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ABSTRACT

Snowfall is one of the primary drivers of the global cryosphere and is declining in many regions of the world

with widespread hydrological and ecological consequences. Previous studies have shown that the probability

of snowfall occurrence is well described by wet-bulb temperatures below 18C (1.18C) over land (ocean). Using

this relationship, wet-bulb temperatures from three reanalysis products as well as multisatellite and reanalysis

precipitation data are analyzed from 1979 to 2017 to study changes in potential snowfall areas, snowfall-to-

rainfall transition latitude, snowfall amount, and snowfall-to-precipitation ratio (SPR). Results are presented

at hemispheric scales, as well as for threeKöppen–Geiger climate classes and fourmajormountainous regions

including the Alps, the western United States, High Mountain Asia (HMA), and the Andes. In all reanalysis

products, while changes in the wet-bulb temperature over the Southern Hemisphere are mostly insignificant,

significant positive trends are observed over the Northern Hemisphere (NH). Significant reductions are

observed in annual-mean potential snowfall areas over NH land (ocean) by 0.52 (0.34) million km2 decade21

due to an increase of 0.348C (0.358C) decade21 in wet-bulb temperature. The fastest retreat in NH transition

latitudes is observed over Europe and central Asia at 0.78 and 0.458 decade21. Among mountainous regions,

the largest decline in potential snowfall areas is observed over the Alps at 3.64%decade21 followed by the

western United States at 2.81% and HMA at 1.85%decade21. This maximum decrease over the Alps is

associated with significant reductions in annual snowfall of 20mmdecade21 and SPR of 2%decade21.

1. Introduction

Snow and its meltwater play a crucial role in the global

water and energy cycle. Snowpack stores freshwater in

winter and releases it during the summer when it is

needed the most (Viviroli et al. 2007; Wan et al. 2014).

In a warmer world, a lower proportion of winter pre-

cipitation falls as snow and winter snowpack melts ear-

lier in spring, causing water shortages in summer

(Barnett et al. 2005). Climate projections indicate that a

population of almost 2 billion people could be exposed

to a high risk of decreased snow water supply in the next

century (Mankin et al. 2015). Multidecadal observations

show that snow-cover areal extent has declined signifi-

cantly over the Northern Hemisphere (NH) (Brown and

Robinson 2011; Hori et al. 2017). There are also regional

studies indicating declines of important snowpack res-

ervoirs around the globe at different rates (Rauscher

et al. 2008; Ashfaq et al. 2013; Marty et al. 2017; Mote

et al. 2018).

Snowfall accumulation controls the mass balance of

snowpack and glaciers. The changes of snowfall are

largely due to competing effects of changes in pre-

cipitation, air temperature, and moisture content. In-

creased global temperature and specific humidity are

expected to alter the spatial distribution and intensity of

global precipitation (Willett et al. 2007). As the air

temperature increases, the water holding capacity of air

also increases, which could give rise to more pre-

cipitation. However, the snowfall-to-precipitation ratio

might decrease, especially over areas where the air

temperature changes seasonally around the freezing

point. Regional studies report that the snowfall is de-

creasing over important mountainous regions of the

world, including the Himalayas (Gusain et al. 2014; Mir

et al. 2015), the Tibetan Plateau (Wang et al. 2016), the

Italian Alps (Valt and Paola 2013), the Rockies and

Sierra Nevada (Howat and Tulaczyk 2005; KnowlesCorresponding author: Sagar K. Tamang, taman011@umn.edu

1 JANUARY 2020 TAMANG ET AL . 39

DOI: 10.1175/JCLI-D-19-0254.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Unauthenticated | Downloaded 08/27/22 02:35 PM UTC

mailto:taman011@umn.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


et al. 2006; Feng and Hu 2007), and the Tian Shan (Guo

and Li 2015). It is also reported that over the Arctic,

snowfall has declined, largely due to decreasing total

precipitation and increasing lower-atmospheric tem-

perature (Screen and Simmonds 2012).

Despite significant progress in the understanding of

regional changes in snowfall, there is still a large gap in

our knowledge about the global changes in snowfall

space–time distribution. Satellite precipitation data are

promising to help close this gap in cold climate regions,

which typically have sparse ground observations. How-

ever, unlike rainfall (Bolvin et al. 2009; Huffman et al.

2009; Behrangi et al. 2016), a sufficiently long and reli-

able record of satellite snowfall is still lacking. The re-

cently launched Global Precipitation Measurement

(GPM; 2014–present) satellite (Hou et al. 2014;

Skofronick-Jackson et al. 2017) will reduce this gap over

the years to come, but its observation record is still too

short. Multisensor precipitation products such as the

Tropical Rainfall Measurement Mission (TRMM)

Multi-Satellite PrecipitationAnalysis (TMPA;Huffman

and Bolvin 2013) and Pentad Global Precipitation Cli-

matology Project (GPCP) (Xie et al. 2003) provide

records of cumulative precipitation obtained from a

combination of rain gauges and retrievals from a se-

ries of spaceborne sensors. However, these products

currently do not have any specific information on pre-

cipitation phase.

The phase of precipitation can be inferred from the

near-surface air temperature (Kienzle 2008; Dai 2008),

dewpoint temperature (Marks et al. 2013), or wet-bulb

temperature (Ding et al. 2014; Sims and Liu 2015;

Zhong et al. 2018). The energy budget of falling hy-

drometeors is affected by atmospheric humidity (Harpold

et al. 2017) and thus the wet-bulb temperature, which

accounts for the effects of the air moisture content,

can better capture the phase of precipitation than the

air temperature (Harder and Pomeroy 2013; Ding

et al. 2014). Sims and Liu (2015) studied the un-

certainty range defined as the difference between the

10th and 90th percentiles of the snowfall conditional

probability using 9700 stations over global land and

oceans from 1950 to 2007. They found that the un-

certainty range is narrower for the wet-bulb temper-

ature than the air temperature both over land (2.58 vs

3.38C) and oceans (3.68 vs 5.08C). Their results show

that precipitation is in solid form with more than 50%

probability when the near-surface wet-bulb tempera-

ture is below 18C over land and 1.18C over oceans.

More recently, Jennings et al. (2018) also showed

improved precipitation phase detection by the methods

that incorporate air humidity than those solely relying

on air temperature, particularly at a relative humidity

below saturation and air temperatures between 0.68 and

3.48C.

The objective of this paper is to enhance our un-

derstanding of the global changes in potential snowfall

areas, the position of the rainfall-to-snowfall transition

latitudes, total snowfall amount (defined as snow water

equivalent), and the snowfall-to-precipitation ratio (SPR)

in the past few decades. The paper focuses on changes

over the Köppen–Geiger (Peel et al. 2007) Arid cold,

cold, and polar climate classes as well as four important

mountainous regions of the world: the Alps, the western

United States including the Rockies and Sierra Nevada,

High Mountain Asia (HMA), and the Andes. For the

analyses, we use observational and reanalysis precipi-

tation estimates and 2-m wet-bulb temperature pro-

cessed from multiple reanalysis datasets. To improve the

inference, reanalysis data of wet-bulb temperatures are

merged and the computed SPR values are validated, us-

ing the wet-bulb temperature and SPR derived from

ground-based gauge observations by the National Cli-

matic Data Center [NCDC; now known as the National

Centers for Environmental Information (NCEI)].

The paper is organized as follows: Section 2 discusses

the datasets and preprocessing tasks. The key measure

of changes and a summary of the used statistical ap-

proaches for trend identification are described in section 3.

