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The local linkages between land use and water 

quality have cumulative effects within a region, its water-

shed, and the receiving coastal waters. The effects of these link-

ages vary as the cultural and ecological landscape varies with

population growth, changes in land use, and climatic events.

These changes have been particularly evident in North Amer-

ica over the past four centuries, as European culture was in-

serted into the North American continent, as the Native

American Indians died from newly introduced diseases and

were subdued through military and political means, and as

the mostly European population grew and became urbanized.

A high-intensity agricultural–economic system has turned the

American Midwest into what is now known as the nation’s

“breadbasket,” where 65% of the land in the 14 states of the

Mississippi River Basin (MRB; figure 1) is farmland and 25%

is harvestable cropland.

As the landscape changed in response to these develop-

ments, so too did the Mississippi River. Its main channel has

been shortened and dredged, its banks stabilized for naviga-

tion, and flood protection levees built, which extend contin-

uously south of Vicksburg, Mississippi. These levees have

isolated the alluvial soils from the main channel, promoting

agriculture development on alluvial soils (Abernethy and

Turner 1987). The volume of river water extracted and 

returned by industrial plants in Louisiana is now greater

than that discharged into the Gulf of Mexico (EARI 1975).

Today’s significant water quality problems in the MRB are

related to these landscape and industrial developments. Forty-

four percent of the surveyed rivers in 15 MRB states were “im-

paired” in 2000 (EPA 2002). Nitrate concentration in the

Des Moines River is sometimes greater than 10 milligrams per

liter, which is the statutory maximum limit for drinkable

water supplies (Hallberg 1987), and there were 1557 fish

consumption advisories in the MRB in September 1996 alone

(EPA 1998). Water-quality changes in the lower Mississippi

River in this century can be linked in a plausible cause-

and-effect relationship to the formation of a 20,000-square-

kilometer (km2) low-oxygen zone in coastal waters (Rabal-

ais et al. 2002). The food web in this zone is poised to change

from a productive food web of diatoms, zooplankton, and

fish—which supports 25% of US fish landings—to one with

diminished pelagic and demersal fisheries (Turner et al.

1998).

In this article we discuss two centuries of landscape changes

that affect water quality in the MRB and in continental shelf
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Louisiana State University, Baton Rouge, LA 70803. Nancy N. Rabalais 
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Linking Landscape and Water

Quality in the Mississippi River

Basin for 200 Years

R. EUGENE TURNER AND NANCY N. RABALAIS

Two centuries of land use in the Mississippi River watershed are reflected in the water quality of its streams and in the continental shelf ecosystem
receiving its discharge. The most recent influence on nutrient loading—intense and widespread farming and especially fertilizer use—has had a
more significant effect on water quality than has land drainage or the conversion of native vegetation to cropland and grazing pastures. The 200-
year record of nutrient loading to offshore water is reflected in the paleoreconstructed record of plankton in dated sediments. This record illustrates
that the development of fair, sustained management of inland ecosystems is linked to the management of offshore systems. Land use in this fully
occupied watershed is under the strong influence of national policies affecting all aspects of the human ecosphere. These policies can be modified for
better or worse, but water quality will probably change only gradually because of the strong buffering capacity of the soil ecosystem.

Keywords: Mississippi River, water quality, agriculture, sustainability, environmental history
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ecosystems. First, we reconstruct the timing of population

growth and soil disturbance resulting from deforestation,

cultivation, and drainage. Next, we draw connections be-

tween the subsequently higher sediment yields and the loss

of nutrients from the newly disturbed landscape. To sup-

port the conclusion that the release of nutrients stored in the

pre-European period was large, we cite experiments on small

watersheds in which variables can be controlled, as well as

anecdotal accounts from before the 1930s. Various analyses

of the variability in water quality among watersheds sup-

port the conclusion that land use and population density

are directly related to higher nitrogen yields and that these

yields change important nutrient ratios. A paleoreconstruc-

tion of continental shelf sediments confirms the significance

of these water quality changes to coastal food webs and sug-

gests that the most recent influence on nutrient loading—

intense and widespread farming—has affected water quality

more than all  previous landscape changes have.

