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A common challenge in species conservation and management is how to incorporate

species movements into management objectives. There often is a lack of knowledge

of where, when, and why species move. The field of movement ecology has grown

rapidly in the last decade and is now providing the knowledge needed to incorporate

movements of species into management planning. This knowledge can also be used to

develop management strategies that are flexible in time and space and may improve the

effectiveness of management actions. Therefore, wildlife management and conservation

may benefit by strengthening the link with movement ecology. We present a framework

that illustrates how animal movement can be used to enhance conservation planning

and identify management actions that are complementary to existing strategies. The

framework contains five steps that identify (1) the movement attributes of a species,

(2) their impacts on ecosystems, (3) how this knowledge can be used to guide the scale

and type of management, (4) the implementation, and (5) the evaluation of management

actions. We discuss these five steps in detail, highlighting why the step is important

and how the information can be obtained. We illustrate the framework through a

case study of managing a highly mobile species, the Atlantic salmon (Salmo salar), a

harvested species of conservation concern. We believe that the movement-management

framework provides an important, and timely, link between movement ecology and

wildlife management and conservation, and highlights the potential for complementary,

dynamic solutions for managing wildlife.

Keywords: adaptive management, animal movement, conservation, movement ecology, wildlife management

INTRODUCTION

The field of movement ecology has grown rapidly in the last decade due to a number of recent
technological and analytical advances in tracking animal movement (Tomkiewicz et al., 2010).
Alongside the growth in technological advances have been advances in conceptual frameworks
that aim to unify research in animal movement (Nathan et al., 2008) and incorporate movement
into biodiversity research (Jeltsch et al., 2013). This growth has provided a number of benefits for
conservation and management, such as improving our understanding of habitats important for
wildlife and the area traversed by wide-ranging species (Hebblewhite and Haydon, 2010). However,
it has also highlighted a number of challenges for conservation, such as maintaining connectivity,
both within the landscape and for species with wide-rangingmovements like nomadic or migratory
species (Sanderson et al., 2002;Martin et al., 2007; Runge et al., 2014). At the same time, studies have
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revealed that traditional approaches to conservation, such as
protected areas, may be inadequate due to reasons like the spatial
scale of a species movements (e.g., Thirgood et al., 2004), conflicts
with stakeholders (e.g., Symes et al., 2015), or available finances
(e.g., Carwardine et al., 2008; Chadés et al., 2015). Traditional
approaches will continue to have a vital role in conservation
planning, however their effectiveness may be improved if they
are combined with strategies that are flexible in time and/or space
(Runge et al., 2014; Chadés et al., 2015; Tulloch et al., 2015).

Research in movement ecology is generating knowledge of
species movements that enables managers to implement actions
that are flexible in space and time. As a result, managers
have begun to link the movement ecology of a species with
management planning, resulting in targeted management actions
that incorporate species movements or specific areas where
threats are located (Table 1). An example is how the results of
a tracking study for leatherback turtles (Dermochelys coriacea)
were used to identify new potential conservation strategies to
reduce leatherback-fisheries interactions that included targeted
spatial actions and dynamic time-area closures along the
migration corridor (Table 1; Shillinger et al., 2008). Knowledge of
species movements is also being used to prioritize management
actions and achieve maximum benefit from the limited funds
available (Martin et al., 2007; Carwardine et al., 2008, 2012).
An example is focusing management actions on bottleneck sites,
which are particular areas that species rely upon like stopover
sites (Iwamura et al., 2014), or where landscape connectivity is
being constrained by physical barriers (Table 1; Sawyer et al.,
2013; Seidler et al., 2015). These studies highlight the potential for
linkingmanagement planning withmovement ecology. However,
the examples are few and greater emphasis is needed to link the
fields of movement ecology and conservation if we are to improve
upon the existing model.

We formulated a conceptual Movement-management
framework (hereon described as framework) to illustrate how
knowledge of animal movement may enhance management
planning. The workflow described in the framework is applicable
across taxa, as many species exhibit movements that vary
from being sedentary year round, to migration, nomadism,
and dispersal (Table 1). Furthermore, these movements share
common attributes across taxa, such as the use of pathways,
stopover sites, seasonal ranges, or breeding sites. We outline the
steps used in the framework, their rationale and highlight some
aspects that require important considerations. We discuss its
implementation, how it links to existing practices and identify
potential challenges for its implementation. Through a case study
of the Atlantic salmon (Salmo salar), we show how knowledge
of movement has been used and can be used further to guide
management planning.

MOVEMENT-MANAGEMENT FRAMEWORK

The framework is organized into five interlinked steps, whereby
baseline information on species movements are used to guide
management decisions (Figure 1). The first three steps include
understanding species’ movements, their ecosystem impacts and
how these are linked to the scale of management required

(Figure 1). A fourth step considers the implementation of
management actions whilst the final step incorporates an
adaptive management component of evaluation (Figure 1).