Section 4 demonstrates and interprets the results while

section 5 concludes and discusses findings and its impli-

cations. Computation of the wet-bulb temperature using

the approach by Stull (2016), statistical trend analysis, and

the quality metrics used in the validation parts are ex-

plained in the appendixes.

2. Data and preprocessing

a. Wet-bulb temperature

We use the latest generation of three reanalysis

products, from credible meteorological agencies in

Europe, Asia, and the United States, to process and

characterize the global changes of the wet-bulb tem-

perature. These reanalysis products include the Euro-

pean Centre for Medium-Range Weather Forecasts

(ECMWF) interim reanalysis (ERA-Interim) (Dee

et al. 2011), the Japanese 55-yr Reanalysis (JRA-55)

(Kobayashi et al. 2015), and the NCEP–DOE R-2

(Kanamitsu et al. 2002) by the United States National

Centers for Environmental Prediction (NCEP) and

Department of Energy (DOE). These reanalysis prod-

ucts provide the required information for calculating

wet-bulb temperature from 1979 to the present every

6 h, at spatial grid resolutions of 0.1258, 0.56258, and 2.58,

respectively.
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b. Precipitation

Uncertainty in global estimates of precipitation can be

large, particularly in regions with low station density

and snow-dominated environments (Sun et al. 2018).

Satellite-based precipitation datasets are expected to

provide improved estimates of the global precipitation

and enhance the accuracy of the reanalysis products.

However, passive microwave satellite data are not free

of error, especially over complex topography where

the microwave signal of shallow precipitation is weak

(Ebtehaj et al. 2016). For example, intercomparison

studies over Europe have shown that satellite products

have a tendency to overestimate precipitation over flat

regions and underestimate it over mountainous regions

(Prein and Gobiet 2017). Sun et al. (2018) compared

annual precipitation estimates from multiple sources

with 70 000 gauge station data obtained from the Global

Precipitation Climatology Center (GPCC). It is shown

that gauge-corrected satellite estimates of precipitation

such asGPCPperformbetter than the reanalysis products

such as ERA-Interim, JRA-55, and NCEP–DOE R-2.

Here we use a multisensor observational precipitation

dataset in combination with reanalysis precipitation

from the ERA-Interim to estimate the robustness of our

results.

For observational precipitation data, we use the

Pentad GPCP, version 2.2, which provides multisensor

estimates of 5-day surface global precipitation at a

spatial resolution of 2.58 from 1979 to 2016 (Xie et al.

2003, 2011). This product is created by merging the

Pentad Climate Prediction Center (CPC) Merged

Analysis of Precipitation (CMAP) (Xie and Arkin

1997) and the GPCP monthly multisensor precipitation

product (Adler et al. 2003). The Pentad CMAP data-

set optimally combines gauge precipitation data from

more than 6000 Global Telecommunication System

(GTS) stations, NCEP–NCAR reanalysis precipitation

(Kalnay et al. 1996), and precipitation estimates from

the infrared sensor on board the Geostationary Oper-

ational Environmental Satellite (GOES), the Micro-

wave Sounding Unit on the Television Infrared

Observation Satellite (TIROS), the Special Sensor

Microwave Imager (SSM/I) on board the Defense

Meteorological Satellite Program (DMSP) satellites,

and the Advanced Very High Resolution Radiometer

(AVHRR) on board the National Oceanic and Atmo-

spheric Administration (NOAA) operational sun-

synchronous polar-orbiting satellites. In accordance to

theGPCP policy of avoiding numerical model influence,

the observation-only version of the Pentad CMAP

(CMAP/O) was utilized in the production of Pentad

GPCP.

c. Gauge data

We used gauge data (2011–15) from the NCDC

Global Surface Summary of the Day (GSOD; Lott

1998; Smith et al. 2011) for error analysis of the wet-bulb

temperatures and validation of SPR. Gauge observa-

tions of air temperature, dewpoint temperature, pres-

sure, precipitation amount, and indicator of its type (fog,

rain, snow, or hail) were obtained for calculating the

wet-bulb temperature and SPR. 3579 NCDC stations

with ;4.1 million station days (data from one station in

one day) were used (Fig. 1), while only 803 station years

could be utilized for annual validation of the SPR. The

reason is that all stations with more than 10 days yr21 of

missing information on precipitation amount and phase

were not utilized. Furthermore, to avoid any inflation of

validation statistics due to lower SPR values, any station

years with,0.01 SPR values were removed. It should be

noted that NCDC data are among a large suite of sat-

ellite and ground-based observations that are assimi-

lated into the used reanalysis products and merged into

the GPCP data. However, due to model and represen-

tative errors and the differences between the used data

assimilation techniques, this does not necessarily imply

that the reanalysis errors with respect to the gauge data

are zero or strongly correlated.

3. Methodology

a. Reanalysis ensemble mean

Multiple reanalysis data can be considered as an en-

semble realization of the underlying variable of interest

and can be integrated for reducing the uncertainty of

inference (Hagedorn et al. 2005; Solman and Orlanski

2016). In this study, we use the maximum likelihood

(ML) estimator of the reanalysis products. To that end,

we assume that the 2-m wet-bulb temperature T t,m
wb by

reanalysis product m at time t is related to the ground

truth wet-bulb temperature T t
wb as follows:

T t,m
wb 5T t

wb 1 «
m
, «

m
;N (0,s2

m), (1)

where the reanalysis error «m are uncorrelated zero-

mean normally distributed random variables with variance

s2
m. Therefore, the likelihood function can be obtained as

L (T t,m
wb jT

t
wb)}P

3
m51 exp[2(T t,m

wb 2T t
wb)

2
/2s2

m] for which

theMLestimate of the reanalysis wet-bulb temperature T̂ t
wb

is as follows:

T̂ t
wb 5 argmin

T t
wb

�
3

m51

(T t,m
wb 2T t

wb)
2

s2
m

, (2)

which can be simplified as
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T̂ t
wb 5 �

3

m51

w
m
T t,m

wb , (3)

where wm 5s22
m

�

�ms
22
m

�21
and the variance of the

ML estimator is given by
�

�ms
22
m

�21
. Because of the

Gaussian assumption, the ML estimate is equivalent to

an ensemble mean that is weighted based on the inverse

of the error variance of each reanalysis product. In the

above formalism, we assumed that the reanalysis data

are unbiased, which is a reasonable assumption as will be

shown later.

b. Potential snowfall area

Denoting the wet-bulb temperature at a pixel-level

(i, j) as Twb(i, j), the potential snowfall area is defined as

the interior area of the set S of all global pixels over

which Twb(i, j)#Ts
wb. Here, Ts

wb denotes snowfall

threshold of 18C over land and 1.18C over oceans (Sims

and Liu 2015), which defines the boundaries ›S of the

set. Throughout, we use daily wet-bulb temperature

from reanalysis datasets and their ensemblemean to first

compute daily potential snowfall area and then infer its

seasonal and annual changes.

c. Snowfall-to-rainfall transition latitudes

The analysis of the potential snowfall areas provides a

bulk quantitative indication on how areal extent of

global snowfall is shrinking or expanding over time.

