized institutional (for example, PubMed) or aca-

demic (for instance, Highwire Press and Hollis) repositories

of peer-reviewed articles or article abstracts.

2. Article collection repositories hosted by publishers (for

example, BioMed Central and EMBASE).

3. Online access to indexed scholar articles retrieved through

web spiders and crawlers (for example, Google Scholar and

Scirus).

A number of scholarly and scientific literature databases can

be accessed online through search engines with simple query

interfaces using keywords. Falagas and coworkers [17] com-

piled a list of literature databases containing summaries of

articles of biomedical and life science journals with records

both in English as well as in other languages. The most impor-

tant resource for text mining applications is currently the

PubMed database developed by the National Center for Bio-

technology Information (NCBI) at the National Library of

Medicine (NLM). Each of the citations contained in PubMed

has a unique identifier (PMID) and can be accessed using

Entrez, a text-based search and retrieval system. PubMed

[18] includes citations (containing title, abstract, authors, and

source information) submitted by participating publishers.

Entrez improves the basic keyword searches by translating

the user query to Medical Subject Heading (MeSH) terms, a

hierarchical set of controlled vocabulary terms predomi-

nantly from the medical domain but also including terms for

chemicals, genes, and proteins, used to index PubMed

records [19]. In addition to basic searches using the Entrez

retrieval system, PubMed also offers a more programmatic

access to its content through the Entrez Programming Utili-

ties [18] and popular open source projects such as the BioPerl,

BioPython, and BioJava integrated libraries for retrieving

PubMed content by biologist programmers [20]. The NCBI

provides the My NCBI service [21] to periodically retrieve new

publications in PubMed matching a predefined user query;

the requester then receives a corresponding notification via

an e-mail alert system.

To build a local relational database containing all PubMed

citations [22], it is also possible to obtain a licensed copy of

the whole of PubMed containing XML-formatted citation

records from the NLM/NCBI. Some systems such as

Txt2MEDLINE have even been implemented to allow access

to PubMed using Short Message Service (SMS) queries, send-

ing the users the results in text message format [23]; also

PubMed Informer, a Web-based PubMed monitoring tool,

facilitates PDA downloads and RSS feeds [24].

Alternative repositories and search engines to PubMed

include Highwire Press and Google Scholar [25]. Google

Scholar can recover not only peer-reviewed articles but also

other scholarly texts, such as theses, books, and preprint

repositories. A comparative study by Shultz [26] showed that

Google Scholar often returns larger retrieval sets, but a sub-

stantial number are link-outs to PubMed records. Google

Scholar currently also does not provide the advanced search

functions offered by PubMed. HighWire Press (an initiative of

Stanford University) represents another complementary

resource to PubMed for accessing peer-reviewed articles, pro-

viding a search interface to over 1,160 journals and 4.8 mil-

lion full-text articles, with over 1.9 million articles available

free by Highwire partner publishers. A comparative evalua-

tion of HighWire Press and PubMed in terms of search effi-

ciency showed that although both share many search

characteristics, they also have unique features [27]. Highwire

Press has an option to provide a graphical visualization of the

article's citation map and allows the user to further specify

where to conduct the search (title, abstract, full text).

Although article abstracts contain short descriptions that

highlight the most relevant aspects of a given article, they

only cover a small fraction of the information contained in

full-text articles [28]. PubMed Central provides free online

access to a electronic archive containing full-text articles of

life sciences and biomedical journals. PubMed Central also

contains articles published before 1966 that have been digi-

tized as part of the Back Issue Digitization project [6]. Pub-

lishers have also developed platforms of searchable article

repositories such as EMBASE or BioMed Central to improve

the access to their articles. Figure 1 provides an overview of

the main literature resources.

The structure of biomedical language
The diversification process of protein sequences during the

course of evolution is subjected to physical, chemical, struc-

tural, and historical constraints moulded by natural selection.

Therefore, a collection of homologous protein sequences

often shares a common structural fold and tends to exhibit a

similar function. Similarly, in the case of natural language, a

particular meaning may be expressed using different but

largely synonymous expressions, also moulded by a set of

structural constraints and historical events that shape lan-

guages, in this case English - the language of scientific com-

munication. For example, the following three snippets of text

below capture equivalent information about the interaction

between the proteins VRK1 and c-JUN; these snippets illus-

trate some of the variations in word choice and syntax found

in the scientific literature: 'VRK1 protein phosphorylates c-

Jun' (example 1); 'the phosphorylation of c-Jun by VRK1'

(example 2); and 'c-Jun is activated by VRK1' (example 3).
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The techniques of natural language processing are used to

'decode' the information that is packaged in human language.