The primary requirement for the framework is the availability
of animal movement data that is appropriate for the management
objective(s). The movement data required will depend upon the
ecological or conservation questions underlying the management
objectives, and may involve considerations like whether the
time period of observation is long enough to make general
conclusions on movement patterns, or whether the sample size
is large enough to make population level inferences (Figure 1).
In addition, quantitative methods for analysing movements have
progressed rapidly with time (Patterson et al., 2008; Kranstauber
et al., 2012; Fleming et al., 2015). These methods have specific
requirements regarding the quality of data needed, as few as 10
locations per month may be sufficient to estimate a home range
but this would not be sufficient for understanding resource use
(Marzluff et al., 2004; Börger et al., 2006). However, it should
be noted that detailed movement data is not always available.
Instead, informed decisions can be made based on predictive
modeling that are performed in conjunction with alternative
sources of data, such as expert opinion or presence data (Low
Choy et al., 2009; Iwamura et al., 2014). These data sources may
guide initial decision making processes whilst more detailed data
are acquired (Grantham et al., 2009), and may also benefit study
design by identifying existing knowledge gaps. Collecting new
movement data may be limited by the study species, available
time, or money. Nevertheless, the improved knowledge that
movement data provides may lead to more effective management
actions as opposed to costly mistakes (Carwardine et al., 2008;
Grantham et al., 2009).

Movement Attributes
The target for managers is to develop an understanding of how
individual movements affect a species survival and reproduction
and therefore population dynamics. An individual’s decision
to move is influenced by several factors that include food
resource availability and/or quality, predator avoidance and
environmental conditions, which will enhance its capacity to
survive and reproduce (Morales et al., 2010; van Moorter et al.,
2013). Movement attributes, like the timing of spring migration,
may have direct effects on the fitness of individuals (Winkler
et al., 2014). A number of bird species have not advanced the
timing of their spring migrations in response to climate change,
and appear to be declining because the timing of breeding has
become mismatched with peak food availability (Møller et al.,
2008). Furthermore, the performance of a populationmay also be
influenced by the ability of individuals to adapt their movements
to environmental change, such as adapting foraging movements
to habitat loss (McNamara et al., 2011; Winkler et al., 2014).

Applying the first step of the framework allows managers
to identify how animal movements influence demography and
subsequent population dynamics (Figure 1). Animal movement
can be described according to three major population-level
distribution strategies that include being sedentary in annual
ranges, migration and nomadism (Mueller and Fagan, 2008).
Being sedentary on an annual scale involves having stable home
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TABLE 1 | Links between movement ecology and wildlife management.

Taxa Movement attributes Ecosystem impacts Scale of management Source

BIRDS

New World land birds Migratory Scale and Timing Services (pest predation) Ecological Networks

(stopover, summer/winter)

Martin et al., 2007; Kellermann et al.,

2008; Faaborg et al., 2010

Waterfowl Migratory Timing Seed Dispersal;

Aggregative impacts,

Disease transmission

Temporary wetlands

Ecological networks,

Kerbes et al., 1990; Figuerola and

Green, 2002; O’Neal et al., 2008;

Altizer et al., 2011

Greater sage-grouse

(Centrocercus

urophasianus)

Sedentary/Migratory Scale,

Timing, and Drivers

Trophic level (umbrella

species), Nutrient

transfer

Localized Actions Rowland et al., 2006; Dzialak et al.,

2011; Fedy et al., 2012

MAMMALS

Woodland/Mountain

Caribou (Rangifer tarandus

caribou)

Migratory Scale, Timing,

and Drivers

Nutrient Transfer; Direct

use; Ecosystem

Indicator

Ecological Network

Temporary

Ferguson and Elkie, 2004; Johnson

et al., 2004; Saher and Schmieglow,

2004; Pinard et al., 2012

Saiga (Saiga tatarica) Migratory Scale and Timing Nutrient Transfer;

Potential for Direct use

Temporary (Proposed)

Threat management

Milner-Gulland, 1997; Singh and

Milner-Gulland, 2011; Bull et al., 2013

Wildebeest (Connochaetes

taurinus)

Sedentary/Migratory Scale

and Drivers

Nutrient Transfer; Direct

use

Localized Actions (PA) Thirgood et al., 2004; Holdo et al., 2010

Mule deer (Odocoileus

hemionus)

Migratory Scale, Timing,

and Drivers

Nutrient cycling; Direct

Use; Seed Dispersal

Ecological Networks

(Connectivity)

Myers et al., 2004; Monteith et al.,

2011; Sawyer and Kauffman, 2011

Mongolian gazelle (Procapra

gutturosa)

Nomadic Scale and Drivers Nutrient Transfer Temporary Mueller et al., 2008; Sawyer et al., 2013

FISH

Near-shore species Sedentary Scale Regulatory services,

nutrient transfer, trophic

level

Ecological Network, Size

of reserve

Holmlund and Hammer, 1999; Moffitt

et al., 2009; Gaines et al., 2010

Bluefin tuna (Thunnus spp.) Migratory Scale, Timing,

and Drivers

Trophic level, nutrient

transfer

Temporary Armsworth et al., 2010

INSECTS

Monarch butterfly (Danaus

plexippus)