However, another key question is this: Where, and to

what extent, is the global snowfall changing into rain-

fall? The location and movement of the boundary of

potential snowfall areas capture the regions that are

experiencing the most significant interannual variability

of snowpack water storage and related hydrologic re-

sponse. As explained before, this freezing boundary ›S ,

can be defined as the contour of Ts
wb that separates

potential snowfall and rainfall areas. To that end, we

define the snowfall-to-rainfall transition latitudes as the

FIG. 1. (a) Location of the NCDC gauge stations used in the study for error analysis of the reanalysis-based wet-

bulb temperature and validation of SPR from 2011 to 2015. The map shows three Köppen–Geiger climate classes

including the arid cold (orange), cold (yellow), and polar (blue). Also shown are the elevation maps, from the

NOAAdigital elevationmodel at 1-km resolution, which determine the boundaries for the mountainous regions of

(b) the western United States, (c) the Alps, (d) HMA, and (e) the Andes (Blyth et al. 2002).
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boundary of the potential snowfall areas with a pre-

specified decadal exceedance probability. For example,

latitudes with 25% exceedance probability represent the

boundary of the areas within which the snow can fall at

least 25% of the days over a decade. This decadal rep-

resentation is used to capture the long-term trends and

cancel out the short-term interannual variabilities.

d. Total snowfall and snowfall-to-precipitation ratio

As previously noted, we also study the changes of total

snowfall and snowfall-to-precipitation ratio (SPR) not

only for the Pentad GPCP but also for ERA-Interim.

We combine the ensemble-mean reanalysis wet-bulb

temperature with the Pentad GPCP precipitation to

compute the SPR. To that end, the ensemble mean of

reanalysis wet-bulb temperatures is computed daily at

the spatial resolution of ERA-Interim, that is, 0.1258;

however, cumulative Pentad GPCP precipitation is

available every 5 days at a spatial resolution of 2.58.

Therefore, the Pentad GPCP data are first mapped onto

the grids of the ensemble mean through the nearest-

neighbor interpolation to avoid any loss or addition of

spurious information. The relative frequency of snowfall

occurrence for each pixel is defined as a fraction of the

number of days when the daily wet-bulb temperature is

below the snowfall threshold in 5 days. The computed

relative frequency is then multiplied with precipitation

amount to obtain an estimate of snowfall amount. An-

nual SPR is finally obtained by dividing the cumulative

snowfall amount by the annual cumulative precipitation

amount as follows:

SPR(i, j)5

�

np

t51

f ts (i, j)P(i, j)

P(i, j)
, (4)

where the relative frequency of snowfall occurrence is

f ts (i, j)5 (1/T)�
T

t511S [T t
wb(i, j)], 1S [T t

wb(i, j)] is an in-

dicator function that is equal to 1 if T t
wb(i, j)#Ts

wb and 0

otherwise, P(i, j) represents the pixel-level cumulative

precipitation during the Pentad GPCP temporal reso-

lution, T 5 5 denotes the number of days in a pentad

period, and np is the number of 5-day precipitation data

points per year.

Precipitation and snowfall from the ERA-Interim are

obtained from the 12-hourly accumulated totals. The values

are then summed up for the entire year to provide the an-

nual precipitation and snowfall as the snow water equiva-

lent. Then the annual SPR is finally obtained by dividing the

annual snowfall by the annual precipitation amount.

e. Trend analysis

We use the nonparametric Theil–Sen method (Theil

1950; Sen 1968) for computing the magnitude of linear

trends. The Theil–Sen method computes the trend by

taking the median of the slopes of all possible lines that

are fitted to pairs of sample points. This method does not

require any parametric assumption about the probabil-

ity distribution of the samples and exhibits higher degree

of accuracy than the ordinary least squares (OLS), in the

presence of heteroscedasticity (Wilcox 2010). Addi-

tionally, since this approach relies on the median of the

slopes, the estimated trends are more robust to obser-

vational outliers than the OLS, which approximates

the mean value of the trends (Matou�sek et al. 1998;

Wilcox 2010).

Numerous tests have been examined to quantify the

statistical significance of the Theil–Sen estimator such as

the parametric t test (Student 1908) and nonparametric

Mann–Kendall (MK) test (Mann 1945; Kendall 1948).

Here we adopt the bootstrap MK test (BS-MK; Douglas

et al. 2000) as Yue and Pilon (2004) showed that this

method has a higher probability of correct rejection of

the null hypothesis for linear trend detection of non-

Gaussian data structure, among other commonly

used tests.

The asymptotic null distribution of the MK test sta-

tistic is valid under the assumption of serial in-

dependence (von Storch 1995). To formally account for

the effects of serial dependence, prewhitening (von

Storch 1995) and trend-free prewhitening (Yue et al.

2002) approaches have been proposed. Yue and Wang

(2004) showed that the presence of positive (negative)

serial correlation in the data inflates (deflates) the var-

iance of MK test statistic and thus proposed a variance-

correction method. Additionally, block bootstrap

approaches (Kundzewicz and Robson 2000; Önöz and

Bayazit 2012) have been suggested to approximate

directly the null distribution of the MK test statistic

through resampling, without removing the serial de-

pendence of the data. Khaliq et al. (2009) compared the

performance of the explained methods and found that

the prewhitening methods are conservative in identify-

ing significant trends while both variance correction and

block bootstrap methods perform well for dependent

time series.

The variants of the block bootstrap method (Kunsch

1989; Carlstein 1986; Kunsch 1989; Liu and Singh 1992;

Politis and Romano 1994) are an extension to the orig-

inal bootstrap inference approach (Efron 1979) for ap-

proximating the sample distribution of a statistic in

serially dependent datasets. This method reconstructs

the bootstrap samples through resampling of data blocks

beyond which the dependent structure of the data be-

comes negligible. Here, we confine our consideration to

the classic moving-block bootstrap (MBB; Liu and

Singh 1992), which has been applied and tested
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successfully for significance analysis of the MK esti-

mates of linear trends (Khaliq et al. 2009; Önöz and

Bayazit 2012).

Throughout, the trends at significance level a are re-

ported as ba(bmin 2 bmax), where ba denotes the trend

of the ensemble mean and values in parentheses denote

the minimum and maximum of trends by the three re-

analysis products. The reported changes without a sub-

script are insignificant at a 5 0.05.

4. Results

In this section we present the results on changes of the

wet-bulb temperatures among all reanalysis products

and highlight their areas of discrepancy and agreement.

Then, we present the spatial trends in the mean en-

semble wet-bulb temperature over the areas where the

majority of the reanalysis products (i.e., 2 out of 3)

agree. Focusing on the ensemble mean, the changes of

the potential snowfall areas, transition latitudes, total

snowfall, and snowfall-to-precipitation ratios are quan-

tified and discussed.

a. Changes in wet-bulb temperature

Figure 2 shows the trends in annual-mean wet-bulb

temperature (left) and its zonal mean (right) during the

study period. Over the NH, there is a good agreement

between the three datasets, especially with respect to the

detected positive trends over cold and polar climate

regimes above the Arctic Circle. In particular, large

FIG. 2. (left) Trends of annual-mean wet-bulb temperature and (right) its zonal mean for the reanalysis products

from 1979 to 2017.
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areas of Canada’s tundra and boreal forests, the U.S.

Midwest, the Greenland Ice Sheet, northern Europe,

the central Siberian Plateau, and the Scandinavian

peninsula have experienced a warming trend above

0.38Cdecade21. Some disagreements between the re-

analysis products can be observed in lower latitudes,

especially over the Iranian Plateau, Indian peninsula,

and East Asia, where only ERA-Interim and JRA-55

indicate a coherent warming trend. The disagreement is

more apparent over westernAfrica and across the North

Atlantic Ocean, where only NCEP–DOE R-2 shows a

coherent warming trend. Over higher latitudes (708–

908N), zonal-mean trends are consistently positive and

larger than 0.58Cdecade21 in all three reanalysis prod-

ucts (Fig. 2, right column).