This is done by exploiting the regularities and constraints that

occur at multiple levels in human language. These levels

include the following:

1. Words: lexical entries (words) are the units of meaning and

the basic building blocks of language. A word is made up of a

root and possibly other morphemes (prefixes or suffixes); for

example, 'phosphorylates' in example 1 (above) consists of the

root 'phosphorylate' plus the third person singular present

Overview of the main aspects relevant to the development of biomedical literature processing systemsFigure 1

Overview of the main aspects relevant to the development of biomedical literature processing systems. ATCR, Arabidopsis Thaliana Circadian Rhythms; 
EMBASE, Excerpta Medica Database; FMA, Foundational Model of Anatomy; GENIA, GENome Information Acquisition; GO, Gene Ontology; IEPA, 
Interaction Extraction Performance Assessment; MGI, Mouse Genome Informatics; MO dbs, Model Organism databases; OBO, Open Biomedical 
Ontologies; RGD, Rat Genome Database; SGD, Saccharomyces Genome Database; TAIR, The Arabidopsis Information Resource.
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tense morpheme '-s'. Morphemes can also modify the mean-

ing or change part of speech; for example, the suffix '-tion'

changes the verb ('phosphorylate') into the related noun

('phosphorylation'), and the prefix 'de-' can negate the mean-

ing, as in 'deactivation'.

2. Syntax: the syntax or grammar of a language controls how

words are grouped into meaningful phrases and eventually

into sentences. For example, in English, word order is used to

convey grammatical relations such as subject-verb-object. In

example 1 (above), the noun 'VRK-1' is the subject (and actor)

for the verb 'phosphorylate' in the sentence 'VRK1 phosphor-

ylates c-Jun', whereas 'c-Jun' is the object (recipient of the

action). To aid in syntactic analysis, words can be associated

with part-of-speech (POS) tags, to distinguish nouns, verbs,

prepositions, and conjunctions. To link words to their gram-

matical function, each word can be assigned a 'part of speech',

indicating its role in the sentence, for instance a noun (name

of something), verb (an action or linking word), an adjective

(describing a quality), and so on. POS taggers are computer

programs that automatically assign each word its correspond-

ing POS label. These systems are generally based on machine

learning algorithms such as hidden Markov models trained

on manually POS-labeled text collections (corpora). The bio-

medical literature shows a slightly different POS distribution

as compared to general English newswire texts, which has

motivated the implementation of specialized taggers opti-

mized for the biomedical domain, such as the MedPost [29]

tagger or dTagger [30]. POS information can be useful to

detect textual patterns expressing protein interactions [31] or

to locate gene and protein mentions [32].

3. Semantics: semantic relations capture meaning; for

instance, example 3 (above) 'c-Jun is activated by VRK1' can

be represented as an operator (the verb 'activate) operating

on two arguments - 'activate (VRK1, c-Jun)' - in the same way

that a logical operator operates on its arguments. The seman-

tic representation abstracts away from the details of the

underlying syntax (and specific words), to capture regulari-

ties. Thus, in this example, the semantics capture the fact that

VRK1 does the activation, and c-Jun is activated.

4. Pragmatics: pragmatic or discourse relations capture the

larger context and its contribution to meaning. Text-mining

tools often rely on sentences as the basic processing unit for

extracting associations between biological entities. However,

descriptions of these relations go beyond sentence bounda-

ries and make use of referring expressions [33], as is the case

in the following two sentences from (PMID 15800059): (a)

'Dictyostelium LIS1 (DdLIS1) is a microtubule-associated

protein exhibiting 53% identity to human LIS1.' (b) 'It colo-

calizes with dynein at isolated, microtubule-free centro-

somes, suggesting that both are integral centrosomal

components.'

These layers of structure provide constraints, reduce ambigu-

ity, limit redundancy, and enable efficient communication

(Figure 2 provides an example case illustrating these different

levels of language complexity). Also, much in the same way

that genomic sequences can be 'parsed' to identify specific

patterns such as genes, control regions, or - on a larger scale -

motifs, linguistic structure leads to regularities that can be

exploited by automatic text processing systems to learn the

statistical properties of human language and to decode the

information it contains - often using the same kinds of pat-

tern recognition techniques that are used to analyze genomes

and proteomes.

The presentation of biological information in the literature

interacts with the general linguistic structures described

above, but is also subject to peculiarities associated with the

specific domain (here, biomedicine). This specialized usage of

language in a domain is known as a sublanguage. The sublan-

guage(s) of science have been extensively studied by linguists

[34-36].

