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Resumo

O fogo é uma das mais importantes perturbações ecológicas à escala local e global, afetando a distribuição

e estrutura da vegetação, o ciclo do carbono e o clima. Os fogos emitem cerca de 2.2 PgC/ano (uma par-

cela significante comparativamente às emissões da indústria e combustı́veis fósseis: 9.4 PgC/ano na

última década) e têm impactos substanciais ao nı́vel económico, social e de saúde. O fogo é comum

no Brasil e na última década têm sido atingidos os maiores valores de área queimada desde que exis-

tem registos. No futuro, espera-se no Brasil um aumento moderado a elevado no potencial de fogo,

uma transição para um clima mais seco e quente e uma maior probabilidade de ocorrência de eventos

climáticos extremos. Fenómenos como secas e ondas de calor tornar-se-ão mais frequentes, estas últimas

poderão vir a ocorrer a cada dois anos. Assim o estudo desta temática afigura-se essencial, de modo a

fornecer às autoridades competentes a informação necessária ao planeamento e possı́vel prevenção de

fogos no futuro.

Neste estudo, usa-se um ı́ndice de risco de fogo desenvolvido para os biomas Brasileiros, o Meteo-

rological Fire Danger Index (MFDI), desenvolvido pelo CPTEC/INPE, e um modelo regional de clima,

o RCA4 do Rossby Centre (regional downscaling do EC-Earth para a América do Sul no âmbito do

programa CORDEX), para avaliar a evolução do risco de fogo e área queimada em clima presente e

futuro. O MFDI é utilizado operacionalmente no INPE para estimar valores diários de risco de fogo para

a América Central e do Sul. O MFDI baseia-se no princı́pio de que quantos mais dias sem precipitação,

maior o risco de fogo. O MFDI estima o quão propı́cia a vegetação está para ser queimada em deter-

minado dia com base nas respectivas condições meteorológicas, nomeadamente temperatura máxima,

humidade relativa mı́nima, precipitação acumulada e coberto vegetal. Para este último usou-se o mapa

de vegetação do IGBP adaptado para o Brasil pelo INPE para 2005, e avaliaram-se os quatro landcovers

predominantes: Evergreen Broadleaf Forest (EBL; inclui a Amazónia), Closed Shrublands and Woody

Savannas and Open Shrublands and Savannas (CSWS+OS; inclui os biomas brasileiros cerrado e caa-

tinga), Croplands (C) e Grasslands (G). Por último, é de notar que o MFDI é um indı́ce de perigosidade

meteorológica, pelo que não considera a ignição nem a propagação do fogo.

O clima presente é avaliado recorrendo a três reanálises: ERA-Interim, MERRA-2 e NCEP-DOE Re-

analysis II. Estas usam modelos para compilar de modo consistente observações de todo o globo (desde

medidas no terreno a dados de satélite), constituindo assim o melhor conjunto de dados observacionais

disponı́vel à escala global. Adicionalmente, dados de área queimada são usados de forma a avaliar a

capacidade do MFDI para reproduzir as condições atuais de fogo no Brasil. Para tal, recorreu-se ao pro-

duto AQM desenvolvido por Libonati et al. [2015] e calibrado para o Brasil usando dados do instrumento

MODIS. Por outro lado, o clima futuro é avaliado usando o modelo regional de clima juntamente com os

cenários de clima futuro RCP2.6, RCP4.5 e RCP8.5 do IPCC. Estes são denominados consoante o seu

forçamento radiativo em 2100 (Wm−2) e permitem simular possı́veis trajectórias de emissões de gases

com efeito de estufa, aerossóis, concentrações de gases na atmosfera e alterações no uso do solo.

O MFDI calculado por dados baseados em observações é comparado com informação de área quei-

mada (BA), revelando-se capaz de replicar tendências de BA a nı́vel inter e intra-anual. Observam-se

diferenças entre valores de MFDI baseado nas reanálises: no geral, os dados do ERA-Interim conduzem

aos maiores valores de MFDI enquanto que o NCEP conduz aos mais baixos (MERRA revela valores

intermédios entre ambos). A reanálise ERA-Interim apresentam valores mais elevados de temperatura

e mais baixos de humidade relativa, levando a um aumento do MFDI em todos os landcovers excepto
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no EBL onde, devido a valores elevados de precipitação, o MFDI apresenta valores inferiores compa-

rativamente às outras reanálises. Avaliando valores mensais totais de área queimada nos 12 anos de

dados, verifica-se que os meses de maior BA são de Agosto a Outubro, pelo que estes foram considera-

dos a época de fogos. A maior contribuição para a BA total é dada por CSWS+OS e a menor pelo EBL.

Com estes resultados, simples modelos de regressão linear foram desenvolvidos para prever mudanças

de área queimada usando o MFDI como preditor. Ao analisar a linearidade entre o MFDI calculado pe-

las reanálises e os dados de área queimada, escolheu-se o MFDI baseado nos dados ERA-Interim como

preditor, dado que com este foram obtidos os maiores coeficientes de determinação em três dos quatro

landcovers avaliados (representando 93% da área do Brasil) e ainda devido à sua maior resolução espa-

cial. Os modelos foram ainda avaliados para diferentes perı́odos da época de fogos, onde se encontrou

correlações mais elevadas em Agosto-Outubro para EBL e Setembro-Outubro para os restantes landco-

vers. Os modelos de área queimada resultantes são capazes de explicar pelo menos 50% da variância

em todos os landcovers considerados (com resultados particularmente positivos para CSWS+OS, onde

explicam 77% da variância).

Adicionalmente, o MFDI é calculado para condições de clima presente e futuro usando os resultados

de simulações do RCA4. Em geral, o risco de fogo simulado apresenta curvas semelhantes às calculadas

pelas reanálises, mantendo-se dentro dos valores observacionais na maior parte dos meses para todos os

landcovers. Descobriram-se no entanto diferenças sistemáticas na temperatura em todos os landcovers

e ainda diferenças significativas no campo da precipitação no EBL, que resultam em valores distintos de

MFDI baseado em observações e simulações. É de salientar que tanto o MFDI baseado em simulações

como o MFDI baseado em reanálises apresentam valores elevados no inverno austral, porém o pico do

MFDI simulado dá-se em Setembro para o CSWS+OS, C e G, enquanto que o risco calculado com dados

de reanálises ocorre um mês antes: desta forma, os dados do modelo resultam em maior risco de fogo

no mês que arde mais. Para o futuro, o modelo calcula ainda um aumento de MFDI em todo o ano,

especialmente na época de fogos, dado o aumento de temperatura e menor humidade relativa. Também

é de notar um aumento de precipitação no verão austral para CSWS+OS e C.

Devido às discrepâncias encontradas, corrigiu-se a distribuição do MFDI (após testes de norma-

lidade) de forma a aproximar o MFDI simulado ao calculado pelo ERA-Interim, resultado usado para

prever futura área queimada usando os modelos de área queimada previamente desenvolvidos. De acordo

com o aumento de MFDI estimado anteriormente, a BA tende também a aumentar ao longo do século:

encontraram-se aumentos sistemáticos no valor médio comparativamente ao perı́odo histórico para todos

os landcovers e cenários. Estes são especialmente notórios no RCP8.5, sendo o RCP2.6 o único cenário

no qual o MFDI médio tem um menor valor no final do século comparativamente a meados do século

(i.e. o risco de fogo diminui na segunda metade do século). CSWS+OS é o landcover que apresenta os

maiores aumentos de média e desvio-padrão de BA quando comparado ao perı́odo histórico. Isto é de

especial relevância considerando que este representa 76% da área queimada do Brasil.

Concluindo, alterações significativas nos parâmetros meteorológicos e um aumento do risco de fogo

(e por consequinte, área queimada) são expectáveis para o Brasil nas próximas décadas. Estas alterações

dependem em grande medida das trajectórias futuras de emissões de gases com efeito de estufa. É de

notar, no entanto, as limitações deste trabalho: é usado um coberto vegetal estático, não tendo em conta

as interacções entre o fogo e a vegetação; só é usado um modelo de clima regional, estando assim o

estudo limitado à variabilidade interna e incertezas deste; e ainda que não é tido em conta a influência

humana, nem a ignição e propagação do fogo.

Palavras chave: fogo, risco de fogo, área queimada, Brasil
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Abstract

Fire is a key ecological disturbance, contributing to ecosystem structure, diversity and functioning.

Fire emissions to the atmosphere amount to approximately 2.2 PgC/yr and fires have significant eco-

nomic, social and health related impacts. Brazil is one of the most fire-affected areas in the globe and

over the last decade the highest peaks in burned area have been observed since records began. Here,

we employ a fire danger index tailored for Brazilian biomes, the MFDI, and outputs from a regional

climate model, the RCA4 from the Rossby Centre, to assess present and future trends of fire danger and

burned area. To that end, the MFDI as calculated by observation-based data was compared with a burned

area (BA) dataset calibrated for Brazil (AQM, Área Queimada), with satisfactory results in both intra

and inter-annual evaluations. Consequently, simple linear regression models were developed to predict

changes in burned area using the MFDI as predictor, which were shown capable of explaining at least

50% of variance for all analysed landcovers. Conspicuous results were found for the Closed Shrublands

and Woody Savannas + Open Shrublands and Savannas landcovers (CSWS+OS), which includes cerrado

and caatinga biomes, where the burned area model explains 77% of variance. Using RCM results, MFDI

based on simulated climate is evaluated for present and future climate conditions. Although simulation-

based MFDI follows the overall trend of observation-based fire danger, a systematic underestimation

of temperature was found for all biomes, accompanied with considerable differences in precipitation

in Evergreen Broadleaf Forest landcover (which includes the Amazon rainforest). In the future, MFDI

is expected to increase over the year especially in the fire season (August to October), consequence

of higher temperatures and lower relative humidity throughout the year, and increased precipitation in

austral summer, before the fire season, for CSWS+OS and Croplands. Lastly, model-based MFDI was

approximated to observation-based distribution and used to estimate future BA using the burned area

models previously developed. As expected from the increase in future MFDI, BA increases throughout

the century: systematic increases in the mean BA from the historical period are found for all scenarios

and all landcovers, which are especially pronounced in RCP8.5. RCP2.6 is the only scenario in which the

mean by end of the century has a lower value than that of mid-century. In conclusion, although varying in

magnitude, significant changes in meteorological parameters and higher fire danger (and consequently,

burned area) are expected for Brazil in the coming decades.

Key words: fire, fire danger, burned area, Brazil
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1. Introduction

According to the Intergovernmental Panel on Climate Change (IPCC) the current concentrations

of atmospheric CO2, CH4 and N2O exceed any level registered in the past 800 000 years [IPCC, 2013].

During the past century, the observed average rate of increase of these gases surpassed any rate of change

over the previous 20 000 years. Atmospheric CO2 concentration is the main contributor to total radiative

forcing, and its increase led to an energy imbalance of the Earth, estimated on the order of 0.5 to 1 Wm−2

over the past decade (Trenberth et al. [2014]; von Schuckmann et al. [2016]; Dieng et al. [2017]).

The IPCC [2013] deemed “extremely likely” that human influence has been the dominant cause of

the consequent warming, observed since the mid-20th century. A recent study has estimated that the

human induced warming relative to the period 1850-79 is 1.01◦C, essentially demonstrating that the ob-

served warming since that period is mostly anthropogenic (the corresponding natural externally-driven

change is -0.01 ± 0.03◦C; Haustein et al. [2017]). The IPCC [2013] further disclosed that continued

emissions of greenhouse gases will cause future warming and consequent changes in the climate sys-

tem, and that these may persist for many centuries regardless of subsequent CO2 reduction. Limiting

these changes requires substantial and sustained reductions of greenhouse gas emissions. To evaluate

how carbon dioxide concentrations and other influencing factors might impact future climate, the IPCC

(AR5) defined four Representative Concentration Pathways (RCPs). These scenarios represent future

emission trends, atmospheric concentration and land use change, among other factors, and are named

according to their radiative forcing in 2100. Their results show that global temperature is expected to

reach 1.5◦C above pre-industrial levels in 2100 for all scenarios. An increase of 1.5◦C is also the goal

proposed in the Paris Agreement formulated in the COP21 meeting in Paris, in December 2015 [UN-

FCCC, 2017]. The meeting involved 196 parties (195 states plus the European Union) that agreed to

undertake rapid reductions of CO2 emissions in accordance with the best available science and in the

context of sustainable development, while recognizing the need to support developing countries in their

effective implementation of the Paris Agreement. According to Millar et al. [2017], limiting warming

to 1.5◦C is still physically achievable, however meaningful and quick action is required, and it strongly

depends on how quickly pledges made in COP21 can be achieved.

Anthropogenic activity has been linked to global warming, to changes in the global water cycle,

reductions in snow and ice and global mean sea level rise. Each of the last three decades has been

successively warmer at the Earth’s surface than any preceding decade since 1850. Over the last two

decades, the Greenland and Antarctic ice sheets have been losing mass, and glaciers have continued

to shrink worldwide. From 1901 to 2010 global mean sea level rose by 0.19 meters, and the rate of sea

level rise since the mid-19th century has been larger than the mean rate during the previous two millennia.