Over the SH, there is large disagreement between the

reanalysis datasets. The NCEP–DOE R-2 data indicate

that the annual-mean wet-bulb temperature is de-

creasing coherently over the Andes and increasing over

Australia, whereas these trends are not apparent in

other reanalysis products. The disagreement is most

pronounced over Antarctica where ERA-Interim does

not show any spatially organized trend while a positive

trend is seen in the other datasets, especially in NCEP–

DOE R-2. This warming trend is more significant and

reaches more than 0.68Cdecade21 over Antarctica

with a peak of around 0.858C around 808S.

b. Ensemble-mean wet-bulb temperature

As previously explained, we use ground-based gauge

stations from 2011 to 2015 to compute the ensemble-

mean wet-bulb temperature and validate some of the

results. The error distribution of the reanalysis wet-bulb

temperatures is shown in Figs. 3a–c. The reanalysis data

are almost unbiased with respect to the areas that are

densely populated by the gauges. Fitted Gaussian dis-

tributions have standard deviations of 1.478, 1.58, and

2.698C for ERA-Interim, JRA-55, and NCEP–DOER-2,

respectively. As shown in Fig. 3d, the ensemble-mean

wet-bulb temperature compares well with the gauge data

as the coefficient of determination R2 reaches 0.98 and

the ensemble-error standard deviation is reduced to

1.468C.

To better understand the spatial pattern of the trends,

binary masks of significant warming and cooling trends

(a 5 0.05) and insignificant trends are created for each

reanalysis product and then overlaid (Fig. 4a) to identify

the areas of agreement. The trend of the annual ensemble-

mean wet-bulb temperatures is computed and mapped

onto the ERA-Interim 0.1258 grid, using nearest-neighbor

interpolation, over the areas with majority agreement

(Fig. 4b).

Over the NH lands, in all reanalysis products, positive

trends are observed over the Arctic, the Midwest and

northeastern United States, the European continent

except the Iberian Peninsula, western Eurasia, the Ti-

betan highlands, and western China. The trends are

around 0.88Cdecade21 over the Arctic and reduce to

less than 0.48Cdecade21 over the midlatitudes and

subtropical zones. Over the SH lands, areas of positive

trends are less coherent. The majority of positive trends

agree only over parts of Antarctica. Significant trends

are observed over theQueenMaudLand and coasts of the

Ross Dependency. It is important to note that the positive

trends above 0.48Cdecade21 are concentrated over the

Filchner, the Fimbulisen, and the Ross Ice Shelves.

The results in Fig. 4c indicate that the changes are

significant for all climate regimes except over the SH

FIG. 3. Probability histogram of error in wet-bulb temperatures from (a) ERA-Interim, (b) JRA-55, and (c) NCEP–DOER-2 as well as

(d) the scatter density plot of their ensemble mean vs the NCDC GSOD gauge stations. The errors are computed by comparing the

reanalysis and gauge station data from 2011 to 2015.
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arid cold climates. Specifically, the ensemble mean shows

the highestwarming rate of 0.690.05 (0.66–0.69)8Cdecade21

(where the subscript indicates the statistical sig-

nificance level) over the NH polar climate regime, fol-

lowed by NH areas with cold and arid cold climates at

0.390.01 (0.36–0.41)8Cdecade21 and 0.200.01 (0.11–0.24)8C

decade21, respectively. The majority of the reanalysis

products indicate that there has been a warming trend

over the studied mountainous regions, among which

the Alps are experiencing the highest positive trend

at 0.270.01 (20.09–0.35)8Cdecade21 followed by the

HMA and the western United States at 0.240.01 (0.21–

0.27)8Cdecade21 and 0.180.05 (0.10–0.29)8Cdecade21,

respectively.

Figure 5 shows the time series of the NH and SH

annual-mean wet-bulb temperatures over global land

and oceans, while Table 1 reports the seasonal changes

as well. All reanalysis products agree over the NH both

in terms of the trends and their annual-mean values,

whereas over the SH the results show large un-

certainties. The highest mean wet-bulb temperature is

observed in 2016 over the NH, both over land and

oceans among all reanalysis products, whereas there is

not such an agreement in SH. Trend analysis suggests

that the NH annual ensemble-mean wet-bulb tempera-

ture is rising over land and oceans at 0.340.01 (0.32–

0.35)8Cdecade21 and 0.350.01 (0.34–0.41)8Cdecade21.

Among all seasons, highest warming is observed during

FIG. 4. (a) Spatial distribution of the agreement in significant trends (a 5 0.05) in the wet-bulb temperature

between the three reanalysis products, (b) spatial distribution of the trends, and (c) the ensemble mean over the

Köppen–Geiger climate classes and four mountain regions. In (c), significant trends are labeled by an asterisk. The

trends are also shown in a polar projection system over (d) the Arctic and (e) Antarctica.
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the fall both over land at 0.370.05 (0.35–0.38)8Cdecade21

and oceans at 0.490.05 (0.44–0.61)8C decade21 (see

Table 1).

Similar to the NH, annual-mean wet-bulb temperature

over the SH is rising, but at a lower rate of 0.130.01 (0.04–

0.41)8Cdecade21 and 0.03 (20.02 to 0.16)8Cdecade21

over land and oceans, respectively. The SH spring man-

ifests the highest warming rates over both over land and

oceans with the rate of 0.260.01 (0.15–0.56)8Cdecade21

and 0.070.01 (0.04–0.21)8Cdecade21.

FIG. 5. Time series of annual-mean wet-bulb temperature for (a) NH land, (b) NH oceans, (c) SH land, and

(d) SH oceans from 1979 to 2017 for the three reanalysis products and their ensemblemean.Here, ba represents the

trend value of the ensemble-meanwet-bulb temperature (8Cdecade21) at significance levela. Trend values without

a subscript are insignificant.

TABLE 1. Annual and seasonal changes of the hemispheric-mean wet-bulb temperature over the land and oceans. We define four

seasons as winter (December–February), spring (March–May), summer (June–August), and fall (September–November) for the NH and

winter (June–August), spring (September–November), summer (December–February), and fall (March–May) for the SH. Due to the

absence of information during December 1978, the data over the NH winter (SH summer) were not analyzed in that year. The boldface

values are significant at a 5 0.05.

ERA-Interim JRA-55 NCEP–DOE R-2 Ensemble

Seasons Land Ocean Land Ocean Land Ocean Land Ocean

Northern

Annual 10.33 10.35 10.35 10.34 10.32 10.41 10.34 10.35

Winter 10.23 10.51 10.26 10.44 10.24 10.49 10.25 10.47

Spring 10.37 10.37 10.37 10.32 10.36 10.38 10.37 10.36

Summer 10.25 10.12 10.28 10.14 10.24 10.16 10.26 10.14

Fall 10.38 10.44 10.37 10.49 10.35 10.61 10.37 10.49

Southern

Annual 10.04 20.02 10.15 10.03 10.41 20.16 10.13 10.03

Winter 10.01 10.02 10.15 10.03 10.53 10.31 10.12 10.07

Spring 10.15 10.04 10.29 10.06 10.56 10.21 10.26 10.07

Summer 20.06 20.04 10.14 10.05 10.13 20.04 10.06 10.00

Fall 10.01 20.06 10.11 20.02 10.33 10.17 10.09 20.01
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c. Changes in potential snowfall areas

The annual time series of the hemispheric-mean po-

tential snowfall areas are shown in Fig. 6 and the sea-

sonal values are reported in Table 2 as well. Over the

NH land, annual-mean potential snowfall areas are de-

creasing at a rateof 0.520.01 (0.44–0.56)millionkm2decade21,

which is more than over NH oceans: 0.340.01 (0.28–0.39)

millionkm2decade21. Seasonal analysis suggests that the

shrinkage rate is largest during the NH spring at 0.810.01
(0.58–0.86) millionkm2decade21and fall at 0.440.01 (0.41–

0.58) million km2 decade21 over the land and oceans,

respectively.

