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Abstract 

Although not considered in climate models, perceived risk stemming from extreme climate 

events may induce behavioral changes that alter greenhouse gas emissions. Here, we link the C-

ROADS climate model to a social model of behavioral change to examine how interactions 

between perceived risk and emissions behavior influence projected climate change. Our coupled 

climate and social model resulted in a global temperature change ranging from 3.4–6.2 °C by 

2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioral uncertainty 

that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model 

components with the largest influence on temperature were the functional form of response to 

extreme events, interaction of perceived behavioral control with perceived social norms, and 

behaviors leading to sustained emissions reductions. Our results suggest that policies 

emphasizing the appropriate attribution of extreme events to climate change and infrastructural 

mitigation may reduce climate change the most. 
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Introduction 

Anthropogenic emissions of greenhouse gases (GHGs) over the past two centuries have 

resulted in rapid global change1. Current projections of climate change, driven by fixed emission 

trajectories (for example, the Special Report on Emissions Scenarios or Representative 

Concentration Pathways2,3) reflect static assumptions of human emissions behaviors in response 

to climate change. In reality, GHG emissions will be driven by dynamic interactions between 

physical and human systems as climate change alters the frequency or severity of extreme 

climate events (for example, heat waves, drought and heavy precipitation), influencing human 

responses including emissions behaviors4. Although some climate models (for example, 

integrated assessment models) account for linkages with human systems, they primarily consider 

economic factors such as the costs associated with climate change impacts and are not two-way; 

for example, feedbacks do not move in both directions3,5. While climate models generally do not 

include a dynamic representation of human emissions behaviors that evolve in response to the 

perceived risk from worsening climate change, emissions behaviors are not static and are likely 

to be responsive to changes in extreme weather events. Here, we investigate the potential 

importance of these feedbacks by linking a model of human behavioral change using the theory 

of planned behavior6 with the carbon model of the Climate Rapid Overview and Decision 

Support climate model7 (henceforth C-ROADS). The coupling of these two models is predicated 

on the assertion that climate change drives changes in extreme events, extreme events interact 

with human perception of risk to influence emissions behaviors and emissions behaviors then 

feed back into climate change, leading to a fully interacting model. 

Modeling Framework 

Extreme weather may influence perceived risk of climate change through both 
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experiential and rational routes8. Evidence suggests that perceptions of extreme weather or long-

term changes in local climate can increase beliefs and concerns about climate change, 

particularly among those who are less engaged with climate change science9–13. At the societal 

scale, extreme weather may also garner the attention of news media, government agencies and 

opinion leaders14. The social amplification of risk theory illustrates how social processes such as 

media communication shape the way these extreme events are interpreted by the public15. 

However, extreme weather may not always lead to large behavioral changes16,17. Additionally, 

the influence of any given extreme event on perceived risk fades over time, as evidenced at the 

individual level by subjective risk assessments and home valuations after hurricanes18,19 as well 

as at the societal level by the economic depreciation of homes after floods20. 

We used the theory of planned behavior6 to create a social model to link perceived risk 

from climate change to changes in emissions behaviors. The theory of planned behavior posits 

that behavior can be predicted by people’s behavioral intentions and that behavioral intentions 

are informed by people’s attitudes about the behavior (how positively or negatively they evaluate 

the behavior), the perceived social norm (PSN) surrounding the behavior (how common or 

widely approved they perceive the behavior to be) and people’s perceived behavioral control 

(PBC; the perception of the ease or difficulty of performing the behavior). This theory provides a 

generally accepted approach to analyzing human behavior and has been successfully used to 

address a wide variety of behaviors21, including such emissions-relevant behaviors as public 

transportation use22.  

We couple the social model with C-ROADS and refer to this coupled model as the 

Climate Social Model (CSM). The focus of the CSM is the dynamic feedback between human 

perception of risk and climate change (Fig. 1). The temperature projection from C-ROADS is 
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used in the CSM to determine the likelihood of extreme events (extreme temperature in the 

CSM), which are processed by the social model to influence emissions behavior and ultimately 

GHG emissions (that is, CO2 equivalents in our model). These behaviorally adjusted emissions, 

in turn, influence global temperature change and the frequency of extreme events in the 

subsequent time step, leading to new behaviorally adjusted emissions in a dynamic feedback 

loop.  