Soil disturbance leading to soil loss
The sediment yield of a watershed is, in general, inversely re-

lated to the amount of vegetation present and to the accu-

mulation of soil organic matter. The vegetation cover in the

MRB was reduced as populations expanded during the 1800s.

The population density of Native American Indians in the early

1600s was relatively low (no more than 106,000, or less than

0.1 person per km2; Ubelaker 1992), in part because of dis-

eases introduced by the Europeans. Population growth in

the midwestern states began earlier than in the Missouri

basin, reaching 1 to 10 people per km2 by the 1850s (figure

2a), when the population center of the United States crossed

the Appalachian Mountains and headed into the MRB in a

west–southwest trajectory.

The area of land brought under cultivation rose with pop-

ulation growth (figure 2b). Cultivation was preceded by tree

cutting, often by girdling the trunk, or burning. Trees were not

routinely sold, so we inferred changes in forest area from the

records of land use. Forest loss during the 1800s was quite

rapid. The area of forest in Ohio, for example, went from 54%

in 1853 to 18% in 1883 (Leue 1886). Greeley (1925) docu-

mented that the virgin forests of 1850 in the United States were

largely remnants by 1920. Humphreys and Abbot (1876) 

estimated that 15% of the MRB was under cultivation or

had “improvements” by 1860.

Did this agricultural expansion result in a significant 

increase in the sediment yield of the MRB? To find out, we 

assembled the suspended sediment records collected at the

Carrollton water treatment plant in New Orleans (Louisiana)

since 1903, when the existing unified treatment system was

under construction. Additional data were reported by Quinn

(1894), who sampled the Mississippi River for suspended

sediments from 1879 to 1899. Data are also reported in

Humphreys and Abbot (1876) for 96 weekly measurements

from February 1851 to February 1853, for 7 additional mea-

surements later in 1853, and for 36 data points for May

through August 1846. These data (figure 2c) indicate that the

suspended sediment concentration at New Orleans was high-

est in the late 1800s, when the area of new agricultural land

564 BioScience  •  June 2003 / Vol. 53 No. 6
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Figure 1. The Mississippi River Basin and the major watersheds discussed in this article. Key: 1, upper

Mississippi River; 2, Ohio River; 3, Missouri River; 4, Arkansas River; 5, lower Mississippi River; 6, Red

River. The total combined area is 41% of the contiguous states.
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brought into production each year was at its peak. Sed-

iment concentration declined after 1910, especially af-

ter the period of extensive dam construction that began

in the early 1950s on the Missouri River. Meade and col-

leagues (1990) documented that these dams trapped

large amounts of sediments and dramatically altered the

transport patterns of suspended sediments down-

stream in the basin all the way to New Orleans. Im-

proved soil conservation practices may also have

contributed to this decline (Trimble 1999).

Was there a long-term climate change in river dis-

charge that caused these long-term variations in sedi-

ment yield? If discharge varies, then both the nutrient

and sediment loads from a watershed are affected (load

= concentration x discharge). Thus it is important to

document the variability in water supply for the basin

as a whole.A portion of the Mississippi River is diverted

westward through control structures to join with the

Red River to form the Atchafalaya River. This diversion,

which was controlled in earnest after the record-setting

1927 flood, now constitutes about 30% of the main stem

flow. The longest-kept discharge records are from up-

stream of this diversion at Vicksburg, Mississippi, the

location of the US Army Corps of Engineers Waterways

Experiment Station. These discharge records started in

1817, although some of the earlier records, which were

based on empirical stage–discharge relationships cali-

brated without the benefit of today’s technical conve-

niences, may be suspect. The discharge volume since

1817 varies around a long-term annual mean of 17,000

cubic meters per second (figure 3). The 170-year record

of river discharge demonstrates no permanent rise or

fall in the annual discharge volume. The influences of

variable climate changes, therefore, are not considered

an important cause of variations in sediment yields on

the scale of decades.