However, the results over the SH are different. Over

land, no significant reduction in annual-mean poten-

tial snowfall area is observed, whereas over oceans it

has increased significantly at the rate of 0.320.01 (0.03–

0.53) million km2 decade21—despite a detected in-

crease in the mean wet-bulb temperature (Fig. 5). No

significant seasonal changes are detected over the SH

land (Table 2) whereas over the oceans all seasonal

changes are significant, except winter. The highest

shrinkage rate occurs during the summer at 0.550.01
(0.31–0.70) million km2 decade21.

The contrasting nature of changes of potential SH

snowfall areas and mean wet-bulb temperature exists

due to the spatial heterogeneity of the temperature

trend. Figure 4b shows that the positive trend in mean

wet-bulb temperature is largely due to warming of the

subtropical regions in the southern Pacific, Atlantic, and

Indian Oceans with no effect on the potential snow-

fall areas. Because the temperature is well above the

snowfall threshold throughout the year. In fact, the in-

crease of SH potential snowfall areas has occurred over

the Southern Oceans within temperate and Arctic cli-

mate zones, where the mean wet-bulb temperature is

decreasing.

Annual-mean potential snowfall areas are de-

creasing over all studied Köppen–Geiger climate clas-

ses and the four mountain regions. Among the three

climate classes, the highest decrease is observed over

the NH cold climate regime at the rate of 0.330.05 (0.25–

0.34) million km2 decade21 followed by the polar and

the arid cold climates at the rate of 0.060.05 (0.06–0.07)

million km2 decade21 and 0.050.01 (0.03–0.06) million

km2decade21, respectively.Onaverage,we have lost 0.02

millionkm2decade21 of snowfall areas over the four

mountainous regions. The largest decrease is observed

FIG. 6. Time series of the annual-mean potential snowfall areas for (a) NH land, (b) NH oceans, (c) SH land, and

(d) SH oceans from 1979 to 2017 for the three reanalysis products and their ensemble mean. The values of ba

represent the trend of the ensemble mean (million km2 decade21) at significance level a 5 0.05 and the values

without subscript are insignificant.
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over the HMA at 0.050.01 (0.04–0.06) million

km2 decade21 followed by the western United

States and Andes at the rate of 0.010.05 (0.00–0.02)

million km2 decade21 and 0.010.05 (20.03–0.02)

million km2 decade21. It is important to note that

the highest percentage reduction is observed over the

Alps at 3.640.01 (27.54–4.84)%decade21 followed by

the western United States and HMA with reduction

of 2.810.05 (1.91–3.27)%decade21 and 1.850.05 (1.53–

2.18)%decade21, respectively. To understand where

these changes have occurred, the daily ensemble-mean

wet-bulb temperature was used to compute the per-pixel

annual exceedance probability of potential snowfall oc-

currence. To that end, we created daily binarymasks over

the areas where the wet-bulb temperatures are below the

snowfall thresholds. Then, annual binary masks of po-

tential snowfall occurrence are produced to delineate the

areas over which the potential snowfall occurs at least

25%, 50%, and 75% of days in a year. Then a pixel-level

frequency value is obtained by summing the annual bi-

nary masks over the entire 39 years of data (Figs. 7a–f).

For example, when an area shows a frequency value of 10

for the 25% exceedance probability, it means that for 10

years the area could potentially receive snowfall at least

25% of the days in a year. Thus, when the frequency

values are decreasing poleward it implies that the po-

tential snowfall areas, at different annual exceedance

levels, are shrinking.

Focusing on the NH terrestrial changes, among those

regions where at least 25% of the time the snowfall oc-

currence is likely, eastern and southeastern Europe, the

Middle East, and some regions south of central Asia have

experienced significant shrinkage. From west to east, the

changes extend from lowlands in Poland to the Baltic Sea,

southwestern Russia, southern Kazakhstan, and the Aral

Sea. Over southeastern Europe, Serbia, Bulgaria, and

Romania have been experiencing shrinkage of snowfall

area. In the Middle East, the changes are detected over

the central west portion of Turkey and the foothills of the

Alborz and Zagros mountain ranges in the Iranian Pla-

teau. The areas that are likely to receive snowfall more

than 50% of the time are shrinking mostly over North

America’s Rocky Mountains, Canada’s boreal forests,

northwest Russia, and southwest Scandinavia, especially

over Finland and Sweden. The shrinkage areas, with at

least 75% of snowfall occurrence, are over the southern

Himalayan range of HMA, eastern parts of the Tibetan

Plateau, and northern Siberia. Over North America,

much of the shrinkage is observed over the Brooks

mountain range in Alaska and Canadian barren grounds.

d. Changes in transition latitudes

In this section we confine our considerations only to

the NH for characterizing the changes on the boundary

of the potential snowfall areas. As previously noted, the

motivation is to understand where and to what extent

TABLE 2. Annual and seasonal changes of hemispheric-mean potential snowfall areas (million km2 decade21). The values in parentheses

represent percentage of changes per decade with respect to the mean values. The boldface values are significant at a 5 0.05.

ERA-Interim JRA-55 NCEP–DOE R-2 Ensemble

Seasons Land Ocean Land Ocean Land Ocean Land Ocean

Northern

Annual 20.53 20.28 20.56 20.39 20.44 20.35 20.52 20.34

(21.81) (21.61) (21.89) (22.35) (21.43) (22.04) (21.78) (21.99)

Winter 20.31 20.36 20.34 20.48 20.14 20.43 20.30 20.42

(20.59) (21.41) (20.64) (21.93) (20.26) (21.75) (20.56) (21.67)

Spring 20.79 20.04 20.86 20.21 20.58 20.04 20.81 20.10

(22.49) (20.19) (22.65) (21.03) (21.67) (20.21) (22.52) (20.49)

Summer 20.30 20.23 20.34 20.48 20.49 20.35 20.32 20.34

(27.92) (23.10) (28.44) (26.42) (28.65) (23.56) (28.09) (24.36)

Fall 20.71 20.41 20.78 20.46 20.37 20.58 20.70 20.44

(22.49) (22.81) (22.68) (23.30) (21.29) (24.04) (22.44) (23.10)

Southern

Annual 20.01 10.53 20.02 10.16 10.04 10.03 20.01 10.32

(20.07) (11.61) (20.18) (10.50) (10.33) (10.11) (20.06) (11.03)

Winter 20.01 10.38 20.02 10.07 10.05 20.28 20.01 10.16

(20.11) (10.99) (20.19) (10.18) (10.37) (20.84) (20.10) (10.44)

Spring 20.01 10.34 20.02 10.17 10.03 20.06 20.01 10.26

(20.10) (10.91) (20.14) (10.48) (10.22) (20.19) (20.08) (10.72)

Summer 20.01 10.70 20.01 10.31 10.01 10.57 20.00 10.55

(20.04) (12.66) (20.13) (11.23) (10.12) (12.53) (20.01) (12.18)

Fall 20.02 10.58 20.02 10.14 10.06 20.07 20.01 10.31

(20.14) (11.95) (20.21) (10.49) (10.48) (20.28) (20.08) (11.08)
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the snowfall-to-rainfall transition latitudes are moving. To

that end, the boundary of the potential snowfall areas,

with a decadal exceedance probability of 25%, 50%, and

75%, are quantified. For example, the latitudes with 25%

exceedance probability represent the boundary of the areas

within which snowfall occurrence is probable at least 25%

of the days within a decade. This decadal representation is

used to capture the long-term trends over awindowof time

and cancel out the short-term interannual variability.