Emissions behaviors in the CSM are driven by the frequency of extreme events, but are 

mediated by a set of social processes. The occurrence of extreme temperatures on an annual time 

scale is stochastically related to the average global temperature based on empirical 

observations23. The number of extreme events in memory reflects the conflicting processes of 

sensing and forgetting. Sensing refers to the assimilation of extreme events after accounting for 

habituation, modelled as the perception of excess extreme events relative to their recent 

frequency as given by a moving average. 

Forgetting refers to the rate at which past extreme events fade from memory, determined 

by a shorter or longer ‘time to forget’ in years. The events in memory are translated into an 

attitude towards emissions behaviors that reflects the influence of both the perceived risk of 

climate change and the perceived efficacy of behavioral responses, meaning the belief that one’s 

behavioral choices can meaningfully influence GHG emissions. Attitude is combined with the 

PSN and constrained by PBC to result in emissions behaviors. Change in emissions behavior is 

modulated by the societal structural capacity for changing emissions to determine anthropogenic 

emissions of GHG. GHG concentration is translated into average global temperature using C-

ROADS, and the updated global temperature leads to a frequency of extreme events, closing the 

feedback loop in the model (Fig. 1 and Table 1). 
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While the theory of planned behavior has generally been implemented using a linear 

functional form6, we used three different mathematical forms (linear, logistic and cubic; see 

Supplementary Fig. 1) to bracket the likely range of human responses to climate extremes. All 

components of the social model are combined using the same functional form within a model 

run. The logistic form is characterized by sensitivity to initial changes in extreme events, but 

with little additional response to an increasing frequency of events. Conversely, the cubic 

functional form leads to little initial sensitivity to changes in extreme events, but results in a 

strong response to increasing frequency. The linear functional form represents a constant but 

moderate sensitivity that is midway between the logistic and cubic responses. 

We examine two general modes of emissions behavioral change in our model: non-

cumulative and cumulative mitigation responses. Non-cumulative mitigation responses are short-

term adjustments to GHG emissions that result from emissions behaviors such as adjusting 

thermostats or driving fewer miles in vehicles. These shifts occur 

rapidly, can be reversed quickly and hence do not accumulate over time. Cumulative mitigation 

responses are longer-term adjustments in GHG emissions that are harder to reverse, such as 

insulating homes or adopting hybrid vehicles, or changing public policy and associated 

regulations for economy-wide changes. These represent long-term commitment to GHG 

reductions and accumulate over time. 

We used the CSM to investigate the influence of human risk perception and associated 

behavioral changes on projections of global temperature change. We compared the resultant 

temperature projections of the CSM to the baseline run of C-ROADS without the social model. 

We identified the components of the CSM that exert the greatest influence on temperature 

projections by varying the model parameters (for example, sensing, forgetting, perceived 
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efficacy, PSN and PBC) and structure (for example, functional form and the mode of emissions 

behavior change) resulting in 766,656 simulations, each representing a unique combination of 

model structure and parameter values. We used a regression tree to partition the variation in final 

projected global temperature across model parameters and structure24.  

The CSM offers one example of the incorporation of human behavioral responses into a 

single climate model (C ROADS) and relies heavily on the theory of planned behavior. While we 

have been careful to explore the sensitivity of the CSM to changes in parametrization and 

structure, further efforts to couple social and climate models should explore the robustness of our 

results to other choices of social and climate models. 