The suspended sediment yield (mass per unit area)

from the landscape certainly increased after European

colonization of what was once an American Indian

aboriginal province of hunter–gatherers with sparse

and casual crop cultivation (Cronon 1983). The new

colonists practiced row farming at an intensity previ-

ously unknown in these lands, and the switch to higher-

intensity farming happened quickly. Row crop

cultivation meant that existing vegetation was removed

and the soil surface severely disrupted and compacted.

Livestock roamed the woods for forage and further

disrupted the soil surface. A visitor in the 1800s noted,

“There is no portion of the globe that is being ex-

hausted of its fertility by injudicious cultivation, so

rapidly as the Mississippi Valley”(Bateham 1849, quoted

in Whitney 1994, p. 226).

The effects of land use on soil erosion can be inferred

from well-documented examples inside and outside

the MRB. For example, Wolman (1967) discussed the

changes in sediment yield from 1800 to 1960 for a

June 2003 / Vol. 53 No. 6 •  BioScience 565
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Figure 2. A summary interpretation of the relationships among popu-

lation growth, land conversion to agriculture, and fertilizer use in the

Mississippi River Basin (MRB) and coastal diatom production. (a)

Population density in two regional groupings of states. The Midwest

group consists of Ohio, Indiana, Illinois, Iowa, Michigan, Wisconsin,

and Minnesota. The Missouri group consists of Montana, Wyoming,

North Dakota, South Dakota, Nebraska, and Missouri. Population

data are from the US Census Bureau and exclude Native Americans

and slaves in most cases before 1850 (Anonymous 1992). (b) The new

area of harvested cropland and land under drainage added each year

in the MRB. Cropland data for before 1860 are from Humphreys and

Abbot (1876), and subsequent census estimates are from the US 

Department of Agriculture (USDA). The rise in harvested cropland

after a decade of decline is probably taking place on previously

farmed land. The new land under drainage is from USDA census 

estimates (irregular intervals) (USCB 1961, 1973). (c) The annual 

average suspended sediment concentration (milligrams per liter) at

New Orleans, Louisiana. Data are from the annual reports of the

New Orleans Water and Sewerage Board, Quinn (1894), and

Humphreys and Abbot (1876). (d) The percentage of biogenic silica

(BSi) in sediments from dated sediment cores collected near the

mouth of the Mississippi River (Turner and Rabalais 1994). Percent-

age BSi is an indicator of biogenic silica found in diatom remains

(dry weight basis). Also included is the annual flux of nitrogen in the

Mississippi River from 1920 to 1987.
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Maryland Piedmont stream: Erosion increased when the for-

est cover was removed for crops, declined when farms were

abandoned, rose again with urban growth in the 1960s, and

declined again as concrete and roads held soil in place while

construction activities dropped off. In the MRB, Brune (1948)

documented a 50-fold increase in sediment yield as cropland

area increased  (the amount of sediment was also affected by

the drainage area). Brune also showed similar relations of sed-

iment yield to drainage area and cropland for the Ohio River

Basin. Meade and colleagues (1990) noted that conversion of

forest to agricultural fields “caused orders-of-magnitude in-

creases in soil erosion and corresponding increases in the

sediment yields of rivers.” In a letter to Jared Eliot in the

mid-18th century, the naturalist John Bartram wrote,

About 20 years past when the woods was not pastured
and full of high weeds and the ground light(,) then the
rain sunk much more into the earth and did not wash
and tear up the surface (as now). The rivers and brooks
in floods would be black with mud but now the rain
runs most of it off on the surface (and) is colected [sic]
into the hollows which it wears to the sand and clay
which it bears away with the swift current down to
brooks and rivers whose banks it overflows. (Cronon
1983, p. 147)

Trimble’s provocative review of the history of soil man-

agement in the United States begins with these conclusions:

Much of the American soil has been poorly treated
since European settlement. Early travelers’ accounts and
a few systematic studies make this clear. Many early 
settlers brought poor agricultural practices with them:
the Scots, for example, were known for their crude 
agriculture as late as 1780. On this continent, the cheap
and unlimited land promoted a widespread attitude
that land could be used, exhausted, or destroyed as the
case may be, and then abandoned for new land. Such a
system existed well into the twentieth century, at least 
in much of the southeast, and the depredations on the
landscape are still visible today. (Trimble 1985, p. 162)

These effects of agricultural expansion on soil erosion

(figure 4) were widely acknowledged by the 1930s as having

major consequences for farm management. The

amounts of soil loss under cultivation could be stag-

gering and quick. A 1928 US Department of Agri-

culture publication on soil erosion described how

“certain piedmont areas whose records are known

have, within a period of 30 years, lost their topsoil en-

tirely, 10 inches or more of loam and clay loam hav-

ing washed off down to the clay subsoil”(Bennett and

Chapline 1928). The authors of that report described

how an apple orchard near Lookout Mountain in

northeastern Kansas had the trunks of trees com-

pletely buried by overwash of silt from neighboring

lands, so that the level of the ground was at the

branches, and they described gullies that were 300 feet

wide in places and three-quarters of a mile long

(Bennett and Chapline 1928). They concluded that “it seems

scarcely necessary to state the perfectly obvious fact that a very

large part of this impoverishment and wastage has taken

place since the clearing of the forests, the breaking of the

prairie sod, and the overgrazing of pasture lands. A little is be-

ing done here and there to check this loss—an infinitesimal

part of what should be done” (p. 23).

A 1935 Iowa State Planning Commission document (cited

in Prince 1997) noted that disturbance of the state’s prairie

had caused the loss of 192,643 metric tons per km2 of soil and

that 40% of Iowa had lost 50% to 75% of its surface soil. Data

for farmland at an Oklahoma agriculture experiment station

showed that the water runoff from land cultivated continu-

ously in cotton was 11 times greater, and the soil losses 760

times greater, than from the same kind of land covered with

ungrazed Bermuda grass (6-year average, 1930–1935; USDA

1938). Soil losses from 1894 to 1935 for land continuously

planted with corn at the Ohio Agricultural Experiment Sta-

tion were 63% of the organic matter and 4.05 centimeters (cm)

of soil; the losses for land planted with oats over the same 

period were 36% of organic matter and 2.64 cm of soil

(USDA 1938). Such high sediment losses are not unusual.

Erosion rates of 100, or even 1000, times higher after land

clearing are common (Novotny 1999). Within the MRB, the

sediment yields are highest with cultivation of row crops

and lowest with dense plant cover. For example, the sus-

pended sediment in runoff from modern-day forests (which

are not mature forests) is one-third of that from land planted

with corn and soybeans (table 1).

As a result of these massive changes, sediments, including

soil organic matter, were washed off the land and into small

creeks, rivers, and, at least to some extent, the coastal zone.

Recognition of the seriousness of soil erosion led to the 

formation of the Soil Erosion Service (renamed the Soil 

Conservation Service in 1935, now the Natural Resources

Conservation Service) and to the classic 1934 Reconnais-

sance Erosion Survey.

Although preimmigration suspended sediment yields in the

MRB were not recorded, there are proxy measures. These

proxy measures are in sediment cores from the Mississippi

River Delta that have been dated and analyzed for indicators

566 BioScience  •  June 2003 / Vol. 53 No. 6
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Figure 3. Mississippi River discharge at Vicksburg, Mississippi, for indi-

vidual years and a 10-year moving average.
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of phytoplankton production (Turner and Rabalais 1994).

Diatoms, in particular, leave a record of their abundance in

the siliceous frustules deposited on the bottom. Quantifying

these frustules in sediments yields a surrogate or proxy mea-

surement of algal production in the surface waters. The ac-

cumulation of this biologically bound silica (BSi) showed a

distinctive rise at the beginning of the 1800s (figure 2d). It later

declined to a low around the 1900s, underwent another rise

and fall, and then rose again over the last 30 to 40 years. The

diatom production rate is thought to be limited by the sup-

ply of nitrogen, much as an agricultural crop is nutrient lim-

ited, but in a different physical setting. The annual BSi

accumulation has risen in proportion to the documented

loading of nitrogen in the river from 1950 to 1990 (Turner

and Rabalais 1994). Is the source of the nitrogen that caused

the rise in BSi offshore in the 1800s and early 1900s related

to an increase in nutrient yields accompanying soil erosion

from the MRB?

