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Abstract. Forest ecosystem models based on heuristic wa-
ter stress functions poorly predict tropical forest response to
drought partly because they do not capture the diversity of
hydraulic traits (including variation in tree size) observed in
tropical forests. We developed a continuous porous media ap-
proach to modeling plant hydraulics in which all parameters
of the constitutive equations are biologically interpretable
and measurable plant hydraulic traits (e.g., turgor loss point
πtlp, bulk elastic modulus ε, hydraulic capacitanceCft, xylem
hydraulic conductivity ks,max, water potential at 50 % loss
of conductivity for both xylem (P50,x) and stomata (P50,gs),
and the leaf : sapwood area ratio Al : As). We embedded this
plant hydraulics model within a trait forest simulator (TFS)
that models light environments of individual trees and their
upper boundary conditions (transpiration), as well as provid-
ing a means for parameterizing variation in hydraulic traits
among individuals. We synthesized literature and existing
databases to parameterize all hydraulic traits as a function
of stem and leaf traits, including wood density (WD), leaf
mass per area (LMA), and photosynthetic capacity (Amax),
and evaluated the coupled model (called TFS v.1-Hydro) pre-

dictions, against observed diurnal and seasonal variability in
stem and leaf water potential as well as stand-scaled sap flux.

Our hydraulic trait synthesis revealed coordination among
leaf and xylem hydraulic traits and statistically significant
relationships of most hydraulic traits with more easily mea-
sured plant traits. Using the most informative empirical trait–
trait relationships derived from this synthesis, TFS v.1-Hydro
successfully captured individual variation in leaf and stem
water potential due to increasing tree size and light envi-
ronment, with model representation of hydraulic architec-
ture and plant traits exerting primary and secondary controls,
respectively, on the fidelity of model predictions. The plant
hydraulics model made substantial improvements to simula-
tions of total ecosystem transpiration. Remaining uncertain-
ties and limitations of the trait paradigm for plant hydraulics
modeling are highlighted.
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1 Introduction

Tropical forests harbor great biodiversity (Myers et al., 2000;
ter Steege et al., 2013) and play an important role in regu-
lating regional and global climate (Gash and Nobre, 1997;
Silva Dias et al., 2002). However, climate change is inducing
changes to the hydrological regime of tropical forests (Feng
et al., 2013; Fu et al., 2013; Gloor et al., 2013), with some
consensus for a projected increase in drought frequency over
the coming century via an intensification of precipitation sea-
sonality (Joetzjer et al., 2013; Boisier et al., 2015), an in-
crease in El Niño events (Cai et al., 2014), and chronically
rising atmospheric moisture demand (McDowell and Allen,
2015), even as the directional change of total precipitation re-
mains highly uncertain (Solomon, 2007). Therefore, because
of their intrinsic value and strong coupling to the regional and
global climate system, it is of paramount importance to have
a predictive capability of tropical forest response to changes
in water availability (Kumagai and Porporato, 2012; Oliveira
et al., 2014; Meir et al., 2015).

Evaluations of many coarse-scale forest ecosystem models
in the species-rich tropics indicate a poor predictive ability of
these models to simulate tropical forest response to drought
(Galbraith et al., 2010; Powell et al., 2013; Joetzjer et al.,
2014; Rowland et al., 2015b). While most of these models
treat soil water fluxes mechanistically, soil–root and internal
plant water fluxes are not mechanistically modeled; conse-
quently, dynamic changes in plant moisture stress in these
models are driven by changes in soil water status alone (dis-
cussed in Feddes et al., 1978; Egea et al., 2011; Xu et al.,
2013; Verhoef and Egea, 2014). Additionally, water stress in
many models includes relatively few plant functional type
(PFT)-dependent parameters; thus, models are largely igno-
rant of plant traits that may control response to moisture.
In contrast, a mechanistic treatment of plant hydraulics al-
lows water stress to be driven by changes in leaf water status
(Sperry and Love, 2015). Coupled with site-specific parame-
terization, the plant hydraulics approach enables high-fidelity
simulation of tropical forest response to moisture (Fisher et
al., 2006, 2007).

While a range of approaches exist for modeling plant hy-
draulics at fine scales (i.e., individual trees), all involve an ex-
tension of Darcy’s law (Darcy, 1856) from the soil domain to
include plants as well. Darcy’s law states that water flux any-
where in the soil–plant continuum is proportional to the prod-
uct of soil or plant hydraulic conductivity and a gradient in
water potential. In order for these models to capture drought
response, hydraulic conductivity within the soil–plant con-
tinuum must dynamically respond to changes in moisture.
Three main approaches are distinguished in terms of how
they represent the impact of declines in water potential on
tissue water content and xylem hydraulic conductivity. A first
class of models is the simplest and simulates moisture sensi-
tivity of soil–root conductance but not xylem hydraulic con-
ductance (Jarvis et al., 1981; Williams et al., 1996; Ogée et

al., 2003; Alton et al., 2009; Bonan et al., 2014). This ap-
proach has proven useful for modeling the effects experimen-
tal drought in tropical forests (Williams et al., 1998; Fisher et
al., 2006, 2007), but it remains unclear whether this approach
misattributes drought effects occurring within trees to the
soil; therefore, a second class of models implements variable
xylem conductivity with xylem water potential (Williams et
al., 2001; Hickler et al., 2006; Domec et al., 2012; Duursma
and Medlyn, 2012; Xu et al., 2016). To simplify computa-
tional load, these two approaches do not explicitly track dy-
namic changes in the volume of plant water storage. Instead,
a constant ratio of change in stored water per unit change in
water potential, or stem hydraulic capacitance, is assumed,
which may overestimate the buffering capacity of tree-stored
water under extreme drought conditions when small relative
declines in stored water induce very large declines in water
potential. An additional consequence of the design of these
models is the inability to represent the bidirectional flow of
water at the root–soil interface. Reverse flow of water from
roots into soil is an important process in root hydraulic dis-
tribution (Oliveira et al., 2005), and may also mediate time
to desiccation under drought (North and Nobel, 1997).

A convenient way to address these issues is in a third
class of models (hereafter the “continuous porous media ap-
proach”), which simply extend the modeled mass balance of
water from the soil domain into the plant by relating sim-
ulated changes in water content to water potential (and vice
versa) everywhere within the plant–soil continuum (Edwards
et al., 1986; Arbogast et al., 1993; Sperry et al., 1998; Kuma-
gai, 2001; Bohrer et al., 2005; Mackay et al., 2015; Mirfend-
eresgi et al., 2016). While more computationally complex,
the continuous porous media approach offers two main ad-
vantages in addition to addressing the issue of plant water
storage and bidirectional root flow. First, the coupled plant–
soil system is represented by a single mass balance equation,
such that root water uptake or loss simply emerges from the
solution of this equation, and does not need to be ascribed
post hoc as is the case in the first two approaches. Second,
this approach relies on an explicit description of the rela-
tionship between water content and water potential in plant
xylem (the pressure–volume, or PV curve), analogous to the
water retention curves used in soil physics. As we will show,
there is a wealth of information on PV hydraulic traits for
leaves and, to a lesser degree, stems in tropical forests. Im-
plementing PV curves in the model greatly increases the
scope of data with which the model can be parameterized.
In this paper, we develop a continuous porous media ap-
proach intended for application at specific sites in the tropics
to explore dynamics of water fluxes from hourly to seasonal
timescales and at spatial scales ranging from individual trees
to the stand-level scale. This intermediate-scale approach is
a model test bed meant to inform implementations of plant
hydraulics in coarse-scale forest ecosystem models.

Model parameterization leads us to the challenge of how to
represent variation in plant hydraulic traits governing mois-
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ture sensitivity and water transport capacity. It has long
been recognized that the functional trait diversity of tropi-
cal forests mirrors their large species diversity (Corner, 1949;
Hallé et al., 1978; Leigh, 1999), and diversity in plant hy-
draulic traits such as the water potential at turgor loss (πtlp)

and at 50 % loss of conductivity (P50), xylem-specific hy-
draulic conductivity (ks,max), and the leaf-to-sapwood area
ratio (Al : As) is no exception (Borchert, 1994; Tobin et al.,
1999; Lopez et al., 2005; Meinzer et al., 2008a; Zhu et al.,
2013). Interspecific variation in these traits is thought to me-
diate species differences in survival in both natural and ex-
perimentally induced droughts (Nakagawa et al., 2000; En-
gelbrecht and Kursar, 2003; Kursar et al., 2009; Moser et
al., 2014; Meir et al., 2015). Differential drought sensitivity,
in turn, is known to explicitly link to species distributions
(Choat et al., 2007; Engelbrecht et al., 2007; Baltzer et al.,
2008; Condit et al., 2013). Mechanistic plant hydraulics also
allows for diversity in tree height, already included in size-
structured forest ecosystem models, to act as a hydraulic trait
because it influences the path length over which water must
traverse to reach the canopy. Larger trees often demonstrate
significantly higher vulnerability to drought (Nakagawa et
al., 2000; Nepstad et al., 2007; da Costa et al., 2010; Row-
land et al., 2015a), a trend demonstrated to be pantropical in
scope (Phillips et al., 2010; Bennett et al., 2015). Such a trend
highlights that the increasing hydraulic path length associ-
ated with tall trees (and perhaps increased radiation loads) is
an equally important determinant of drought sensitivity (Mc-
Dowell and Allen, 2015).

The implication for ecosystem models is that under-
representation of diversity in functional traits and tree size
in tropical forests is undermining efforts to make accurate
projections of tropical forest response to climate. Model pa-
rameterization of hydraulic trait diversity should thus pro-
vide much-needed model capability to represent a diversity
of responses to changes in moisture availability, laying the
groundwork for representing trait-mediated differences in
survival and subsequent shifts in forest trait composition.
Shifts in trait composition are already occurring in some
tropical forests (e.g., Enquist and Enquist, 2011; van der
Sande et al., 2016), and such shifts (or the diversity of traits
alone) have been shown to buffer ecosystems in the face of
environmental change, and in some cases, are the difference
between predicted complete loss of forest and forest persis-
tence (Fauset et al., 2012; Levine et al., 2016; Sakschewski
et al., 2016).

Because a complete representation of trait diversity in
models is neither tractable nor desired, the challenge is to
identify and represent the dominant dimensions of trait vari-
ation within our plant hydraulics model. To date, syntheses
of hydraulic traits have typically focused on a limited set of
traits in isolation (Bartlett et al., 2012; Choat et al., 2012;
Nardini et al., 2014; Anderegg, 2015); also see Mencuccini
et al. (2015). In contrast, here we synthesize how a large
suite of hydraulic traits represented in our model vary with

better quantified dimensions of plant functional trait varia-
tion, such as the leaf (Wright et al., 2004) and stem (Chave et
al., 2009) economics spectra. We make no a priori assump-
tions about the coordination (or lack thereof) between leaf
and stem economics, given the conflicting evidence (Baraloto
et al., 2010; Mendez-Alonzo et al., 2012; Reich, 2014). In
addition, we assess the evidence for trade-offs and coordi-
nation among hydraulic traits, independent of leaf and stem
economic traits.