The understanding of sublanguage structure underlies much

of current text mining and natural language processing, as is

discussed in more detail in the next section. The literature of

a particular subfield (for example, molecular biology) has

characteristic terms (for instance, 'gene', 'protein', and 'phos-

phorylation') and characteristic collocations (co-occurrences

of terms used as phrases, such as 'cell membrane' or 'ion

channel'). Techniques for document search and clustering

make heavy use of profiles based on the distribution of single

words and multi-word phrases to find and rank documents

relevant to a particular search, as was required for the BioCre-

ative protein-protein interaction task ('find all articles with

experimental evidence for protein-protein interaction'). In

addition, the sentence-level patterns of word occurrence are

used by entity recognition and entity normalization systems

to identify 'names' of types of entities, for example genes, pro-

teins, or species. These systems make use of the word and

sentence context to detect kinds of entities; however, these

contexts are quite specific to the particular subfield and may

well evolve with time, as new experimental methods come

into use and new kinds of entities are discovered. Therefore,

the sublanguage associated with a subfield evolves over time

and must be constantly updated. In addition, another con-

tributing factor derives from the fact that English is the lan-

guage of scientific publication, but many authors have

different native languages that may influence their writing

style, including sentence length and word usage; this leads to

greater variability in these aspects when compared with texts

written by native English authors [37].

Like any subfield, biomedicine makes heavy use of domain-

specific terminology and relies also on typographic and ortho-

graphic conventions to communicate certain kinds of infor-

mation. This in turn affects 'tokenization', or the process of

identifying the strings of characters that make up words.
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Fortunately, there are rich resources for biomedical terminol-

ogy that can be used to build lexicons, to create linkages from

one set of resources to another, and to learn associations, for

example ontologies such as GO. These three topics are dis-

cussed in the following subsections.

Biological terminology

The biological literature is characterized by heavy use of

domain-specific terminology. There are estimates that more

than 12% of words found in biochemistry publications corre-

spond to technical terms of that scientific discipline [38]. This

has motivated the development of strategies to recognize bio-

medical terms and their variations automatically [39].

There are two basic challenges in dealing with terminology;

the first is the constant formation of new terms and new 'short

forms' or abbreviations. This is related to the second problem

of ambiguity or polysemy (multiple meanings of a word).

Ambiguity results when an existing term is used to describe a

new concept (for instance, a new gene or protein), or when a

new abbreviation is coined that turns out to be identical to

another abbreviation. Selection of the correct meaning of a

polysemic word requires understanding of the context of

occurrence. For example, in the sentence 'The Drosophila

peanut gene is required for cytokinesis and encodes a protein

similar to yeast putative bud neck filament proteins' (PMID

8181057), 'peanut' corresponds to a fly gene name, whereas in

'Peanut (Arachis hypogaea) forms root nodules in a unique

process.' (PMID 18256023) it corresponds to the name of a

plant. Text-mining tools must be able to select the correct

sense of a word dependent on its context (word sense disam-

biguation). Disambiguation is particularly important in cor-

rectly associating genes mentioned in the literature with their

corresponding database entries. Gene names are a problem

because they are often shared across species, especially

between mouse and human. Chen and colleagues [40]

showed that general English words had a relative low ambigu-

ity (0.57%) when compared with the greater ambiguity of

medical terms (1.01%) or the much greater ambiguity among

gene names (14.20%).

The biomedical and life science literature also relies on heavy

use of short forms (acronyms or abbreviations), leading to

further ambiguity [41]. For instance, the acronym APC can

correspond to one of the following expanded forms, depend-

ing on its context: antigen-presenting cells, adenomatous

polyposis coli, activated protein C, anaphase-promoting com-

plex, and argon plasma coagulation (based on the output of

Main natural language processing levels, from word tokenization to semanticsFigure 2

Main natural language processing levels, from word tokenization to semantics. The different processing layers for a given example sentence are shown 
here. This example is based on the output generated by the GENIA tagger: DT, determiner; IN, preposition or subordinating conjunction; JJ, adjective; 
NN, Noun (singular or mass); NNS, Noun (plural); VBZ, Verb (third person singular present). The B/I/O terminology refers to begin phrase (B), internal 
to phrase (I), and outside of phrase (O).
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Acromine [42]). Accessible online search tools for acronym-

full name pairs include ADAM [43], the Abbreviation Sever

[44], and AcroMine [42].