Migratory Scale and Drivers Services (Cultural,

pollination). Ecotourism

Ecological network

(connectivity of wintering

and breeding sites,

pathway)

Barkin, 2003; Howard and Davis, 2009;

López-Hoffman et al., 2010; Brower

et al., 2012

Dragonfly spp. Migratory Drivers Trophic Level Ecological Network,

Temporary

Wikelski et al., 2006; Hobson et al.,

2012

REPTILES

Leatherback Sea Turtle

(Dermochelys coriacea)

Migratory Scale, Timing,

and Drivers

Trophic Level Temporary Threat

management

Sherrill-Mix et al., 2008; Shillinger et al.,

2008; Fossette et al., 2010

Examples from the literature where aspects of the movement-management framework have been applied. The species in focus are from varying taxonomic groups that include mediums

of travel on the ground, in air and water. The movement attributes were summarized into the type of movement (sedentary, migratory, nomadic) and what is known about the species’

movements, namely “Scale”—distance of movements and knowledge of space use, “Timing”—when movements occur or “Drivers”—factors influencing movement like habitat, cues

or predators. Ecosystem Impacts describe both the services a species may provide and the potential impacts of their movements. The scale of management indicates the current or

recommended management actions—the term “Temporary” refers to any temporary form of management such as time-area closures. The studies listed in source are referenced in

Appendix A.

ranges or territories, where an individual occupies a relatively
small area compared to the population distribution (Mueller
and Fagan, 2008). Migration consists of seasonal, round-trip
movements between spatially disjunct areas (Mueller and Fagan,
2008; Harris et al., 2009). Nomadism differs from being sedentary
or migratory as individuals move across the landscape using
routes that do not repeat across years (Mueller and Fagan, 2008).
A fourth movement type that managers need to consider is
dispersal. Dispersal is the movement to a site of reproduction
and includes movements away from the site of birth (natal
dispersal) and movements between successive reproductive sites
(breeding dispersal; Matthysen, 2012). The types of movements
present in the population will influence the type of management

actions needed, such as preserving connectivity for dispersing
and nomadic movements, setting aside reserves for species which
are sedentary in their annual home ranges or adopting a flyway
approach for conserving migratory species (Klaassen et al., 2008;
Howard and Davis, 2009; Minor and Lookingbill, 2010; Hodgson
et al., 2011). Previous research has shown that management
interventions have been less effective when management actions
have not matched the spatial, or temporal, scale of species
movements (Thirgood et al., 2004; Moffitt et al., 2009).

In addition to the types of movement present in the
population, it is important to understand the characteristics of
movements. These comprise of movement pathways, distance
and timing of movements, shapes and sizes of home ranges,
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FIGURE 1 | Movement-management framework. Movement-Management framework that provides a workflow for incorporating movement ecology into

decision-making processes. Before applying the framework, one must consider the quality of the movement data and whether it is appropriate for achieving the

management goal. This includes questions like resolution, sample size, and the type of methods that will be used. Data may also be available from alternative sources,

such as expert opinion or presence data, which can be combined with predictive modeling. Once appropriate movement data is available, the first step of the

framework concerns understanding the movement attributes occurring in a study population or system. This includes the movement types that exist in a population

that include “migration,” “dispersal,” “sedentary,” and “nomadism.” It is important to understand the characteristics of these movements, for example, movement

pathways, home ranging patterns, or the timing of movements. The second step is to determine the ecosystem impacts and services resulting from movements. The

knowledge gained from the first two steps guides the decision making process and identifies potential management actions that complement existing management

plans. These may include actions that are flexible in space and time, such as time-area closures, which require detailed knowledge of species movements. The fourth

step considers the implementation of the proposed actions, including considerations like available knowledge, cost, stakeholder interests and how these influence the

effectiveness and feasibility of proposed actions. The final step evaluates the effectiveness of management actions, thereby creating an adaptive management cyclical

process whereby the outcomes of the evaluation guide management objectives and future actions.

habitat selection along movement paths and the use of
stopover sites by migratory species (Figure 1). Understanding
the type of movement in the population determines the
types of management actions needed, but understanding
the characteristics of movements is necessary for planning,
designing, and implementing management actions. For example,
understanding movement pathways is particularly important
when managers aim to maintain connectivity, particularly as
the loss of some sites can lead to sudden population decline
(Webster et al., 2002; Iwamura et al., 2013). Movement pathways
also indicate whether species use matrix habitats (Fischer et al.,
2005), are restricted to specific habitat types (Hagen et al.,
2012), or barriers prevent movements (Sawyer et al., 2013).
Other movement characteristics, such as the size and shape of
home ranges, are often used to guide the scale of management
(Schwartz, 1999) and to determine habitat preference and

subsequent habitat suitability (Chetkiewicz and Boyce, 2009;
Lu et al., 2012). Knowledge of movement characteristics may
also identify potential threats, such as the increased risk of
exploitation due to the predictable and aggregating nature of
some migratory species (Bolger et al., 2007; Harris et al., 2009).
We expand upon how knowledge of the types and characteristics
of species movements can be used to guide the scale of
management in Section Scale of Management.