Climate change can also lead to higher frequency and severity of extreme events and disturbances. This

has become increasingly relevant in the past decades, as the world has seen more catastrophic events than

ever before. The 2017 Atlantic hurricane season was marked by several extremely destructive hurricanes

of categories 4 and 5, which caused widespread damage in the north-eastern Caribbean and Florida

[NOAA, 2017]. Irma was the strongest storm on record to exist in the open Atlantic region, with winds

of 295 km/h. Wildfires severely raged various regions of the globe in 2017: California saw its most

costly fire season; British Columbia had its worst-ever wildfire season; and Portugal had its 2003 burned

area record broken and the most fatal fire season on record [Nature Climate Change, 2017]. Some of
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these events were exacerbated by severe droughts, whereas other regions of the globe were devastated by

floods [Voiland, 2017].

Several studies have underlined the link between fire activity and climate change (e.g. Flannigan

et al. [2013], Westerling et al. [2006] and Gillett et al. [2004]) and fire is arguably the most important

disturbance agent in terrestrial ecosystems at a global scale, releasing every year significant amounts of

carbon to the atmosphere (2.2 PgC/yr; van der Werf et al. [2017]). Estimates of global annual burned area

range from 300 to 450 Mha, which is comparable to the size of India [Flannigan et al., 2013]. This can

have substantial impacts on vegetation structure and distribution, biogeochemical cycles, atmospheric

chemistry and composition, as well as human health. Fire can disrupt ecological processes by reducing

plant biomass and litter, thereby altering energy, nutrient and water fluxes between the soil, plants and

atmosphere.

Wildfires are of particular importance in South America, as it is one of the regions most affected by

fire along with the African and Australian continents [Bowman et al., 2009]. Brazil covers a large area of

South America, including most of the Amazon rainforest, and great efforts have been made to properly

manage and study its frequent fire activity. Devastating fires have cut across Brazil in the last decade:

according to the Brazilian National Institute for Space Research (INPE), 2017 was the most devastating

year on record surpassing 2004, with 275 120 recorded fires; and September 2017 was the month with

the highest fire activity since records began in 1998. In the previous decade several years surpassed the

230 000 recorded fires’ mark, confirming the increased frequency of Brazilian wildfires (Figure 1.1).

Figure 1.1: Inter-annual variability of fire activity from 1998 to present [INPE, 2017].

Although all Brazilian biomes are subjected to fire (to a greater or lesser degree), the Brazilian

cerrado is particularly affected: according to Strassburg et al. [2017], it has lost 88 Mha (46%) of its

native vegetation cover and only 19.8% remains undisturbed. Cerrado is the dominant vegetation of

central Brazil, a savannah-like biome, covering approximately 25% of the country, and one of the most

important global biodiversity hotspots [Myers et al., 2000]. Although fire is a natural disturbance in

savannahs, changes in fire regimes caused by human activity (either directly, through land use practices,

or indirectly, affecting the climate) can have substantial impacts on these ecosystems. And cerrado is

increasingly threatened, partly because of the absence of a consistent fire policy [Durigan and Ratter,
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2016].

Furthermore, with increasing temperatures and drought, it is likely that Brazil will register an increase

from moderate to high in wildfire potential, as well as a longer period of high fire potential and an

increased likelihood of extreme weather events [Flannigan et al., 2013]. However, most studies of future

global fire patterns (e.g. Liu et al. [2010] and Brady et al. [2007]) are based on indices which are

not tailored for the specific fire regimes under study, as they do not consider the region-specific biome

characteristics and meteorology.

In this dissertation, a Brazilian fire danger index and outputs of a regional climate model are em-

ployed to assess present and future patterns of fire danger in the major Brazilian landcover types. The

main goal is to assess fire danger and burned area changes under changing climate conditions over the

21st century, to possibly provide a tool for scientists and policy makers to predict, and perhaps regulate,

wildfire impact on climate, land productivity and management, and environmental protection. Special at-

tention is paid to the Closed Shrublands and Woody Savannas and Open Shrublands and Savannas land-

cover type, given that it includes the Brazilian biomes cerrado and caatinga, and Evergreen Broadleaf

Forest, which includes the Amazon rainforest, given their importance at the regional and global scale.

In chapter 2, the relevant theoretical background is discussed, and in chapter 3 and 4 the datasets and

methodologies used in this study are described. Chapter 5 holds the results, divided in four sub sections:

an assessment is made in 5.1 of the capability of the fire danger index (as estimated using observation-

based data) to accurately track the patterns and trends of burned area over Brazil under the climate

conditions observed in recent decades; simple statistical models linking fire danger and burned area for

each landcover are developed and evaluated in 5.2; the applicability of the fire danger index estimated

from RCM outputs for the present is tested in subsection 5.3; and lastly, in 5.4. results from a statistical

model of burned area using a meteorological index of fire danger as predictor are analysed for different

climate change scenarios in the 21st century. In chapter 6, the results are discussed in a comprehensive

perspective, as well as possibilities for future studies.
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2. Theoretical Background

2.1 Fire in the Earth System

Wildfire is often perceived as a natural hazard whose consequences are mainly negative, e.g. by de-

stroying ecosystems and endangering populations. However, wildfire is a natural part of and plays a key

regulating role in many environments. Fire clears the dead litter on forest floors which allows important

nutrients to return to the soil, creating favourable conditions for animals and plants to develop. There

are also tree species that rely on fire for reproduction: for example, seeds in pinecones are sealed with

a resin that needs fire to melt and release the seeds. Hardesty et al. [2005] classified global vegetation

in three categories: fire-dependent, fire-sensitive and fire-independent. Fire-dependent biomes are those

that regularly burn constrained to the annual and seasonal climatological conditions, fuel accumulation,

among other influencing factors. These ecosystems evolved with fire, which influences their structure

and composition, and promotes regeneration. Fire-dependent biomes may have different fire regimes:

grasslands and savannah regions are characterized by frequent, low-intensity surface fires, maintaining

the open-structure characteristic to these biomes, whereas shrublands and some forest types may experi-

ence infrequent intense stand-replacing fires [Hardesty et al., 2005].

Figure 2.1: Fire-dependent, fire-sensitive and fire-independent regions [Hardesty et al., 2005].

Regardless of how fire burns, fire-dependent ecosystems are characterized by resilient species and

communities that have adaptations to enable them to thrive in fire-prone environments [Mutch, 1970]. On

the other hand, in fire-sensitive ecosystems both fauna and flora are not prepared to sustain and recover

from high fire activity. These ecosystems did not have until recently any major or frequent fire activity,

thus are not able to positively respond or rebound after fire events. Frequent and intense fires can sig-

nificantly change the structure, composition and functioning of these biomes, by selecting fire-adapted
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species and favouring flammable species. The Amazon rainforest is one of such fire-sensitive ecosys-

tems, where human-induced fires are altering its structure and composition. Finally, fire-independent

biomes are those who see rare to no fire activity, such as the desert or tundra, mainly due to lack of fuel

and ignition sources.

Almost half of global terrestrial area is fire dependent (about 46% according to Hardesty et al. [2005])

and, even though it does not capture as much attention, reduction of fire activity in fire-dependent regions

can lead to significant disturbances in the community structure [Krawchuk et al., 2009]. Similarly, altered

fire regimes can profoundly change these biomes, as the above-mentioned species are not simply adapted

to fire but rather to a set of environmental conditions that encompass the fire regime. Conversely, fire’s

beneficial effects in fire-prone regions can only occur if the fire does not burn for too long or with

an intensity that causes the soil to be dry for an extended period. Only about 25% of the terrestrial

world is considered to have intact fire regime characteristics (e.g., fire frequency, severity, extent and

season, within their range of natural variability; Shlisky et al. [2008]), and direct or indirect changes in

ecosystems seem to be inevitable.

A recent study found that the number of sites with no after-fire regrowth almost doubled after 2000,

from 19 to 32%, comparing sites burned at the end of the 20th century with those burned in the first

decade of the 21st century [Stevens-Rumann et al., 2018]. The authors establish warmer and drier mean

climate conditions as a key driver of these changes, and that there is a high likelihood that future wildfires

facilitate shifts to lower density forests or non-forested areas under a warming climate. Although the

study uses only a 23-year period, which is very short compared to the lifespan of a forest, its results are

certainly relevant and worthy of reflection. In addition, Cochrane and Schulze [1999] reconstructed the

historical fire activity near Tailândia (Pará, Brazil), and assessed that burned areas are more susceptible

to repeated burns due to reduced tree cover and increased fuel loads. Both these results hint at the

importance of fire in determining biome state. Staver et al. [2011] elaborates on fire-related biome

transitions, showing how savannah and forests represent an alternative biome state. Fire can sustain

savannah where climate favours forest by limiting tree cover and maintaining open canopies, further

promoting favourable conditions for fire occurrence. As such, changed fire regimes associated with

climate change, might lead to present-day forests transitioning to savannah regions; a process unlikely

to be easily reversible. Large areas of South America and possibly Africa are identified as potentially

at risk of changes in biome state. The Amazon rainforest in one of such regions with increased risk of

biome transition, given the widespread deforestation, rising temperatures and the higher frequency of

extreme drought events [Malhi et al., 2009]. Furthermore, although it may not yet surpass the magnitude

of natural variability, emerging evidence related to changing energy and water cycles, seems to indicate

that the Amazon basin might be already in a biophysical transition to a disturbance-dominated regime

[Davidson et al., 2012].

Bond and Keeley [2005], used a dynamic global vegetation model to estimate the global biome

distribution without fire, where the only controlling parameter would be climate (Figure 2.2). Their

results show that closed forests, which currently cover a quarter of the globe, would more than double in

extent when considering only climate constraints. All the higher rainfall sites showed a tendency to form

forest following suppression of fire, in which biomes such as grasslands and savannah, namely those in

more humid regions (such as the Brazilian cerrado), present the most pronounced results. These are also

the biomes with the highest amount of fire events, which highlights the relevance of disturbance agents

in shaping global vegetation distribution.
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Figure 2.2: Global biome distribution at: (a) climate potential and (b) actual vegetation. Biomes types, represented by the

cover of the dominant plant functional type: C3 - grasses or shrubs; C4 - grasses or shrubs; Ang - angiosperm trees; Gym -

gymnosperm trees. The numbers indicate sites where fire has been excluded for several decades [Bond and Keeley, 2005].

Disturbances may alter the state and trajectory of an ecosystem, being key drivers of spatial and

temporal heterogeneity [Turner, 2010]. In Yellowstone, for example, the 1988 fires created a complex

spatial mosaic of patches that varied in size, shape, and severity [Turner et al., 1994]. A recent study

using 12 years of satellite data, estimates that degradation and disturbance of ecosystems represent 70%,

81% and 46% of carbon losses in tropical America, Africa and Asia, respectively. In Baccini et al.

[2017], forest degradation and disturbance is defined as “losses in carbon density in a forest that remains

forest” which includes processes such as drought or wildfires. They further add that ending degradation

and disturbance could reduce emissions by at least 862 TgC/yr, possibly paving a path for a low-emission
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future. These results are supported by similar findings estimating that most fire-related carbon emissions

in South America are due to tropical deforestation and degradation and to savannah, grasslands and

shrubland fires [van der Werf et al., 2017]. In the period of 1997 to 2016, the same study found that,

globally, fires emit approximately 2.2 PgC/yr to the atmosphere. These emissions represent a significant

contribution when compared to those of fossil fuels and industry, which have increased from 3.1 ± 0.2

PgC/yr in the 1960s to an average of 9.4 ± 0.5 PgC/yr in the past decade (2007-2016) [Le Quéré et al.,

2017]. To achieve the goals established by the Paris Agreement for 2100, it is important to include

and recognize fire as a driver of biogeochemical cycles and ecosystem processes. Increased fire and

limited regeneration can significantly contribute to increased concentrations of carbon in the atmosphere,

as not only fire themselves release carbon as they also decimate the forests which would consume it.

Furthermore, when associated with carbon stock deposits, fires expedite the release of more carbon to

the atmosphere, as happened in the 1997 massive fires in Indonesia that resulted in vast deposits of peat

burning. Most of the carbon released in these fires is from the slow accumulation of C-stocks rather than

the burning of forest trees [Schimel and Baker, 2002]. The major fire activity in this event released an

equivalent quantity to the global carbon uptake by the terrestrial biosphere in a typical year [Page et al.,

2002].

Furthermore, pyrogenic carbon (charcoal) is hypothesized to play an important role in the carbon

cycle given its high resistance to decomposition, and although it was found that fire severity does not

influence the amount of PyC created, it influences its distribution: PyC in the forest floor becomes

susceptible to erosion, emitting carbon to the atmosphere at an increased rate than those in the trees.

High severity fires such as the 1997 event can also lead to an increase in pyrogenic carbon (PyC) in

aboveground areas whereas low-to-moderate severity fires increase PyC in the forest floor [Maestrini

et al., 2017].

2.1.1 Pyrogeography

Figure 2.3: Current global pyrogeography illustrated by annual average number of fires, using satellite data [Bowman et al.,

2009].

As a major component of the Earth System, the study of fire and its drivers, impacts and resulting

feedbacks with climate and ecosystems, becomes essential. Emerging satellite-derived data has provided

global datasets to describe the distribution, variability and seasonality of burning. The study of the
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distribution of fire that attempts to quantify observed variability in fire activity as a function of the

complex interplay of environmental factors, is called pyrogeography [Moritz et al., 2010]. It is worth

noting that pyrogeography only regards the distribution of fire, and that other fire regime elements such as

seasonality, intensity, burned area and frequency, also need to be taken into account when evaluating fire

activity [Turner, 2010]. Nevertheless, pyrogeography allows to explore the global spatial distribution of

fires and attempt to quantify their causes and effects, examining the link between environmental change,

vegetation and fire.