The transition latitudes with exceedance probability

of 50% for a moving time window of 10 years are shown

in Fig. 8a. Each line depicts the position of the boundary

with lighter colors representing earlier time periods.

The changes are more noticeable over land than over

oceans, particularly over North America and Eurasia.

Figures 8c–e and 8f–h provide a zoomed view over the

areas of significant changes.

Over North America, 25% transition latitudes remain

fairly stable with a little fluctuation in the Midwest and

eastern United States (Fig. 8c); however, the northward

retreat is fairly high over Europe and eastern Asia

(Fig. 8f). At the 50% level, the retreat is noticeable over

theCanadian provinces ofManitoba,Ontario, andQuebec

(Fig. 8d). Isolated islands of changes are formed over

the western United States and HMA (Figs. 8d,g). Be-

cause of the steepness of the mountainous areas,

changes of areal extent are small and rates should be

further studied as a function of elevation. Over Europe

and central Asia, a significant northward retreat is

observed over the Norwegian Sea, eastern Russia, and

northern Kazakhstan (Fig. 8g). For the 75% level,

transition latitudes are markedly retracting over

northern Quebec in Canada (Fig. 8e), northern Russia,

and the western Tibetan Plateau (Fig. 8h). The annual

zonal-mean values of the transition latitudes and their

poleward retreat rates are computed over 158 longitude

intervals. Figure 8b shows northward retreat rates

greater than 0.78decade21 over Europe within 08–308E.

Also, parts of central Asia from 758 to 908E, comprising

the HMA, are experiencing a significant retreat rate of

0.458decade21.

e. Changes in total snowfall and

snowfall-to-precipitation ratio

Focusing on the NH, the spatial trends in annual total

snowfall (snowwater equivalent) fromERA-Interim and

FIG. 7. Hemispheric maps showing areas over which annual frequency of potential snowfall occurrence have

changed during the last four decades. Results are shown for exceedance probabilities of (left) 25%, (center) 50%,

and (right) 75% in the (a)–(c) NH and (d)–(f) SH.
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the Pentad GPCP are shown in Figs. 9a and 9b, re-

spectively. It is clear that compared to ERA-Interim,

GPCP shows more coherent declining trends over the

oceans. GPCP shows a significant declining trend of

30mmdecade21 over the Labrador Sea, the Baffin Bay,

the western coast of Greenland, and Hudson Bay in

northeastern Canada. Over the Greenland Sea and the

Norwegian Sea, ERA-Interim and GPCP agree that

negative snowfall trends exist. Some disagreement can be

observed over the northern Barents Sea where the ERA-

Interim suggests a positive snowfall trend of around

20mmdecade21 while GPCP shows some incoherent

negative trend of around 30mmdecade21.

Over the terrestrial regions, both products agree on

negative total snowfall over the Midwest United States

near Lake Superior and part of the western United

States. Over Asia, the products agree on negative

snowfall trend over the southern parts of the Tibetan

Plateau but they disagree over northeastern China

where ERA-Interim suggests a negative trend of around

10mmdecade21 whereas GPCP suggests a smaller and

patchy positive trend of about 5mmdecade21. The dis-

agreement between products is more pronounced over

Greenland where GPCP suggests a decreasing snowfall

trend of around 25mmdecade21 whereas ERA-Interim

reports no significant changes except over a small area

with a coherent positive snowfall trend of around

10mmdecade21.

Figure 9c shows the trend values of annual snowfall

over NH climate classes and mountain ranges. Over the

polar climate class, all GPCP-derived products agree on a

negative trend in total annual snowfall at 15.72 (15.72–

16.31) mmdecade21 whereas ERA-Interim suggests in-

significant smaller trend value of 0.79mmdecade21.

FIG. 8. (a) Snowfall-to-rainfall transition latitudes as the boundary of potential snowfall areas with an exceedance

probability of 50% over a sliding time window of 10 years, (b) the zonal-mean values of northward retreat

(8 decade21, labeled pd in the figure), and the zoomed areas for different exceedance probabilities over (c)–(e)

North America and (f)–(h) Eurasia.
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Among the three climate classes, agreement exists over

the cold climate where they suggest comparably negative

snowfall trend of around 2.77–4.48mmdecade21. How-

ever, over the arid cold climate, all GPCP combinations

suggest a positive trend in snowfall at a rate of 1.34 (0.78–

2.73) mmdecade21 whereas ERA-Interim suggests a

significantly negative trend of 2.77mmdecade21. There is

agreement about a decreasing trend in annual snowfall

over the studied mountainous ranges, except over HMA.

All GPCP-derived trends and ERA-Interim suggest

the highest decrease of annual snowfall of more than

20mmdecade21 over theAlps, except the combination of

GPCPandNCEP–DOER-2.OverHMA, analyses based

on ERA-Interim suggest a significant negative trend at

the rate of 8.42mmdecade21, whereas the GPCP data do

not indicate any significant trend in total snowfall.

Figures 10a and 10b show the spatial distribution of

annual SPR trend over the NH obtained from ERA-

Interim and the combination of GPCP and the en-

semble mean, respectively. It is evident that in GPCP

and ERA-Interim most parts of the oceans are expe-

riencing a significant decrease in SPR; however,

GPCP suggests a stronger negative trend of around

8%decade21 compared toERA-Interim at 4%decade21.

It should be noted that in higher-latitude oceans, the

absence of a trend in GPCP is due to the unavailability

of GPCP dataset over this region. Over the terrestrial

regions, only a few regions exhibit significant trends

around 4%decade21. Over North America, GPCP

suggests that the SPR is decreasing over the Great

Plains in theUnited States andManitoba, Ontario, and

Quebec provinces around the Hudson Bay in Canada.

Disagreement between GPCP and ERA-Interim ex-

ists over the western United States, where GPCP

suggest a negative trend whereas a positive trend is

suggested by ERA-Interim. In Europe, for both

products, a significant decreasing trend is detected

over parts of Finland, Sweden, Poland, and Germany

on the coastal region of the Baltic Sea as well as over

the United Kingdom. Central Iran, western Turkme-

nistan, the central Tibetan Plateau, and the Siberian

Plateau in Asia have been experiencing a decrease in

SPR, while an increase in parts of the Mongolian

Plateau is significant and is around 4%. It should be

noted that in general the quality of overland satellite

precipitation is lower than over ocean (Kubota et al.

2009). This uncertainty could be one of the main rea-

sons that the detected trends are more coherent over

oceans in GPCP.