Ecosystem Impacts
Animal movement is a core component of an ecosystem and
maintaining movement patterns may be vital for sustaining
ecosystem processes like trophic and species interactions
(Lundberg and Moberg, 2003; Massol et al., 2011). Movement
provides links between ecosystems and these links may be
classified as either resource, genetic or process links (reviewed
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in Jeltsch et al., 2013). The frequency and type of link will
be affected by the spatiotemporal scale of movement, such
as foraging movements within the home range or the less
frequent but larger scale movements of migration (Jeltsch et al.,
2013). Movement is also important for maintaining interaction
networks in both antagonist (e.g., predator-prey) and mutualist
(e.g., plant-pollinator) networks (Tylianakis et al., 2010; Hagen
et al., 2012). The loss of species interaction networks may
have cascading effects on for example food web dynamics
resulting in secondary extinctions (Hagen et al., 2012). Managers
also need to consider how movement may disturb ecosystems.
The aggregating nature, and long-range movements, of many
migratory speciesmay impact ecosystems through exploitation of
habitats, disease transmission and nutrient loading (Kerbes et al.,
1990; Post et al., 2008).

Animal movement may provide important ecosystem services
and these services have been termed mobile-agent based
ecosystem services (MABES; Kremen et al., 2007). These services
are provided at a local scale by species moving within or among
habitats (Kremen et al., 2007). For example, the movements
of bees pollinate both wild and agricultural plants (Kremen
et al., 2007), seeds may be dispersed long distances by birds
and mammals (Nathan and Muller-landau, 2000) and nutrients
are transferred between marine and terrestrial environments by
the foraging movements of seabirds (Ellis et al., 2006). The
ongoing modification of the landscape by humans is altering
landscape connectivity and threatens the future provision of
MABES (Mitchell et al., 2013). Linking animal movement with
management planning allows managers to identify the ecosystem
functions and services that movement provides and thus improve
landscape management (Jeltsch et al., 2013; Mitchell et al., 2013).

Scale of Management
A challenge for management is identifying the scale of
management required for effective species conservation. The
scale of management may be guided by, amongst others,
the distance of movements like migrations (Klaassen et al.,
2008), by the size of home ranges (Schwartz, 1999), or by
the habitat requirements of a species (Angelstam et al., 2004).
Habitat selection studies have commonly been used to identify
the habitat requirements of a species, in particular using the
four orders of habitat selection described by Johnson (1980).
The first-order of selection identifies the geographical range
of the species and has commonly been used to map species
distributions and develop habitat suitability models, which are
used to guide the scale of conservation planning (Johnson,
1980; Angelstam et al., 2004; Guisan et al., 2013). The second,
third and fourth orders of selection concern the selection of
the home range, habitat patches within the home range and
microhabitats within used patches respectively (Johnson, 1980;
Meyer and Thuiller, 2006). Meyer and Thuiller (2006) introduce
a fifth order of selection, which are areas used by populations
within the geographical range. These orders of selection inform
managers about local reserve site selection (Aldridge and Boyce,
2007; Guisan et al., 2013), provide indications of habitat
quality and improvements needed (e.g., Dickson and Beier,
2002; Zeale et al., 2012) and how human disturbance may

be influencing species movements (e.g., Hornseth and Rempel,
2015). However, an ongoing challenge in conservation is how
to achieve the scale of management required. Knowing species
movements answers important management questions like
where, when, how and why animals move, which can be used
to develop management actions that increase the dynamism
and scale of wildlife management, and are complementary to
existing plans. Alternative management actions may include
ecological networks, time-area closures or threat management,
and we expand upon these alternative management actions
below.

The first approach is concerned with incorporating localized
management actions, such as protected areas or reserves, into a
network of areas and thus increasing the scale of management.
Ecological networks should maintain ecosystem processes, which
includes the movement of organisms and subsequent species
interactions networks (Opdam et al., 2006; Hagen et al., 2012).
Ecological networks also incorporate multiple objectives into the
spatial planning process, such as conservation goals and different
land uses by stakeholders (Opdam et al., 2006). A principal
concept of ecological networks is connectivity, whereby a set of
areas or ecosystems are linked tomaintain or enhance population
viability by facilitating movement (Beier, 1998; Opdam et al.,
2006). Management tools used to improve connectivity of two or
more areas are matrix management and corridors (Beier, 1998;
Fischer et al., 2005). Identifying which habitats are important for
species helps managers create a “soft,” more permeable matrix.
For example, a matrix containing scattered trees facilitated
the movement of birds in Australia (Fischer et al., 2005).
Habitat patches may also act as important stepping stones
for long-distance dispersal and range expansions, following
climate-driven shifts in habitat suitability (Saura et al., 2014).
Strengthening the link between corridor design and species
movements improves connectivity in the landscape, for instance,
corridors that were identified through tracking studies were more
effective than those identified through modeling approaches
(LaPoint et al., 2013). Corridors may be beneficial for species
moving at larger scales like the Mule deer Odocoileus hemionus
R., for maintaining connectivity within a species home range, and
to preserve dispersal events and maintain functional connectivity
(Table 1; Baguette and Van Dyck, 2007; LaPoint et al., 2013;
Sawyer et al., 2013).