Similarly to how biomes are differentiated (using vegetation traits), Archibald et al. [2013] identified

regions with similar fire characteristics and defined five global units of fire using remotely sensed im-

agery, based on five fire regimes characteristics: fire return interval, maximum fire intensity, length of the

fire season, maximum fire size and mean annual burned area. The identified pyromes were: larger and

intense fires (frequent-intense-large, FIL); smaller and less intense fires (frequent-cool-small, FCS); in-

frequent, high intensity and larger fires (rare-intense-large, RIL); infrequent, lower intensity and smaller

fires (rare-cool-small, RCS); and lastly, intermediate fire return times and small fires (intermediate-cool-

small, ICS) (Figure 2.4). Correlation with biomes was investigated, in which they found that biomes

such as boreal forests or tropical grasslands are dominated by a specific pyrome type: 93% of boreal

forests fall into the RIL and RCS pyromes; whereas FIL and FCS dominate in tropical grasslands. More-

over, all biomes contain a substantial portion (> 20%) of the ICS pyrome. They further explored the

link between pyromes and meteorological parameters (namely, mean annual temperature and mean an-

nual precipitation) and found that frequently burning pyromes dominate in arid ecosystems and are also

associated with strong rainfall seasonality, which provides frequent opportunities for fire by promoting

biomass (fuel) growth in the wet season and fuel drying subsequently. They also suggest that human

activity is disrupting the fire system and plays an equal role to climate in determining current pyromes.

Figure 2.4: Spatial distribution of pyromes [Archibald et al., 2013]. Australia is mainly characterized by the FIL pyrome

(yellow), whereas Africa presents a large area in both the FIL and FCS pyrome (orange). South America seems to be dominated

by ICS pyrome (blue), which occurs mainly in regions of deforestation and agriculture, and a significant part of central South

America has FIL and FCS pyromes which seems to be in accordance with the cerrado biome.

It is commonly accepted that fire behaviour has a strong link to both land-use practices and meteoro-

logical conditions (Aldersley et al. [2011]; Hoffmann et al. [2012]). The latter controls the amount of fuel

available for burning, its flammability (defined as “the capacity for vegetation to be ignited at flash point”

by Phillips et al., 1974) and combustibility (“the capacity to sustain fire and to remain alight”), given that
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vegetation growth and its moisture content rely on meteorological factors such as temperature, precipita-

tion and relative humidity. Temperature holds a threefold role in fire dynamics [Flannigan et al., 2013]:

with increasing temperature, evapotranspiration increases as well and, as the ability for the atmosphere

to hold moisture increases rapidly with higher temperatures, fuel moisture will decrease (unless there are

significant increases in precipitation); with warmer temperatures there may be more lightning activity,

which leads to increased natural ignitions; lastly, higher temperatures may lead to a lengthening of the

fire season. Libonati et al. [2015] further demonstrates that the inter-annual variability of burned area

in the Brazilian cerrado is closely related to the inter-annual variability of precipitation, where the years

with largest annual amounts of burned area are those with the lowest amounts of annual precipitation. In

the future, Brazil is expected to become drier (Marengo et al. [2012]; Duffy et al. [2015]; Guimberteau

et al. [2013]) and warmer [Moritz et al., 2012], affecting ecosystems and promoting conditions for fire

activity (Silva et al. [2016]; Le Page et al. [2017]).

2.1.2 Fire, meteorology and human activity

Beckage et al. [2005], suggests that climate-fire relationships could provide a general basis for under-

standing the natural seasonality and frequency of fire, based on case studies from the United States of

America. They hypothesize that these relationships allow to infer historical fire regimes and their vari-

ability using data on past climate, such as El Niño-Southern Oscillation (ENSO) reconstructions over the

past thousands of years.

Meteorology also drives primary productivity and biomass decomposition, which are closely re-

lated to fire activity. Krawchuk et al. [2009] developed a statistical modelling framework capable of

successfully reproducing current-day global fire patterns, using an ensemble of multivariate statistical

generalized additive models. Their results reinforce that the existence of fuel is necessary for wildfires

to occur, in which areas with low levels of vegetative resources to burn had a low probability of fire.

However, they also found that the influence of vegetation is limited by environmental constraints on fire

activity. Central Amazon for example is relatively fire-free, even though it is one of the most biomass-

rich areas in the world: although they have available vegetative resources to burn, areas such as this

rarely experience environmental conditions that promote biomass burning. Similarly, Pausas and Ribeiro

[2013] introduce the “intermediate fire-productivity” conceptual model, where fire activity is highest in

environments with intermediate aridity/productivity, such as tropical savannah. On the other hand, fire

activity is low in unproductive, typically arid environments, given the absence of biomass; and in mesic,

productive environments (such as rainforests) because fuel is rarely dry enough to burn. They further

elaborate on the non-linear relationship between droughts, fuel and fire regimes. Droughts can drive fire

activity in humid and productive regions where fuel is highly available, whereas in unproductive and arid

environments fire activity is fuel-limited. Increased drought frequency might induce more fires, whereas

in unproductive ecosystems more droughts could possibly reduce fires as it would limit plant growth

and fuel loads. As such, the impacts of such extreme events in the context of global change can vary

significantly depending on the ecosystem. Nevertheless, extreme events such as droughts or heatwaves

can potentially aggravate fire events by increasing the probability of high severity occurrence. In South

America such events are particularly influenced by variations in climate conditions arising from atmo-

sphere/ocean interactions such as ENSO [van der Werf et al., 2004]. The Amazon is particularly sensitive

to ENSO-related droughts, increasing its probability of drought-induced and high severity fires [Schimel

and Baker, 2002]. In the last two decades, large areas of the Amazon basin experienced the most four

severe droughts ever recorded, namely the 1997/1998, 2005, 2010 and 2015 events, with a significant
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increase in the coverage area and intensity [Panisset et al., 2018] . At the same time, heatwaves have

been increasing in South America and particularly in Brazil (Perkins et al. [2012]; Rusticucci [2012];

Geirinhas et al. [2017]) and could, by the end of the century, be as frequent as every 2 years [Russo et al.,

2014].

Nevertheless, as mentioned before, fire is not only constrained and influenced by meteorological

parameters. In fact, fire’s behaviour has a strong linkage to human activity with anthropogenic factors

explaining e.g. most of the variance in fire size [Hantson et al., 2015]. In South America, human fac-

tors might even outweigh climatic drivers [Aldersley et al., 2011]. Activities such as logging increase

flammability of the forest, by reducing forest leaf canopy coverage by 14-50%, allowing sunlight to pen-

etrate the forest floor and drying the organic debris left by the activity, and thus increasing vulnerability

to future fires [Brando et al., 2014]. As such, given the importance of human activity, it is essential to

communicate fire vernacular in a consistent and coherent way. Hardy [2005] discusses the importance

of having a clear and concise terminology, and resorts to several studies to define various terms in the

fire vernacular. As opposed to “fire risk” that addresses values or damages, “fire danger” refers only

to the probability of fire ignition, with both anthropogenic and natural causes. The term “hazard” must

only be used to express the state of the fuel complex and is independent of weather or the environment

in which the fuel is found. “Severity” is not a concise term, as it concerns the characterization of the

effects of fire on wildland systems not the fire itself. Also, expressions such as “catastrophic” are not

used in the fire community, as it derives from expressions of social, cultural and economic value. On the

other hand, Williams [1977] defines “fire spread” as a meaningful concept only under situations in which

both burning and non-burning combustibles are identified, as it can occur only if there is some type of

communication between the burning region and the non-burning fuel. This dissertation focuses on the

predisposition of vegetation to be burnt and as such, following Hardy [2005], the term “fire danger” will

be used to refer to probability of fire ignition as constrained by vegetation and climate.

2.2 Evaluating climate

Given the importance of studying fire as a key process in the Earth System [Bowman et al., 2009], studies

often rely on climate modelling. Global Circulation Models (GCMs) provide a quantitative description of

the physical processes in the atmosphere, ocean and land surface and are crucial to the understanding of

climate. Although they have been highly improved in recent years, the low horizontal resolution of GCMs

(in the order of lat/lon degrees) does not allow an accurate representation of important regional processes

and forcings (including topography and other land-surface characteristics). This takes special importance

when studying extreme events, which are highly dependent on regional conditions and which GCMs

resolution dissolves, especially when analysing higher-order climate statistics [Giorgi et al., 2009].

To tackle these limitations, several attempts have been made to perform climate simulations at finer

grids. These downscaling methods are divided into two categories [Giorgi et al., 2009]: empirical-

statistical downscaling (ESD) and dynamical downscaling. The former uses statistical relations between

global predictors and regional variables of interest, assuming that these statistical formulas are valid in

the past, present and will still be valid in the future. Dynamical downscaling, on the other hand, uses

numerical representations of the physical processes that create the climate system to estimate the different

meteorological parameters, assuming such process remain the same. These are also called Regional

Climate Models (RCMs) and they use the outputs of GCMs as boundary conditions (meteorological

parameters, e.g. wind components and temperature, and surface parameters, e.g. sea surface temperature)

[Giorgi, 2006].
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The COordinated Regional climate Downscaling EXperiment (CORDEX) is an initiative sponsored

by the World Climate Research Programme aiming to provide a framework for the evaluation and im-

provement of regional downscaling [Giorgi et al., 2009]. Although there have been several regional

climate model intercomparison projects implemented throughout the years, their lack of common frame-

works and protocols has proven to be a disadvantage, neither allowing the characterization of uncertain-

ties nor the transfer of knowledge between different domains. The CORDEX project attempts to address

this issue, providing a common framework to allow coordinated sets of regional downscaling experi-

ments worldwide. This common framework includes the division of the world into 14 domains (Figure

2.5), covering essentially all land areas of the globe, allowing the working groups to perform their exper-

iments within the same boundaries; and using a finer grid resolution. The climate projection framework

aims to produce a large ensemble of future projections based on various models (both RCMs and GCMs)

for the 21st century using IPCC’s scenarios, the Representative Concentration Pathways (RCPs) [IPCC,

2013].

Figure 2.5: The common domains used in the CORDEX framework. It should be noted that these domains represent interior

analysis domains, not including the lateral relaxation zone in RCMs [JPL, n.d.].

The RCPs defined by the IPCC replace the previous SRES scenarios (Special Report on Emissions

and Scenarios) and are named according to the expected value of additional radiative forcing in 2100

relative to the pre-industrial period, expressed in Wm−2, representing the additional energy taken up by

the Earth system due to the enhanced greenhouse effect compared to the non-perturbed energy budget.

Total radiative forcing is determined by both positive forcing from greenhouse gases and negative forcing

from aerosols. These RCPs represent different pathways of GHG emissions, atmospheric concentrations,

aerosols and land use, into the future (Figure 2.6). Contrary to the SRES scenarios, parameters such as

population growth, economic development or technology are not static, which allows to explore different

socio-economic schemes leading to the same level of radiative forcing.
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Figure 2.6: Trends in concentrations of greenhouse gases [van Vuuren et al., 2011].

Four scenarios were defined by the IPCC to explore four levels of radiative forcing: RCP2.6, RCP4.5,

RCP6 and RCP8.5 (Figure 2.7). The first scenario does not compare to any former SRES scenarios

(while the other three do) and contemplates the most ambitious greenhouse emissions reductions. It

was developed by PBL Netherlands Environmental Assessment Agency, and radiative forcing reaches its

maximum value at 3.1 Wm−2 before it returns to 2.6 Wm−2 by 2100. Both RCPs 4.5 and 6 correspond to

intermediate emissions scenarios, developed by the Pacific Northwest National Laboratorys Joint Global

Change Research Institute in the United States of America and the National Institute for Environmental

Studies in Japan, respectively. The former is comparable with SRES scenario B1 and the latter with

SRES scenario B2. Finally, RCP8.5 was developed by the International Institute for Applied Systems

Analysis in Austria and is consistent with a future with no policy changes to reduce emissions. RCP8.5

could be considered the business-as-usual scenario (although such denomination is not advisable) and is

comparable with SRES scenario A1 F1.

Figure 2.7: Table with the main characteristics and differences between RCP scenarios [van Vuuren et al., 2011].

Even though state-of-the-art GCMs and RCMs simulations for the RCP scenarios are the best esti-

mates available of future climate trajectories, it is crucial to understand that these experiments present

several sources of uncertainty [Evans, 2011]:

1. The future anthropogenic emissions are not known nor can they be accurately estimated as they

heavily rely on future policy and human activities;

2. The model configuration of the different GCMs and RCMs also provides another source of uncer-

tainty, as different models have different modelling approaches and can provide plausible scenarios
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for the future as long as they are successful in replicating present climate conditions;

3. The internal (natural) variability of climate in the GCMs and RCMs simulations is also an issue,

namely for slow developing components such as oceans and vegetation;

4. There are biases and systematic errors associated with the GCMs (which propagate on the RCM

and ESD model runs) and on the ESD/RCM models themselves. Natural variability also increases

at finer scales, which complicates the detection of anthropogenic signals.

As such, caution must be used when analysing climate projections from GCMs and RCMs. Our

knowledge of Earth system processes is limited and imperfect, and care must be taken to extract infor-

mation from these models with confidence. Although quantifying uncertainties from models is an area

of research in need of much more attention than it gets [Gutowski et al., 2016], these errors should not be

taken as evidence that their results are completely amiss [Brown and Caldeira, 2017]. However, the lack

of understanding of physical processes becomes more significant as the scale of interest becomes finer.