Behavioral responses influence projected climate change 

The change in mean global temperature in the year 2100 compared with the pre-industrial 

(circa 1850) temperature was in the range 3.4–6.2 °C across the CSM model set, which 

compared with a 4.9 °C temperature increase in the baseline run. The regression tree (Fig. 2) 

shows that the greatest temperature change (highest 3% of CSM simulations; a mean temperature 

change of 5.7 °C) is associated with a logistic functional form, cumulative mitigation response, 

relatively high PBC (≥ 0.45) and low PSN (< 0.35). The smallest temperature change (lowest 4% 

of CSM simulations; a mean temperature change of 3.8 °C) shows a similar pattern with logistic 

functional form, cumulative mitigation responses, relatively high PBC (≥ 0.45), but high PSN (≥ 

0.55). These results consistently demonstrate that high sensitivity in perceived risk to initial 

changes in extreme events, long-lasting carbon mitigation responses and the interaction of PBC 

and PSN are influential factors in emissions behaviors. An analysis of the runs with the lowest 

and highest temperature change (that is, the top or bottom 5%) showed that both the lowest and 

highest temperatures (3.8 and 6.1 °C) were associated with high PBC (≥ 0.85; Supplementary 
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Figs. 2 and 3), while the highest temperature increases were additionally associated with higher 

forgetting (shorter ‘time to forget’) of past extreme events. 

The functional form mediates behavioral responses to extreme events and is a large 

determinant of future temperature change (Fig. 2). The largest range in CSM temperature 

projections (3.4–6.2 °C) was associated with the logistic functional form, while more modest 

ranges of temperature variation were associated with the linear (3.4–5.9 °C) and cubic (3.6–5.2 

°C) functional forms (Fig. 3). Both the logistic and linear functional forms allowed for a wide 

range of global temperature change, but the logistic functional form had the largest proportion of 

the simulations in the extreme tails (Supplementary Fig. 4). The cubic functional form, in 

contrast, was associated with temperatures clustered near the baseline run. The largest shifts in 

mean global temperature were associated with cumulative mitigation responses (Fig. 3), leading 

to mean global temperature changes in the range 3.4–6.2 °C. Simulations including non-

cumulative mitigation responses resulted in little change to the projected global temperature 

(4.8–5.0 °C) compared with the baseline run of 4.9 °C, regardless of the functional form. The 

combination of cumulative mitigation and logistic functional form thus leads to the largest 

potential reduction in global temperature in response to extreme events. 

Effects of PSN and PBC on the projected temperature change 

The simulations also demonstrate that the direction and magnitude of global temperature 

change are strongly dependent on PSN and PBC (Fig. 4). The smallest increase in global 

temperature occurred with concurrent moderate-to-high values of both PSN and PBC, while the 

largest increase was associated with moderate-to-high PBC and low PSN. PSN and PBC interact 

with the functional form such that the temperature response to PSN and PBC is greater with the 

logistic and linear functional forms compared with the cubic functional form (Supplementary 
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Figs. 5–7). PBC mediates the effect of PSN on the projected global temperature change (Fig. 4). 

The global temperature increases with declining PBC even at very high values of PSN. For 

example, with a high PSN (0.9–1.0), decreasing PBC results in a rapidly increasing global 

temperature that approaches the baseline of 4.9 °C. Conversely, with high PBC (0.8–1.0), there 

is little change in global temperature with declining PSN until PSN approaches mid-range values 

(0.5–0.6). The sensitivity to PBC is again particularly pronounced with the logistic and linear 

functional forms as the cubic has a narrow range of temperature change (see Supplementary 

Figs. 5–7). This sensitivity to PBC is similar to what might be expected in other theory of 

planned behavior models, since PBC can influence behaviors above and beyond that of attitudes 

and PSN21. 

Changes in PSN in either direction from 0.5 lead to an asymmetric response in global 

temperature change (Fig. 4). Other theory of planned behavior models predict PSN to have an 

increasingly large but similar effect moving away from the mean in either direction (for example, 

PSNs of 0.3 and 0.7 would have similar-sized but opposite impacts). In the CSM, however, even 

a moderate change in PSN towards emissions-increasing behaviors (that is, low PSN) led to a 

lowered global temperature when accompanied by a high PBC. This may partially result from 

the continually increasing global temperature (albeit at different rates across runs) leading to a 

general trend of increasing extreme climate events, and therefore increasing risk perception and 

positive attitudes towards emissions reducing behavior. The resulting positive attitudes can then 

override a relatively weak PSN (that is, slightly below 0.5).  