The second approach is the use of time-area closures. Time-
area closures may be dynamic in time only, i.e., excluding
unwanted practices during a specific time of year, such as a
stopover site for migratory waterfowl (O’Neal et al., 2008). Time-
area closures may also be dynamic in space and time, i.e.,
the closure tracks the species’ movements like the movements
of pelagic species (Hobday and Hartmann, 2006). Time-area
closures provide a viable alternative for managing species’ with
predictable movements. They can be implemented when species
are most vulnerable, such as aggregation or spawning areas and
during critical movement phases (Table 1; Hunter et al., 2006;
Shillinger et al., 2008; Bull et al., 2013). Time-area closures
may also achieve conservation targets whilst incorporating
stakeholder interests, for example by maintaining alternative
land-use or harvesting practices, and are being increasingly
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utilized in marine and freshwater ecosystems (Hobday and
Hartmann, 2006; O’Neal et al., 2008; Shillinger et al., 2008).

When it is not possible to spatially delineate large areas, it
may be more appropriate to manage the primary threats to a
species instead (Carwardine et al., 2012). Understanding a species
threats enables managers to prioritize management actions that
achieve the greatest impact (Auerbach et al., 2014; Tulloch
et al., 2015). Identifying threats to a species may also indicate
which movement attributes increase species vulnerability. Traits
of some species, such as the predictability of routes, timing of
movements, or reliance upon particular sites may increase the
risk of exploitation (Bolger et al., 2007). This knowledge can
be used to guide management decisions, for instance threat
management actions may involve time-specific interventions like
anti-poaching activities at important locations and times of the
year (Berger et al., 2008; Murgui, 2014). Recent advances in
tracking technologies also provide the opportunity to incorporate
real-timemonitoring data into threat management schemes, thus
justifying the cost of tracking animal movements (Wall et al.,
2014). Real-time tracking data from African elephants Loxodonta
africana in Kenya was used to notify wildlife managers when
elephants were about to move into community areas (Wall et al.,
2014). Wildlife managers were able to intervene and prevent
the elephants causing crop damage and reduce human-wildlife
conflicts, a major threat to elephants in Africa (Wall et al., 2014).

Implementation
The feasibility of management actions described above may
be limited at the implementation phase by considerations like
costs, stakeholder interests, and enforcement. Incorporating
animal movement into management planning may entail a
number of costs, such as the costs of acquiring land and the
costs associated with establishing and maintaining a network
of managed areas (Naidoo et al., 2006). Emphasis is now
being placed on identifying the most cost effective action that
maximizes benefits (Naidoo et al., 2006; Carwardine et al.,
2012; Auerbach et al., 2014). The interests of local stakeholders
may also influence the implementation of management actions
due to conflicts between involved parties, for example conflicts
arising over land-use, resettlement, policies or legislation, and
human-wildlife conflicts (Davies et al., 2013; Symes et al., 2015).
In addition, limitations may arise due to available manpower,
either in relation to monitoring the outcomes of management
actions or enforcing them (Keane et al., 2008). These challenges
are especially pertinent when a species movements takes them
across several country borders (Iwamura et al., 2014; Kark
et al., 2015). Cross-boundary collaborations may provide a
number of benefits, such as improving the cost effectiveness
of management actions and increasing the scale of threat
management, however it also presents a number of challenges
like political instability, increased costs related to establishing
the collaboration, conflicting national goals, and potential delays
in implementing actions (Kark et al., 2009, 2015). However,
incorporating the above challenges into the decision making
process allows managers to identify management strategies that
are implementable and attainable.

A number of approaches have been developed to identify
which management actions will maximize benefits, such as
decision theoretic approaches and systematic conservation
planning (e.g., Margules and Pressey, 2000; Wilson et al., 2009).
Decision theoretic approaches consist of an objective or desired
outcome, a description of our knowledge of the system, state
variables in the area of interest, such as species populations or
habitats, control variables which represent possible management
strategies, model constraints and an equation that describes the
relationship between the benefit of actions and the potential
management strategies in the area of interest (Wilson et al., 2009).
Understanding species movements enables managers to improve
their understanding of the threats, use their knowledge of where
and when a species will be to identify alternative management
actions, and also recognize the challenges of achieving the
management objectives which may not be apparent if a species’
movements are unknown. Decision theoretic approaches enable
managers to prioritize management actions that will better
achieve the management objectives (Tulloch et al., 2015).
Previously, actions were prioritized on areas with the highest
threats or species richness, but now the management actions
themselves are being prioritized depending upon whether they
are cost-effective, have the greatest impact and are achievable
(Auerbach et al., 2014; Tulloch et al., 2015). Multiple-action
prioritization schemes are also being considered, whereby a
combined set of strategies may be more cost effective and have
greater impact than any one strategy alone (Wilson et al., 2009;
Chadés et al., 2015). Therefore, it is vital for managers to evaluate
all possible management scenarios to improve the effectiveness of
the decision-making process.