The CORDEX experiment can provide some enlightenment on some of the above-mentioned concerns

by: (1) using different climate change scenarios to encompass several possible futures; (2) analysing the

internal variability of RCMs by creating several experiments with the same RCM and scenario but chang-

ing its initial conditions; (3) evaluating model configuration of GCM models, using different GCMs with

the same RCM and scenarios, and evaluating model configuration of RCM models by experimenting

different RCMs with the same GCM boundary conditions and scenarios. In this dissertation, we only

tackle concerns (1) and (2), as the remaining would require the use of several RCMs and GCMs.

In the scope of the CORDEX project, RCMs are also evaluated in a set of historical experiments

using reanalysis products (namely, the ERA-Interim reanalysis). The resulting data is then compared to

observational datasets to ensure a meticulous analysis of the models’ behaviour. Atmospheric reanalyses

provide a numerical description of the recent climate, based on an unchanging data assimilation scheme

and a model processing the available observations [ECMWF, n.d.]. Not all reanalysis data is constrained

by observations: some estimates, namely those related to the hydrological cycle, such as precipitation and

surface evapotranspiration (for which global observations simply do not exist), are obtained by running

numerical weather prediction forecast models [Nigam and Ruiz-Barradas, 2006]. The input observations

are taken from multiple sources ranging from early in-situ surface observations to modern high-resolution

satellite datasets. These must be collected and prepared to enter the data assimilation system and ensure

spatial and temporal consistency in the datasets [ECMWF, n.d.]. This allows a better understanding of

climate processes, by incorporating an extensive number of observational data that no individual could

collect and analyse separately. It is worth noting that replacement or changes to instruments and data

retrieval methods may induce errors, and the changing observation methods can produce variability and

spurious trends which are troublesome to understand and quantify [Dee et al., 2016]. Furthermore,

all estimated variables have their limitations: if it is constrained by observations; directly or indirectly

observed; how it changes in time; and how accurately the model can predict a given variable.

2.3 Evaluating fire

Several approaches have been developed to evaluate present and future fire trends, and capture climate-

vegetation-fire feedbacks. Some studies incorporated a process-based fire module into dynamic global

vegetation models, which simulate climate-based processes controlling fuel availability (e.g. Thonicke

et al. [2010] and Prentice et al. [2011]). Fire can also be estimated using statistical models of fire activity,
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based on empirical relationships with key environmental variables (e.g. Chen et al. [2011], Moritz et al.

[2012] and Pausas and Ribeiro [2013]).

2.3.1 Present fire conditions and burned area

Present fire is usually evaluated using burned area datasets, obtained with satellite remote-sensing data.

These allow the detection and monitoring of active fires at local and global scales and provide consistent

and extensive burned area datasets covering multiple years.

The Landsat program has launched a series of satellites, providing repetitive acquisition of high

resolution multispectral data of the globe, with 30 m spatial resolution and 185 km swath. Being the

longest record of the Earth’s continental surfaces as seen from space, Landsat’s orbit swaths are wide

enough for global coverage every season of the year and its images detailed enough to characterize

human-scale processes (e.g. urban growth, agricultural irrigation and deforestation). The Burned Area

Essential Climate Variable (BAECV) algorithm was developed using Landsat imagery, to automatically

identify burned areas regardless of ecosystem type and without ancillary data to direct its search [USGS,

2017]. BAECV uses a gradient boosted regression model and a thresholding process [Hastie et al., 2009]

to identify the date of the Landsat scene with the highest burn probability. Similar to the BAEVC, the

Fire Identification, Mapping and Monitoring (FIMMA) product is an threshold algorithm, used to detect

fires using multichannel measurements from the Advanced Very High Resolution Radiometer (AVHRR)

data from National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites [Li et al.,

2000]. The AVHRR is a radiation-detection imager used for remotely determining cloud cover and the

surface temperature, with 1 km resolution. Nevertheless, the FIMMA is only accurate over forested

regions and may miss fires over urban and agricultural areas.

The Moderate Resolution Imaging Spectroradiometer (MODIS) outputs are also widely used to anal-

yse the global distribution of biomass burning. MODIS is a key instrument aboard the National Aero-

nautics and Space Administrations (NASA) Terra and Aqua satellites, which cover the entire Earth’s

surface every 1 to 2 days, acquiring data in 36 spectral bands ranging in wavelength from 0.4 µm to

14.4 µm [Giglio et al., 2009]. Their data are used to create various global datasets: the Burned Area

product, which uses MODIS to locate the occurrence of rapid changes in daily surface reflectance time

series data and approximate date of burning at 500 m resolution; and the Active Fire product, detecting

fires in 1 km pixels that are burning at the time of overpass under relatively cloud-free conditions using a

contextual algorithm. Combining both Burned Area and Active Fire products, comprehensive datasets of

BA are developed: the MCD64 burned-area mapping approach employs 500 m MODIS imagery coupled

with 1 km MODIS active fire observations. The combined use of active-fire and reflectance data enables

the algorithm to adapt regionally over a wide range of pre and post-burn conditions and across multiple

ecosystems [Giglio et al., 2016].

Specially tailored for Brazil, the Área Queimada (AQM) product uses a burn-sensitive vegetation

index based on top-of-the-atmosphere values of middle infrared radiance and near infrared reflectance,

acquired from the MODIS instruments [Libonati et al., 2011]. It also relies on active fire observations ob-

tained using fire detection algorithms produced by INPE, which are being fed continuous data from sev-

eral satellite instruments. When compared to MODIS burnt area products (MCD45A1 and MCD64A1)

for Brazil, AQM shows increased performance and better agreement with high-resolution Landsat data,

with noticeable results for the cerrado region where it can more accurately identify burned areas with a

lower number of omission errors [Libonati et al., 2015]. The AQM dataset has also been successfully

used to study the Amazonian forest-savannah [Wuyts et al., 2017].
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Moreover, the MODIS Burned Area datasets can also be combined with other remote sensing prod-

ucts to further improve fire assessment: the Global Fire Emissions Database combines MODIS BA data

with active fire data from the Tropical Rainfall Measuring Mission Visible and Infrared Scanner, and the

Along-Track Scanning Radiometer family of sensors, to create global monthly burned area datasets at

0.25◦spatial resolution from mid-1995 through the present Giglio et al. [2013]. This BA component is

used to estimate fire emissions, in an attempt to understand the role of biomass burning in the global

carbon cycle and within the Earth system.

Dwyer et al. [2000] used data from AVHRR, over 21 months of global daily satellite data at 1 km grid

resolution, to determine the positions of active vegetation fires. They found that fires occur throughout the

year, however there is a strong spatial and temporal variability; although most of fire events are located in

the tropics, a significant amount of fire activity was also present in temperate and boreal regions. Giglio

et al. [2006] used MODIS at 0.5◦spatial resolution to analyse the global distribution of biomass burning,

from November 2000 to October 2005. They further introduce the remotely sensed mean fire radiative

power (FRP) to indirectly calculate the total energy released during combustion, and thus the mass of

fuel consumed given the heat of combustion for that fuel. Using FRP they have found that, at the global

scale, July, August and September are the peak months of fire occurrence, both for the northern and

southern hemispheres. The duration of the annual fire season seems to vary between 2 and 6 months and

in the tropics is highly constrained by the duration of the dry season.

There are, however, noteworthy limitations to these satellite datasets: not every fire is detected,

usually related to the instruments limitations and their detection algorithm, obscuration by clouds or the

limited diurnal sampling captured by the satellite orbit; and the number of fire pixels observed within a

grid cell does not necessarily indicate the total area burned within the grid cell.

2.3.2 Future fire conditions and fire danger rating

Using statistical models of fire activity, fire danger rating systems are developed: these describe different

characteristics of fire and are based on predicted meteorological conditions such as temperature, humid-

ity, wind and precipitation. Fire danger can be rated in numerous ways but, in general, the higher the

fire danger rating, the more dangerous the conditions. The Canadian Wildland Fire Information Systems

(CWFIS) Fire Weather Index (FWI) is one of the most used fire danger indices, globally. It is a numeric

rating of fire intensity, developed as a general index of fire danger for the Canadian forests, and it relies

on fire spread and the total amount of fuel available for combustion [Wagner, 1987]. FWI integrates re-

sults from two other indices, namely the Initial Spread Index, a numeric rating of the expected rate of fire

spread, which combines the effects of wind and fuel moisture, and the Buildup Index, which uses fuel

moisture to rate the total amount of fuel available for combustion. Using the FWI, a numeric rating of the

difficulty of controlling fires is estimated: the Daily Severity Rating (DSR); or its seasonal length-scaled

version, the Cumulative Severity Rating (CSR).

Similarly, the McArthur Forest Fire Danger Index (FFDI) developed in McArthur [1967], uses tem-

perature, humidity, wind and fuel availability to predict fire danger. The FFDI is widely used by the

Australian Bureau of Meteorology to forecast the influence of weather on fire behaviour and, although it

shows similar climatological patterns to FWI, FFDI is relatively more sensitive to temperature and rela-

tive humidity, and less sensitive to wind speed and rainfall, than FWI [Dowdy et al., 2010]. FFDI’s fuel

availability is evaluated using the “Drought Factor”, which represents the influence of recent tempera-

tures and rainfall events on fuel availability and is partly based on the soil moisture deficit. The latter can

be estimated using the Keetch-Byram Drought Index (KBDI) [Keetch and Byram, 1968], an indicator of
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the soil moisture below saturation up to a maximum field capacity.

Much as the previously mentioned indices, the United States of America’s National Fire-Danger

Rating System (NFDRS), uses daily weather data to determine fuel moisture [Bradshaw et al., 1984].

However, the NFDRS needs more input data than FWI, and whereas the latter uses a semi-empirical

approach based on several decades’ worth of weather, fuel moisture and test fire behaviour data, the

NFDRS relies on fire spread and the physics of heat and moisture transfer [Kleschenko et al., 2004].

Mölders [2010], found that both NFDRS and FWI are successful in capturing the observed variability

of fire activity in the 2005 Interior Alaska June wildfires, with a slightly greater advantage for FWI than

NFDRS.

Several studies have used these indices, associated with GCMs, RCMs and future scenarios, to assess

future fire danger. Flannigan et al. [2013] used the CSR, SRES scenarios A1B, A2 and B1, and outputs

from three GCMs (CGCM3.1, from the Canadian Centre for Climate Modelling and Analysis, HadCM3,

from the Hadley Centre for Climate Prediction in the United Kingdom, and the IPSL-CM4 from France)

to examine the potential influence of climate change on future global fire season severity. Their results

suggest that significant increases in wildfire events over most of the globe may be attributed to the role

temperature plays in fire activity, and that fire seasons will be more severe (in some areas of the globe, in-

creasing by 20 days per year). Also using a CWFIS product, Moriondo et al. [2006] evaluated the present

and future fire risk in the Mediterranean region using FWI and the output of the HadRM3P GCM along

with SRES A2 and B2 scenarios. Results show that the higher risks in forest fire are due to increases in

maximum temperature and decreases in precipitation and relative humidity, namely during the summer

period. Liu et al. [2010], explored fire risk under current and future climate conditions using KBDI and

climate variables simulated by four GCMs (HadCM3; CGCM2; CSIRO, from the Commonwealth Sci-

entific and Industrial Research Organisation; and NIES, from the National Institute for Environmental

Studies in Japan). The GCM simulation for the future was performed for four emission scenarios: SRES

A1, A2, B1 and B2. They found that future fire potential is expected to increase significantly in the

United States, South America, central Asia, southern Europe, southern Africa and Australia, i.e. mainly

areas that currently have significant fire occurrence and many fire-dependent forest types. They have also

found that there is an increase in fire season length, as well as a higher likelihood of extreme weather

events.

Lastly, Silva et al. [2016] provided the basis for this dissertation where a fire danger index specifically

tailored for Brazilian biomes, the Meteorological Fire Danger Index (MFDI), and the RCA4 regional cli-

mate model are used to evaluate meteorological fire danger patterns in Brazilian savannas and shrublands.

Their results suggest increased likelihood of more severe fire seasons in these regions over the 21st cen-

tury, for an intermediate scenario of climate change (RCP4.5). In this dissertation, a more meticulous

validation of both the MFDI fire danger index and the RCA4 regional climate model is performed, using

several reanalysis products and a burned area dataset. Furthermore, whereas in Silva et al. [2016] fire

danger was extrapolated for the future without calibration, here we use past climate data to calibrate the

regional climate model. RCP2.6 and RCP8.5 are also analysed, as well as present and future burned area

using linear regression models.
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3. Data and pre-processing

3.1 Study area

The biome classification scheme used is based on the MODIS Terra and Aqua Combined Land Cover

product which incorporates five different land cover classification schemes, derived through a supervised

decision-tree classification method [Friedl et al., 2010]. The dataset is produced yearly employing global

mosaics of the standard MODIS instrument from NASA. Here, the IGBP global vegetation classification

adapted by the Brazilian Centre for Weather Forecasting and Climate Studies (CPTEC) from INPE in

2005 is used.

Table 3.1: IGBP’s classification scheme [Strahler et al., 1996].

Vegetation class Description

Evergreen Needleleaf Forests Lands dominated by trees with a percent canopy cover > 60% and

height exceeding 2 meters. Almost all trees remain green all year.

Canopy is never without green foliage.

Evergreen Broadleaf Forests Lands dominated by trees with a percent canopy cover > 60% and

height exceeding 2 meters. Almost all trees remain green all year.

Canopy is never without green foliage.