Other social components had less influence on the global temperature projections in our 

model runs. Personal efficacy, sensing and forgetting had little overall impact on temperature 

projections except in the upper and lower tails of the temperature distribution (Supplementary 
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Figs. 2 and 3), where (increased) forgetting was associated with the highest temperatures. 

Sensitivity to mitigation constraints and uncertainty 

We examined the sensitivity of the results to structural constraints within the CSM on 

carbon mitigation: a ± 5% limit to annual shifts in carbon flux and a 20 Gt minimum level of 

annual anthropogenic emissions. We found that CSM simulations that resulted in the minimum 

global temperature were constrained by the 20 Gt minimum and that its removal (set to 0 Gt) 

lowered the temperature by an additional 0.6 °C (Supplementary Fig. 8). The 5% limit in annual 

change influenced the time to reach this limit. Therefore, establishing empirically well-supported 

values of these structural constraints could improve model projections. 

The behavioral and physical uncertainty in global temperature change were of similar 

magnitudes in the CSM. The behavioral sensitivity, defined as the range for global mean 

temperature in 2100 across the set of social and behavioral parameters, was 2.8 °C (3.4–6.2 °C). 

Physical uncertainty of 3.5 °C (2.9–6.4 °C) was calculated by varying the climate sensitivity 

parameter of the C-ROADS climate model across the Intergovernmental Panel on Climate 

Change ‘likely’ range of 1.5–4.5 °C (ref. 25) and recording the resultant range of global 

temperatures of the baseline run. The similar ranges of uncertainty imply that a similar level of 

effort should be spent on quantifying behavioral uncertainty and physical uncertainty.  

Emissions behavior strongly interacted with climate sensitivity in our model 

(Supplementary Fig. 9). High values of climate sensitivity were substantially offset by feedbacks 

with emissions behavior in some parameterizations of the CSM. A climate sensitivity of 6 °C, for 

example, was reduced to an effective climate sensitivity of 3.3 °C through climate change 

feedbacks on emissions behavior. Our results indicate that the climate sensitivity of the physical 

system needs to be considered in the context of social and behavioral responses that together 
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yield the effective climate sensitivity. 

Scientific and policy implications 

Perceived risk of climate change has traditionally been emphasized in the realm of 

adaptation policy, but has rarely been considered in climate policy mechanisms that address 

mitigation26–28. Our results underscore the need to include perceived risk as a component of 

mitigation policy with the intent of leveraging and reinforcing behavioral responses to climate 

change in order to enhance mitigation response impacts.  

Policies that facilitate the timely and reliable attribution of extreme events to climate 

change may increase perceived risk of climate change rather quickly and facilitate changes in 

emissions behaviors. Climate change attribution research has progressed sufficiently such that 

the likelihood that a particular extreme event would have occurred in the absence of 

anthropogenic GHG emissions can be assessed29–32. Specifically, attribution science could help 

shift the functional form of the societal response more towards a logistic curve, increasing 

sensitivity by rapidly identifying the fingerprint of climate change in individual extreme weather 

events. Further investing in climate communication education for media members might also be 

helpful, so that the media can make climate change consequences more concrete and locally 

relevant to the public. Weather forecasters in particular have been found to effectively increase 

concern and belief about climate change among political moderates and conservatives by 

emphasizing local extreme weather changes33,34. 