Evaluation
The importance of evaluating management actions has
been highlighted in recent decades to avoid implementing
management actions that do not achieve management goals
and thus waste limited funds (e.g., Ferraro and Pattanayak,
2006; Walsh et al., 2012). Therefore, management strategy
evaluation (MSE) is vital for determining whether actions
have either succeeded or failed in achieving the management
objective, and using this knowledge to inform future decisions
and actions (Pullin et al., 2013). Evaluation is an integral part
of adaptive management and is thus applicable to any form of
wildlife management. With regards to our framework, evaluation
may be important for determining the effectiveness of actions
implemented with incomplete knowledge of species movements,
and may help prioritize the type of knowledge needed to improve
future management. Evaluation is also important for tracking
future uncertainties, such as how variation in the timing of
movement may affect management strategies like time-area
closures, which rely upon knowledge of where and when a
species will be.

The effectiveness of management actions can be simulated
prior to their implementation, through frameworks like the MSE
framework (Smith et al., 1999), which has thus far been used
mostly in commercial fisheries but also has relevance for the
management and conservation of terrestrial species (Bunnefeld
et al., 2011; Milner-Gulland, 2011). MSE compares multiple
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management strategies prior to their implementation, allowing
managers to identify their effectiveness and understand the
varying forms of uncertainty, such as incomplete knowledge of
species movements (Bunnefeld et al., 2011). The outcomes of
MSE are used to inform themanagement objectives, study design,
and implementation of management actions (Bunnefeld et al.,
2011; Milner-Gulland, 2011). For example, comparative analyses
could be performed to determine whether management actions
should be implemented with limited knowledge of movement
or whether priority should instead be placed on acquiring data
that can be used to develop management actions that are more
tailored to species movements and consequently have greater
impact, such as those developed for the leatherback turtle
discussed earlier (Shillinger et al., 2008).

APPLYING THE
MOVEMENT-MANAGEMENT FRAMEWORK

We illustrate the potential for linking movement ecology with
management through a case study of the Atlantic salmon. By
following the steps of the framework, we show how existing
knowledge of salmon movement ecology has been used to
develop management actions and how further knowledge could
be used to identify alternative management actions.

Case Study—Managing Atlantic Salmon
(Salmo salar) in the Baltic Sea
Background
Atlantic salmon have had large population declines in the Baltic
Sea (Karlsson and Karlstrårn, 1994; Klemetsen et al., 2003) so it
is an important issue for management and conservation alike.
Overfishing and the loss of connectivity in river systems, due to
hydroelectric dams, has been a driving cause of salmon declines
and in the 1990s only 12 of the 44 naturally reproducing salmon
stocks in the Gulf of Bothnia remained (Karlsson and Karlstrårn,
1994). A number of actions have been taken to restore these
populations but several rivers are not self-sustaining and many
salmon rivers are below 50% of potential smolt production (ICES,
2012). In this case study, we focus on the management goals
of the Swedish government, through the Swedish Agency for
Marine andWater Management (SwAM). Their aim is to reverse
the decline of salmon stocks whilst maintaining activities like
recreational and commercial fishing. Multiple techniques have
been used to monitor the movements of salmon that include
observational and trapping data (Lundqvist et al., 2010), tagging
methods (Payne et al., 2010), acoustic or radio telemetry (Serrano
et al., 2009), stable isotopes, and genetics (Barnett-Johnson et al.,
2008). Therefore, several sources of movement data are available
to continue with the movement-management framework.

Step 1—Movement Attributes
Salmon can exhibit all four types of movement (sedentary,
dispersal, nomadism, and migration) during its life cycle.
Salmon hatch in freshwater rivers, where they are solitary and
defend territories for food, thus exhibiting sedentary movements
(Lundqvist, 1983). During this phase they may also disperse

to nearby tributaries (McCormick et al., 1998). After 1 to
5 years the salmon migrates downstream to enter the sea
(Lundqvist, 1983; Otero et al., 2014). Salmon movements in the
sea remain difficult to study but this phase can be described as
nomadic where the distribution of salmon is largely influenced
by environmental factors like sea temperature, surface currents,
and food availability (Klemetsen et al., 2003; Trudel et al., 2011).
Salmon from multiple river systems mix in the Main Basin of
the Baltic Sea, leading to mixed-stock fisheries (Karlsson and
Karlstrårn, 1994). Salmon normally migrate back to their natal
river systems to spawn (Lundqvist, 1983). The movements of
hatchery-reared salmon may differ from wild salmon in their
extent, timing, and fidelity (McKinnell et al., 1994; Jutila et al.,
2003).