As new biological discoveries are made, new experimental

methods are developed and novel gene names (or their syno-

nyms) and functional terms are created [45]. Thus, existing

lexical resources and annotation databases must be con-

stantly updated to integrate this new information. To add to

the problem, biologists often do not adhere to naming stand-

ards [46]. As a result, simple dictionary look-up based tech-

niques are not effective in detecting novel names that are not

yet contained in a database; therefore, these names can not be

directly identified by pattern matching, but must be extracted

based on contextual information, such as occurrence before

the word 'gene', or because the term precedes the phrase '... is

transcribed'.

Tokenization and morphology: identifying words in 

biological text

The first step in processing any text requires segmentation of

the string of characters into words. Normally, word bounda-

ries (in English) are indicated by white space, and a sentence

boundary is indicated by '.' (period or full stop). However,

there are many complications, particularly in the scientific lit-

erature; examples include use of '.' in decimals ('1.09'), use of

'/' to link multiple gene names ('waf/cip-1'), or variable use of

white space in gene names, such as 'BRCA 2' versus 'BRCA-2'.

Tokenization typically requires typographical processing at

the character level, to handle special characters and white

space, upper case and lower case, superscripts and subscripts,

and equivalence of Roman, Greek, and numerical suffixes

('TNFa' versus 'TNF-alpha'). For example, in order to retrieve

all of the mentions of the BRCA2 gene in the literature, a gene

mention retrieval system would need to capture at least the

following typographical variants: Brca2, Brca-2, BRCA-2, and

BRCA 2. To improve tokenization of life science articles, the

JULIE (Jena University Language and Information Engi-

neering) laboratory provides tools that can be used for detect-

ing token and sentence boundaries [47].

This stage of processing is very important, particularly for

systems that identify gene mentions and link these mentions

to specific entries in biological resources (gene normaliza-

tion); see [48] (especially Table 2 in that report) for a list of

techniques and resources used in the systems participating in

the BioCreative II gene mention task. Some of the teams that

participated in BioCreative II [49] explored the integration

and use of publicly available gene mention taggers, such as

the ABNER application [50] or the LingPipe system [51]. At

the data preprocessing stage, token segmentation also plays a

role in correctly normalizing (linking) gene mentions to data-

base records, as was shown by participants of the BioCreative

II gene normalization task [52].

The tokenization process is related to morphological analysis

of the internal structure of the words. For example, the use of

suffixes to detect protein mentions in the literature has been

studied in detail [32]. The process of 'stemming' can be

viewed as a kind of (impoverished) morphological processing,

which maps words into their 'stems', thus reducing variability

and providing better clusters. The intuition is that the mean-

ing is carried predominantly by the stem or root, and there-

fore it is appropriate to collapse variants into a single class.

Stemming is heavily used in document retrieval and cluster-

ing applications for building models of word distribution

across document collections. Most current applications use

general stemming strategies such as the Porter Stemmer algo-

rithm [53], but also some recent efforts rely on specific bio-

medical stemmers [54].

Lexical and semantic resources for biology

Functional descriptions of bio-entities, relevant biological

processes, or experimental techniques are often expressed in

scientific papers using domain-specific technical terms. Ter-

minological repositories and dictionaries are important

resources to assist in the interpretation of scientific articles,

but also for building biomedical ontologies used for extract-

ing biological annotations and to assist authors in consistent

use of domain specific terminology.

Fortunately, as part of the development of biological data-

bases, biologists and database curators have made available

important resources cataloging and organizing the terms and

their synonyms used in these areas. In addition, there are an

increasing number of ontologies being developed for various

fields and subfields of biology, particularly the GO [55]. Bio-

medical ontologies, and especially GO, are widely used as

controlled vocabulary to describe biologically relevant

aspects of gene products. Although GO was primarily

designed for annotation purposes, it can also be used as a lex-

ical resource for indexing and navigating the biomedical liter-

ature through the underlying network of concepts using the

GoPubMed application [52,56]. The GOAnnotator tool [57]

allows extraction of text-based GO annotations for a given

protein identifier (SwissProt accession number) by automat-

ically mapping all of the protein names contained in the cor-

responding SwissProt record to PubMed abstracts. These

abstracts are then associated with GO terms based on text

similarity between the term and abstracts, using the GO hier-

archy to improve the overall precision [58]. The GO annota-

tion assignment task of BioCreative I showed that, in general,

the automatic detection of GO terms was more efficient in

case of short terms, and especially for terms corresponding to

the cellular component category [59].