Furthermore, policies should focus on mitigation actions that are cumulative. Concern 

about climate change that leads to noncumulative mitigation behaviors that are easily reversed 

results in little long-term impact on global temperature in our model. Short-term responses are 

subject to the vagaries of climate variability and habituation to climate change. Cumulative 
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mitigation responses, in contrast, represent longer-term systemic shifts in mitigation 

infrastructure that are not easily reversed and are critical to reducing climate change in our 

simulations. Support for cumulative responses may be further increased through emphasis of the 

co-benefits of modernizing infrastructure to reduce GHG emissions. Health benefits, including 

reduced lung disease and asthma related to atmospheric pollutants, could occur from 

transitioning from fossil fuels to residential or community renewables35, and the economic 

benefits often include job creation and cost savings from implementation of energy efficiency 

programmes36,37. Additionally, infrastructural mitigation projects can be designed to 

simultaneously increase PBC and PSN. For example, community solar organizations reduce the 

cost and difficulty of purchasing residential solar photovoltaics by offering education and 

financing options (increasing PBC), and increase the local social acceptability of adopting solar 

by hosting community meetings and encouraging adopters to communicate with neighbors 

(increasing PSN)38. 

Conclusions 

Social processes are important and dynamic components of the Earth system that have 

been largely absent from climate and integrated assessment models. Two-way linkages between 

human behavior and climate have the potential to strongly influence GHG emissions and 

temperature change in ways that static models cannot capture. The perception of risk from 

extreme events associated with climate change can influence emissions behaviors to reduce 

GHGs. We find that the temperature uncertainty associated with the social component of climate 

change is of a similar magnitude to that of the physical certainty and thus merits comparable 

attention. Our model results suggest that simultaneously addressing a set of human social 

processes is key to understanding mitigation behaviors and curbing future climate change. 
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Methods 

The CSM consists of a collection of relationships that link the social model to the C 

ROADS climate model as expressed in Fig. 1. The key assumptions of the CSM are: (1) human 

emissions behaviors feed back to climate through a modification in CO2 emissions; (2) human 

emissions behaviors arise from perceptions of risk established through experiencing and then 

remembering a progression of extreme events; (3) the annual number of extreme events is 

characterized from temperature conditions, with the number of extreme events occurring per 

time step being stochastic, but increasing with mean temperature; (4) modification of emissions 

due to behavior change can be maintained in a pool representing cumulative changes that 

continue to impact future emissions independent of additional changes in emissions due to 

further behavior change; (5) the annual change in global CO2 emissions is limited to 5% of 

previous year emissions, reflecting our assumption that there is only a limited capacity for 

behavioral factors to modify emissions in a short time period, given limits to individual or 

infrastructural change; and (6) there is a minimum level of CO2 emissions (20 Gt CO2 year–1) 

that no behavioral changes can modify. This represents a minimum amount of anthropogenic 

emissions that are required by our current society. Full details of the model structure are given in 

the Supplementary Information, but the key components are illustrated in Fig. 1 and defined in 

Table 1. 

The CSM uses the mean global temperature output of C-ROADS at each time step to 

generate the number of extreme events. It uses an empirical relationship between the average 

global temperature and the baseline year of 2010 to compute the mean number of extreme events 

expected. The annual number of extreme events is then a random variate from a Poisson 

distribution with a mean that is a linear function of this ratio. The mean and variance of the 
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number of annual extreme events thus increases with rising global temperature and declines with 

falling global temperature. The collective societal ‘memory’ is a balance between sensing and 

forgetting extreme climate events. We model ‘sensing’ as the difference between the number of 

extreme events in the current year and the rolling average over a previous number of years. We 

employ the rolling average to represent habituation to changing numbers of extreme events. A 

proportion of the events in memory are removed at each time step and this represents 

‘forgetting’. The forgetting parameter specifies the proportion of the events in memory that are 

removed at each time step; for example, a value of 10 leads to the removal of one-tenth of all 

events still in ‘memory’ per year. It is the pool of remembered extreme events that modifies 

downstream behavior through risk perception, perceived efficacy, attitude, perceived social norm 

and perceived behavioral control to mediate the magnitude of behavior change resulting in either 

a reduction or an increase in CO2 emissions. 