Over all the studied climate classes in the NH, the

trend in SPR by the ERA-Interim matches closely with

the one computed from the GPCP data. The largest

decrease occurs over the polar climate region with

1.1%decade21 in ERA-Interim and 1.49 (1.33–1.59)%

decade21 in GPCP, followed by the cold climate region at

the rate of 0.68%decade21 and 0.95 (0.75–1.02)%decade21,

FIG. 9. Spatial distribution of trends in total annual snowfall (snow water equivalent) obtained from (a) ERA-

Interim and (b) GPCP data over theNH, and (c) their spatial mean values over the studiedKöppen–Geiger climate

classes and mountain ranges. Significant trend values (a 5 0.05) are marked by an asterisk.
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respectively. However, no significant trend is observed

over the arid cold class (Fig. 10c). Among the mountain

regions, surprisingly, there is no significant trend over

the western United States. There is an agreement be-

tween all datasets that the highest significant decrease

of SPR (2%) has occurred over the Alps, excluding

the data from the NCEP–DOE R-2. All data products

denote that the HMA has experienced small but sig-

nificantly negative trends ranging from 0.97% to

1.7%decade21.

To validate the results of the SPR calculation, the

annual values from GPCP and ERA-Interim are

compared to 803 NCDC gauge station years between

2011 and 2015 (Fig. 10d). Quality metrics including the

coefficient of determination R2, percentage bias

(PBIAS), probability of detection (POD), false alarm

ratio (FAR), and critical success index (CSI) are used

(see appendix C). The results suggest that GPCP-

derived SPR values perform better than those based on

ERA-Interim with an R2 value of 0.65 compared to 0.61

and a PBIAS of 1.06% compared to 234.69%, respec-

tively. However, in terms of capturing the snowfall oc-

currences, ERA-Interim and the combination of GPCP

and the ensemble mean of the wet-bulb temperature

have comparable performance. Specifically, GPCP-

derived values and ERA-Interim have POD values of

0.91 and 1, FAR of 0.33 and 0.34, and CSI of 0.62 and

0.66, respectively.

5. Conclusions and discussion

In this study, we used three reanalysis datasets and

showed that the global-mean wet-bulb temperature

trend increased significantly in the past four decades,

except over the SH oceans. The observed regional

warming trend in wet-bulb temperature is ;20% larger

than the regional air temperature trends of 0.0658–

0.598Cdecade21 over the eastern Siberian transect ob-

served during 1956–90 (Romanovsky et al. 2007) and

0.208C decade21 over the U.S. Midwest, Canadian

prairies, and western Arctic during 1948–2010 (Isaac

and VanWijngaarden 2012). This implies an increase in

near-surface atmospheric moisture content since the

wet-bulb temperature increases monotonically with the

relative humidity.

While a coherent warming trend in wet-bulb tem-

perature exists all over the Arctic region, only parts of

Antarctica are experiencing a warming trend. The wet-

bulb temperature over Antarctica is mostly below the

snowfall threshold and this warming trend may not di-

rectly lead to a reduction of snowfall accumulation.

However, the significant wet-bulb temperature trends

FIG. 10. Spatial distribution of trends in annual SPR over the NH, obtained from (a) ERA-Interim and (b) GPCP

data and (c) their spatial mean values over the studiedKöppen–Geiger climate classes andmountain ranges, as well

as (d) the annual SPR values against 803 station years from the GSOD gauge station data with an SPR greater than

0.01. Significant trend values (a 5 0.05) are marked by an asterisk in (c).
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of ;0.48Cdecade21 are lower than the air-temperature

trend of 0.568Cdecade21 reported over parts of the

Antarctica (Turner et al. 2005). This results in an in-

crease of wet-bulb depression over the years, which in

turn increases the ablation rate at subzero temperatures

(Budd 1967).

Among the three studied Köppen–Geiger climate

classes and four mountainous regions, the NH polar class

and the Alps are experiencing the highest warming trend.

On average, the Alps, the western United States, High

Mountain Asia (HMA), and the Andes have experienced

a reduction in potential snowfall area at 0.02 million

km2decade21 with the Alps losing the highest proportion

of potential snowfall areas at 3.64%decade21. Tracking

the transition latitudes that delineate the changes from

snowfall-to-rainfall regimes showed an annual retreat to-

ward the North Pole in the NH at 0.78 and 0.458decade21

over Europe and central Asia.

Data from ERA-Interim and the Global Precipitation

Climatology Project (GPCP) agree on a significant de-

crease of total snowfall amount over the northern At-

lantic Ocean, Greenland Sea, Norwegian Sea, and

Barents Sea with a rate of 10–30mmdecade21. Terres-

trial regions of total snowfall declines with a rate greater

than 10mmdecade21 are over the Bitterroot Range, the

northern Rocky Mountains, the Great Plains, the U.S.

Northwest, and northern Quebec in North America; the

United Kingdom, south of Finland, north of Germany,

north of Poland, and Lithuania inEurope; and the Zagros

Mountains in the Iranian Plateau and southern Hima-

layas in Asia.

Data from ERA-Interim and the Global Precipitation

Climatology Project (GPCP) agree on significant

positive trends in annual snowfall amount of about

5mmdecade21 over parts of theTibetanPlateau, which is

consistent with the findings by Deng et al. (2017). The

areas of agreement on SPR are over the Beaufort Sea,

the Northwest Passage, the northern Atlantic Ocean, the

Greenland Sea, the Norwegian Sea, and the Barents Sea.

However, the rates in GPCP data are greater than 4%

while in ERA-Interim the rates are largely around 2%.

Furthermore, negative trends in SPRwere observed over

the Great Plains and east of the Hudson Bay lowlands in

North America; in Finland, Lithuania, Latvia, and Esto-

nia inEurope; and in the Tibetan highlands inAsia, which

are consistent with the regional studies over the United

States (Feng and Hu 2007; Kunkel et al. 2009), Canada

(Vincent et al. 2015), Finland (Irannezhad et al. 2017),

and the Tibetan Plateau (Wang et al. 2016).

The rate of changes in SPR in GPCP seems to be

systematically higher thanERA-Interim, especially over

oceans. Due to spatial changes in total precipitation,

there have been some differences between the global

patterns of change in total snowfall and SPR. Over

Greenland,GPCP shows a decline in total snowfall but no

changes in SPRwhile ERA-Interim shows an appreciable

increase of total snowfall and a decrease of SPR. Thus,

from theGPCPdata the total precipitation should remain

constant while ERA-Interim denotes that the total pre-

cipitation has increased.

Over the Alps, not only the total snowfall but also the

solid fraction of precipitation is decreasing significantly.

Thus, either the total precipitation has increased or the

reduction of snowfall amount has been faster than the

reduction in total precipitation. Over the western United

States, the total snowfall is decreasing significantly but

not the SPR. In other words, the decline of precipitation

and snowfall has been proportional. The results over

HMA are ambiguous. GPCP data do not indicate any

significant changes in total snowfall while ERA-Interim

denotes a significant decline. However, both datasets

agree that the SPR has declined.

Certainly, the linkage between the changes of snow-

fall and snow cover is a future line of research. Brown

and Robinson (2011) report decreases in NH snow-

cover extent of 0.8 millionkm2decade21 (7%–11%) in

March and April over the 1970–2010 period, which is

consistent with the characterized changes of potential

snowfall areas in section 4c. Historical information on

snow-cover extent and satellite snow water equivalent

data (Smith and Bookhagen 2016, 2018) are needed to

investigate the competing effects of temperature and

precipitation trends on global changes of snow-cover

extent and snow water equivalent.