In what follows, we first describe the continuous porous
media hydraulics module that simulates the fast-timescale
(hourly) processes of tree water flux and water potential gra-
dients throughout the soil–plant continuum. Second, via a
pantropical synthesis of hydraulic traits, we derive empir-
ical relationships for parameterizing hydraulic trait varia-
tion in the plant hydraulics model. Third, we demonstrate
the model’s capability to simulate different individual-level
functional responses to environmental variation (either water
or light), arising from hydraulic limitations imposed by tree
size or hydraulic traits. Finally, we evaluate the new model in
terms of its ability to capture diurnal dynamics of water po-
tential, individual-level variation in leaf water status, and the
observed seasonal dynamics of ecosystem-level water use.

2 Model description: plant hydraulics and host

individual trait-driven forest models

The plant hydraulics model developed here is integrated into
a “host” individual tree trait-driven forest model (trait for-
est simulator, TFS). A TFS simulates every tree in a stand
> 10 cm diameter at breast height (DBH) driven by plot ob-
servations of the tree size distribution, and each tree can pos-
sess a unique set of values of the four functional traits: wood
density (WD), leaf mass per area (LMA), leaf nitrogen (NL),
and leaf phosphorus (PL). The modification of transpiration
fluxes in TFS by the plant hydraulics module can be summa-
rized as follows (see Fig. 1): the hydraulics module passes
to TFS a nondimensional multiplier (fraction of maximum
conductance, FMCgs) (0,1] for each tree, which is based on
each tree’s leaf water potential at the previous time step. TFS
uses FMCgs within its biophysics calculations to estimate
transpiration fluxes for each tree at the current time step,
and the transpiration of each tree is passed back to the hy-
draulics model, which computes changes in water potential
and water content throughout the soil–plant continuum (in-
cluding root water uptake or loss) due to transpiration. The
plant hydraulics module also assigns hydraulic traits based
on each tree’s size and pre-assigned plant functional traits.
Below we describe the components of the plant hydraulics
model (Sect. 2.1), and at the end of each subsection highlight
the key hydraulic traits for which we seek to understand trait
trade-offs and coordination via our empirical synthesis. Sec-
tion 2.2 gives a description of the host TFS model. The Sup-
plement S1 gives a full technical description of the hydraulics
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Figure 1. Overview of TFS v.1-Hydro model. Left panel: inputs are plot observations of the tree size distribution and distributions of each of
four plant functional traits (WD, LMA, NL, PL). Middle bottom: the perfect plasticity approximation (PPA) orders trees by decreasing crown
area. Middle top: TFS assigns physiological traits, such as Vc,max, to each tree based on functional traits. Middle: the PPA is used to estimate
light environments of each tree, which influence fast-timescale (hourly) biophysics of crown light interception, photosynthesis, and stomatal
conductance. Assimilated carbon is allocated to leaves, stems, and fine roots daily. Top right (hydrodynamics): soil–root–stem–canopy water
fluxes interact with fast-timescale TFS biophysics by taking transpiration as a boundary condition and passing back the fraction of maximum
conductance (FMCgs) for downregulating the next time step’s stomatal conductance based on leaf water potential. Top right (size and trait
scaling): hydraulic traits in leaves, stem, and roots are assigned based on each tree’s height and trait values according to empirical equations
and allometric theory described in this paper. Bottom right: TFS predicts a distribution of individual tree net primary productivities. See
Supplement Fig. S1.1 for the structure of the plant hydraulics model.

module as it is implemented within TFS, and Fig. S1.1 in the
Supplement can be referred to as the schematic of our hy-
draulics module.

2.1 Plant hydraulics model

2.1.1 Overview

In this section we highlight the important developments we
made to the model developed by Sperry et al. (1998; here-
after S98). S98 consists of a discretization of the soil–plant
continuum as a series of water storage compartments with
defined heights, volumes, conducting areas, water retention,
and conductivity properties, connected by elements with de-
fined path lengths and conductances. Trees are divided into
the four porous medium types of leaf, stem, transporting root,
and absorbing root, with the stem being divided into a vari-
able number of compartments and all other types consisting
of a single compartment (Fig. S1.1). The soil is radially dis-
cretized with a variable number of compartments, or cylindri-
cal “shells” around a characteristic absorbing root (the rhizo-
sphere), and soil hydraulic properties are assumed constant

across these compartments and across trees within a given
soil type. The present TFS v.1-Hydro scheme does not con-
sider the vertical distribution of soil water or roots. We an-
ticipate this to be a key component for future model develop-
ment when we incorporate this scheme into host models with
variable soil depths.

The fast-timescale dynamics of the hydraulics model is
governed by three sets of constitutive relationships: (1) the
relationship between water potential and water content,
(2) the relationship between hydraulic conductivity and wa-
ter potential, and (3) the relationship between a stomatal
water stress multiplier and leaf water potential. The first
two relations are applied to every compartment within the
plant–soil continuum and have specific equations for plant
and soil porous media types. The soil constitutive equa-
tions for the first two relations are given by, respectively, the
van Genuchten (1980) and Mualem (1976) formulations. We
chose these particular equations for the soil water character-
istic and unsaturated hydraulic conductivity because exten-
sive work has parameterized these formulations on tropical
soils, which have been noted to have distinct hydraulic prop-
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erties when compared to temperate soils of similar texture
(Tomasella and Hodnett, 2002). These equations are given
in Sect. 3.1.2 and 3.2.2 of Supplement S1. The plant con-
stitutive equations for the first two relations are formulated
and described in Sect. 2.1.2 and 2.1.3 below. The third re-
lation for stomatal response to moisture stress is described
in Sect. 2.1.5. All parameters of the constitutive relations
for plant tissue are biologically interpretable and measurable
plant hydraulic traits.

Several linkages are made between tree allometry and hy-
draulic properties (see Supplement S1 Sect. 4). Leaf, stem,
transporting root, and absorbing root water storage compart-
ment volumes derive respectively from the TFS-predicted
leaf, stem, coarse-root, and fine-root biomasses using char-
acteristic tissue densities. The heights of these components
derived from tree height and rooting depth. The character-
istic soil volume over which root uptake occurs is given by
half the distance between absorbing roots, which decreases
as total community root length (summed across all trees) in-
creases. Total hydraulic conductance between adjacent plant
water storage compartments is scaled from xylem hydraulic
conductivity using first principles and plant allometric theory
(Sect. 2.1.4). The model code only initializes these allomet-
rically dependent hydraulic properties; it does not (yet) im-
plement functions to update them as trees grow. Neglecting
the effects of growth has negligible effects on the results pre-
sented in this paper but will be necessary for application of
the model at timescales longer than 1 year.

The numerical solution (see Supplement S1 Sect. 5) op-
erates at every time step (hourly) and updates water con-
tents and potentials throughout the plant–soil continuum (in-
cluding root uptake or loss) due to transpiration. It uses a
first-order Taylor series expansion of the water content term
to linearize the Richards mass balance equation describing
the one-dimensional continuous array of plant and soil com-
partments. This results in a tridiagonal matrix that is solv-
able without iteration. Following the approach of Siqueira
et al. (2008), infiltration and drainage are treated sepa-
rately from the plant–soil fluxes due to transpiration (Sup-
plement S1 Sect. 6).

2.1.2 Tissue water relations

We used PV theory (Tyree and Hammel, 1972; Tyree and
Yang, 1990; Bartlett et al., 2012) to describe the constitutive
relation between total water potential (ψtot, MPa) and rela-
tive water content (RWC; g H2O g−1 H2O at saturation) in
the plant compartments (Eq. 1). ψtot is the sum of two com-
ponents: solute potential ψsol (MPa) which is negative due
to the presence of solutes in living cells, and pressure poten-
tial ψp (MPa) which is ≥ 0 due to cell wall turgor (but see
Ding et al., 2014). PV theory is usually applied to leaves, but
can also apply to sapwood (Chapotin et al., 2006; Scholz et
al., 2007; Meinzer et al., 2008b); thus, we apply it here to all
plant tissue. Sapwood also stores capillary water (Tyree and

Yang, 1990) in its void spaces and embolized conduits. Con-
sequently, this relation is described by three successive dehy-
dration phases representing capillary water (sapwood only),
elastic cell drainage (positive turgor), and continued drainage
after cells have lost turgor:

ψtot =

{

ψ0 −mcap(1 − RWC) RWCft ≤ RWC ≤ 1
ψsol(RWC)+ψp(RWC) RWCtip ≤ RWC ≤ RWCft
ψsol(RWC) RWCr ≤ RWC ≤ RWCtip

. (1)

The first phase (capillary water) is assumed linear, character-
ized by a slope (mcap) and a saturated water potential (ψ0).
The second elastic drainage phase has both solute (ψsol)

and pressure (ψp) potential changing from the relative wa-
ter content at which elastic drainage begins (RWCft) up to
the turgor loss point (RWCtlp and corresponding ψ = πtlp),
where ψp = 0. In the final post-turgor loss phase, symplas-
tic (cell water) and xylem water from embolized conduits
are expressed up to the point at which ψtot approaches −∞

(RWCr). RWCr is often referred to as the apoplastic fraction
(Bartlett et al., 2012), but in light of the considerable amount
of water released when vessels embolize in stems (Tyree et
al., 1991; Holtta et al., 2009), RWCr is best termed the resid-
ual fraction. Leaf PV curves as traditionally interpreted are
a special case of Eq. (1) in which there is no capillary water
(RWCft = 1). ψsol and ψp are respectively given by

ψsol(RWC)= ψsol(RWC∗)=
−|πo|

RWC∗
, (2)

ψp(RWC)= ψp(R
∗)= |πo| − εR

∗, (3)

where πo (MPa) and ε (MPa) are osmotic potential
at full turgor and bulk elastic modulus, respectively,
and RWC∗ = (RWC − RWCr)/(RWCft − RWCr) and R∗ =

(RWCft − RWC)/(RWCft − RWCr) are transformations rep-
resenting RWC and R (relative water deficit; 1 − RWC) of
symplastic (cell) water only (Bartlett et al., 2012). The ab-
solute mass (W ; kg) of water in tissue is given by W =

ρwθsatRWC, where θsat (m3 m−3) is the maximum wa-
ter content on a per volume basis (or porosity) and ρw
(kg m−3) is the density of water. The constitutive equa-
tions used in the model are, in terms of volumetric water
content (θ ; m3 H2O m−3 plant tissue), achievable by using
the transformations given above (see Supplement S1). Vol-
umetric capacitance (C; kg m−3 MPa−1) is defined at any
point along the three regions as (ρwθsat

dRWC
dψ ), which for

sapwood is the highest in the capillary region (∼ 200–
400 kg m−3 MPa−1), intermediate in the elastic region (20–
200 kg m−3 MPa−1) (Tyree and Yang, 1990), and, after an
initial increase beyond the turgor loss point, in theory will
approach zero as RWC → RWCr. Henceforth and in all fig-
ures, we report C at full turgor (Cft), defined as the change
in water mass per unit volume per unit change in wa-
ter potential over the region where cell turgor (ψp)≥ 0
(

Cft ≡ ρwθsat
1RWC
1ψ

∣

∣

∣

RWC=RWCtlp

RWC=1

)

. For these hydraulic traits

and all others which follow, we denote specific reference to
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leaf and xylem (sapwood) tissue with the subscripts l and x,
respectively. Key hydraulic PV traits which we seek to deter-
mine as functions of more commonly measured plant traits
are ε, πo, RWCtlp, Cft, and RWCr.