In addition, as seen in both the first BioCreative and this

recent BioCreative, expert curated databases provide impor-

tant 'gold standard' datasets that can be used in formal evalu-

ations, such as BioCreative, or to explore new tasks.

Automatically linking information from life science literature
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into structured representations was pioneered by Mark Cra-

ven [60].

At the word level, valuable resources include gene/protein

name dictionaries compiled from biological annotation data-

bases such as SwissProt, as well as domain-specific ontologies

(for example, GO) and thesauri. For example, BioThesaurus

is a widely used resource [61] that has compiled gene and pro-

tein names from multiple sources. Such resources can be

used, for example, by dictionary look-up based strategies to

link articles to protein database records automatically [62], or

to develop controlled vocabularies of functional terms [56].

However, as discussed above, existing resources may not

cover all the genes and proteins and their many variations

and abbreviations; in addition, the more complete the

resource, the more likely it is to contain terms that have mul-

tiple meanings. For terminology development, the TerMine

system developed at the National Centre for Text Mining

(NaCTeM) integrates an automatic term recognition

approach using linguistic and statistical analysis of candidate

terms [63].

Biomedical literature processing applications
Biomedical literature processing tools provide access to infor-

mation contained in scientific articles at various levels of

granularity, both in terms of the queries supported as well as

in terms of the results. We describe the building blocks for

biomedical text processing with reference to the general Bio-

Creative tasks:

� Document retrieval, which is the core of the 'interaction arti-

cle' subtask, to select articles about protein-protein

interactions.

� Entity mention, which requires identification of mentions of

biological entities (for BioCreative I and II, specifically genes

or proteins) in text.

� Entity normalization, which links biological entities, such as

genes or proteins, to biological resources, such as SWISS-

PROT or Entrez Gene.

Document retrieval

Document retrieval requires the ability to process and index

massive volumes of data (for instance, the entire MEDLINE

collection). This means that techniques used to index the col-

lection must be robust and efficient with respect to space and

time. For biomedical processing, the most obvious approxi-

mation [64] is to look for keywords that characterize a collec-

tion of papers, based on keyword frequency. This system

forms the basis of neighbor searches in MEDLINE, which is

the predecessor of eT-Blast and still the most heavily used

system. Many subsequent approaches have used alternative

strategies for collecting papers and obtaining statistics for

words or terms, with or without context.

Many current literature mining approaches rely on statistical

analysis of word occurrences, calculated over the whole

PubMed database and resulting in weighted associations

between biological entities. The underlying assumption of

these global strategies is that if two biological entities fre-

quently co-occur together or appear in similar contexts (doc-

uments), then they should have some biological relationship.

These methods can provide 'high recall' systems that return

large numbers of possibly relevant documents. Such datasets

can be refined by use of more sophisticated (and time con-

suming) processors such as relation extraction systems that

examine single sentences. Such systems have the potential to

capture multi-document based relations that are currently

missing in curated biological databases.

Statistical co-occurrence based relation extraction poses a

challenge in terms of human interpretation, because it lacks

semantic information on the type of biological association.

Systems such as the CoPub Mapper [65] provide online access

to ranked co-occurrence associations extracted from PubMed

between genes and biological terms (for instance, from GO or

disease names) and the PubGene system generates a graphi-

cal protein interaction network based on protein-protein lit-

erature co-occurrences [66].

Stemming algorithms convert words into standardized forms

(stems) and are an essential component of information

retrieval systems and search engines [67]. One common

shortcoming when using stemming algorithms is that they

sometimes collapse two semantically different words to a

common stem. Stemming has been used by systems to quan-

tify the similarity between documents (for example, eTBlast

[68]) and by document categorization [69] or document clus-

tering [70] approaches.

At the document level, text processing applications like

CoPub [65] detect over-represented terms from multi-

abstract collections, a strategy which uses automatically gen-

erated document-gene links to provide biological context, to

assist in the interpretation of sets of genes resulting from

large scale experiments, such as gene expression microarrays.

Text similarity algorithms have been integrated into eTBlast

[68], an online application ranking the retrieved PubMed

records according to their similarity to a given input query

article. This kind of system represents a useful strategy for

authors to improve retrieval of relevant references when writ-

ing a scientific publication, as well as a practical system for

publishers to avoid plagiarism. Clustering algorithms have

been used to group genes according to their expression pro-

files in microarray experiments or to build phylogenetic trees

by examining similarities of biological sequences. For protein

sequences, a common strategy for measuring similarity uses

weighting of amino acids based on their substitution rates

[71]; similarly, for calculating document similarity, terms are

often weighted according the number of times a term occurs

in a given document (term frequency using local or within-
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document information) and by the number of documents

containing this term (document frequency, using global, or

within-collection information) [72].