Step 2—Ecosystem Impacts
The stage-structured life cycle of salmon means that juveniles
and adults occupy and connect different ecosystems (Schreiber
and Rudolf, 2008; Miller and Rudolf, 2011). Species with complex
life cycles may cause abrupt changes in different ecosystems,
such as how changes in juvenile abundance may lead to trophic
cascades across ecosystems to the adult habitat (Knight et al.,
2005; Schreiber and Rudolf, 2008). The salmon’s life cycle
influences food web dynamics by preying on aquatic species
and being preyed upon by aquatic, terrestrial, and avian species
(Holmlund and Hammer, 1999, 2004). The Atlantic salmon
is iteroparous, meaning it can spawn repeatedly as opposed
to dying after spawning like the semelparous Pacific salmon
(Oncorhynchus spp.; Klemetsen et al., 2003). Salmon deaths, and
repeated migrations, link ecosystems and transfer nutrients and
carbon between marine and freshwater ecosystems (Holmlund
and Hammer, 1999, 2004). Salmon provide several ecosystem
services. Spawning salmon regulate sediment processes whilst
their movements between marine and freshwater ecosystems
support aquatic/terrestrial food webs and nutrient cycling
(Bottom et al., 2009; Kulmala et al., 2012). Salmon populations
provide a highly valued food source for both commercial,
personal-use, and recreational fisheries (Kulmala et al., 2012).

Step 3—Scale of Management
The life cycle of the salmon illustrates the importance of
understanding their movements due to the direct influence that
salmon movement has on their survival and reproduction. As a
consequence, the scale of management may vary in accordance
to the specific life cycle stage and process that is being targeted
by management. For instance, management may consider the
implementation of more localized management actions during
the sedentary phases of the salmon’s life cycle. These include the
development phase after hatching salmon and spawning phase
of adults. Management actions have therefore focused on either
preserving existing habitats used by salmon, or alternatively,
restoration actions have been taken to improve habitat suitability
for spawning and recently hatched salmon (Nilsson et al., 2005).

A key aspect of salmon movements is the migration from
the natal/spawning areas to the sea and their return to rivers.
Lundqvist et al. (2008) indicate that a salmon population
could increase by 500% if connectivity was improved along

Frontiers in Ecology and Evolution | www.frontiersin.org 7 January 2016 | Volume 3 | Article 155

http://www.frontiersin.org/Ecology_and_Evolution
http://www.frontiersin.org
http://www.frontiersin.org/Ecology_and_Evolution/archive


Allen and Singh Linking Movement with Management

the migration path. The severe implications resulting from loss
of connectivity has resulted in several management actions
that target connectivity between river systems and the sea
(McKinnell et al., 1994; Lundqvist et al., 2008; Serrano et al.,
2009). Knowledge of migration timing has enabled managers
to adopt actions that are flexible in time, which may increase
their acceptance by impacted stakeholders like the hydroelectric
power industry. These have included diverting water from
hydroelectric dams to a bypass during the migratory period only,
or transporting salmon 88 km upstream in trucks from the first
barrier to the spawning grounds (Lundqvist et al., 2008; Serrano
et al., 2009; Hagelin et al., 2015).

Meanwhile, a key aim should be to reduce the amount of
fishing effort in the Main Basin, due to stock mixing, which
includes threatened stocks. Instead, fishing efforts could be
focused in coastal areas or river estuaries where the stock status
is known. Understanding the movements of hatchery-reared
salmon may also identify alternative management actions for
implementation. Research indicates that hatchery-reared salmon
are more likely to be caught in the Bothnian Sea compared
to wild stocks because hatchery-reared salmon are less likely
to migrate to the Main Basin of the Baltic Sea (Jutila et al.,
2003). Hatchery-reared salmon may also arrive in the northern
Baltic later than wild salmon stocks (McKinnell et al., 1994).
This knowledge may be used to implement a time-area based
approach, providing a potentially viable management option
that maintains recreational and commercial harvesting whilst
simultaneously increasing the harvest of hatchery-reared salmon.

Step 4—Implementation
The management of salmon influences a number of stakeholders
like commercial fisheries, the power industry, general public,
and conservation community. Understanding the movement
ecology of salmon has enabled managers to identify actions
that have a higher likelihood of acceptance by stakeholders and
thus improved effectiveness. An example includes the time-
area based approach for fisheries, whereby the coastal fishery
is opened later in the season meaning that most wild salmon
have already entered the river system and the fisheries harvest
is dominated by hatchery-reared salmon (ICES, 2012). Such
an approach maintains the livelihoods of fisherman whilst
reducing harvest pressure on wild salmon and thus achieving
conservation targets. Another example is how the knowledge
of timing of salmon migrations enables hydroelectric dams to
regulate discharge rates, which target conservation goals during
the salmon migration and electricity production at other times
of the year (Lundqvist et al., 2008; Håkansson, 2009). Achieving
management targets increasingly relies upon identifying trade-
offs that are acceptable to all stakeholders (Redpath et al., 2013).
By linking movement ecology with management, alternative
management actions can be identified that allow managers to
explore trade-off scenarios with stakeholders, which increase the
implementation potential of proposed management actions.