2.1.3 Embolism vulnerability

We use the inverse polynomial of Manzoni et al. (2013a) for
the xylem vulnerability curve, termed here the “fraction of
maximum conductivity” for xylem (FMCx):

FMCx (ψx)=

[

1 +

(

ψx

P50,x

)ax
]−1

, (4)

where P50,x is the water potential at which 50 % of maxi-
mum conductance is lost and ax is a shape parameter (unit-
less). FMCx is defined at compartment nodes and is a nondi-
mensional multiplier bounded on (0,1] limiting the maxi-
mum xylem conductance (Kmax,i ; kg s−1 MPa−1; FMCx = 1
and 0 indicate no and complete xylem embolism) between
any two compartments i and i+ 1. Section 1 of the Sup-
plement outlines how FMCx, defined at compartment nodes,
limits Kmax,i , which is defined at compartment boundaries.
Critically, Kmax,i derives from plant hydraulic architecture
and maximum xylem-specific conductivity (ks,max,x). Be-
cause ks,max,x relates to the maximum rate at which water
can be transported through the xylem, and P50,x quantifies
the xylem water potential at which half of this transport ca-
pacity is lost, these can be thought as representing xylem ef-
ficiency and safety, respectively. “Safety” refers to a prop-
erty of the xylem alone and is not to be confused with the
hydraulic safety margin (HSM), which is field-observed or
modeled minimum leaf water potential relative to P50,x. As
with PV traits, we seek to determine to what extent xylem
efficiency and safety covary with other plant traits and trade
off with each other.

2.1.4 Scaling conductance with tree size

Tree size exhibits a first-order control over much of the
variation in whole-plant hydraulic conductance (Sperry et
al., 2008) since hydraulic path length increases with tree
height (H) (Mencuccini, 2002). For this reason, whole-
plant conductance is not a constant parameter in our
model. Rather, first principles dictate that, to a first approx-
imation, whole-tree maximum aboveground conductance
(Kmax,tree,ag; kg s−1 MPa−1) may be derived as a function of
xylem conductivity (ks,max,x; kg m−1 s−1 MPa−1), sapwood
area (As; m−2), and H (m) as

Kmax,tree,ag =
ks,max,xAs

H
. (5)

This relation predicts the negative effects ofH (increasingH
means decreasing Kmax,tree,ag). Whole-tree conductance per
unit leaf area (Kl,max,tree,ag) will determine water status at the
level of individual leaves, and thus hydraulic constraints on

leaf-level gas exchange. Dividing through by leaf area (Al;
m2) gives

Kl,max,tree,ag =
ks,max,xAs

HAl
. (6)

In this relation, the leaf : sapwood area ratio (Al : As)

emerges as a key plant trait controlling Kl,max,tree,ag. If Al :

As decreases with tree height, as has been documented in
many tree species (McDowell et al., 2002; also see Calvo-
Alvarado et al., 2008), the negative effects of height can be
partially overcome. In addition, the near-universal tendency
for xylem conduits to decrease in diameter within trees from
trunk base to stem tips (Mencuccini et al., 2007; Meinzer
et al., 2010; Petit and Anfodillo, 2011; Olson and Rosell,
2013; Olson et al., 2014) also mitigates the negative effects
of height according to the Hagen–Poiseuille law. Neglect-
ing the effects of xylem taper may thus overestimate the
negative hydraulic effects of increasing path length in size-
structured forests. Metabolic scaling theory (MST) makes
baseline predictions about the optimal degree of xylem con-
duit taper in trees subject to the constraint of hydraulic safety
(which decreases as conduits get larger) and has been vali-
dated against observations of conduit diameter across trees
of different heights (West et al., 1999; Savage et al., 2010).
We therefore use MST to include the effect of xylem taper on
Kl,max,tree,ag by modifying Eq. (6) to include a xylem taper
term (χtap : notap,ag; unitless) representing the ratio of whole-
plant conductance with taper to that without:

Kl,max,tree,ag =
ks,max,petioleAs

HAl
χtap : notap,ag, (7)

where ks,max,petiole (kg m−1 s−1 MPa−1) is used to reference
Kl,max,tree,ag to MST predictions. χtap : notap,ag is in the range
of 23–50 for trees of heights 10–30 m; thus, the benefit of
xylem taper for increasing total plant conductance itself in-
creases with tree height. χtap : notap is assumed constant across
individuals in this study, but parameterizing variation in Al :

As across species is an outcome of this study. The full de-
tails of this approach in addition to the treatment of the be-
lowground component of tree conductance (Kmax,tree,bg) are
outlined in Sect. 2 of the “Technical description” (Supple-
ment S1).

2.1.5 Hydraulic impacts on stomatal conductance

The fraction of maximum stomatal conductance (FMCgs;
[0,1]), which is updated at every time step and is used
to downregulate non-water stressed stomatal conductance
(sensu Jarvis, 1976), is one of two variables passed from the
hydraulics module to the host model TFS. As in Mencuccini
et al. (2015), the formulation for FMCgs mimics the loss of
xylem conductivity with water potential relation:

gs = gs,max × FMCgs = gs,max

[

1 +

(

ψl

P50,gs

)ags
]−1

, (8)
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where P50,gs and ags, respectively, represent leaf water po-
tential at 50 % stomatal closure and the slope of the curve
at ψl = P50,gs, and gs,max is stomatal conductance in the ab-
sence of water supply limitation and comes from the host
model’s stomatal conductance scheme (for TFS, we used
Medlyn et al., 2011; see Eq. A25 of Fyllas et al., 2014).
The second variable passed from the hydraulics module to
the TFS model describes the derivative of FMCgs with leaf
water content, which is derived from the FMCgs ∼ ψl (Eq. 8)
and leaf pressure–volume (Eqs. 1–3) relations (see Eqs. S34a
and S40 in the Supplement S1 for derivation). This variable
is used as an additional constraint promoting stability within
the numerical solution (see Sect. 5.3 of the Supplement S1
and Supplement S3 Fig. S3.3).

Theory and data suggest that stomata operate in such a way
as to prevent catastrophic xylem embolism (Sperry and Love,
2015); this implies that P50,gs > P50,x, which is supported by
global datasets (Klein, 2014; Manzoni et al., 2013b). We used
a 1 : 1 relationship between P50,gs and the water potential at
20 % loss of xylem hydraulic conductivity (P20,x), a relation-
ship suggested by data from a tropical dry forest (Brodribb
et al., 2003). P20,x is easily derived from P50,x and ax us-
ing Eq. (4). This current approach ignores the continuum in
hydraulic safety (Klein, 2014; Martinez-Vilalta et al., 2014;
Skelton et al., 2015) and future work needs to identify how
such a continuum maps onto other plant traits. ags is derived
from P50,gs using the same relationship derived for ax and
P50,x (Table 2).

2.2 Host model TFS

The TFS (Fyllas et al., 2014) is an individual tree model pa-
rameterized from plot-level observed tree size distribution
and distributions of the four plant traits: WD, LMA, NL, and
PL. These traits are assigned to each individual upon initial-
ization in a way that preserves the underlying observed joint
distribution of all four traits (be it tight or weak coupling
among traits), which are then used to parameterize plant
physiological parameters for each tree in a stand (Fig. 1). WD
in TFS v.1 drives differential rates of stem respiration and
stem C allocation, and LMA, NL, and PL jointly drive differ-
ential rates of leaf light-saturated photosynthesis (photosyn-
thetic capacity, Amax) via parameterization of photosynthetic
parameters Vc,max and Jmax (Domingues et al., 2010), in ad-
dition to respiration and leaf and stem C allocation. The con-
struction of this model was motivated by a need to diagnose
large-scale patterns of productivity and turnover in tropical
forests that, among other drivers, implicate a link to soil fer-
tility and, more proximally, plant traits reflective of fertility
differences (Baker et al., 2004; Fyllas et al., 2009; Patiño et
al., 2012; Quesada et al., 2012; Johnson et al., 2016). Be-
cause measurements of stand-level variation in easily mea-
sured plant traits are much more abundant than compara-
tive measures of hydraulic traits, we sought to parameterize

Table 1. Input tree size and leaf and stem traits used by the TFS
model.

Trait Symbol Units

Tree height H m
Tree diameter at breast height DBH cm
Leaf mass per area LMA g m−2

Leaf nitrogen NL mg g−1

Leaf phosphorus PL mg g−1

Light-saturated photosynthesis rate Amax µmol m−2 s−1

Wood density WD g cm−3

hydraulic trait variation via empirical relationships with the
four TFS traits (see Table 1 and Sect. 3.1 below).

A second key component of TFS is the representation of
stand structure and hence individual-level variation in tree
crown light environments, which is an additional key deter-
minant of ecosystem productivity (Stark et al., 2012) and,
as we will show, individual-level variation in tree hydraulic
function and limitation. To estimate the light environment
for each tree, TFS uses the perfect plasticity approximation
(PPA) of Purves et al. (2007) and Strigul et al. (2008), up-
dated to represent multiple canopy layers typical of tropical
forests (Bohlmann and Pacala, 2012) as well as basic gap dy-
namics that allow for a fraction of small trees to receive full
sunlight (Fauset et al., unpublished manuscript).

In conclusion, TFS couples individual-level variation in
plant traits and light environments with a full canopy bio-
physics scheme for estimating photosynthesis and transpi-
ration for each tree > 10 cm DBH in a stand. Transpiration
is the necessary boundary condition for our new plant hy-
draulics module (Fig. 1). For further details on TFS bio-
physics, size structure, trait parameterization, and light com-
petition, see Fyllas et al. (2014) and references therein.

3 Methods

3.1 Hydraulic trait synthesis for parameterization of

plant hydraulics model

We synthesized the literature and existing trait databases and
asked whether hydraulic traits associated with PV curves in
leaves (πo,l, εl, RWCtlp,l, and RWCr,l) and sapwood (πo,x,
εx, RWCtlp,x, and RWCr,x), xylem conductivity per unit sap-
wood area (ks,max,x) or per unit leaf area (kl,max,x), xylem re-
sistance to embolism (P50,x), and associated shape parameter
(ax) as well as hydraulic architecture (Al : As) were coordi-
nated with the leaf and stem traits employed as input by the
TFS model. All statistical analyses were carried out within
the R language (R Core Team, 2015).

For leaf PV traits and LMA, we started with the Bartlett
et al. (2012) database subset for tropical ecosystems (111 in-
dividuals across 14 studies) and added substantial additional
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Table 2. Hydraulic traits used by the model. Resultant empirical “ecotransfer” function which estimates hydraulic traits as a function of input
traits and its corresponding source.