Nutrient release from soils
When soils are disturbed enough during cultivation, the eco-

logical processes that keep nutrients bound up in the soil and

organic matter are subdued, and the stored nitrogen is released

until the soil is, as an agriculturist might say, “exhausted”—

meaning that the natural fertility of the soil is diminished to

the point that crop growth is compromised. This is the MRB

equivalent of the slash-and-burn agriculture found in the trop-

ics, a farming practice in which crops are planted amid a

shifting mosaic of soils that are newly exploited, in decline,

or abandoned to natural rehabilitation. The US presidents

Washington and Jefferson wrote about soil exhaustion. Later,

so did naturalist John Muir:
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Table 1. Suspended sediment, total phosphorus, and

nitrate yields in runoff by dominant land use in the

United States for 1980–1989.

Runoff

(kilograms per square kilometer per year)

Suspended Total

Land use sediment phosphorus Nitrate

Wheat 3503 3.5 11.2

Urban 8056 41.7 192

Forest 10,858 22.1 89.3

Rangeland 11,559 6.0 10.9

Mixed crops 27,671 23.1 107

Corn and 

soybeans 35,026 57.1 326

Source: Smith et al. (1996).

Figure 4. Photographs of the effects of soil erosion, 1910 to 1939. Top left: erosion in Chilton

County, Alabama, circa 1935; cotton was grown on this field in 1910. Top right: line fence

crossing a tributary in Winon County, Minnesota, in 1939. The posts and wire show the form

of the stream and floodplain at the time the fence was rebuilt 5 years earlier; the photograph

shows the channel trenching and widening since then. The man in the photograph is 6 feet

tall. Bottom left: Two mules on a hillside plowing corn, circa 1935. Bottom right: buried ma-

chinery in a barn lot in Dallas, South Dakota, in 1936. Photographs: National Archives

(NLR-PHOCO-53227 [600], WR 10 26, RG 083 G 36711, and 114 SC 5089).
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At first, wheat, corn, and potatoes were the principal
crops we raised; wheat especially. But in four or five
years the soil was so exhausted that only five or six
bushels an acre, even in the better fields, were obtained,
although when first plowed twenty and twenty-five
were the ordinary yield. More attention was then paid
to corn, but without fertilizers the corn crop also
became very meagre. At last it was discovered that 
English clover would grow on even the exhausted fields,
and that when plowed under and planted with corn, or
even wheat, wonderful crops were raised. (Muir 1965,
p. 164) 

Gray’s (1933) review of southern agriculture up to 1860 char-

acterized soil exhaustion as an expected consequence of a way

of farming: “Planters bought land as they might buy a

wagon—with the expectation of wearing it out...[as the]

wave of migration passed like a devastating scrooge [sic].

Especially in the rolling piedmont lands the planting of corn

and cotton in hill and drill hastened erosion, leaving the hill-

sides gullied and bare” (p. 446).

Soil nitrogen is  one of the exhausted nutrients, and the ni-

trate ion is particularly mobile. When a forest was clear-cut

in Gale River, New Hampshire, the nitrogen losses went from

an annual retention of 200 kilograms (kg)

nitrogen as nitrate (nitrate-N) per km2 as

an undisturbed forest to a loss of 3800

and 5700 kg nitrate-N for the first and

second years, respectively, after clear-

cutting (Pierce et al. 1972). These loss rates

are 10 to 20 times higher than the present

total nitrogen (TN) yields for the whole

MRB (489 kg TN per km2 per year;

Goolsby et al. 1999). To put these loss rates

in perspective, consider that the present

carbon, nitrogen, and phosphorus yields

from the MRB are less than 0.1% of the

carbon, nitrogen, and phosphorus in a

layer of soil 1 meter thick with a 2% 

organic content. A small change in the 

element inventory on land can thus sig-

nificantly change water quality in stream

channels. These disturbances can have

long-term consequences, too. Aber and

colleagues (1998) studied the nitrogen 

dynamics of a northeastern forest and

came to the conclusion that land-use 

history going back as far as 200 years had

a stronger influence on nitrate losses than

did modern-day nitrogen inventories or

depositions.