Several management actions for salmon are executed within
national boundaries, such as maintaining connectivity in
freshwater systems, improving breeding habitats, and managing
coastal fisheries. However, during themarine phase of the salmon

life cycle, the nomadic movements of adults need transboundary
collaborations for effective management. The Main Basin of
the Baltic Sea is an offshore fishery that is exploited by
many countries in the region. Therefore, international measures
are needed to effectively manage the mixed-stock fishery and
knowledge of movements and genetics is vital to achieve this
goal. Harvest quotas are provided by the Common Fisheries
Policy but the Atlantic salmon would benefit further from the re-
establishment of an International Baltic Treaty. Transboundary
collaborations provide a number of challenges that influence
the implementation potential of management actions (Kark
et al., 2015). These may include increased financial costs,
delayed conservation planning or countries “free-riding” on the
assumption that management actions will be implemented by
other countries (Kark et al., 2009, 2015). However, transboundary
collaborations may also improve the cost effectiveness of
management and increase the scale of management to more
effectively manage a highly mobile species (Kark et al., 2015).

Step 5—Evaluation
Mathematical and statistical models have been developed that
link biological and economic data to identify management
actions for salmon in the Baltic (Kulmala et al., 2008). Kulmala
et al. (2008) explicitly incorporate the migratory movements of
salmon to determine optimal harvest solutions, and identify that
driftnet fisheries should be excluded as a harvest method. Several
studies have also evaluated the effectiveness of management
plans prior to their implementation, which include both national
plans and international plans (Haapasaari and Karjalainen, 2010;
Levontin et al., 2011). Bayesian network analyses have been used
to incorporate several sources of data that include the biology of
the species, expert knowledge, and sociological data to evaluate
alternative management options (Haapasaari and Karjalainen,
2010; Levontin et al., 2011). These studies have determined the
commitment of stakeholders to management options and how
this may influence the effectiveness of proposed management
actions (Haapasaari and Karjalainen, 2010; Levontin et al.,
2011).

With regards to movement, management interventions like
fish ladders may not guarantee connectivity, as illustrated by
Lundqvist et al. (2008). The project evaluation found that
salmon migrating upstream were not drawn to the bypass
containing the fish ladder, due to differing discharge rates
from the hydroelectric dam and the bypass. Salmon survival
was also reduced the following spring as salmon were not
drawn to the fish ladder during the seawards migration, but
traveled through the turbines instead. Improved knowledge of
the movement ecology of salmon, such as how they move
in the river and what cues they are drawn to are needed to
improve the designs of existing and future connectivity measures
(Lundqvist et al., 2008). In addition, management actions are
not being implemented for the full movement cycle. In the
example of transporting salmon upstream by truck, no actions
are being taken for the downstream migration of salmon,
resulting in very low survival rates (Bergman et al., 2014; Hagelin
et al., 2015). The recovery of this river’s stock is therefore
limited by not considering the migratory connectivity of both
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upstream and downstream migrations. In this instance it would
be important to evaluate both the effectiveness of translocating
individuals to spawning areas (Fischer and Lindenmayer, 2000),
and subsequently whether the action is meeting management
objectives of population recovery.

MANAGEMENT IMPLICATIONS

Studies continue to highlight that management actions focused
in one area, such as protected areas, are not sufficient for
effectively conserving a species (Thirgood et al., 2004; Martin
et al., 2007; Runge et al., 2014). Shortfalls include the scale
of management, conflicts with stakeholders, alternative land-
uses and limited space available (Sanderson et al., 2002; Runge
et al., 2014; Symes et al., 2015). Management actions focused in
one area also fail to account for species movements (Thirgood
et al., 2004; Runge et al., 2014). Linking movement ecology to
conservation has several implications for the future management
of wildlife. Understanding a species movements enable managers
to implement actions along the entire movement path, such
as a flyway approach for birds and butterflies (Klaassen et al.,
2008; Howard and Davis, 2009) or dynamic protected areas
in the ocean (Shillinger et al., 2008; Game et al., 2009) and
on land (Singh and Milner-Gulland, 2011; Bull et al., 2013).
Understanding movement also enables managers to identify
threats, such as the loss of important sites (Iwamura et al., 2013)
or barriers to movement (Seidler et al., 2015), and therefore
prioritize the most effective management actions that have the
highest chance of success (Game et al., 2013; Auerbach et al.,
2014; Tulloch et al., 2015). Knowledge of species movements
allows managers to identify alternative management actions
that are flexible in space and time, such as time-area based
approaches that are used to flood wetlands for migratory
waterfowl (O’Neal et al., 2008) or time-restricted harvesting
practices (Hunter et al., 2006). Knowing where and when a

species will be is a pre-requisite for the successful implementation
of time-area approaches, which allow managers to develop trade-
off scenarios that balance conservation needs with alternative
land-use practices (O’Neal et al., 2008; Shillinger et al., 2008;
Game et al., 2009; Redpath et al., 2013).

We have highlighted how knowledge gained from movement
ecology can be used to identify alternative, complementary
strategies in wildlife management. Our conceptual framework
provides a step by step workflow that aims to understand the
movement patterns of a species and use this knowledge to guide
management actions. As the field of movement ecology continues
to grow, it is important to strengthen the link with wildlife
management to further improve the decision-making capabilities
of practitioners and managers.
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