Parameter Symbol Units Empirical ecotransfer function Source

Leaf-saturated water
content

θs,l m3 m−3 −2.32×104/LMA+782
ρw

(

1
−0.21ln

(

104/LMA
)

+1.43
− 1

)

Stewart et al. (1990),
L. Rowland and
B. Christoffersen
(unpublished data)

Leaf osmotic poten-
tial at full turgor

πo,l MPa −0.04 − 1.51WD − 0.0067LMA This study

Leaf osmotic poten-
tial at turgor loss

πtlp,l MPa
εxπo,l
εx+πo,l

Bartlett et al. (2012)

Leaf bulk elastic
modulus

εl MPa 2.5 + 37.5
1+e−8.0WD+5.7 This study

Leaf relative water
content at turgor loss

RWCtlp,l – (πo,l(1−RWCr,l)+εl)
εl

Bartlett et al. (2012)

Leaf residual fraction RWCr,l – 0.01εl + 0.17 This study

Leaf capacitance
over RWC1 = 1 to
RWCtlp,1

Cft,l g H2O g−1

dry weight
MPa−1

ρwθs,l(1−RWCr,l)(εl+πo,l)
ε2

l
Bartlett et al. (2012)

Sapwood-saturated
water content

θs,x m3 m−3 1 − WD
1.54 Siau (1984)

Sapwood RWC at
which capillary
reserves exhausted

RWCft,x – 1 − 0.72
(

1 − RWCtlp,x
)

This study

Fraction of 1 − rf,2
that is capillary in
source

fcap – 0.07 This study

Sapwood osmotic
potential at full turgor

πo,x MPa 0.52 − 4.16 × WD This study

Sapwood osmotic
potential at turgor loss

πtlp,x MPa εxπo,x
εx+πo,x

Bartlett et al. (2012)

Sapwood bulk elastic
modulus

εx MPa
√

1.02e8.5WD − 2.89 This study

Sapwood RWC at
turgor loss

RWCtlp,x – 1 −
(1−0.75×WD)
(2.74+2.01×WD) This study

Sapwood residual
fraction

RWCr,x –
εx

(

1−fcap−RWCtlp,x
)

πo,x
(

1−fcap
) + 1 − εxfcap This study

Sapwood capacitance
over RWC1 = 1 to
RWCtlp,1

Cft,x kg m−3

MPa−1

ρwθs,x(1−RWCr,x)(εx+πo,x)
(

πo,x
(

1−fcap
)

−εxfcap
)

πo,xε2
x

This study

Xylem water potential
at 50 % loss of
conductivity

P50,x MPa −(3.57WD)1.73 − 1.09 This study

Slope of xylem vul-
nerability curve at
P50

ax MPa−1 ×

100
54.4

(

−P50,x
)−1.17 This study
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Table 2. Continued.

Parameter Symbol Units Empirical “ecotransfer” function Source

Maximum xylem
conductivity per unit
leaf area

kl,max,x kg m−1

s−1 MPa−1
0.0021e−26.6WD/Amax This study

Maximum xylem
conductivity per unit
sapwood area

ks,max,x kg m−1

s−1 MPa−1

kl,max,x
AlAs

This study

Leaf to sapwood area
ratio

Al : As m2 cm−2 546LMA−2.14H This study

Leaf- to fine-root
absorbing surface area
ratio

Al : Ar m2 m−2 1 This study

data (44 individuals across 12 studies) through further lit-
erature review, and joined to this dataset species-averaged
values of wood density using the Global Wood Density
Database (Chave et al., 2009; Zanne et al., 2009). For sap-
wood PV traits, we generated our own database (33 speci-
mens across 9 studies) by digitizing data points of RWCx vs.
ψx conducted on trunk or branch tissue from published fig-
ures using WebPlotDigitizer (Rohatgi, 2014), and fit curves
to these plots following established methods for extracting
PV parameters (Tyree and Hammel, 1972; Sack and Pasquet-
Kok, 2011; Bartlett et al., 2012). We found significant differ-
ences in the shape of curve and magnitude of capacitance
for sapwood PV curves conducted on small trunk cores vs.
cut whole terminal branches, with trunk cores yielding ca-
pacitance 2–10 times that of branches, suggesting substantial
artifact-associated measurements conducted on trunk cores,
an issue recently highlighted by Wolfe and Kursar (2015).
Using measurements made on the same species using both
methods, we developed a correction procedure and applied
it to data suffering this bias (Christoffersen, unpublished
manuscript), and provide versions of figures without the cor-
rection applied in the Supplement S2.

For analyzing relations between xylem efficiency and
safety and other traits, we started with the Xylem Func-
tional Traits (XFT) database (Choat et al., 2012; Gleason
et al., 2016), subset to tropical regions and added data from
15 additional species not originally present (Mendez-Alonzo
et al., 2012). We then evaluated the hypothesis that varia-
tion in hydraulic transport is explained by WD by priori-
tizing WD reported in the original publications and adding
species-averaged WD data from Zanne et al. (2009) where
it was unreported. We also evaluated the hypothesis that
rates of hydraulic transport coordinate with leaf-level rates
of gas exchange. Because the objective of this paper is to
derive hydraulic traits from other non-hydraulic plant traits,
we explored the relationship of ks,max,x regressed on the
light-saturated photosynthesis rate (Amax), even though the

causality of the relationship could be interpreted in reverse.
There is substantial debate surrounding appropriate methods
for determining embolism vulnerability (Choat et al., 2010;
Cochard et al., 2010; Sperry et al., 2012; Wang et al., 2014)
(see Brodribb et al., 2016 for a brief summary). Because
there is some consensus that the “gold standard” for P50,x
measurements involves bench dehydration (DH) on long-
stem segments (Jansen et al., 2015), we explored trait rela-
tionships with and without other measurement methods for
P50,x.

For hydraulic architecture, we used the only study of
which we were aware for tropical trees (Calvo-Alvarado et
al., 2008), which reports independent measurements of indi-
vidual total tree leaf area and sapwood area across a wide
range of tree sizes to explore the relationship of Al : As with
tree height as well as with LMA, and verified the latter rela-
tionship using a much broader dataset of branch-level mea-
surements of Al : As conducted across the Amazon basin
(Patiño et al., 2012). Via literature survey, we also compiled
an independent, extensive dataset of As as it varied with tree
DBH (cm) in tropical forests.

Finally, we standardized the representation of the “biome”
category across all databases, and defined the following cat-
egories based on the location of the study (not the species’
home range): tropical flooded forest (if identified as such in
original publication), tropical wet forest (no months where
evaporative demand exceeds precipitation), tropical moist
forest (at least 1 month where evaporative demand exceeds
precipitation; predominantly evergreen), tropical dry forest
(drought-deciduous phenologies make up a substantial frac-
tion of species), tropical savanna (identified as such in orig-
inal publication), subtropical forest (absolute latitude ex-
ceeded 23◦), tropical mangrove, and greenhouse. Synthe-
ses of traits were limited to studies conducted on species
growing in native (non-greenhouse) environments in tropi-
cal (thus excluding subtropical observations) upland (non-
flooded) habitats. In some cases, it was also necessary to
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match hydraulic traits for the same species given as multiple
(different) records within a database. As a rule, however, we
did not average to the species level, and thus some variation
included in regressions is intraspecific, albeit small.

3.2 Model setup

We used Princeton downscaled meteorological forcing data
(Sheffield et al., 2006), observed soil textural properties, and
observed tree size and trait distributions (for WD, LMA,
NL, and PL) in the Caxiuana National Forest of east-central
Brazilian Amazonia, a seasonal evergreen forest receiving
2100–2500 mm of rainfall annually (Meir et al., 2008; da
Costa et al., 2010; Meir et al., 2015; Rowland et al., 2015a,
c), to parameterize and run our model for 1 year. Spin-up was
not necessary, as the model was initialized from plot obser-
vations as described above, and an initial soil moisture was
chosen typical of wet season conditions, which is when the
model period began. While actual soil depth at the site is
∼ 10 m, we set soil depth in simulations to 4 m, which re-
flects the effective depth over which the majority of water
extraction occurs, based on previous model validation with
soil moisture data (Fisher et al., 2007). This setup applied to
all model simulations in this paper – both the model experi-
ments and the simulations for comparison with field data.

3.3 Model experiments

We conducted two sets of model experiments designed to
explore the impacts of the new plant hydraulics scheme on
simulated tree transpiration. In both cases, the TFS model
was run with (TFS v.1-Hydro) and without (TFS v.1) the
new plant hydraulics scheme. In the first experiment, all trees
were assigned identical trait values using plot-mean values
of WD, LMA, NL, and PL. Plant hydraulic traits were identi-
cal across individuals in TFS v.1-Hydro. Having eliminated
plant hydraulic traits as a source of variation among simu-
lated tree transpiration, we used this model experiment to ex-
plore the impact of plant hydraulics on transpiration dynam-
ics as a function of tree height and canopy position. To ex-
plore the consequence of trait variation independent of height
and canopy position, our second experiment set varied a sin-
gle trait (PL, WD, or LMA), by resampling the observed plot
trait distributions of these traits following the algorithm of
Taylor and Thompson (1986) (see Fyllas et al., 2014 for a
full description of this resampling method as implemented in
TFS), keeping all other traits at the plot-mean value. We then
explored the dynamics of transpiration, for canopy trees (full
sunlight) only, of three large (50–55 cm DBH) trees span-
ning the range of assigned trait values. In both model ex-
periments, we examined the simulated mean diurnal cycle of
transpiration characteristic of the wet and dry season, defined
as months where monthly precipitation exceeded or fell be-
low 100 mm, respectively. Months at season boundaries were
excluded to maximize seasonal differences.

3.4 Model evaluation

Separate from and in addition to the model experiments, we
performed three sets of model evaluation that assessed the
model’s ability to capture observed variations in transpira-
tion and water potential at the individual tree level and the
stand level. In the first evaluation set, we evaluated diurnal
cycles of leaf and stem water potential across multiple indi-
vidual trees spanning a wide range of sizes and canopy posi-
tions, which were also subject to seasonal differences in light
and water availability. In this set, all individual trees pos-
sessed identical (plot-mean) trait values. We matched sim-
ulated trees to those measured by Fisher et al. (2006) on the
basis of size (see Table 3) across replicate days in the month
matching the month in which observations were made (May
for wet season, November for dry season), taking the stan-
dard error of the mean as the model error. A total of four
individual tree comparisons were made.

The second evaluation set was similar to the first, except
we focused on midday simulated leaf water potentials. We
conducted four distinct sets of model simulations in which
we explored how successive changes to model parameteriza-
tion impacted model fidelity with the observations. The first
model simulation assigned trees identical trait values, equal
to the plot mean, and made no accounting of xylem conduit
taper (following Eq. 6). The second model simulation was
like the first, except this time accounting for xylem conduit
taper (following Eq. 7). The third simulation was like the sec-
ond but adjusted the canopy position of two of the simulated
individuals. The fourth simulation was like the third but ad-
justed the stomatal sensitivity parameter P50,gs for a single
tree to be less sensitive to leaf water potential by changing
its value from −2.9 to −5.0 MPa.