Document clustering approaches using document similarity

calculations have been used by PubClust [73] and McSyBi

[74] to structure further the collection of articles retrieved by

keyword searches. A recurrent challenge in both bioinformat-

ics and text processing is the classification of a collection of

items into a set of predefined categories. The assignment of

labels to whole documents, sentences, or individual word

tokens given their context (sentence) has been addressed

using machine learning techniques for cases where suitable

manually labeled training text collections have been con-

structed. Some published systems use document classifica-

tion strategies to detect whether a given article describes

biologically relevant aspects, such as protein interactions,

subcellular location information [75], or even enzyme kinetic

parameters [76].

For humans it is often more effective to retrieve specific

descriptive sentences or passages rather than to look at whole

documents or abstracts. Also, for information extraction tools

extracting relations between biological entities, the detection

of sentences potentially containing these associations can

improve performance [77]. Therefore, specific sentence clas-

sification strategies have been proposed both for genetic

interactions [77] and for protein interactions [33].

Gene mention and gene normalization

Biologists often search annotation databases using gene/pro-

tein names or symbols as queries. The names currently stored

in such resources have been manually extracted from the lit-

erature, a time-consuming task that generally is unable to

cover all of the synonyms or naming variants used by biolo-

gists for each gene and mentioned in the literature. Automatic

detection of protein and gene mentions from the literature is

not only useful to improve coverage of annotation databases

or to enable a semantically refined literature search, but also

constitutes a crucial initial step for other text-mining applica-

tions that extract relations or properties of these biological

entities. Detection of gene mentions is the focus of the Bio-

Creative gene mention task; see [78] for a summary of the

approaches used in BioCreative II. The performance of gene

mention systems has increased from the first BioCreative,

and when multiple systems are combined the combined Bio-

Creative II systems have achieved an estimated F measure

(harmonic mean of precision and recall) of over 90% (see

[78]). Because most entity mention tagging systems rely

heavily on machine learning and statistical methods, they

have benefited greatly from availability of large quantities of

training and test data. For BioCreative II, there were 15,000

training sentences and 5,000 blind test sentences.

Krallinger and Valencia [79] provide an overview of current

systems and discuss the main difficulties encountered by gene

mention detection systems. Most of the current bio-entity

recognition systems, like GAPSCORE [80] or ABGENE [32],

can label text for protein or gene mentions; other applica-

tions, such as ABNER [50], also identify cell lines or cell

types. Other biological entities of interest include chemical

compound mentions, a crucial component for systems trying

to extract biological pathways, and enzyme-ligand associa-

tions. Oscar is an open source system for recognizing chemi-

cal entity mentions; it integrates a dictionary of compound

names, as well as using regular expressions, heuristics, and

certain word combinations to find chemical names in text

[81].

Finding mentions of species and taxonomic names is not only

important for the emerging field of biodiversity informatics

[82], but constitutes a crucial step in linking gene mentions to

their corresponding organism source. Therefore, systems

such as TaxonFinder (uBioRSS) [83] or TaxonGrab [84] that

tag taxonomic names in electronic literature can provide

improved access and integration of species-specific informa-

tion contained in publications.

The detection of bio-entity mentions alone is often not

enough to retrieve informative sentences efficiently, espe-

cially when the resulting document collection is of considera-

ble size. The BioIE system tries to detect, for a given query

keyword, only those sentences describing aspects related to

protein families, functions, structural characteristics as well

as associations to diseases [85]. Other applications such as

iHOP map a given gene or protein query name to its corre-

sponding database identifier and then retrieve a collection of

sentences with definition information, highlighting co-occur-

ring MeSH terms [86]. An alternative to providing term co-

occurrence sentences is offered by EBIMed and FACTA,

which - for a given query protein - present a summary table of

co-occurring concepts based on PubMed abstracts. These

concepts include other proteins, GO terms, drugs, and species

mentions for EBIMed [87], and proteins, diseases, symptom,

drugs, and compounds in the case of FACTA. FABLE allows

retrieval of all the co-occurring gene and protein mentions for

a query keyword, applying a context-based disambiguation

strategy to determine whether a possible mention corre-

sponds to a gene or not (also expanding gene searches with its

corresponding synonyms). Results retrieved from FABLE can

be downloaded in several formats, including XML and Excel.