The application of technological in-

ventions in the 1800s introduced changes

to farming practices. The wide-scale use of

the iron plow, threshing machine, mower,

and reaper began between 1825 and 1850.

The first patent for a chemical fertilizer was

issued in 1849 to the Chappell brothers in Baltimore, and sub-

sequent phosphate fertilizer production centered around

Charleston, South Carolina, in the late 1800s. The first agri-

cultural journals appeared—The American Farmer (Balti-

more, 1819), The Plow Boy (Albany, New York, 1819), The New

England Farmer (Boston, 1822), The New York Farmer (New

York, 1827), and The Southern Agriculturist (Charleston,

1828)— as land management practices evolved toward less

land clearing and more intensive use. The newer approaches

to soil management also led to high nutrient losses relative to

the losses from continuously vegetated land. A 2-year study

from one of the new agricultural experiment stations in the

early 1900s documented that the conversion of the bluegrass

native prairie vegetation to continuous wheat or corn, or to

plowed fields, resulted in the loss of up to 160 times more ni-

trogen and 350 times more phosphorus than lost from the na-

tive landscape (figure 5).

Ditching and tile drainage further stimulated nitrogen

losses from soils. Soil drainage is intended to dry out soils by

promoting belowground drainage. The majority of dissolved

nitrogen lost in a drained field is in the form of nitrate, and

the nitrate is lost by movement as shallow, subsurface flow or

as deeper groundwater, not as overland flow (Lowrance 1992).
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Figure 5. Average nitrogen (N) and phosphorus (P) losses (kilograms per square

kilometer per year), 1 May 1926 to 1 May 1928, in runoff from experimental plots

at the Missouri Agriculture Experiment Station (Miller and Krusekopf 1932). A

belowground vertical profile of the roots in wheat (Triticum aestivum) and native

big bluestem (Andropogon gerardi) prairie vegetation is shown.

kg N or P per km2 per yr

Photograph:

Karena Schmidt,

USDA-ARS
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Several studies have documented a strong and proportional

relationship between nitrogen applications to surface soils and

the nitrogen content in soil pore water and groundwater

(Baker and Laflen 1983, Keeney 1986, Hallberg 1989). Nitrate

accumulation in soil water of experimental plots in Virginia

and Nebraska, for example, increased as nitrogen fertilizer ap-

plication rates increased (Hahne et al. 1977, Schepers et al.

1991). Tile drainage promotes these leaching losses, reduces

the amount of soil nitrogen, and increases nitrate in the

groundwater, which eventually becomes surface water 

(Hallberg 1989).

John Johnston was the first person to lay drain tile in the

United States, which he did on his farm in Ithaca, New York,

in 1835 (USDA 1938). Drainage improved crop yields on

marginal lands, but it took decades for the practice to spread

to the Midwest (figure 2b), as marginal farmland came in-

creasingly under cultivation after the passage of the Swamp

Land Acts and the expansion of the railroads, which owned

vast tracts of land. These drainage activities may not have been

the only cause of greater losses of nitrogen in the soil, but they

are indicative of the increased level of soil disturbance to the

existing land and of expansion into formerly waterlogged

soils.