In the final set, we evaluated seasonal differences in stand-
scaled sap flux. We used model setups in which all individu-
als possessed identical hydraulic traits and where all individ-
uals possessed different traits according to the plot observed
trait distributions in order to assess ecosystem-level conse-
quences of plant trait variation. Each of these setups was run
as TFS v.1 and TFS v.1-Hydro. For comparison with obser-
vations, simulated individual total transpiration (kg s−1) was
summed across individuals, divided by the plot area, and ac-
cumulated for each month of the year. Observed stand-level
transpiration was derived following the methods outlined in
Fisher et al. (2007).

4 Results

4.1 Hydraulic trait synthesis for parameterization of

plant hydraulics model

4.1.1 Hydraulic trait synthesis

All resultant empirical equations concerning traits WD,
LMA, or Amax to hydraulic traits are given in Table 2.
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Figure 2. Tropical synthesis of leaf PV parameters in relation to leaf mass per area (LMA), wood density (WD), or each other. (a, b) Leaf
osmotic potential at full turgor (πo,l) in relation to LMA and WD; (c, d) leaf bulk elastic modulus (εl) in relation to LMA and WD;
(e) residual fraction (RWCr,l) in relation to εl; and (f) capacitance (Cft,l) in relation to LMA (different lines) and WD. LMA and WD values
come first from published values and are supplemented with species-averaged values from GLOPNET (Wright et al., 2004) and the global
wood density database (Zanne et al., 2009). The following asterisk codes denote statistical significance at α levels of 0.05, 0.01, 0.001, and
0.0001, respectively, ∗, ∗∗, ∗∗∗, ∗∗∗∗.

For leaf PV traits (Fig. 2), we found highly significant
(p < 0.0001) but weak negative relationships of πo,l (leaf
osmotic potential at full turgor) with both WD and LMA
(r2 = 0.28 and 0.09, respectively). Because WD and LMA
were not significantly correlated in this dataset (p = 0.48),
we used them as independent predictors of πo,l in multi-
ple regression and were able to explain a higher fraction of
the variance in πo,l (r2 = 0.44; see Table 2). Surprisingly, εl
(leaf bulk elastic modulus) demonstrated no significant rela-
tionship with LMA but was marginally correlated with WD
(p < 0.05; r2 = 0.10; Fig. 2c, d). While we found no signifi-
cant relationship of the residual fraction (RWCr,l) with LMA
or WD, we did find a significant relationship of RWCr,l with
εleaf (r2 = 0.32; p = 0.002; Fig. 2e). These relationships im-
ply that leaf capacitance increased with both decreasing WD
and LMA, which was corroborated by independent datasets
(Fig. 2f).

For bias-corrected sapwood PV traits (Fig. 3), we found
that WD well-represented a single axis of variability along
which πo,x, εx, and Rtlp,x = 1 − RWCtlp,x were organized
(r2 = 0.31 to 0.44), with increasing WD leading to exponen-
tially increasing εx and decreasing πo,x and Rtlp,x. The re-
sult was exponentially declining sapwood capacitance (Cft,x)

with WD (r2 = 0.84; Fig. 3d). The same trends were gen-

erally supported by the uncorrected data (Fig. S2.1), most
importantly for Cft,x.

On the full dataset of P50,x, we found a significant rela-
tionship with WD (p < 0.0001), but the explained variance
was low (r2 = 0.08) due to a large number of high wood den-
sity species with high (less negative) P50,x values. However,
when limiting the dataset to measurements made using the
bench DH, many values of high (less negative) P50,x at in-
termediate to high WD were now excluded (the majority of
which were obtained using the air injection method) and a
stronger negative relationship emerged (r2 = 0.34) (Fig. 4a).
In addition, we found that the slope (ax) of the xylem FMC
curve decreased significantly (p < 0.0001) with increasingly
negative P50,x (Fig. 4b), suggesting that threshold responses
of embolism to increasing xylem tension were more pro-
nounced in individuals with less resistant xylem.

The relationship of xylem efficiency on a leaf area basis
(kl,max,x) with WD, while highly significant (p < 0.0001), ex-
plained only 7 % of the variance (Fig. 5a). However, when
examined in relation to reported values of light-saturated leaf
photosynthesis rates (Amax), a greater fraction of the vari-
ance was explained (r2 = 0.29; p < 0.0001) (Fig. 5b). Be-
cause Amax and WD were uncorrelated (Fig. 5d), we used
them as independent predictors (as Amax/WD) of kl,max,x,
which now explained 42 % of the variance (Fig. 5c). Similar
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Figure 3. Tropical synthesis of sapwood PV parameters and resul-
tant capacitance in relation to wood density (WD). (a) Osmotic po-
tential at full turgor (πo,x), (b) bulk elastic modulus (εx), (c) rela-
tive water deficit at turgor loss (Rtlp,x = 1 − RWCtlp,x), and (d) ca-
pacitance at full turgor (Cft,x). Sapwood PV curves conducted on
trunk cores, and their associated parameters and capacitance are
bias-corrected (see main text). Original data are shown in light gray
in panel (d) and Supplement Fig. S2.1. Color scheme is given in the
legend of panel (d). Asterisk codes for significance are the same as
in Fig. 2.

trends were observed for xylem efficiency on a sapwood area
basis (ks,max,x; Supplement Fig. S2.2).

While the Calvo-Alvarado et al. (2008) study showed no
significant common relationship between Al : As and H or
DBH across all individuals studied, it identified increas-
ing Al : As with H within 4 out of 5 individuals (Fig. 6a).
When we took species-averaged Al : As from the Calvo-
Alvarado (2008) study and plotted the interspecific differ-
ences as a function of species-averaged LMA, the individ-
uals largely fell on the same regression line as that of Patiño
et al. (2012) (Fig. 6b). Therefore, it appears that for tropi-
cal forests leaf-level traits set the range of Al : As by which
variation occurs in response to height and/or light availability
(Fig. 6c).

4.1.2 Plant hydraulics parameterization

Figure 7 shows the parameterization of all components of
the plant hydraulics model (combining Table 2 and plant hy-
draulics model constitutive Eqs. 1–4) as a function of the TFS
model input traits and tree height (H). Figure 7a–c demon-
strate the distribution of leaf PV, sapwood PV, and xylem vul-

nerability curves for a characteristic TFS model simulation in
which each tree is assigned four trait values (WD, LMA, NL,
and PL) according to the observed joint distribution (Tay-
lor and Thompson 1986 resampling algorithm) of these four
traits at the focal field site Caxiuana National Forest, which
are used to parameterize each tree’s constitutive equations
(using Table 2), with each tree plotted as separate lines col-
ored by trait values. This forest is representative of others
in the region (Baraloto et al., 2010), showing decoupled leaf
and stem economics (i.e., lack of any significant correlation
between WD and any of the three leaf traits used as input
for TFS). A consequence of this lack of leaf–stem trait cou-
pling and our formulation of kl,max,x as empirically derived
primarily from leaf traits (Fig. 5) while P50,x derives from
stem traits (Fig. 4a), the model input prescribes only a weak
trade-off between kl,max,x and P50,x (Fig. 7c), which is consis-
tent with the data for this relationship (Fig. 8a). In contrast,
Fig. 7d–f present “idealized” scenarios for a case in which
leaf and stem economics are tightly coupled (specifically, be-
tween WD and LMA or WD and Amax) over a wide range of
input values. In this case, the consequence for the relation-
ship between kl,max,x and P50,x is a perfect trade-off (Fig. 7f).
Finally, we represented the dual dependency of Al : As on
both LMA and tree size (Fig. 6) as an Al : As–H relationship
with an LMA-dependent slope (Fig. 7g). For a prescribed
leaf biomass allometry function (as ∼ DBH2H ; Lescure et
al., 1983), this Al : As formulation predicted LMA as the
driver of differences in sapwood area (As)–DBH allometry,
spanning the range of values given by our independent liter-
ature compilation across many different studies, though this
relationship warrants further validation.

4.1.3 Ability of hydraulics model parameterization to

represent observed trade-offs and coordination

among hydraulic traits

Based on the pantropical xylem functional traits dataset, evi-
dence for a trade-off between xylem efficiency (as ks,max,x)

and safety (P50,x) was insignificant (p = 0.14 on log-
transformed data), which was also the case when limit-
ing the database to the DH method (p = 0.82; Fig. 8a).
However, when limiting the dataset to tropical dry forests
(not savanna), a significant trade-off between xylem effi-
ciency and safety emerged (p < 0.01; r2 = 0.17), which was
even stronger (p < 0.0001; r2 = 0.44) when considering two
tropical dry forest studies (see circled points in Fig. 8a;
Markesteijn et al., 2011a, b; Mendez-Alonzo et al., 2012).
Our plant hydraulics model parameterization is able to cap-
ture both the lack of a safety–efficiency trade-off, which oc-
curs when stem and leaf economics are decoupled (Fig. 7c),
and a strong safety–efficiency trade-off when stem and leaf
economics are tightly coupled (Fig. 7f).

When we paired our sapwood PV data with data on xylem
hydraulic safety, we found that Cft,x (xylem capacitance)
and P50,x demonstrated significant evidence (p = 0.02) for a
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Figure 4. Tropical synthesis of xylem vulnerability. (a) Water potential at 50 % loss of maximum xylem conductivity (P50,x). (b) Slope of
percent loss of conductivity curve at (P50,x) as a function of P50,x: bold open symbols – bench dehydration method for P50 measurement;
light closed symbols – air injection + all other methods (see Sect. 3.1 in main text). Curves are fit through bench dehydration measurements
conducted on field-derived plant material in upland tropical forests and savannas only (colored, bold open symbols). Asterisk codes for
significance are the same as in Fig. 2.

Figure 5. (a–c) Tropical synthesis of maximum xylem conductiv-
ity per unit leaf area (kl,max) in relation to wood density (WD) and
light-saturated photosynthesis rate (Amax). (d) No significant corre-
lation between Amax and WD exists in this dataset, justifying their
use as independent simultaneous predictors of kl,max. Symbols as
in Figs. 2–3. See Supplement Fig. S2.2 for a version of this figure
in terms of ks,max. Asterisk codes for significance are the same as
in Fig. 2.

trade-off in drought avoidance (increasing capacitance) and
drought tolerance (increasingly negative P50,x) (Fig. 8b). The
strength of this relationship became marginally insignificant
(p = 0.05) when considering P50,x values obtained with the
DH method only, but was unaffected by the correction fac-
tor that we applied to the sapwood PV curves, remaining
significant (p = 0.02 and p = 0.01 for all data and DH-
limited data, respectively; Supplement Fig. S2.4). Because
Cft,x and P50,x both derive directly from WD, our plant hy-
draulics model parameterization also follows this avoidance–
tolerance trade-off (cf. thin line Fig. 8b).

Finally, joining of the leaf PV database with the xylem
functional traits database demonstrated significant evidence
in support of coordination between leaf and xylem drought
tolerance, as given by significant relationships between leaf
drought tolerance traits πo,l and associated turgor loss point
πtlp,l with xylem drought tolerance traits P50,x and P88,x,
albeit with R2 values no greater than 0.3 (Fig. 8c–f). This
cross-tissue coordination is also preserved by our model pa-
rameterization, with WD driving most of the variation in this
coordination space and LMA generating residual variation in
leaf drought tolerance (thin lines, Fig. 8c–f).