When searching the literature for functional information for

gene products, it is not necessary to use gene names as que-

ries. Instead of using gene names, searches can be conducted

using protein sequences through the METIS [88] or the Med-

Blast [89] systems. They integrate the intermediate step of

sequence similarity searches to link the query sequence to its

corresponding database record and then automatically

retrieve the associated literature, exploiting the correspond-

ing gene names and citations provided in the database

records. Figure 3 provides an overview of the main user query
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types and text mining applications relevant to the biomedical

domain.

Beyond BioCreative: advanced applications
The extraction of biological relations between bio-entities can

provide insights into their functional characteristics.

Attempts have been made by Rodriguez-Penagos and col-

leagues to automatically extract genetic interactions from

abstracts and full-text articles, in order to improve efficiency

of the manual curation effort of transcriptional regulatory

networks in the Escherichia coli database RegulonDB [90].

Other systems such as iHOP and InfoPubMed allow retrieval

of protein interaction sentences from PubMed. iHOP links

the interacting proteins to their corresponding database

records and allows navigation in the resulting network of co-

occurring interaction proteins as well as building a graphical

interaction network. In the case of InfoPubMed, first an inter-

action summary is generated for a given query protein and

Biomedical text mining applications from the biology user perspectiveFigure 3

Biomedical text mining applications from the biology user perspective. This figure provides a simplified general overview of some existing biomedical text 
mining applications from the biology user perspective. The main user query types currently addressed by existing literature processing applications are 
shown in the center of this figure. The outer circles represent the type of implemented applications as well as some of the corresponding systems. Note 
that some tools could in principle be associated to several application types (but only one of them is illustrated here). For a more detailed description of 
the displayed systems refer to the online tool collection repository.
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then, by dragging the selected interaction pair into a content

viewer, the evidence sentences are displayed. For finding sup-

porting relationship evidence between two predefined enti-

ties of interest (genes, proteins, keywords), or even between

two lists of entities, the Chilibot application [91] can be used.

It also generates a graphical network summarizing the rela-

tionships, providing qualifiers for the type of relation (stimu-

lative, inhibitory, neutral).

Recent text-mining applications have tackled the extraction

of specific biological attributes of genes or proteins, such as

their sequences, polymorphisms and mutations, residue

modifications (for example, phosphorylation), or even their

subcellular locations. MutationFinder [92], a rule-based sys-

tem, can extract amino acid mutation mentions from large

text collections. Other approaches like MarkerInfoFinder try

to detect information related to sequence variants of human

genes, such as single nucleotide polymorphisms and other

types of genetic markers, and their association with diseases

[93]. To develop the PepBank database [94] containing a col-

lection of peptide sequences, a text-mining system was used

that automatically detected and extracted peptide sequence

mentions from abstracts and full-text papers. The Phos-

pho.ELM database [95] integrated a text-mining system in

order to automatically detect S/T/Y phosphorylation sites

from the literature.

Increasing interest in studying epigenetic modifications of

the human genome and its association with diseases such as

cancer motivated the development of two other online tools,

namely MeInfoText [96] and PubMeth [97], which use text-

mining to provide detailed information on gene methylation

and association with cancer. Knowledge about the subcellular

location of proteins can provide meaningful contextual infor-

mation about potential interaction partners or protein func-

tion. The EpiLoc system [75] constitutes a text-based

subcellular location prediction tool, effectively complement-

ing alternative sequence-based localization prediction

algorithms.

Mining the literature also offers an opportunity to extract

indirect associations or discover new relationships based on

the analysis of multi-document collections. High-throughput

experimental setups often result in large lists of candidate

genes that must be experimentally characterized in more

detail. To rank (prioritize) genes according to some co-occur-

ring user-defined keyword, the PDQ Wizard [98] allows inter-

active filtering of results and display of publication

information to customize the ranking strategy. The literature-

based discovery system ARROWSMITH [99] supports

extraction of indirect relationships between two different top-

ics or keywords by examining the commonalities (shared

words and phrases) between the two article collections men-

tioning to each topic.

Conclusion
Existing biomedical literature processing applications cover

retrieval, ranking, or clustering of relevant articles for a par-

ticular topic or bio-entity. There are tools developed for the

extraction of biological associations such as protein interac-

tions, gene regulation, or functional annotations, as well as

detection of biologically relevant properties for genes and

proteins such as sequence mutations or gene methylation

information. A collection of application descriptions and

links to the corresponding online systems, together with rele-

vant references, can be found online [100]. To be of practical

value for the life science community, developers of text min-

ing applications need to keep in mind some critical issues,

listed below.