The resolution of the used reanalysis products is low

and the reanalysis and satellite precipitation estimates

suffer from a high degree of uncertainty. More specifi-

cally, the results reported over the mountains should be

interpreted with caution and should be updated when

new higher-resolution reanalysis data with more so-

phisticated parameterization of the effects of topo-

graphic features on precipitation become available. In

addition, reanalysis products are highly inhomogeneous

since the quality, quantity, and character of assimilated

data change over time. For example, one of the main

reasons for the observed discrepancies between the re-

analysis data over the SH is the lack of adequately dense

gauge observations. This inhomogeneity can introduce

artificial trends that can affect our analyses (Long et al.

2017). Using different reanalysis products might not

completely eliminate those trend due to the assimilation

of similar datasets. Future studies could investigate

snowfall changes in more homogeneous reanalyses da-

tasets such as the ECMWF’s 20th-century reanalysis

(Poli et al. 2016) or NOAA-CIRES’s 20th-Century

Reanalysis (Compo et al. 2011).
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A similar problem exists for the analyzed Pentad

GPCP products because of coarse spatial resolution and

the fact that satellite precipitation still suffers from a

large degree of uncertainty in retrievals of orographic

precipitation over complex terrain. Future studies can

also focus on the usage of other ancillary data such as

vertical temperature lapse rate for characterizing pre-

cipitation phase to improve the inference over mountain

ranges. Moreover, finding ways to refine our inference

using snowfall data from recent spaceborne active ra-

dars on board the GPM and CloudSat satellites could

be another future line of research.

And last, it is important to note that the uncertainty of

our analysis and the derived conclusions are subject to

the accuracy of the data used and techniques explained

such as the lower skill of precipitation phase-partitioning

methods at near-freezing temperature (Ding et al. 2014;

Jennings et al. 2018). In particular, we did not make any

correction for the effects of topography on both tem-

perature and precipitation data and only extracted the

information content of the available observational data-

sets. Developing globally accepted relationships for such

corrections over important mountainous regions of the

world would help to advance climate change assessments

in regions with complex topography.
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APPENDIX A

Computation of the Wet-Bulb Temperature

Here, the wet-bulb temperature is calculated from

Eq. (A1) (Stull 2016) using an iterativeNewton–Raphson

method:

T
w
5T

a
2

L
y

C
p

E  A

2

4

1

P exp
� B

T
w

�

2A

2
RH

P exp
�B

T
a

�

2A

3

5 ,

(A1)

where Tw is the 2-m wet-bulb temperature (K), Ta de-

notes 2-m air temperature (K), Ly is the latent heat of

vaporization (J kg21), Cp refers to the specific heat

constant for dry air (kJ kg21K21), « is the ratio of dry gas

constant to water vapor gas constant, P denotes station

pressure (hPa), RH is the relative humidity, and A 5

2.53 3 109hPa and B 5 5420K are empirical constants.

Due to the lack of information on RH within ERA-

Interim, it was computed from dewpoint temperature

and air temperature usingEq. (A2) provided byECMWF

(2015):

RH5 exp

�

17:502

�

T
d
2 273:16

T
d
2 32:19

2
T
a
2 273:16

T
a
2 32:19

�	

,

(A2)

where Td is the dewpoint temperature (K).

APPENDIX B

Details of Statistical Trend Analysis

For brevity, here we explain the Theil–Senmethod for

trend analysis adopting the notation only for the wet-

bulb temperature. To that end, let us assume that

Twb 5 fT1
wb, T

2
wb, . . . , T

n
wbg represents annual time se-

ries of hemispheric-mean wet-bulb temperatures for

year y5 fy1, y2, . . . , yng. The Theil–Sen estimate of the

linear slope b is defined as

b5median

 

T
j
wb 2T i

wb

yj 2 yi

!

, i5 1, 2, . . . ,n2 1,

j5 2, 3, . . . , n, j. i . (B1)

Numerous tests have been examined to quantify the

statistical significance of the Theil–Sen estimator, herewe

adopt the bootstrap Mann–Kendall (MK) test. In sum-

mary, the MK test computes the following test statistic:

S5 �
n21

k51
�
n

j5k11

sgn(T j
wb 2Tk

wb) , (B2)

where j . k and sgn(�) refers to the signum function. Pos-

itive (negative) values of S imply a positive (negative) trend

in the time series.Under the null hypothesis, Kendall (1948)

showed that the test statistic S is asymptotically a zero-mean

normally distributed random variable with variance

Var(S)5



n(n2 1)(2n1 5)2�
 q

i51ti(ti 2 1)(2ti 1 5)
�

/18,

where, q is the total number of groups of same observa-

tions or ties and ti is the number of observation in the ith

tied group. Thus, the standard test statisticZ is defined as

follows:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(S)
p if S. 0

0 if S5 0

S1 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(S)
p if S, 0

, (B3)

where the null hypothesis can be rejected if jZj$Z12a/2,

at level of significance a.

The asymptotic null distribution of the MK test sta-

tistic S ~;N [0,Var(S)] is valid under the assumption of

serial independence (von Storch 1995). To formally ac-

count for the effects of serial dependence, we confine

our consideration to the classic moving-block bootstrap

(MBB; Liu and Singh 1992).

Specifically, let us assume that S is the MK

test statistic of the original annual time series

Twb 5 fT1
wb, T

2
wb, . . . , T

n
wbg. Given the time series, a

serial correlation length r at significance level a is

computed and the length of the block is set to l5 r1 1.

The time series Twb is then divided into N 5 n 2 l 1 1

overlapping blocks ji:5 fT i
wb, . . . , T

i1l21
wb g, with proba-

bility of occurrence equal to 1/N, where i5 1, . . . ,N and

l/n / 0 as n, l / ‘. A number of k 5 n/l blocks

fj*b
1
, j*b

2
, . . . , j*bk g are sampled with replacement from

j1, j2, . . . , jN and concatenated to reconstruct B boot-

strap pseudo time series as T*b
wb

5 fj*b
1
, j*b

2
, . . . , j*bk g,

where b 5 1, 2, . . . , B. Bootstrap empirical distribution

of MK test statistic S* is obtained from the pseudo

bootstrap time series T*b
wb

and the significance of trend is

finally computed by applying a two-tailed hypothesis test.

If the MK test statistic S of the original time series is

higher than the 97.5th percentile or lower than 2.5th

percentile of the empirical distribution of test statistic S*,

the hypothesis, that there is no trend in the data, is re-

jected. Throughout, for computation of the empirical

distribution of MK test statistic, we set B 5 3000.

APPENDIX C

Quality Metrics

Table C1 shows the used quality metrics in this study:

x̂ML(i) is themaximum likelihood estimate for ith station

day (or year) with standard deviation sML, xG(i) is the

corresponding gauge observation with standard de-

viation sG, Ns is the total number of station days (or

years), and mML and mG are the mean of ML estimates

and gauge observations, respectively. In computation of

the false alarm ratio and critical success index, nH is the

number of hits, nM is the number of misses, and nF is the

number of false alarms. The probability of detection

(POD) value refers to the proportion of correctly

identified number of snowfall occurrences, the false

alarm rate (FAR) refers to the proportion of incorrectly

identified number of snowfall occurrences, and the

critical success index (CSI) penalizes both misses and

false alarms.
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