4.2 Model experiments

4.2.1 Impact of plant hydraulics on size and light

dependency of transpiration

Figure 9 shows how mean ±1 SD diurnal cycles of transpi-
ration change as a function of canopy position and wet/dry
season for both TFS v.1 and TFS v.1-Hydro. The large in-
crease in simulated transpiration in the dry season for both
TFS v.1 and TFS v.1-Hydro (Fig. 9e–f) is driven by the
comparatively large increase in incoming solar radiation, and
hence absorbed radiation, due to a reduction in cloud cover
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Figure 6. Tropical synthesis showing the dual dependency of the leaf : sapwood area ratio (Al : As) on both leaf mass per area (LMA) and
tree height (H). (a)Al : As vs. tree height, replotted from Calvo-Alvarado et al. (2008). (b) Species-averaged LMA vs.Al : As from panel (a)

overlain on a much broader dataset from the Amazon basin (replotted from Patiño et al., 2012). (c) The slope of the Al : As–H relationship
in panel (a) vs. LMA. Circled datapoint is Pentaclethra macroloba, a compound-leaf species averaging 1600 leaflets/leaf and is excluded
from the regression. The dependency of Al : As on LMA in panel (b) is thus implemented in the model via variations in the slope of Al : As
with H in panel (c); see Fig. 7g. Asterisk codes for significance are the same as in Fig. 2.

Figure 7. Plant hydraulics model parameterization as a function of plant traits leaf mass per area (LMA), wood density (WD), light-saturated
photosynthesis rate (Amax), and size (H) resulting from the syntheses presented in Figs. 2–6 and summarized in Table 2. (a, b) Leaf
and sapwood PV curves, respectively (Eqs. 1–3), which relate tissue water potential to relative water content (RWC). (c) Sapwood xylem
vulnerability curves (FMCx; Eq. 4) multiplied by maximum leaf-specific xylem conductivity based on a dataset of the joint distribution of
WD and Amax in an eastern Amazonian forest. Note that curves in panels (a) and (c) are also dependent on WD and Amax, respectively, in
addition to the color scale shown. Panels (d–f) same as panels (a–c) except for an idealized distribution of plant traits in which trait variation
occurs over a single axis (LMA ∼ WD ∼Amax). (g) Leaf : sapwood area ratio (Al : As) as a function of LMA and tree height. (h) Sapwood
area (As) as a function of DBH and LMA, overlain with synthesis of independent measurements ofAs. Dashed red line in panel (h) represents
theoretical maximum for As (entirely sapwood).
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Figure 8. Tropical synthesis of trade-offs or coordination of vari-
ous hydraulic traits with the water potential at 50 or 88 % loss of
maximum xylem conductivity (P50,x or P88,x). (a) The relationship
between maximum xylem conductivity (ks,max,x) and P50,x does
not support the notion of a trade-off between xylem efficiency and
safety, except in tropical dry forests (circled points). (b) The rela-
tionship between xylem capacitance (Cft) and P50 provides tenta-
tive evidence for a trade-off between drought avoidance and toler-
ance. (c–f) Relationships of the leaf osmotic potential at full turgor
(πo,l) and the leaf turgor loss point (πtlp,l) with P88,x support the
hypothesis of coordination between leaf and xylem drought resis-
tance, with less support for the hypothesis in terms of P50,x. Thin
lines in panels (b–f) correspond to the empirical equations in Ta-
ble 2 over a wide range of input WD [0.2, 1.2] and LMA [50, 250].
Symbols are the same as in Fig. 4. See Supplement Fig. S2.3 for
a version of panel (b) in which no correction factor was applied to
sapwood PV curves. Asterisk codes for significance are the same as
in Fig. 2.

(Fig. 9a–d) (Carswell, 2002; Fisher et al., 2007). At the level
of individual tree crowns, canopy position is the dominant
control over the amount of absorbed PAR (compare differ-
ent colored lines in Fig. 9a–d). These trends remain when
considering total tree transpiration (Fig. 9i, j, k, l), but vari-
ation in crown size adds significant variability in total water

fluxes, especially for canopy trees (very small trees can still
be in the canopy depending on subplot assignment). The ef-
fect of including plant hydraulics in TFS v.1-Hydro was to
limit late morning and afternoon transpiration via the deple-
tion of stored water within the canopy and tree stem, which
caused midday declines in leaf water potential (see Fig. 10)
and induced hydraulic limitation to water flux via the FMCgs
term (see Eq. 8). Hydraulic limitation was highest in canopy
trees, intermediate in subcanopy trees, and nonexistent in un-
derstory trees, but this limitation only occurred during the
dry season when incoming radiation was sufficiently high to
drive high potential evapotranspiration (compare the effect
of including hydraulics in Fig. 9e and g vs. Fig. 9f and h),
consistent with other studies (McDowell et al., 2005).

4.2.2 Impact of plant hydraulics on the trait

dependency of transpiration

Figure 10 shows how mean ±1 SE diurnal cycles of transpi-
ration per unit crown area of three large (50–55 cm DBH and
26–27 m height) individuals change as a function of a single
plant trait (PL, WD, or LMA) and wet/dry season for both
TFS v.1 and TFS v.1-Hydro. In most cases, the seasonal wet
to dry increase in transpiration associated with incoming ra-
diation is the same as for the previous model experiment. In
the absence of plant hydraulics, leaf nutrients drive large dif-
ferences in photosynthetic parameters and rates, which, by
model design, then drive large differences in gs,max and tran-
spiration rates (Fig. 10a, b). Because our plant hydraulic trait
parameterization explicitly links hydraulic transport rates
(ks,max,x) to photosynthetic capacity, this trend is preserved
in TFS v.1-Hydro, except that all trees experience hydraulic
limitation (Fig. 10c, d). In contrast, large canopy trees with
differences in WD and LMA in default TFS simulations
demonstrated no differences in simulated transpiration dy-
namics (Fig. 10e, f). In the case of WD, adding plant hy-
draulics caused hydraulic limitation across all three individ-
uals but surprisingly little to no divergence in simulated dy-
namics (Fig. 10g, h), despite large differences in plant hy-
draulic traits, which derive from WD (Table 2). This lack of
a difference arises, however, because the effects of decreas-
ing WD have opposing effects on midday leaf water poten-
tial via sapwood capacitance and xylem P50 because of the
drought avoidance–tolerance trade-off (Fig. 8b). In the case
of LMA, dramatic differences emerged among the three indi-
viduals with differing LMAs (209, 95 and 47 g m−2) upon the
inclusion of plant hydraulics (Fig. 10k, l). This was driven by
large differences in total tree aboveground hydraulic conduc-
tance (Kmax,tree,ag), which arose because of large differences
in Al : As that ranged from 0.1–1.8 m2 cm−2 (itself arising
from the LMA differences; see Fig. 7g, h and Table 2). By
Darcy’s law, a reduction in conductance results in a com-
parative reduction in water flux for a given water potential
gradient.
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Figure 9. TFS simulated mean (±1 SD) diurnal cycles across all individuals by canopy position, in wet and dry seasons with (v.1-Hydro) and
without (v.1) plant hydraulics implemented, at Caxiuana, Brazil. (a–d) Total absorbed photosynthetically active radiation, (e–h) transpiration
rate per unit crown area, (i–l) total tree transpiration rate.

4.3 Model evaluation

TFS v.1-Hydro demonstrated a capability to represent lags
in water flux throughout the leaf–stem–soil continuum
(Fig. S3.1), with sap flux lagging leaf-level transpiration, and
root uptake continuing into the nighttime hours, which is
consistent with the diurnal dynamics of soil moisture shown
in other ecosystems. In addition, as expected, the model pre-
dicted that soil most adjacent to absorbing roots experiences
significantly lower rates of volumetric root water uptake
as compared to more distal rhizosphere shells (Fig. S3.2),
demonstrating the capability for the model to represent rhi-
zosphere hydraulic limitation if soil gets sufficiently dry.

4.3.1 Diurnal dynamics of leaf and stem water

potential

Observed diurnal dynamics of leaf and stem water poten-
tial (ψleaf and ψstem, respectively) indicated, for all trees re-
gardless of size, predawn (∼ 06:00 am) values in the range
of −0.1 to −0.4 MPa, whereas midday water potentials var-
ied largely in concert with tree size (Fig. 11). The model
captured the observed diurnal trends in both ψleaf and ψstem
reasonably well, especially given the absence of any model
tuning or tissue-level hydraulic trait differences among in-
dividuals. This suggests that the first-order control over the

variation in ψleaf among individuals was primarily due to the
variation in radiation interception (both across seasons and
within the canopy) and tree size, rather than tissue-level hy-
draulic traits. See Fig. S3.4 for an alternate version of Fig. 11
showing how root water potentials vary diurnally for these
individuals.

Despite large (upwards of −4 MPa) differences in mid-
day and predawn leaf values, observed ψstem remained for
the most part within −1 MPa of the observed ψleaf values
(Fig. 11). For the larger trees, observed midday ψstem during
the dry season was in the range of −2 to −3 MPa. In contrast,
modeled ψstem rarely went more negative than −1 MPa, sug-
gesting that the model parameterization overestimates sap-
wood capacitance (Cft,x).

4.3.2 Impact of model parameterization on fidelity of

simulated midday leaf water potential

Modeled dynamics of leaf water potential at the Caxiuana
site captured observed variation at both diurnal and seasonal
timescales (Supplement Fig. S2.6). Throughout each day, re-
ductions in leaf water potential lagged that of the stem and
transporting root system, congruent with the buffering role of
canopy and stem capacitance, with refilling of distal tissues
occurring at night (results not shown). The model also sim-
ulated reductions in predawn leaf water potential in the dry
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Figure 10. TFS simulated mean (±1 SE) diurnal cycles of transpiration of three large (50–55 cm DBH) individual trees receiving full sunlight
but differing in one plant trait, stratified by wet/dry season and TFS version with (v.1-Hydro) and without (v.1) plant hydraulics implemented,
at Caxiuana, Brazil. (a–d) Individuals differing in leaf P exhibit different light-saturated photosynthesis rates (Amax) and consequently
gs,max and, in v.1-Hydro, ks,max. (e–h) Individuals differing in wood density WD exhibit no difference in maximum transpiration rate per
unit crown area in v.1, but different rates in v.1-Hydro emerge due to differences in xylem safety (P50,x) and, hence, stomatal control (P50,gs).
(i–l) Individuals differing in leaf mass per area LMA exhibit little difference in v.1 but large differences in v.1-Hydro, due to large differences
in the leaf : sapwood area ratio (Al : As) and, hence, total aboveground conductance (Kmax,ag).

Table 3. Properties of simulated and observed trees given in Fig. 11.

Figure 11 Tree Observed Simulated Simulated Simulated Al : As Simulated Kmax,ag
panels IDa DBH (cm) DBH (cm) canopy layer (m2 cm−2) (kg s−1 MPa−1)

a, b C1 15.6 15.6 2 0.41 0.062
c, d C2 18.7 18.8b 2, 3 0.45b 0.064b

e, f C4 43.9 43.9b 1, 2 0.74b 0.076b

g, h C3 51.4 51.4 2 0.81 0.078

a As given in Fisher et al. (2006). b Two simulated trees were included in this size class. Value given is the average of the two trees.

season due to reductions in soil water supply, and captured
an increasing magnitude of diurnal variation driven largely
by light-driven increases in canopy transpiration rates typi-
cal of equatorial Amazonian dry seasons (Fig. S6) (Carswell,
2002; Fisher et al., 2007; Hasler and Avissar, 2007; da Rocha
et al., 2009; Christoffersen et al., 2014).