The sequence of colonization, land clearing, agricultural ex-

pansion, soil erosion, increased nitrogen loading, and offshore

diatom growth is summarized in figure 2. The BSi peaks and

declines coincide with land-use changes resulting from land

clearing, expansion of agriculture, and land drainage efforts

within the MRB; they are modulated by the natural restora-

tion of abandoned land. Note that the percentage of BSi in 

sediments accumulating offshore is higher now than it was

during the peak in the mid-1800s. This recent rise in BSi

concentration is undoubtedly related to increased nitrogen

loading from the river, which occurred as a direct conse-

quence of fertilizer application rising dramatically after World

War II (figure 2d). Several analyses of whole watersheds have

shown that the amount of fertilizer applied is sufficient to 

account for the postwar rise in nitrate in the Mississippi

River (Peierls et al. 1991, Turner and Rabalais 1991, Howarth

et al. 1996, Caraco and Cole 1999, Goolsby et al. 1999) and

that urban and atmospheric nitrogen sources are relatively

small (Howarth et al. 1996, Jordan and Weller 1996, Burkart

and James 1999, Caraco and Cole 1999, Goolsby et al. 1999).

However, the soil nitrogen pool is also significant, and it un-

doubtedly still contributes nitrate to the main channel of

the Mississippi River.

Nutrient concentrations today
The effect of present land use on river water quality through-

out the United States can be seen by examining the variabil-

ity in water quality among watersheds. Jordan and colleagues

(1997) showed that nitrate yields went up, and the ratios of

dissolved silicate to nitrate went down, as the area of cropland

increased in 27 watersheds of the Chesapeake Bay. Smart

and colleagues (1985) studied watersheds in the Missouri

Ozarks in the summer of 1979 and found that the silicate:

nitrate ratio and the nitrogen content in water went up as the

land in pasture increased (there were apparently few row

crops in that area); they concluded that the stream nutrient

concentrations were more strongly related to land use than

to bedrock geology. They developed a statistical model that

used watershed size and the percentage of urban land to de-

scribe 43% of the variation in total phosphorus yields among

watersheds. Eighty percent of the variation in total nitrogen

was described using the percentage of land in pasture and ur-

ban area. Perkins and colleagues (1998) showed similar results

for all four major types of Missouri watersheds, as did Jones

and colleagues (1976) for 34 watersheds in northwestern

Iowa (3-year data set). One interesting pattern in Jones and

colleagues’ (1976) data set is that the nitrogen yield dropped

rapidly with a small increase in the percentage of land as

marsh, and it continued to fall to less than 1 kg per hectare

(ha) when the watershed was 15% marsh (figure 6). This

finding suggests that strategic restoration of wetlands through-

out the upper watershed may be a useful approach to restor-

ing water quality (Mitsch et al. 2001), especially where the

nitrate concentration is high (Turner 2003a).

Many studies have concluded that the application of fer-

tilizers is a major source of the increased nutrient loading

among large river watersheds in the last 50 years (NRC 1993).

The major contributor to these changes in the Mississippi River

watershed is nitrate (figure 7). These observations substan-

tiate the conclusion that human intervention within the nat-

ural landscape has transformed water quality on the scale of

the world’s largest river basins and smaller coastal water-

sheds (e.g., Turner and Rabalais 1991, Howarth et al. 1996, Jor-

dan et al. 1997, Vitousek et al. 1997, Caraco and Cole 1999,

Turner et al. 2000, 2003, Seitzinger et al. 2002).

Changes in nutrient ratios, and not just nutrient concen-

trations, also have important consequences for diatoms in the

receiving coastal waters, which are generally limited by silica

deficiency when the ratio of silicate to dissolved nitrogen
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Figure 6. Relationship between the percentage of a

watershed in Iowa that is marsh and nitrogen from 

nitrate and ammonium (kilograms per hectare per

year) for 17 watersheds over 100 hectares, 1971 to 1973.

Adapted from data in Jones and colleagues (1976).
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drops below 1:1. Zooplankton graze on diatoms (which can

be relatively large phytoplankton) and become part of the food

web leading to fish production, among other things. The

present-day concentrations of nitrate and silicate at New 

Orleans are very different from those in the early part of this

century (figure 7), so much so that the atomic ratio of silicate

to nitrate has fallen from about 4:1 to about 1:1. When the

atomic ratio of silicate to nitrate falls below 1:1, the food

web off the Mississippi River seems to switch from a diatom-

based ecosystem to another ecosystem state that may be less

desirable (Turner et al. 1998, Turner 2003b). The trends in

many large rivers are in a similar direction (Turner et al.