Deciduous Needleleaf Forests Lands dominated by trees with a percent canopy cover > 60% and

height exceeding 2 meters. Consists of seasonal needleleaf tree

communities with an annual cycle of leaf-on and leaf-off periods.

Deciduous Broadleaf Forests Lands dominated by trees with a percent canopy cover > 60%

and height exceeding 2 meters. Consists of seasonal broadleaf tree

communities with an annual cycle of leaf-on and leaf-off periods.

Mixed Forests Lands dominated by trees with a percent canopy cover > 60% and

height exceeding 2 meters. Consists of tree communities with in-

terspersed mixtures or mosaics of the other four forest cover types.

None of the forest types exceeds 60% of landscape.

Closed Shrublands Lands with woody vegetation less than 2 meters tall and with shrub

canopy cover is > 60%. The shrub foliage can be either evergreen

or deciduous.

Open Shrublands Lands with woody vegetation less than 2 meters tall and with shrub

canopy cover is between 10-60%. The shrub foliage can be either

evergreen or deciduous.

Woody Savannas Lands with herbaceous and other understorey systems, and with

forest canopy cover between 30-60%. The forest cover height ex-

ceeds 2 meters.

Savannas Lands with herbaceous and other understorey systems, and with

forest canopy cover between 10-30%. The forest cover height ex-

ceeds 2 meters.
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Grasslands Lands with herbaceous types of cover. Tree and shrub cover is less

than 10%.

Permanent Wetlands Lands with a permanent mixture of water and herbaceous or woody

vegetation that cover extensive areas. The vegetation can be present

in either salt, brackish or fresh water.

Croplands Lands covered with temporary crops followed by harvest and a bare

soil period (e.g., single and multiple cropping systems). Note that

perennial woody crops will be classified as the appropriate forest

or shrub land cover type.

Urban and Built-up Land covered by buildings and other man-made structures.

Cropland/Natural Vegetation

Mosaics

Lands with a mosaic of croplands, forest, shrublands, and grass-

lands in which no one component comprises more than 60% of the

landscape.

Snow and Ice Lands under snow and/or ice cover throughout the year.

Barren Lands exposed soil, sand, rocks, or snow and never has more than

10% vegetated cover during any time of the year.

Water Bodies Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh or

salt water bodies.

The 1 km per 1 km grid dataset defines terrestrial biomes in 17 vegetation classes which includes 11

natural vegetation classes, 3 human-altered classes and 3 non-vegetated classes (Table 3.1).

Figure 3.1: Biome distribution in South America using the IGBP vegetation scheme in 17 classes (left figure) and 7 classes

(right figure) [Programa Queimadas INPE, 2013].
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The IGBP nomenclature is meant to be used for all regions of the globe regardless of their particular

biome characteristics. For Brazil, INPE condensed the 17 classes into 7 categories (Figure 3.1): Grass-

lands (G); Croplands (C); Open Shrublands and Savannas (OS); Closed Shrublands and Woody Savannas

(CSWS); Evergreen Needleleaf, Deciduous Needleleaf and Mixed forests (NLM); Deciduous Broadleaf

Forest (DBL); and Evergreen Broadleaf Forest (EBL). The Instituto Brasileiro de Geografia e Estatı́stica

(IBGE) adapted IGBP’s classification system to the specific vegetation traits in Brazil, as shown in Table

3.2.

Table 3.2: IGBP’s class number and denomination (two left columns) and correspondent IBGE’s class number and denomina-

tion (two right columns) [Setzer et al., 2017].

#IGBP IGBP’s Nomenclature #IGBE IGBE’s Nomenclature

0 Water Bodies 0 Corpos d’água

1 Evergreen Needleleaf Forests 5 Floresta de contato; Campinarana

2 Evergreen Broadleaf Forests 7 Ombrófila densa

3 Deciduous Needleleaf Forests 5 Floresta de contato; Campinarana

4 Deciduous Broadleaf Forests 6 Florestas decı́duas e sazonais

5 Mixed Forests 5 Floresta de contato; Campinarana

6 Closed Shrublands 4 Savana arbórea; Caatinga fechada

7 Open Shrublands 3 Savana; Caatinga aberta

8 Woody Savannas 4 Savana arbórea; Caatinga fechada

9 Savannas 3 Savana; Caatinga aberta

10 Grasslands 1 Pastagens e gramı́neas

11 Permanent Wetlands 0 Alagados permanentes

12 Croplands 2 Agricultura e diversos

13 Urban and Built-up 0 Áreas urbanas e construı́das

14 Cropland/Natural Vegetation Mo-

saics

2 Agriculura e diversos

15 Snow and Ice 0 Neve e gelo

16 Barren 0 Solos expostos; mineração

Since NLM and DBL categories account for only 0.4% of Brazilian vegetation, they were not consid-

ered in this analysis. Moreover, after the computation of the fire danger index, we aggregate the CSWS

and OS landcovers, due to their similar ecosystem characteristics and spatial distribution.

This takes special relevance taking into account the five main brazilian biomes: Amazónia, Caatinga,

Cerrado, Mata Atlântica, Pampas and Pantanal. Both Caatinga and Cerrado are mainly composed by

savannas and shrublands, which represent roughly 89 and 74% of their total area respectively. CSWS+OS

are also a significant part of Pantanal (57%), Mata Atlântica (33%) and Pampas (24%). Furthermore, it

is also worth pointing out that 81% the Amazon rainforest is described by the EBL landcover.

3.2 Fire danger index

In this study we use a fire danger index specifically tailored for Brazilian biomes developed by CPTEC/INPE:

the Meteorological Fire Danger Index. This index is part of the Brazilian Programa Queimadas and is

used to calculate daily values of fire risk for South and Central America [Setzer and Sismanoglu, 2012].

Its development involved hundreds of thousands of fire events from the last decade in the most crucial

Brazilian biomes.

The MFDI estimates the probability of vegetation to be burned on a given day and its rationale is
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that the longer the time without rain, the higher the risk of vegetation to burn. It uses daily values

of surface air temperature (T - given that the daily maximum occurs at 18:00 UTC), surface relative

humidity (RH - maximum at 18:00 UTC as well), total precipitation (P) and vegetation cover. We follow

the methodology proposed in Silva et al. [2016], in turn based on Setzer and Sismanoglu [2012]: Risco

de Fogo: Metodologia do Cálculo - Descrição sucinta da Versão 9. A newer version has been published

in 2017 with no significant changes [Setzer et al., 2017].

The computation of MFDI begins with the so-called Drought Days (DD): for each given day the

cumulative precipitation (mm) is estimated for eleven preceding periods of 1, 2, 3, 4, 5, 6 to 10, 11 to

15, 16 to 30, 31 to 60, 61 to 90, and 91 to 120 days. Precipitation factors are estimated considering these

preceding periods, where each factor takes the form of an exponential decay and the goal is to reduce fire

danger for higher volumes of rainfall in specific events and to attenuate the influence of precipitation as

it occurs further in the past. Its values range from 0 to 1 and it is calculated as:

DD = 105×
11

∏
i=1

e−βiPi (3.1)

where βi and Pi are respectively the decay factor and the accumulated precipitation for period i. The

range and values of such factors are described in Table 3.3.

Table 3.3: Ranges and values of the decay factors for the 11 periods that integrate the Drought Day (DD) index.

Period 1 2 3 4 5 6

Range (in days) 1 2 3 4 5 6-10

Coefficient (β ) -0.14 -0.07 -0.04 -0.03 -0.02 -0.01

Period 7 8 9 10 11

Range (in days) 11-15 16-30 31-60 61-90 91-120

Coefficient (β ) -0.008 -0.004 -0.002 -0.001 -0.0007

The Drought Days are then used to calculate the so-called Base Danger (BD) that aims to combine

the effect of rainfall with a sinusoidal curve that represents the effects of phenology for the vegetation

types used in this study.

BD = 0.45{1+ sin[min(A×DD,180◦)−90◦]} (3.2)

where the argument of the sinus function is in degrees and the values of coefficient A are described

in Table 3.4.

Table 3.4: Values of A for the seven types of vegetation.

Vegetation type EBL DBL NLM CSWS OS C G

A 1.5 1.72 2 2.4 3 4 6

Figure 3.2 represents the evolution of Base Danger as the Drought Days increase for each vegetation

type. The sinusoidal curves have 0.9 as their maximum value hence the limitation to 180◦ in Equation

3.2. It is clear that the biomes respond quite differently to the lack of precipitation: in Grasslands and

Croplands, vegetation dries quickly and reaches its peak at only 30 and 45 days without rain; on the

contrary, Deciduous and Evergreen Broadleaf Forests, given their typically humid and high temperature
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characteristics, need much more DD so achieve maximum BD. The Amazon rainforest would be in these

conditions, reaching its maximum Base Danger value at 120 days without precipitation.

Figure 3.2: Sinusoidal curves of BD (y-axis) evolution over the Drought Days (x-axis) for the 7 vegetation types (adapted from

Setzer et al. [2017]).

Temperature and relative humidity are taken into account by estimating the temperature (TF) and

humidity factors (HF).

T F = T ×0.02+0.4 (3.3)

HF = RH ×−0.006+1.3 (3.4)

Lastly, MFDI is calculated multiplying the Base Danger by the above-mentioned factors.

MFDI = BD×T F ×HF (3.5)

It is worth noting that this methodology does not consider wind speed because it regards fire spread.

3.3 Climate reanalyses

The observation-based data for the period 1980-2016, comprehends the European Centre for Medium-

Range Weather Forecasts (ECMWF) ERA-Interim reanalysis [Dee et al., 2011], the NOAA/NCEP NCEP-

DOE Reanalysis 2 [Kanamitsu et al., 2002], and NASA/GMAO MERRA-2 reanalysis [Gelaro et al.,

2017] (Table 3.5).

• ERA-Interim (henceforth referred as ERA-I) uses the ECMWF Integrated Forecast Model (IFS

Cy31r2) and the data assimilation scheme is based on a 12-hourly four-dimensional variational

analysis (4D-Var). Its spectral resolution is T255, using 60 vertical levels with the top of the

atmosphere at 0.1 hPa, and a resolution of 0.125◦×0.125◦.

• NCEP-DOE’s (NCEP) model is identical to the NCEP global spectral model operational in 1995,

except with a spectral resolution of T62 and 28 vertical model layers. Its analysis scheme is a

6-hourly three-dimensional variational (3D-Var), ad it has a spatial resolution of 1.875◦×1.875◦.

21



• MERRA-2 (MERRA) uses the new and improved version of the Goddard Earth Observing System

data assimilation system version 5 (GEOS-5), based on a 6-hourly three-dimensional variational

(3D-Var), with a resolution of 0.5◦×0.625◦ and 72 vertical levels from the surface to 0.01 hPa.

These three reanalysis datasets produce varying results according to their different data assimilation

schemes, providing a range of admissible results which allows to better assess and validate the regional

climate model. Moreover, several studies have explored the differences between these reanalyses and

how their respective physical processes are described (e.g. Trenberth et al. [2011], Brunke et al. [2011]

and Bosilovich et al. [2008]).

Both ERA-I and MERRA are updated in near real-time, with monthly delay due to production and

validation of data, whereas NCEP-DOE is updated in real-time (only few days behind). All data was

selected for South America (coordinates of upper left and lower right corners: N20 W-90 and S-60

E-30).

Table 3.5: Retrieved datasets and correspondent units.

ERA-Interim

2 Metre dew point temperature K

2 Metre temperature K

Total precipitation mm/day

NCEP-DOE R2

Air temperature K

Specific Humidity kg/kg

Precipitation rate kg/m2/s = mm/s

Pressure Pa

MERRA-2

Surface Temperature K

Humidity kg/kg

Precipitation rate kg/m2/s = mm/s

Surface Pressure Pa

Simple conversions are then performed to match the reanalyses’ dataset units to those used in MFDI

calculation. None of the reanalyses provided relative humidity values. As such, two methodologies

were used to calculate relative humidity using the available parameters in each reanalysis. ERA-I uses

the Magnus formula [Lawrence, 2005] to estimate water vapor pressure (e) and the saturation vapour

pressure (es) using surface (T ) and dew point temperatures (Td):

e =C1exp

(

A1 ×Td

B1 +Td

)

(3.6)

es =C1exp

(

A1 ×T

B1 +T

)

(3.7)

RH = 100×
e

es

(3.8)

where A1 = 17.625, B1 = 243.04◦C and C1 = 6.1094 hPa. These values, suggested by Alduchov and

Eskridge [1996], provide results for e and es with a relative error of < 0.4% over the range −40◦C ≤

T ≤ 50◦C. Relative humidity can then be calculated using both these results (Equation 3.8).