Each of three successive model parameterization adjust-
ments was able to make incremental improvements in the fi-
delity of modeled ψleaf, and these adjustments are informa-
tive for understanding the dominant controls over individual-
level differences in ψleaf. First, when the model’s treatment

of xylem conduit taper is turned off, the model in most cases
overestimated the negative hydraulic impacts of tree height,
with modeled midday ψleaf falling below that which was ob-
served (Fig. 12a). Re-instating xylem taper ameliorated the
negative effects of tree height for some trees by increasing
Kmax,tree,ag and thus reducing the soil–leaf water potential
gradient needed to maintain transpiration (Fig. 12b). Next,
adjusting the canopy position of two of the four individual
trees from a subcanopy (canopy layer is 2) light environment
to an understory (canopy layer is 3) light environment re-
duced the incoming radiation for these trees and hence their
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Figure 11. TFS v.1-Hydro simulated and observed diurnal varia-
tion in leaf and stem water potential for individual trees subject to
seasonal variation in water availability at Caxiuana National For-
est, Brazil. Simulated trees possess identical trait values equal to
the plot mean and were matched with observed trees based on size
(DBH) (see Table 3). Trees are in order from smallest to largest, top
to bottom, and are the following trees given in Fisher et al. (2006):
(a–b) tree C1, (c–d) tree C2, and (e–f) tree C4.

transpiration rates and midday ψleaf values (Fig. 12c). Fi-
nally, we found that the extremely negative midday ψleaf
values during the dry season of the largest tree (tree C3 of
Fisher et al., 2006) could be better simulated by allowing
its stomatal regulation to behave in a more anisohydric way
(less stomatal regulation of leaf water potential) by setting its
P50,gs = −5.0 MPa.

4.3.3 Fidelity of modeled stand-level transpiration

Without plant hydraulics, TFS v.1 had a large positive bias in
simulated dry season stand-level transpiration rates (Fig. 13a,
b). Including plant hydraulics (TFS v.1-Hydro) largely elim-
inated this dry season positive bias when plot-mean trait val-
ues were used (Fig. 13a). However, TFS v.1-Hydro tended to
underestimate observed transpiration year-round when each

Figure 12. Simulated vs. observed individual-level variation in
midday leaf water potential, Caxiuana National Forest, Brazil.
(a) Without accounting for xylem taper and using mean plot val-
ues for input plant traits and derived hydraulic traits from Table 2
(Savage et al., 2010, taper exponent p = 0.0, LMA = 96.1 g m−2,
WD = 0.73 g cm−3, NL = 20.9 mg g−1, PL = 0.59 mg g−1). (b) As
in panel (a) but accounting for xylem taper (p = 1/3). (c) As in
panel (b) but after modifying canopy position of individual trees
(see Methods). Panel (d) as in panel (c) but forcing tree C3 to be less
isohydric by setting P50,gs = −5.0 MPa (P50,x remained the same
at −3.2 MPa). Different colors represent the following four individ-
uals from Fisher et al. (2006): green – tree C2 (18.7 cm DBH), blue
– tree C1 (15.6 cm DBH), orange – tree C4 (43.9 cm DBH), and red
– tree C3 (51.5 cm DBH). Filled circles and squares represent wet
and dry season values, respectively.

tree was assigned different trait values (Fig. 13b) according
to the observed plot distribution (according to Fig. 7a–c).

5 Discussion

We present here a plant hydraulics model built from the
bottom-up. By “bottom-up” we mean that this model is pa-
rameterized at the level of plant tissues (leaf, stem, roots) and
then scaled to the whole-tree level using established theory
about how size and aboveground-branching structures im-
pact whole-tree function. We embedded this model within
a size-structured forest simulator (TFS) providing critical in-
put information to the plant hydraulics model on light envi-
ronments of individual trees and community-level size and
trait distributions (collectively these two models comprise
TFS v.1-Hydro), but the plant hydraulics scheme is appro-
priate for inclusion within any demographic dynamic vege-
tation model. Our plant hydraulics model is also trait driven.
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Figure 13. Simulated and observed stand-level total transpiration
at Caxiuana National Forest, Brazil. Model simulations were car-
ried out where individuals were either (a) forced to take on identi-
cal plot-mean trait values (LMA = 96.1 g m−2, WD = 0.73 g cm−3,
NL = 20.9 mg g−1, PL = 0.59 mg g−1), or (b) allowed to vary ac-
cording to the plot-level trait distribution.

By “trait driven” we mean that individual trees take on dis-
tinct plant functional trait values (WD, LMA, NL, PL) ac-
cording to observed plot-level trait distributions and we have
parameterized hydraulic traits from each tree’s assigned traits
according to a pantropical empirical synthesis. Our empiri-
cal synthesis documented widespread correlations between
plant hydraulic traits and the leaf and stem economic traits
used in our model (Figs. 2–6), and we additionally showed
that even where such correlations were weak, the hydraulic
trait parameterization for our model respected observed eco-
logical trade-offs and coordination among hydraulic traits
(Figs. 7–8) known to be crucial to plant water use and sur-
vival. This provides encouragement to the growing research
agenda to expand the role of plant functional traits in pa-
rameterizing Earth system models (ESMs) (Fisher et al.,
2015; Sakschewski et al., 2015). The model also reason-
ably captures size- and light-related interindividual variation
in water potential across individuals (Figs. 11–12) without
need for significant model tuning. Finally, the model makes
substantial improvements to TFS v.1 in terms of simulated
transpiration rates (Fig. 13a, b), highlighting how plant hy-
draulics mediate the biosphere–atmosphere exchange of car-
bon and water. In conclusion, TFS v.1-Hydro represents a
key and advanced model capability to represent differential

performance of individual trees based on hydraulic traits,
size and light environments (Figs. 9–10). Future work cou-
pling the present scheme with community dynamics (mor-
tality, growth and recruitment) has the potential to predict
shifts in community trait distributions under changing mois-
ture regimes, as has been observed or implied in studies of
tropical forest species distributions and community dynam-
ics (Engelbrecht et al., 2007; Fauset et al., 2012).

5.1 Underlying causes and implications of trait–trait

relationships

The relationship of leaf πo,l (i.e., cell “saltiness”) with WD
is robust, and suggests some degree of correspondence be-
tween sapwood and leaf osmoregulation at the cellular level,
itself potentially a function of soil potassium (K+) availabil-
ity (Quesada et al., 2012), although there was not significant
enough species overlap in our leaf and sapwood databases to
directly assess whether πo,l tracks πo,x. An additional possi-
bility is that species with a tendency to osmoregulate leaf tis-
sue also have sapwood with higher WD and embolism resis-
tance, though recent results challenge this explanation (Binks
et al., 2016). The observation that leaf εl (i.e., leaf cell “stiff-
ness”) was coordinated more closely with stem WD rather
than LMA (Fig. 2) may be due more to uncertainty in how
εl is calculated, either based on symplastic or total relative
water content (RWC∗ or RWC, respectively) (Bartlett et al.,
2012), rather than strong evidence for stem over leaf traits
governing leaf cell stiffness per se. There may be a mix of
both methods used in calculating εl in this dataset due to
ambiguity in the original publications (M. Bartlett, personal
communication, 2015), so the relationship of εl with WD
should be viewed as tentative.

The correspondence of sapwood PV parameters and as-
sociated capacitance with WD (Fig. 3) was in some cases
particularly tight (r2 = 0.84 for sapwood capacitance Cft,x).
Given the uncertainty associated with the vessel cutting ar-
tifact for which we corrected (Supplement S2), the exact
relationships with WD should also be considered tentative,
but the qualitative nature of WD as a first-order predictor
of Cft,x should be robust. Nonetheless, the absence of data
for sapwood PV traits for WD > 0.7 g cm−3 highlights a real
data need, which is particularly apparent for some regions
of the tropics, such as eastern and northeastern Amazonia,
which have a large abundance of high wood density species
(Baker et al., 2004; Quesada et al., 2012). Second-order pre-
dictors for sapwood capacitance have been identified in sepa-
rate studies, which we have not explicitly dealt with here. Re-
cently, Wolfe and Kursar (2015) identified a similar trend of
Cft,x with WD, but additionally identified deciduousness as
a modulator of Cft,x, with evergreen species tending to have
lower Cft,x at a given WD.

The increase of xylem efficiency (ks,max,x) with Amax we
highlighted in our synthesis (Fig. 5) has already been identi-
fied in individual studies (Brodribb et al., 2002; Santiago et
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al., 2004; Zhu et al., 2013), but to our knowledge, our study is
new in demonstrating it across diverse tropical forests span-
ning wet, moist, and dry systems (and to some degree sa-
vanna) when incorporating WD as a secondary predictor,
which increased by 13 % the variance explained by Amax
alone. This relationship underscores the functional constraint
of xylem “plumbing” on leaf gas exchange. This relation-
ship potentially presents an important constraint for plant
hydraulics modeling, considering WD is a poor predictor
of the relevant wood anatomical characteristics mechanis-
tically controlling xylem hydraulic conductivity in tropical
angiosperms (Poorter et al., 2010; Zanne and Falster, 2010;
Zanne et al., 2010; Zieminska et al., 2015), and Amax serves
as a powerful proxy, with WD acting as an additional con-
straint (albeit small) on the relevant anatomical variation.
This is important in light of the relative ubiquity of leaf
nitrogen and phosphorus measurements (which in turn are
good proxies for Amax; Domingues et al., 2010) relative to
wood anatomical measurements (Fichtler and Worbes, 2012)
in tropical forests worldwide.

Our synthesis of hydraulic traits suggests that a trade-
off between drought avoidance (as given by Cft,x) and tol-
erance (P50,x) is more prominent than between xylem ef-
ficiency (ks,max,x) and safety (P50,x), though more data are
needed to corroborate the limited data suggesting the former
(Fig. 5). Partially responsible for this weak safety–efficiency
trade-off is methodological variation in terms of how ks,max,x
is measured (Gleason et al., 2016). However, there is un-
doubtedly a real component to this weak trade-off, as inter-
vessel pit membrane thickness, which does not necessarily
correlate with hydraulic conductivity, is a strong anatomi-
cal predictor of P50,x (Li et al., 2016). Perhaps of greater
significance, however, is understanding patterns associated
with the presence or absence of the safety–efficiency trade-
off in particular bioclimatic regions. The correspondence of
this trade-off with tropical dry forests where stem economic
traits closely track leaf economic traits (Markesteijn et al.,
2011a, b; Mendez-Alonzo et al., 2012), in contrast to their
wetter counterparts (Baraloto et al., 2010), suggests that the
hydraulic safety–efficiency trade-off may be an underlying
mechanism for the extent to which stem and leaf trait cou-
pling is observed.