To implement the two different modes of emissions behavior change, we divided the total 

annual CO2 emissions into two parts: a minimum emission portion that could not be reduced but 

was fixed, and the remainder of emissions that could be modified. The fixed portion of emissions 

represents CO2 emissions that would be very difficult to reduce given current societal structure, 

while the other pool could be reduced by the actions possible in today’s societal context. In a 

non-cumulative mitigation response, the CSM determines the percentage change (increase or 

decrease) in the modifiable emissions. The percentage change is recalculated each year and is not 

cumulative, and so it is representative of easily reversible changes in emissions behavior. 

Cumulative mitigation response also identifies a proportion of the modifiable emissions based on 

the CSM, but this proportion is added to a pool of accumulating modifications that sum the effect 

of current and past modifications to the system. In both methods, the CSM generates the 
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magnitude and direction of the emissions modification as constrained by the annual maximum 

change allowed. The respective emissions modification is incorporated into C-ROADS and the 

resultant global temperature is returned for the next iteration of the model. 

 

Data availability 

The authors declare that models and data supporting the findings of this study are available 

within the article and its Supplementary Information files at: https://doi.org/10.1038/s41558-017-

0031-7. 
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Table 1. Description of the CSM components depicted in Fig. 1 

 

Factor Description  

Frequency of extreme events Poisson distribution with a mean based on the 

empirical distribution of temperature as a function of 

the average global temperature 

Sensing Perception of excess extreme events relative to the 

recent frequency of extreme events; that is, 

habituation 

Forgetting Rate at which extreme events leave the memory 

Events in memory Number of events pooled as a stock with inflow from 

sensing and outflow from forgetting  

Perceived risk Perceived adverse effects of climate change 

Functional form Three alternative forms (linear, logistic, & cubic) for 

transforming memory to perceived risk and for 

combining other social components of the model 

Perceived efficacy Perceived extent to which a behavior influences GHG 

emissions 

Attitude  Positive or negative evaluation of emissions behaviors 

Perceived social norm Perceived extent to which a behavior is commonly 

performed or approved of by others  

Perceived behavioral control Perceived ability to perform behavior  

Emissions behavior change Behaviors taken to adjust GHG emissions 

Capacity for changing emissions Constraint on the effect of behavioral change on 

emissions 

GHG emissions Emissions adjusted for behavioral change and 

structural constraints 

Average global temperature Temperature computed using the carbon cycle model 

of C-ROADS 
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Fig. 1. Conceptual model. Linkages between temperature, extreme events, perceived risk, social 

components and GHG emissions in the CSM. Average global temperature is calculated from the 

GHG concentration using the carbon cycle model of C-ROADS7 
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Figure 2. Regression tree partitioning of variation in mean global temperature change relative to 

the pre-industrial baseline period (approximately 1850). Simulations of the CSM resulted in 

increases in mean global temperature in the range 3.4–6.2 °C across 766,656 simulations. Each 

simulation was carried out with a unique model structure (that is, functional form and mode of 

emissions behavior change) and parameter values (that is, PSN, PBC and so on). Cm, 

cumulative; Cub, cubic; FForm, functional form; Lin, linear; Log, logistic; MMode, mode of 

emissions behavior change; NonCm, non-cumulative. 
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Figure 3.  Effect of functional form on mean global temperature in 2100. Functional form by 

which social processes respond to extreme climate events (logistic, linear or cubic) and mode of 

emissions behavior change (non-cumulative or cumulative). 
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Figure 4.  Effect of PSN and PBC on mean global temperature in 2100 for simulations with a 

cumulative mitigation response in carbon emissions. PSN and PBC both range from 0–1.0 and 

have been split into 0.1 bin widths for PSN and 0.2 bin widths for PBC. All functional forms 

(logistic, linear and cubic) are aggregated. See Supplementary Figs. 5–7 for similar plots 

conditioned on functional form. 

 

 


	Rhode Island College
	Digital Commons @ RIC
	2018

	Linking Models of Human Behavior and Climate Alters Projected Climate Change
	Brian Beckage
	Louis J. Gross
	Katherine Lacasse
	Eric Carr
	Sara S. Metcalf
	See next page for additional authors
	Citation
	Authors


	tmp.1533674978.pdf.lArn2