On the other hand, for both NCEP-DOE and MERRA, relative humidity is calculated using specific

humidity (q), surface pressure (p) and temperature (T ). Another definition of RH uses the actual wa-

ter vapour dry mass mixing ratio (w) and the saturation mixing ratio (ws) at ambient temperature and

pressure:
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RH = 100×
w

ws

(3.9)

For must purposes specific humidity is approximated by the mixing ratio, as the amount they differ

is less than the error involved in measuring either of them [Oliver, 2005]. Also, the saturation mixing

ratio (ws) is calculated using the saturation vapour pressure and surface pressure:

ws =
ε × es

p− es

≈
ε × es

p
(3.10)

where ε = 0.622 represents the ratio of the molecular weights of water and dry air. As the saturation

vapour pressure is substantially lower than the total mass, the denominator or the previous equation can

be simplified to p. Finally, from Equation 3.9 we can replace the es by its definition:

RH =
q

0.622es

p

×100 =
pq×100

0.622es

=
pq×100

0.622×6.1094× exp(17.625×T
T+243.04

)
=

263.2× pq

exp(17.625×T
T+243.04

)
(3.11)

3.4 Regional climate model output

The regional climate is simulated by the regional downscaling of EC-Earth for the South American do-

main of the CORDEX experiment, performed by the Rossby Centre using their atmospheric model, the

RCA4 [Strandberg et al., 2015]. The EC-Earth is a coupled global climate model based on the oper-

ational seasonal forecast system of the ECMWF [Hazeleger et al., 2012], used in the Coupled Model

Intercomparison Project Phase 5 (CMIP5). EC-Earth outputs were used as boundary condition for the

RCA4 regional climate model, which includes improved land surface processes, such as the lake model

and physiography compared to its older version [Samuelsson et al., 2015]. RCA4 is based on the numer-

ical weather prediction model HIRLAM and is thoroughly described in Samuelsson et al. [2011]. It is

worth noting that the regional model’s mask for the land-sea and the fractions of lakes/forests remains

static throughout the calculations. Both regional and global climate models have shown satisfactory re-

sults in representing several components of the climate system, in particular the ones relevant for this

study: EC-Earth has been shown to satisfactorily replicate the ocean component compared to obser-

vations [Sterl et al., 2012]; further comparisons with observational-data in the Nordic and Baltic Seas

[Dieterich et al., 2013], the Arctic [Koenigk et al., 2013] and South Asia [Iqbal et al., 2017] have also

yield satisfactory results.

Daily values of near-surface air temperature, near-surface relative humidity and precipitation were

obtained at a spatial resolution of 0.44◦× 0.44◦ (approximately 50 km) for the South America domain

(SAM-44, with rotated coordinates N34.76 W143.92 S-38.28 E207.72). Four distinct experiments were

used, one corresponding to the historical period for model and index validation (1980-2005), and the

others corresponding to IPCC’s RCPs 2.6, 4.5 and 8.5 for the 21st century [IPCC, 2013]. RCPs 2.6, 4.5

and 8.5, correspond, respectively, to a stringent mitigation, mild and severe climate change scenarios;

the first being the closest to the 1.5◦C above pre-industrial levels goal set in the COP21 meeting in Paris,

December 2015 [UNFCCC, 2017].
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3.5 Burned area

To estimate burned area we used the Área Queimada burned-area product at 1 km resolution developed

by Libonati et al. [2015] specifically for Brazil. The dataset is a matrix of 0 (not burned) and 1 (burned

area). Given that the computational capability needed to run the AQM data at its original resolution is

beyond the available material’s (more than 24 hours a run), the dataset had to be projected to a coarser

resolution, namely ERA-I’s. To that end, latitude and longitude values were selected and, per each lat-lon

combination of the coarser resolution, the amount of burned pixels (value = 1) in the thinner AQM grid

are added to a total burned area value over each new lat-lon combination. Therefore, we have a new

matrix in 0.125◦×0.125◦ resolution with total burned area per pixel, with values ranging from 0 to 169

(in km2).

3.6 Pre-processing

Daily values of observation-based MFDI are computed for 1981-2016 at each grid point using temper-

ature, relative humidity and precipitation data from the three reanalyses (ERA-I, MERRA and NCEP)

and taking into account the assigned land cover type as derived from the modified IGBP map using the

nearest neighbour criterion. For each reanalysis dataset, monthly mean values of observed-based MFDI

were obtained for EBL, CSWS+OS, C and G by averaging gridded daily values over each month and then

by spatially averaging over grid points belonging to same vegetation type.

The same procedure was applied to simulation-based MFDI from the RCA4 model in order to obtain

the respective monthly mean values for each main vegetation type for the historical period (1976-2005)

and for RCPs 2.6, 4.5 and 8.5, in two 30-year periods, ending in the first half (2021-2050) and in the

second half (2071-2100) of the 21st century.

BA data is similarly processed to MFDI, however instead of spatially averaging the grid points cor-

respondent to the same vegetation, these were aggregated.

All fire danger datasets, both reanalyses and RCM, are used in their native resolution. We compare

aggregated and averaged values over the different spatial resolutions which, although it might lead to

small incongruities, avoids errors from resampling. Lastly, a mask of Brazil was computed and repro-

jected to the used resolutions using nearest neighbour interpolation as well.
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4. Methods

Burned area models are built for each main vegetation type by means of linear regression analysis

performed on time series of MFDI (predictor) and BA (predictand). Performance of fitted models was

compared based on the coefficient of determination, providing information about the goodness of fit.

Given the short length of the time series, effects of overfitting were assessed using a leave-one-out-cross

validation scheme [Wilks, 1995], which evaluates the models’ predictive ability using non-evaluated

data: the model is fit to the data using all but one observation, then the unused observation is estimated

with the resulting model. This methodology is applied for the 12 years of data (2005-2016), leaving 1

year aside each iteration.

Using the maximum likelihood method, normal models are fitted to the distributions of several MFDI

time series for the different landcovers and the Lilliefors test [Lilliefors, 1967] is used to test the null

hypothesis that data come from a normally distributed population with mean and standard deviation.

Lilliefors test for normality is based on the Kolmogorov-Smirnov test, for mean and variance unknown

or derived from the sample, the latter being the current situation. Mean, standard deviation and their

associated confidence intervals (at a 95% confidence level) are also estimated.

Finally, following Pereira et al. [2013], a variable X1 with normal distribution and mean µ1 and stan-

dard deviation σ1 is converted into a variable X2 with normal distribution and mean µ2 and standard de-

viation σ2. As such, when applying to the simulation-based fire danger (MFDIsim) and the observational-

based data (MFDIobs):

X =
MFDIsim −µ1

σ1

∼ N(1,0) (4.1)

Given that X ∼ N(1,0):

MFDIobs = σ2X +µ2 ∼ N(µ2,σ2) (4.2)

Using both of these, MFDIsim is approximated to MFDIobs using the following transformation:

MFDIobs = σ2X +µ2 ∼ N(µ2,σ2)⇔

MFDIobs = σ2
MFDIsim −µ1

σ1

∼ N(µ2,σ2)⇔

MFDIobs =
σ2

σ1

(

MFDIsim −µ1 +
σ1

σ2

µ2

)

∼ N(µ2,σ2)⇔

MFDIobs =
MFDIsim − (µ1 −

σ1

σ2
µ2)

σ1

σ2

∼ N(µ2,σ2)

(4.3)
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5. Results

5.1 Observation-based data

5.1.1 Seasonal cycle

For each vegetation type, the respective annual cycles of MFDI and of BA for the 12-year period (2005-

2016) are computed by averaging for each month the respective monthly means over the considered

period. As shown in Figure 5.1, the annual cycles of MFDI for all vegetation types present a pronounced

maximum in winter (August-October), with the largest values being attained for CSWS+OS and the

lowest for EBL. BA follows similar trends, also achieving its highest values in CSWS+OS (monthly

maximum of 13.5 × 10 000 km2 in September) and lowest in EBL (maximum at 0.77 × 10 000 km2 in

September).

Figure 5.1: Annual cycles of MFDI (solid curves) and of burned area (bars) for the four main vegetation types during the period

2005-2016. Annual cycles of MFDI are derived from ERA-I (blue curve), MERRA (green curve) and NCEP (orange curve),

whereas the annual cycle of burned area is based on the AQM product.

There are systematic differences among the annual cycles of MFDI of the three reanalyses, EBL

and the remaining three vegetation types presenting a contrasting behaviour along the year. Whereas

in EBL the MERRA reanalysis presents the higher values of MFDI, ERA-I the lowest, and NCEP has

values close to ERA-I from May to August and close to MERRA from September to December, the

same is not true in the other vegetation types. In these, ERA-I achieves the highest values, NCEP the

lowest and MERRA presents intermediate values from May to October and is close to ERA-I in the

remaining months. During the period of larger values of MFDI, from July to October, the contrast is

more pronounced when comparing ERA-I and the other two reanalyses, with ERA-I presenting lower

values in EBL, and higher in the remaining vegetation types.
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This feature may be traced back to differences between the annual cycles of the meteorological

parameters of the three reanalyses. Figure 5.2 shows the annual cycles for EBL and CSWS+OS (similar

behaviour being observed in C and G): the ERA-I reanalysis presents systematic higher (lower) values

of temperature (relative humidity) along the year in both EBL and CSWS+OS but the same is not true for

the annual cycle of precipitation where ERA-I has higher values in EBL (in particular between July and

October) and intermediate values in CSWS+OS.

Figure 5.2: Annual cycles of temperature, relative humidity and precipitation for CSWS+OS and EBL during the period 2005-

2016 as derived from ERA-I (blue curve), MERRA (green curve) and NCEP (orange curve) reanalyses.

For EBL, the annual cycle of BA is in close agreement with that of MFDI (Figure 5.1), both cycles

presenting the highest values in August and September. However, in the cases of CSWS+OS and C,

the highest BA values occur in September and October, one month after the highest values of MFDI, in

August and September. The same delay of one month is observed with the peak of BA in G that takes

place in September. This might be due to its vegetation accumulating stress in the highest fire danger

months (i.e. hot and dry) and therefore being more prone to burn afterwards.

Comprising about 39% of the Brazilian territory, CSWS+OS contributed with 647 thousand hectares

(104 km2) of BA representing 76% of the total BA amount (849 thousand hectares) during the period

2005-2016 (Table 5.1). In the case of EBL, although representing 42% of the area of Brazil, its BA of

38 thousand hectares only represents 4% of the total BA. C (G), representing 11% (4%) of the area of

Brazil contributed with 108 (56) thousand hectares, corresponding to 13% (7%) of the total BA.

Moreover, 62% of the total BA is due to events taking place from August to October; half of the

events in CSWS+OS take place in September-October and almost half (48%) of events in EBL occur

in August-September, whereas G and C present more even distributions from August to October. It is

worth noting that G and C are highly susceptible to anthropogenic activity, and thus these results suggest

focusing on the highest burning period for natural biomes, i.e. on August to October, hereafter referred

to as the fire season.
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Table 5.1: Total BA recorded during 2005-2016 for each main vegetation type and relative contributions of August, September

and October to the total amounts.

Vegetation type Total BA

(× 10 000 km2)

Contribution (%) to Total BA

August September October Total

EBL 38 24 24 13 61

CSWS+OS 647 15 25 25 65

C 108 15 18 17 50

G 56 19 25 13 57

All 849 16 24 22 62

5.1.2 Interannual variability

For each year and vegetation type, the fire season was characterized by the mean values of MFDI (for

each reanalysis) and of BA as obtained by averaging the respective monthly values in August, September

and October. As shown in Figure 5.3, for all vegetation types the inter-annual variability of BA in the

fire season correlates well with the inter-annual variability of MFDI, the larger (smaller) values of BA

matching higher (lower) values of MFDI. Systematic differences among the inter-annual variability of

MFDI from the three reanalyses are similar to those already mentioned for the annual cycles, values from

ERA-I being the largest in all years for CSWS+OS, C and G and NCEP presenting the lowest values in

most of the period; for EBL, MFDI from ERA-I achieves lowest values in all but one year, and MFDI

from MERRA is the largest in all except the first four years.

Still, not all peaks in BA correspond to high MFDI, most likely due to anthropogenic influence on

burned area in those years, seeing as fire ultimately depends on ignition.

Figure 5.3: Inter-annual variability, for the four main vegetation types during the period 2005-2016, of the mean values over

the fire season (August to October) of BA (bars) and MFDI (solid curves) as derived from ERA-I (blue curve), MERRA (green

curve) and NCEP (orange curve) reanalyses. The coefficients of determination between BA and MFDI from the three reanalyses

are shown at the top of each panel.

Values of the coefficient of determination between BA and MFDI from the three reanalyses are also

shown in Figure 5.3 and it is worth noting that, for each vegetation type and for different reanalysis
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products, at least half of the variance of BA is predictable from MFDI. When using ERA-I, values of

the coefficient of determination for CSWS+OS and EBL are well above those obtained with the other

reanalyses, reaching 0.69 in CSWS+OS and 0.51 in EBL. In the case of C and G, the coefficient of

determination is lower using ERA-I, 0.34 and 0.54 respectively; the largest values, 0.52 and 0.60, are

obtained when using MFDI from NCEP.

The BA and MFDI results achieved for EBL, allow to establish a relation with the extreme events

registered from 2005-2016 in the Amazon rainforest: the 2009 extreme flooding [Filizola et al., 2014] is

accompanied by a decrease of BA and MFDI (except for MERRA, due to a more pronounced increase

in RH and decrease of P in that year); followed by the 2010 one-in-a-century drought [Marengo et al.,

2011] and a surge in BA as well as in MFDI; lastly, in 2015 there is a sudden increase in burned area

and MFDI possibly due to the 2015 severe drought associated with El-Niño conditions [Panisset et al.,

2018].

5.2 Burned area models

Results obtained in the previous section suggest building linear regression models where MFDI is used

to predict BA during the fire season. The largest values of the coefficient of determination that were

obtained using MFDI from ERA-I (MFDIERAI) in the two most relevant vegetation types (CSWS+OS

and EBL, representing 82% of the area of Brazil) and the finer spatial resolution of ERA-I data justify

choosing MFDIERAI as the predictor.