Linking literature to experimental results

Linking text directly to unique database identifiers or

sequences is crucial, especially because protein and gene

names are often ambiguous. Modern biology is characterized

by experimental studies examining large collections of genes

or proteins; therefore, text-mining systems should support

retrieval of relevant information from the literature for gene/

protein lists, not just single gene queries. For experimental

sciences such as molecular biology, efficient access to experi-

mental information is crucial. Thus, automatic extraction of

evidence qualifiers is crucial when automatically extracting

protein interaction relations or annotations of gene products

with functional concepts (for example, GO terms) from the

literature. Aspects of interest include experimental tech-

niques supporting these relations, type of experimental set up

(in vivo/in vitro), and relevant contextual information such

as cell lines, tissues, or model organism systems.

Linking text mining to bioinformatics resources

Bioinformatics applications and biological databases fre-

quently provide external references to other resources or

tools, which improve data integration and allow, for example,

navigation from functional annotation databases to protein

family or structure information. Biomedical literature

processing tools should improve both the connection to other

literature mining systems (for example, through meta-sys-

tems) as well as to existing biological annotation resources

and bioinformatics applications. Integration of additional

data types such as figures and also specific processing of

tables and references from full-text articles, patents, and e-

books will gain importance in the future because of the

increasing number of electronically available texts stored in

open access repositories. To allow robust integration of dif-

ferent systems, standards for commonly accepted text anno-

tation formats and use of controlled vocabularies and

ontologies are essential aspects.

Accessibility, flexibility, update, and maintenance of 

literature mining systems

Journal publications provide useful pointers to resources and

software, but usually only a subset of the corresponding URLs
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are links to stable systems [101]. To be of practical value to

both users of the biology community and to text-mining

developers, there must be not only a detailed description of

algorithms and text-mining methods for a system, but also a

stable implementation of the corresponding system. Ideally,

the implementation of any published application should be

accessible through multiple strategies: as an online system,

enabling flexible navigation and visualization of extracted

information, with facilities for saving and exporting results in

various formats; as a web service for a more programmatic

access, providing predictions in standard formats such as

XML; and even as a package that can be installed locally and

customized for other specialized systems. Considering the

accelerating pace of new discoveries in molecular biology

reported in scientific articles, it is also crucial that text-min-

ing systems be systematically maintained and updated, peri-

odically including new publications. Literature processing

tools must be efficient enough to scale up, processing the

entire PubMed database as well as large collections of full-

text articles available in a range of different formats.

Comparative evaluation and user interaction

To determine the performance of literature processing tools,

meaningful system evaluations and comparative studies with

other methods are necessary. Initiatives such as the BioCrea-

tive challenges provide the opportunity for text-mining devel-

opers to participate in independent community assessment

studies, which are especially important, given the difficulty in

constructing suitable evaluation datasets. Current systems

could benefit from formal characterizations of the main end

user types, detecting their specific needs and allowing user

interaction and feedback to be taken into account for iterative

improvement of system usability. Efficient ranking and relia-

bility scoring of results are helpful to improve retrieval of the

desired information, reducing the workload in terms of man-

ual examination of the text mining output. Accurate docu-

mentation and clear examples of what a given system can

actually do and what it should be used for can bring literature

processing strategies closer to the end users. Most of the bio-

logical literature is currently published in English, but when

trying to bridge clinically relevant aspects, there is a clear

need for cross-language information extraction applications

to access articles published in other languages with functional

descriptions of biological entities.

Future challenges: personalized text mining and text-

mining workflows

Literature processing tools can go beyond the single docu-

ment-based biological annotations that are currently stored

in biological databases by exploring the global collection of

available papers. Nevertheless, it remains difficult for

humans to interpret weighted relations based on multi-docu-

ment collections. One of the potential sources of errors from

multi-document derived associations is related to incorrect

linking of articles to biological entities (for example, grouping

papers corresponding to different proteins that share the

same name or abbreviation).

Biologists and database curators often carry out repetitive

multi-step literature searches, using the output generated by

one literature search as input for the next one. Text-mining

workflows inspired by manual literature searches and cura-

tion pipelines might be useful in the future, but only if auto-

matically generated text-based outputs are accurate enough

to produce meaningful results. With the increasing speciali-

zation in molecular biology research and the pressing need to

keep up with new scientific discoveries, there is also a clear

need for personalized literature recommender systems and

text-mining systems that can provide for each scientist the

information that he or she is particularly interested in [102].

Systems such as Mscanner, which classify the literature based

on a collection of user defined PubMed articles, constitute a

step in this direction [103].
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