2003). These changing nutrient ratios offshore of the Mis-

sissippi River affect an area from which 25% of the US com-

mercial fisheries capture occurs. Many large rivers are changing

in a similar way (Turner et al. 2003) and leading to eutroph-

ication and hypoxia, which is having an unfavorable effect on

the world’s marine fisheries (Diaz and Rosenberg 1995).

Thus, compromises to the quality and quantity of the diatoms

in coastal waters could have unfavorable and significant con-

sequences to food webs, commercial fisheries and recre-

ational fishers, and coastal economies.

The scale of water quality changes in the MRB over the last

200 years is substantial, and the social infrastructure sup-

porting the humanmade landscape is nontrivial and impor-

tant to many. This particular watershed has been anything but

an equilibrium system for the last 200 years, suggesting that

additional changes are forthcoming. Population growth alone

will cause new changes in water quality. The landscape de-

velopments described herein have already resulted in nitrate

levels in drinking water sources that exceed national standards.

These developments have also contributed to the formation

of the largest coastal low-oxygen zone in the western North

Atlantic (Rabalais and Turner 2001, Rabalais et al. 2002) and

to the eutrophication of inland and coastal waters, which is

a widely acknowledged social and environmental concern

(e.g., Nixon 1995). Concerns about flood protection for farm-

land and homes are intermingled with concerns about di-

minishing natural resource quality and quantity and with

national political agendas involving international trade, global

climate change, and food supplies. It is our challenge as sci-

entists, citizens, land managers, and agriculturists, among

others, to work toward a mutually satisfying equilibrium of

interests that is sustainable, ethical, and socially responsive.

Our view of soil and land management can be much broader

than the articulated and commonly held view of a popular soil

textbook of 40 years ago: “After all, our primary aim in soil

management is to seek the highest yields we can maintain con-

sistent with greatest profit” (Thompson 1957, p. 363). This

view of “profit” could be enlarged to include off-farm social

costs and benefits, the soil’s health over decades, and the sus-

tenance of the farming social structure, including the family-

owned farm.

One thing seems certain: It took decades for the present sys-

tem to develop, which suggests that it will take decades of

working together for water quality rehabilitation to succeed.

Three examples provide a perspective on just how patient we

may have to be. First, the unfertilized fallow soil at the ex-

perimental soil plots in Rothamstead (United Kingdom)

continues to leak significant amounts of nitrogen after 40 years

(Addiscott 1988). A second example is from Sweden, where

nitrate leaching from a grain field continued almost un-

abated 13 years after fertilizers were no longer added (Löfgren

et al. 1999). Data on river water quality following the collapse

of agriculture (circa 1990) in the former Soviet republics of

Estonia, Latvia, and Lithuania show that, although fertilizer

application fell to the level of the 1950s, the concentration of

inorganic phosphate and nitrogen was the same in 1994 as in

1987 (Löfgren et al. 1999). The soil nitrogen mineralization

of the huge soil nitrogen pool in these Baltic states is 50 to 200

kg nitrogen per ha compared with 64 to 93 kg nitrogen per

ha of fertilizer applied. The strong buffering capacity of soils

is becoming evident (Stålnacke et al. 1999). Understanding and

managing the soil nutrient pools and turnover is a key factor

in water quality management and will be inextricably com-

mingled with the social structure and diverse incentives that

have dominated soil cultivation practices for the last 200

years.
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Figure 7. (a) Relationship between total nitrogen 

(y-axis) and combined concentration of nitrate and 

nitrite (x-axis) for 42 subwatersheds of the Mississippi

River Basin (from data in Goolsby et al. 1999). (b) 

Relationship between the atomic ratio of dissolved 

silicon to dissolved inorganic nitrogen (y-axis) and the

concentration of dissolved nitrate and nitrite (x-axis)

for 42 subwatersheds of the Mississippi River Basin

(from data in Goolsby et al. 1999) and for 529 

individual sampling events at New Orleans.
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