5.2 Model limitations

Our analysis reveals some limitations of our particular ap-
proach to trait-driven plant hydraulics modeling, namely that
not all trait–trait relationships are of sufficient predictive ac-
curacy to enable simulations with low uncertainty (most no-
tably leaf drought tolerance traits and the leaf : sapwood area
ratio; see Figs. 2 and 6). This is a likely outcome of the real-
ity that emergent properties of biological systems arise from
the combination of multiple traits and their associated trade-
offs; thus, no single trait is likely to explain the majority of
an emergent process (Mencuccini et al., 2015). More work

identifying general plant trait–hydraulic trait relationships is
justified, but should consider incorporation of multiple traits
for improved realism and accuracy, and should emphasize
understanding how trees as an integrated system function.

One consequence of using the empirical trait–trait correla-
tions given here is to either under- or overestimate the range
of any given hydraulic trait in a simulated community of in-
dividuals, depending on the hydraulic trait of interest. For
example, in our model experiment in which we varied a sin-
gle trait (Fig. 10), variation in xylem-specific hydraulic con-
ductivity (ks,max,x; Fig. 10c, d), which was derived from the
full range of observed PL (and, hence, modeled Amax) at this
site, was limited to only 1.1–2.9 kg m−1 MPa−1 s−1, which
is only ∼ 15 % of the range of observed ks,max,x values for
tropical moist forests (cf. green points, Fig. S3). Indeed it
seems unlikely that the observed range of ks,max,x at this site
would be this small. On the other hand, the range of Al : As
predicted by LMA and tree height (Fig. 6 and 7g) is likely
overestimated; we found that individuals with Al : As greater
than the maximum observedAl : As (1.8 m2 cm−2) for whole
trees in the Calvo-Alvarado et al. (2008) study were unviable
(whole-tree conductance was insufficient for any apprecia-
ble tree transpiration to occur). Indeed, our result showing
that a slight negative bias results when all individuals re-
ceive distinct trait values according to the community trait
distribution vs. a single community-mean value (Fig. 13a vs.
13b) follows as a consequence. Furthermore, in contrast to
our simple implementation of hydraulic architecture, Al : As
may vary substantially throughout a tree’s crown, at different
branching levels, or different light environments (see Schuldt
et al., 2011, as an example), given the deviations from self-
similar, volume-filling branching and area-preservingAs that
have been observed (Whitehead et al., 1984; Bentley et al.,
2013; Smith et al., 2014).

5.3 Practical implications

Because TFS v.1-Hydro parameterized the majority of tree
hydraulic traits at the scale of plant tissues and built the size-
scaling into the model (rather than specifying hydraulic prop-
erties at the whole-tree level), it has great potential for be-
ing used as a tool in data assimilation and other inverse ap-
proaches when in situ field data on sap flow, water potential,
or water content data are available at one or multiple points
within individual trees. This may aid in deciphering unob-
served or unobservable processes, such as diagnosing where
within the soil–plant continuum hydraulic limitation or em-
bolism may be occurring (branches, stems, or fine roots) or
how much stored water is used for daily transpiration.

A second benefit to its method of construction is that the
constitutive equations of the model (i.e., the relationships be-
tween water potential and water content, and between hy-
draulic conductivity and water potential) use formulations
from plant physiology (such as PV theory) and, as a conse-
quence, have parameters (Table 2) that are empirically mea-
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surable and biologically interpretable. Hence, as more of
these hydraulics data become available, this model can read-
ily incorporate this information by either substituting the em-
pirical trait relationships with measured quantities or updat-
ing the empirical hydraulic trait relationships.

Finally, the “fraction of maximum stomatal conductance”
(FMCgs) encapsulates the hydraulic limitation of each tree
and is implemented in a similar fashion to traditional soil-
based “beta” approaches (Powell et al., 2013). While this
approach might seem simplistic relative to the comparative
rigor of the hydraulics scheme, we note that (1) the present
function (Eq. 8) is based on leaf water potential, a new prog-
nostic, non-steady-state metric of tree water status that in-
tegrates individual-level differences in hydraulic traits, size,
and microenvironment (e.g., light) in addition to soil water
potential; (2) there is no consensus as to the exact mecha-
nism (direct or indirect) by which stomata respond to leaf
water potential – recent theoretical developments on stomatal
function are largely restricted to the effects of temperature
and humidity alone (Buckley, 2005; Peak and Mott, 2011;
Nikinmaa et al., 2013); and (3) this approach simplifies the
interface between the hydraulics module and the host model.

5.4 Future directions

In light of the limitations to our empirical approach for
parameterizing hydraulic traits via more commonly mea-
sured traits, one potential alternative for parameterizing
community-level hydraulic trait variation is to do so inde-
pendent of other traits employed by the model. One approach
is to use the Taylor and Thompson (1986) resampling algo-
rithm to resample individuals or species with values in multi-
ple trait databases, which were used in this paper, but sparse
database overlap may limit the utility of this approach. Alter-
natively, region-specific distributions of individual hydraulic
traits from the databases presented here could be coupled
with empirical relationships among hydraulic traits as given
by our synthesis of coordination and trade-offs among hy-
draulic traits (Fig. 8). This analysis suggested that two inde-
pendent hydraulic trait spectra may be sufficient: one safety–
efficiency or avoidance–tolerance trait spectrum and poten-
tially a stomatal hydraulic safety spectrum. More work is
needed to clarify these hydraulic coordination and trade-off
surfaces and, in particular, to quantify how much residual
variation is real or due to measurement biases.

From an empirical perspective, explaining the remaining
16–95 % of unexplained variance in hydraulic traits shown
here should be of high priority. We suggest some addi-
tional traits that show promise. The volumetric fractions of
airspace, water, and solid material in leaves and stems (sensu
Roderick et al., 1999; Roderick and Berry, 2001) are one
such trait. For leaves, these volumetric fractions have been
shown to explain much more variance in leaf PV traits than
LMA and WD (Sack et al., 2003; Bouche et al., 2015; Buck-
ley, 2015; Scoffoni, 2015). While not as routine of a mea-

surement in comparison to LMA, these measurements are
not as intensive as the full PV curve. Second, identifying the
strongest wood anatomical correlates of xylem vulnerabil-
ity to embolism (P50,x) should also be of high priority, such
as the thickness of the intervessel pit membranes (Choat et
al., 2008; Jansen et al., 2009), as well as improving under-
standing of the air-seeding mechanism (Schenk et al., 2015;
Jansen and Schenk, 2015) Third, and perhaps most impor-
tant for whole-tree hydraulics, is more data on hydraulic
architecture. Tuning hydraulic architecture in our dynamic
model proved to be a key “knob” for matching observa-
tions. Additional measurements of Al : As, xylem taper, and
crown-branching patterns should not be conducted in isola-
tion, rather in tandem with each other and with other leaf
and stem economic traits (in particular LMA, as suggested
by Fig. 6b) to isolate physical constraints on structure and
the dynamics of whole-tree transpiration (Smith et al., 2014).
The paired relationship of Al : As with xylem taper as inte-
grative measures of whole-tree hydraulic regulation is virtu-
ally nonexistent for tropical forests, although collocated mea-
surements of these two traits exist (Zach et al., 2010; Horna
et al., 2011).

For modeling hydraulic impacts on stomatal closure, we
favored the use of a “stomatal vulnerability function”, but
this is one possibility among many. Specifically, multiple
studies have found that branch ψ rarely falls below that
at which stem capacitance begins to decrease precipitously
(Meinzer et al., 2008b; Wolfe and Kursar, 2015), and stom-
atal regulation has also been observed to track leaf turgor loss
points (Brodribb et al., 2003). Whether stomatal closure in
response to water stress in tropical forests forms an entirely
distinct “safety margin” axis (Martinez-Vilalta et al., 2014;
Skelton et al., 2015) or maps on to other hydraulic traits re-
mains to be elucidated. A recent review highlights the in-
teracting roles of both hydraulic supply and vapor pressure
deficit in controlling stomatal responses, which we have not
yet accounted for (Sperry and Love, 2015). We also did not
include into our model variability in leaf-level hydraulic con-
ductance, or comparative values for root traits. While termi-
nal branches and leaves account for a majority of total plant
resistance due in part to xylem taper, roots may be more vul-
nerable to embolism for the same reason and therefore repre-
sent a weak link in drought-induced mortality; these should
be topics of future work.

6 Conclusions

We present a plant hydraulics model based on biologically in-
terpretable and measurable plant hydraulic traits and rooted
in established plant physiology theory. It is capable of scaling
tissue-level hydraulic traits to whole-tree hydraulic function.
Embedding it within an individual tree trait-driven model
allowed us to explore how individual-level variation in hy-
draulic traits (including tree size) interacts with light envi-
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ronments to drive differences in hydraulic function across in-
dividuals. Addition of plant hydraulics made substantial im-
provements to modeled transpiration fluxes during periods of
high incoming radiation. Our synthesis of data for the trop-
ics on a wide range of hydraulic traits needed to parameter-
ize the model allowed us to develop empirical relationships
among commonly measured plant traits and less common hy-
draulic traits. These empirical relationships are analogous to
pedotransfer functions (Clapp and Hornberger, 1978; Cosby
et al., 1984) developed for predicting soil hydraulic proper-
ties as a function of soil textural “traits”. While they should
be refined as more data become available, they are an impor-
tant first step towards representing ecological dimensions of
hydraulic trait variation in process ecosystem models. Crit-
ically, this individual- and trait-driven framework provides
a test bed for identifying both critical processes and func-
tional traits needed for inclusion in coarse-scale Earth sys-
tem models (ESMs). Likely some degree of simplification of
the present approach will be required upon implementation
in ESMs; nonetheless we expect that inclusion of trait-driven
plant hydraulics schemes will lead to reduced uncertainty in
the future state of tropical forests under climate change.

7 Code availability

The JAVA source code for TFS v.1-Hydro can be obtained
from the corresponding author upon request.

8 Data availability

The Supplement S4 describes supplementary data for this
paper. Leaf PV data (Figs. 2 and 8) that were newly ex-
tracted from publications are available as .csv data files as de-
scribed under the heading “Leaf PV database”. Leaf PV data
originating from pre-existing leaf PV databases are avail-
able by accessing the original articles cited under the head-
ing “Leaf PV database”. Sapwood PV data (Figs. 3, S2.1,
and S2.3) are available as .csv data files as described un-
der the heading “Sapwood PV database”. Sapwood area data
(Fig. 7h) are available as .csv data files as described un-
der the heading “Sapwood Area database”. Xylem hydraulic
trait data (Figs. 4, 5, 8, and S2.2) that were newly extracted
from publications are available as .csv data files as described
under the heading “Xylem Functional Traits Database”.
Xylem hydraulic trait data originating from the TRY archive
can be accessed from this archive (http://www.try-db.org);
the references of data from that archive used in analyses
here are given under the heading “Xylem Functional Traits
Database”. Sapwood area and sapwood PV databases are
given in Christoffersen (2016a) and Christoffersen (2016b),
respectively.

The Supplement related to this article is available online

at doi:10.5194/gmd-9-4227-2016-supplement.
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