For each vegetation type, linear models were built using MFDIERAI as the predictor and BAAQM as

the predictand. Models were fitted using means for each month of the fire season (August, September

and October), means over two months (August-September and September-October) and means over the

entire fire season (i.e. the same models already used to analyse the interannual variability of MFDI and

BA). Performance of each fitted model is assessed based on values of coefficient of determination before

and after a leave-one-out cross validation scheme (Table 5.2) that respectively give information about

goodness of fit and effects of overfitting.

Table 5.2: Coefficients of determination between BAAQM and MFDIERAI for linear models and main vegetation types based

on averages over one month (August, September and October), two months (August-September and September-October) and

the fire season (August to October). Values in parenthesis are those obtained after cross-validation. Chosen model for each

vegetation type is highlighted in bold.

Vegetation

type

August September October August -

September

September -

October

Fire

season

EBL 0.58

(0.44)

0.37

(0.15)

0.32

(0.17)

0.43

(0.19)

0.44

(0.28)

0.51

(0.33)

CSWS+OS 0.45

(0.24)

0.43

(0.22)

0.79

(0.72)

0.46

(0.27)

0.77

(0.68)

0.69

(0.58)

C 0.17

(0.02)

0.46

(0.27)

0.65

(0.53)

0.15

(0.01)

0.63

(0.48)

0.34

(0.09)

G 0.29

(0.11)

0.41

(0.14)

0.66

(0.53)

0.37

(0.14)

0.66

(0.46)

0.54

(0.44)

In the case of models based on monthly means, the largest values of the coefficients before and after

cross-validation are obtained in August for EBL (0.58 and 0.44) and in October for the remaining three

vegetation types: CSWS+OS (0.79 and 0.72), G (0.66 and 0.53) and C (0.65 and 0.53). For models
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based on two-month averages, the largest values of the coefficient of determination occur in September-

October for all vegetation types, ranging from 0.44 and 0.28 in EBL, up to 0.77 and 0.68 in CSWS+OS,

with values of 0.63 and 0.48 in C, and of 0.66 and 0.46 in G. For averages over the fire season results,

as already pointed at the end of the previous section, CSWS+OS presents the largest values (0.69 and

0.58), followed by G (0.54 and 0.44), EBL (0.51 and 0.33) and C (0.34 and 0.09). It is worth noting

that models for CSWS+OS are best performing in all three types of averages, presenting higher values

of coefficients of determination (before and after cross-validation) in October, September-October and

the fire season than the respective models for the other types of vegetation. This is especially important

given that CSWS+OS contributed to 76% of the BA in Brazil in 2005-2016 and that almost two thirds of

that amount (65%) are due to events occurring during the fire season (Table 5.1).

Results for September-October are more robust given the small difference between the coefficients of

determination before and after cross-validation. As such, these results suggest that the most appropriate

models to study inter-annual variability of BA in CSWS+OS, G and C are the ones based on averages over

September-October; whereas EBL is based on averages over the entire fire season (August to October).

This choice represents a compromise between quality of fit and moderate effects of overfitting, and the

relative contribution to BA that occurs in this period, respectively 50% for CSWS+OS, 38% for G and

35% for C (Table 5.1). In the case of EBL, the model based on averages over the fire season is the

most appropriate, given that events taking place in the chosen period contribute to 61% of the BA in that

vegetation type. Results obtained with the chosen models are shown in Figure 5.4, that allow a visual

assessment of the performance of the models by comparing the observed values of BA with the modelled

values using cross-validation.

Figure 5.4: Observed burned area values from AQM (BAAQM , solid curves) and respective modelled values with cross-validation

of BA over 2005-2016 using the selected linear regression models for each vegetation type (BALRM−ERAI , dashed curves).

Coefficients of determination are shown for BAAQM and MFDIERAI and, in parenthesis, for BAAQM and BALRM−ERAI .

Results from Table 5.2 are consistent with the higher dependability of CSWS+OS to meteorological

conditions, whereas in EBL the correlation presents a lower value suggesting a weaker dependency on

meteorological fire danger. For G, the cross-validated results present a negative burned area in 2009,
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which illustrates that, although the results are quite positive, caution is needed when applying these

linear regression models.

Lastly, the linear regression coefficients m, b and R2, were also analysed in the cross-validation

results. Across all years, m, b and R2, values stay reasonably stable for all biomes, with the exception

of 2009 for G and CSWS+OS, and 2012 for C and EBL, where there was a sudden increase in m and

decrease in b. The resulting R2 values, however, did not show any major variation. This further confirms

the adequacy of the burned area model to accurately replicate burned area results.

5.3 Simulated data

5.3.1 Meteorological variables

In this subsection, the capability of the RCA4 regional climate model to reproduce current climate con-

ditions in Brazil was evaluated. A preliminary analysis on the seasonal cycle of the meteorological

variables was performed: overall, the model satisfactorily replicates the seasonal cycles of precipitation,

relative humidity and temperature, over the 25-year period (1981-2005) for all vegetation types.

Although the model seems to follow the same trends as the reanalyses products in EBL (Figure 5.5),

there are considerable differences in T and P. Only the RH estimates are in the range of the observation-

based products. The model estimates a marked decrease in RH from June to November (peaking in

August-September) accompanied by an increase of T in the same period (with its peak in September).

This seems to be in accordance with the reanalyses’ results, although they appear of less magnitude. The

model also estimates an increase in T from January to April that is not seen in the reanalyses, which keep

steady values of, approximately, 25◦C (MERRA and NCEP) and 28◦C (ERA-I) for that period. A sudden

increase in P from February to April is also not seen in the observation-based products, even though they

also estimate a small increase in P from January to April. From April to October (which encompasses

our fire season) the model underestimates P, and overestimates from October to the end of the calendar

year.

Figure 5.5: Seasonal cycles of temperature (left panel), relative humidity (centre panel) and precipitation (right panel) for EBL,

using the historical results (1981-2005) from the RCM (black curve), ERA-I (blue curve), MERRA (green curve) and NCEP

(orange curve).

As for CSWS+OS (Figure 5.6), similarly to EBL, the model keeps underestimating T compared

to all observation-based products, however it shows similar trends to those seen in the reanalyses. A

pronounced decrease from April to July is seen in the RCM and both MERRA and NCEP, and, although
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it also estimates a decrease, ERA-I results are of much lesser magnitude. Estimated RH and P show

similar trends, and they mostly stay within the observation-based data range.

Figure 5.6: As in Figure 5.5 but regarding CSWS+OS.

The RCM underestimates P from May to October for C (Figure 5.7), which includes our fire season

months, but otherwise keeps within the observation-based results range. Similarly to previous outcomes

the model underestimates T, and RH values are within the expected range.

Figure 5.7: As in Figure 5.5 but regarding C.

Finally, for G (Figure 5.8), conversely to the other biomes, simulated T is quite close to MERRA’s

estimations, although it is still underestimated. There is a decrease in RH from March onwards that

is in accordance with ERA-I results, but different to those from NCEP, which shows a small increase,

and MERRA, which continues on increasing until May. Moreover, its lowest value occurs in September

consistent with NCEP and MERRA results. As for P, the model follows similar trends to NCEP and

underestimates from April to November.
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Figure 5.8: As in Figure 5.5 but regarding G.

5.3.2 Seasonal cycle of present and future MFDI

Using the same approach as with the observation-based data, the annual cycles of simulation-based MFDI

by the RCA4 model were computed for each main vegetation type for the 1976-2005 historical period

and the for all climate scenarios (RCP2.6, RCP4.5 and RCP8.5) in 2021-2050 and 2071-2100 (Figure

5.9). The annual cycles of the observation-based MFDI (from ERA-I, MERRA and NCEP reanalyses)

for the period 1981-2005 are also shown for reference, conveying an indication of the uncertainty of

observed climate.

Figure 5.9: Annual cycles of simulation-based MFDI by the RCM for the historical period (1976-2005) (solid black curve)

and for RCP2.6 (yellow curves), RCP4.5 (blue curves) and RCP8.5 (red curves) for both future time periods considered: 2021-

2050 (dashed) and 2071-2100 (solid). Grey area represents the observation-based MFDI range from the three reanalyses, for

reference.

Overall, the simulation-based MFDI follows the trends of observation-based MFDI results, staying

within the reanalyses’ range in most months, for all vegetation types. In EBL’s fire season, however, there

is a marked difference between the MFDI calculated by the RCM and the three reanalyses: in August
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and September the fire danger is overestimated by the model, which is in accordance with the more

pronounced decrease in precipitation (right panel of Figure 5.5). The RCM also overestimates MFDI

from January to April, which confirms precipitation’s key role in fire danger assessment: although ERA-I

presented the highest temperature and lowest relative humidity in these months, the model still calculated

a much higher MFDI in that period, which can only be due to the considerable lower values of simulated

P. This role has also been discussed in Libonati et al. [2015], where it is shown that cerrado’s (part of

CSWS+OS landcover) inter-annual BA variability is closely related to annual mean total precipitation.

Like the reanalyses, simulated data has an annual cycle with a marked peak in winter. However, in

CSWS+OS, C and G, the peaks in annual cycles of simulation-based MFDI occur in September, whereas

the peaks in observation-based cycles take place one month earlier, in August. In EBL the observation-

based and the simulated annual cycles present a peak in August, except the most severe climate scenario

where the maximum of the annual cycle occurs in September. Thus, the model calculates highest fire

danger in the months that burn the most, which could mean that the model is not able to properly simulate

the increase in fire danger in the months prior to the burn. However, the RCM also calculates high MFDI

in the preceding months with similar trends to those in reanalyses’. Consequently, although the highest

fire danger month is “delayed” compared to the observation-based products, the model can still accurately

predict higher MFDI in the fire season.

For all vegetation types, the simulated annual cycles of MFDI for future climate scenarios show a

systematic increase along the year, that is largest during the fire season, when going from RCP2.6, to

RCP4.5 up to RCP8.5. The annual cycle for the mildest (most severe) future climate scenario defines

the lower (upper) bound of simulated intra-annual variability of MFDI in future climate scenarios. For

scenarios RCP4.5 and RCP8.5, there is a systematic increase in the annual cycle from 2021-2050 to

2071-2100. This is not the case in scenario RCP2.6, where there is a small decrease in MFDI when

going from the first 30-year period to the second one. In 2021-2050, for each vegetation type, the annual

cycles of MFDI for all RCPs are very close to each other, presenting larger values of MFDI than the

annual cycle for the historical period in all months of the year. In 2071-2100, there are virtually no

changes relative to 2021-2050 for RCP2.6 but there is a large systematic positive change for RCP4.5 and

an even larger change for RCP8.5.

Systematic changes in the annual cycles of simulation-based MFDI for the historical period and

the future climate scenarios reflect changes in the annual cycles of temperature, relative humidity and

precipitation. Figures 5.10, 5.11, 5.12 and 5.13 include these results for all RCPs and time periods

considered.
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Figure 5.10: Annual cycles of simulated temperature (left panel), relative humidity (centre panel) and precipitation (right panel)

for the EBL landcover as derived from RCM for the historical period (1976-2005) (solid black curve), for the mildest scenario

(RCP2.6) (yellow curves), an intermediate scenario (RCP4.5) (blue curves) and the most severe scenario (RCP8.5) (red curves)

for both future time periods considered: 2021-2050 (dashed) and 2071-2100 (solid). Grey area represents the observation-based

data range from the three reanalyses, for reference.

Figure 5.11: As in Figure 5.10 but regarding CSWS+OS.

Figure 5.12: As in Figure 5.10 but regarding C.
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Figure 5.13: As in Figure 5.10 but regarding G.

There is a clear increase in T in all months for all vegetation types and scenarios, especially in 2071-

2100 for RCP4.5 and RCP8.5. It’s also worth noting that seasonal cycles of temperature for 2021-2050

are very similar across all scenarios.

On the other hand, for all vegetation types, the annual cycles of relative humidity present systematic

decreases that are larger in August and September. All RCPs present similar RH annual cycles in each

vegetation type that have systematically lower values of relative humidity than those of the historical

period, and in 2071-2100 a large decrease relative to 2021-2050 is observed for RCP8.5.

Lastly, in the case of the annual cycle of precipitation, virtually no changes are observed from June to

October in EBL and from May to October in the other vegetation types; changes in MFDI during the fire

season for the historical period and the future scenarios are therefore determined by changes in tempera-

ture and relative humidity. In the case of CSWS+OS and to a lesser extent in C, there is an increase in the

annual cycle of precipitation from December to March. The annual cycles of precipitation in 2021-2050

for all RCPs are very similar, however the curves for 2071-2100 show a marked increase, especially in

RCP4.5 and RCP8.5. This is especially relevant because such strong changes in the precipitation cycle

may alter the characteristics of vegetation cover and indirectly change the meteorological fire danger.

5.4 Future projections of burned area

The burned area models that were developed in previous sections were used to assess expected impacts

on the burned area regime due to changes in simulation-based MFDI from the historical period to future

climate scenarios.

Normal distributions were fitted to averages of MFDIERAI over the fire season (i.e. over August,

September and October) for EBL, and over September and October in CSWS+OS, C and G, for the 1981-

2005 period. These are the same datasets used to develop the burned area models for each vegetation type

in Section 5.2. Normal distributions were also fitted to MFDIRCA4 using the same approach. Table 5.3

shows obtained estimates of mean and standard deviation for these datasets, and the results of testing the

null hypothesis that data come from a normally distributed population with unknown mean and standard

deviation using the Lilliefors test.
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Table 5.3: Estimated mean and standard deviations of MFDIERAI and MFDI as derived from the RCM (MFDIRCA4) for the

period 1981-2005, and p-values of Lilliefors test of normality for the main vegetation types.

Vegetation

type

MFDIERAI MFDIRCA4

Mean St. Dev. p-value Mean St. Dev. p-value

EBL

(Aug-Sep-Oct)

0.09 0.03 0.2 0.24 0.03 0.2

CSWS+OS

(Sep-Oct)

0.64 0.10 0.3 0.64 0.04 >0.5

C

(Sep-Oct)

0.54 0.09 >0.5 0.56 0.04 >0.5

G

(Sep-Oct)

0.57 0.08 0.4 0.60 0.03 >0.5

The null hypothesis of normality is accepted for samples of both observation-based and simulation-

based MFDI at the 5% significance level in all vegetation types. There is however a strong contrast

between results for EBL and the remaining vegetation types that is worth pointing out. In EBL, the

values of MFDIRCA4 are strongly biased towards large values, the mean value of 0.24 for simulation-

based MFDI being much greater than MFDIERAI that is only 0.09; however, both observation-based

and simulation-based distributions present similar dispersion in turn of the mean, both with standard

deviation of 0.03. In the other three vegetation types, the opposite is true; MFDIRCA4 distributions have

mean values very close to the corresponding distributions of MFDIERAI but the RCM underestimates the

variability in CSWS+OS, C and G, where the standard deviations are considerably smaller than those of

the observation-based distributions.

Samples of simulation-based MFDI for each vegetation type are then corrected so that the fitted

normal distributions have the same mean and standard deviation of the corresponding distributions of

MFDIERAI . This is achieved using Equation 4.3, with µ1 and σ1 (µ2 and σ2) being replaced by the mean

and the standard deviation of the simulation-based (ERA-I based) MFDI. Normal distributions were than

fitted to simulation-based values of MFDIRCA4 during the 30-year historical period (1976-2005) and

during the two 30-year periods (2021-2050 and 2071-2100) of the three RCPs. The null hypothesis of

normality is accepted at the 5% significance for all vegetation types, periods and scenarios, the exception

being C in the case of RCP2.6 in 2071-2100 where the significance level is 2%.

All samples of MFDIRCA4 were corrected using the corresponding transformation that was used to

convert the simulation-based normal distribution into the observation-based one in 1981-2005. Samples

of burned area for all vegetation types, scenarios and periods were then generated by applying the ade-

quate burned area model to the appropriate corrected sample of observation-based MFDI (MFDIRCA4−corr).

Since the burned area model is linear and the distributions of MFDIRCA4−corr are normal, obtained sam-

ples of burned area also have normal distributions and may be characterized by their means and standard

deviations.
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Figure 5.14: Normal distributions of burned area as estimated from the burned area models using simulation-based MFDI as

predictor: for the historical period (1976-2005) (solid black curve); and for RCP2.6 (yellow curves), RCP4.5 (blue curves)

and RCP8.5 (red curves) future climate scenarios for the periods 2021-2050 (dashed) and 2071-2100 (solid). The normal

distributions were rescaled so that burned area is expressed in terms of fraction (%) of the total area occupied by each vegetation

type.

Results obtained are shown in Figure 5.14 and it is worth noting that in order to compare changes

in the distributions of different vegetation types, the normal distributions were rescaled, so that burned

area is expressed in terms of fraction of the total area occupied by the corresponding vegetation type.

Each vegetation type presents changes with characteristics of its own but in all cases future climate

scenarios have larger means and standard deviations than the historical period, with RCP8.5 in 2071-

2100 showing much higher bias and dispersion than the other scenarios. The case of CSWS+OS is

especially conspicuous because it presents the largest increases in both mean and standard deviation of

the fraction of BA. This is worth being emphasized, considering that CSWS+OS currently represents

more than three fourths (76%) of the total burned area in Brazil.

As seen in Table 5.4, there is an overall agreement between biomes that in RCP2.6 2021-2050 the

burned area will increase, only to decrease to a still higher than historical value in 2071-2100. This is

consistent with this being the only scenario in which the radiative forcing decreases over the century,

theoretically reaching 3.1 Wm−2 before it returns to 2.6 Wm−2 by 2100.

On the other hand, for all biomes, RCP4.5 and RCP8.5 results in 2071-2100 increase compared to

their 2021-2050 counterparts. Increases for RCP4.5 in 2071-2100 are not as pronounced as those in the

same period for RCP8.5, given the relatively ambitious emissions reductions in the former scenario as

a result of stringent climate policies. RCP8.5 is consistent with high emissions and no reduction policy

changes, resulting in much more pronounced average BA increase over the century. For both RCP4.5 and

RCP8.5 and in both time periods, C is the biome with the least increase in average BA and the highest

escalations are found in G and EBL.
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Table 5.4: Differences in mean (standard deviation) of future BA from the historical period (1976-2005) for the main vegetation

types.

Differences in Mean (St. Dev) from the historical period (%)

Vegetation type RCP2.6 RCP4.5 RCP8.5

2021-2050 2071-2100 2021-2050 2071-2100 2021-2050 2071-2100

EBL 31 15 39 63 60 129

(-2) (16) (-1) (40) (9) (19)

CSWS+OS 37 27 47 56 53 120

(19) (24) (36) (49) (38) (22)

C 15 12 21 27 26 64

(15) (24) (42) (39) (20) (40)

G 29 20 42 61 58 137

(-1) (6) (29) (15) (-7) (37)

In the CSWS+OS biome, RCP4.5 and RCP8.5 achieve very similar mean BA values in 2021-2050:

(15.2 ± 4.9) and (15.8 ± 5.0) × 10 000 km2, respectively. This indicates a similar anthropogenic forcing

in the first half of the century for both scenarios, but a distinct pathway from mid-century onwards. And

although RCP2.6 corresponds to the most optimistic scenario with ambitious greenhouse gas emissions

reductions, CSWS+OS BA average would still increase by a factor of 37% and 27% for the 2021-2050

and 2071-2100 period, respectively.
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6. Final Remarks

This study is, to the best of the author’s knowledge, the first validation of the MFDI fire danger

index (known otherwise as Risco de Fogo in Setzer and Sismanoglu [2012]). Results show that MFDI

can accurately replicate the inter and intra-annual variability of burned area for the main four Brazilian

landcover types: EBL, CSWS+OS, C and G. It achieves high fire danger values in high burning months,

and in CSWS+OS it further shows a delay from high fire danger to highest burned area, possibly due to

CSWS+OS needing time to accumulate stress.

The methodology involved using simple linear regression models to estimate BA using MFDI as the

predictor. All four models, for each vegetation type, were able to explain at least 50% of the inter-annual

variability of burned area. CSWS+OS results are especially conspicuous, with 77% of the variability

explained by the linear regression model, in agreement with its higher dependence to meteorological

conditions. Results for EBL, on the other hand, with 51% of explained variability, suggest a weaker

dependency on meteorological fire danger, consistent with this region being predominantly a humid

biome (Amazon).

The RCA4 was overall capable of estimating present meteorological conditions as evaluated by the

reanalyses. Relative humidity remained within the expected values, precipitation was slightly under-

estimated in the fire season months, and there is a noteworthy underestimation of temperature in all

landcovers when compared to the three reanalyses. Nevertheless, simulated MFDI was able to follow

the trends of observation-based fire danger keeping within the reanalyses range at most times; the only

major difference being a significant overestimation of fire danger in EBL in the fire season months thanks

to a pronounced decrease in precipitation estimated by the model in that period.

Future results show an overall agreement in increased fire danger and burned area for Brazil under

all climate scenarios. In RCP4.5, the intermediate scenario, results indicate an expected increase of 39%

in historical BA in EBL in the first half and reaching 60% by the end of the century, indicating that the

Amazon rainforest might experience more wildfires than ever before, all other drivers remaining constant.

Biomes such as Amazon are not structurally adapted to fire and may undergo progressive degradation

under increasing fire danger. CSWS+OS and G also present very significant increases in BA, with at

least a 40% increase in both periods. These vegetation types, contrary to the Amazon rainforest, are fire

dependent which means that they may recover and adapt more easily to the increased fire danger (thus,

possibility, fire activity) than fire-sensitive biomes. Nevertheless, high severity fires can still irreparably

damage fire-prone ecosystems, particularly under the RCP8.5 scenario, where burned area is expected to

double by the end of the century.

RCP8.5 shows similar trends to RCP4.5 but much more pronounced: for all biomes, the historical

BA increases in at least 50% for the 2021-2050 period and, except in C, it doubles in 2071-2100 when

compared to its historical value. On the other hand, RCP2.6 is the only scenario in which the average

burned area is expected to decrease slightly on the second half of the century, based on changes in climate

only. This scenario is the closest to the pledges made in the Paris Agreement to keep global warming

bellow 1.5◦C and, although it has been shown to be feasible still [Millar et al., 2017], it requires quick

and meaningful measures.

The expected changes in BA found here imply that, by the end of the century, the CSWS+OS vege-

tation type would burn regularly 16.3 thousand hectares per year under RCP4.5 or as much as a severe
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year under RCP8.5 (22.7 thousand hectares a year), i.e. 6% and 8% of its total area on average per year.

Moreover, the average burned area value from September to October for CSWS+OS by the end of the

century in RCP8.5, would represent 83% of the highest total annual burned area ever recorded in Brazil

(which was 27.5 thousand hectares in 2017; Figure 1.1). These results are of particular importance given

that CSWS+OS represents a large part of most Brazilian biomes. They also shed light on the potential

magnitude of changes in fire danger and burned area due to future changes in climate only. Results also

illustrate that caution is needed when interpreting these curves: these scenarios do not take into account

climate-vegetation feedbacks and thus assume that vegetation remains the same as it does in the current

climate. This is likely not realistic, as biomes may not be able to cope with the changes in fire regime

or climate conditions, and also because Brazil may likely have important changes in land-use practices.

Although this is valid across all scenarios, this is especially true for RCP8.5 projections for 2071-2100,

given that it assumes the biggest change in climatic parameters.

This discloses one limitation of this work: we assess the fire danger due to climatic changes, not

considering anthropogenic factors and land cover change. Fire-climate-vegetation feedbacks are not in-

corporated into these calculations and can possibly alter the state of vegetation and have an increased

warming effect on global climate through fire-related emissions. Nevertheless, climate-fire relationships

should provide a general basis for understanding the natural seasonality and frequency of fire, given their

correlation with meteorology and climatic events such as ENSO [Beckage et al., 2005]. Furthermore,

despite no evidence exists that the CO2 fertilization effect has a marked role on rainforests on longer time

scales, if this effect persists throughout the century, biome distribution does not change significantly ac-

cording to several GCMs [Lapola et al., 2009] in which case these projections could prove accurate.

However, it is also possible that, if the CO2 fertilization effect does not occur, there will be substantial

shifts to drier and less productive biomes. Although this could possibly justify a static vegetation cover,

future work includes adding a dynamic vegetation model to properly reproduce vegetation-climate inter-

actions.

Even though fire activity is ultimately dependent on ignition, either natural or human, this is not taken

into account here. Similarly, other components of fire regimes would need to be evaluated to provide a

comprehensive view of fire conditions in Brazil: fire intensity for example, would have to be further

analysed, given that it regards not only changes in the conditions for fire, but also the resources available

to burn under those conditions [Krawchuk et al., 2009]. Although, the MFDI described in Silva et al.

[2016] does rate fire from Minimum to Critical, these metrics only regard how pre-disposed the vege-

tation is to burn, not the amount of vegetation available to burn. To that end, we would have to use a

dynamic vegetation model as previously mentioned. Other noteworthy limitations need to be mentioned

in order to correctly put into perspective the results and their applicability. Burned area data products

derived from satellite also suffer from uncertainties, potentially missing some fires (smoldering fires in

peatlands often evade detection) and may include non-vegetation fires. To overcome this shortcoming,

the AQM product was used, which detects fires in Brazil otherwise not seen in satellite imagery. How-

ever, the number of fire pixels observed within a grid cell does not necessarily indicate the total area

burned within the grid cell.

Also, these results are dependent on the RCA4 model configuration (as well as on the EC-Earth’s).

To evaluate model-dependent uncertainty, the analysis could be extended to an ensemble of different

combinations of GCMs, RCMs and scenarios. Kloster and Lasslop [2017] have provided insights using

ensemble forecasting fire occurrence, based on the the models from the CMIP5 experiment, and little

consensus between models in present and future estimations. In the CMIP5 intercomparison, most land-

surface models did not simulate fire, making it difficult to evaluate future fire patterns and feedbacks
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with climate. However, a number of land-surface models already include prognostic fire modules, which

allows capturing vegetation-climate interactions. Even though models suffer from several sources of

uncertainty, projects such as the FireMIP [Rabin et al., 2017] may contribute to better constrain model

results and future estimates.

Finally, worth further emphasizing the role of human activity and policy on fire management. There

are several aspects of fire that can be regulated and controlled, such as ignitions and fuel availability.

Contrary to common belief, in some cases fire suppression is not a sustainable solution, as it produces

unnaturally high fuel loadings that increase the risk of high-severity fires in forests characterized by

frequent, low-severity fires [Turner, 2010]. Prescribed burning could provide a solution and play an

important role in fire management, as it limits vegetation grown in certain seasons preventing future

wildfires or lowering their severity. In light of a warmer future, forest management could also plant

species that are adapted to the current and future climate instead of past climate in order to ensure

that biomes could withstand changing fire regimes. The restoration and management of fire dependent

ecosystems such as cerrado requires ecologically appropriate fire management that should be based on

natural fire regimes, hence the importance of studies such as this.
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