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Linking N2O emission 
from biochar-amended composting process 
to the abundance of denitrify (nirK and nosZ) 
bacteria community
Shuqing Li1,2, Lina Song1, Yaguo Jin1, Shuwei Liu1, Qirong Shen2 and Jianwen Zou1,2*

Abstract 

Manure composting has been recognized as an important anthropogenic source of nitrous oxide (N2O) contributing 

to global warming. However, biochar effect on N2O emissions from manure composting is rarely evaluated, especially 

by linking it to abundance of denitrifying bacteria community. Results of this study indicated that biochar amend-

ment significantly reduced N2O emissions from manure composting, primarily due to suppression of the nirK gene 

abundance of denitrifying bacteria. Pearson’s correlation analysis showed a significant positive correlation between 

nirK abundance and N2O fluxes, while a negative correlation between nosZ density and N2O fluxes. Simultaneously, 

a linear correlation between nirK gene abundance minus nosZ gene abundance with N2O fluxes was also observed. 

In addition, a statistical model for estimating N2O emissions based on the bacterial denitrifying functional genes was 

developed and verified to adequately fit the observed emissions. Our results highlighted that biochar amendment 

would be an alternative strategy for mitigating N2O emissions during manure composting, and the information of 

related functional bacterial communities could be helpful for understanding the mechanism of N2O emissions.
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Introduction
Nitrous oxide (N2O) is an important long-lived potent 

greenhouse gas contributing to current climate change, 

with 265 times greater global warming potential than 

that of carbon dioxide (CO2) on a mass basis over the 

100-year time horizon (IPCC 2013). Manure composting 

as an important management strategy for sustainable use 

of livestock could reduce treatment costs but generate 

organic fertilizer for improvement of soil fertility (Lar-

ney and Hao 2007). However, manure composting leads 

to a large amount of nitrogen loss released as N2O or 

NH3 (Maeda et  al. 2011). �e annual global N2O emis-

sions derived from manure composting were estimated 

to be 1.2 ×  106 metric tons (Czepiel et  al. 1996), which 

accounts for approximately 30–50 % of the annual global 

total of agricultural N2O emissions in most countries 

(Chadwick et al. 2011). �erefore, it is of great concern on 

developing effective alternatives for reducing N2O emis-

sions and nitrogen losses during manure composting.

Recently, the importance of microbial traits involved in 

N2O production processes has gained worldwide concern 

(e.g., Maeda et  al. 2011). It has been reported that N2O 

emissions from manure composting mainly occurred 

at the cooling stages of composting during denitrifica-

tion driven by bacteria (Maeda et  al. 2011), i.e., NO3
−, 

NO2
−, NO, and N2O are sequentially reduced by the 

catalyzation of nitrate reductase (narG), nitrite reduc-

tase encoding (nirS/nirK), nitric oxide reductase (norB), 

and nitrous oxide reductase (nosZ, functional for yielding 

N2), respectively (Maeda et  al. 2011; Wang et  al. 2013). 

�erefore, N2O emissions during manure compost-

ing are the result of net balance between its production 
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(NO3
− → N2O) and consumption (N2O → N2) (Maeda 

et al. 2011). Several previous studies have investigated the 

dynamics of these functional genes abundance involved 

during manure composting processes under different 

conditions, and highlighted their interplay with observed 

N2O emissions and physicochemical characteristics 

(Angnes et  al. 2013; Wang et  al. 2013). Unfortunately, 

although the microbial pathways involved in N2O forma-

tion have been well documented, most of the established 

statistical models for estimating N2O emissions were cur-

rently still limited based on physicochemical parameters 

but without taking the microbial traits into consideration 

(Hu et al. 2015).

To date, various options have been reported for miti-

gating N2O emissions from manure composting, includ-

ing the composting parameters modulation (e.g., C/N 

ratio, water content, pH), N2-fixing bacteria inoculation, 

and material amendments (Dias et al. 2010; Ogunwande 

et al. 2008; Pepe et al. 2013; Wang et al. 2013). Recently, 

biochar amendment has been increasingly encouraged as 

a potential approach for reducing N2O emissions from 

both manure composting systems and soils (Kammann 

et al. 2012; Wang et al. 2013). As a carbon-rich material 

derived by slow pyrolysis of biomass, biochar amend-

ment can help to improve the NH3/NH4
+ retention dur-

ing the composting process (Steiner et  al. 2010). Wang 

et al. (2013) examined the dynamics of functional micro-

bial community during the windrow composting pro-

cess, and revealed a correlation between the denitrifying 

bacteria and N2O emissions, but lack of a systematic link 

using the modeling approach.

In this study, an in  situ measurement of N2O fluxes 

as regulated by biochar amendment over the whole 

life-cycle of manure windrow composting was taken to 

address the following concerns: (1) to evaluate the role 

of biochar in regulating N2O emissions during the com-

posting process; (2) to give an insight into the interplay 

between N2O emissions and the abundance of relevant 

functional genes involved in denitrification; (3) and to 

develop a statistical model for estimating N2O emis-

sions by integrating both the bacterial functional genes 

and physiochemical parameters. �e results of this study 

would help to advance our knowledge on the potential 

effects of biochar for mitigating N2O emissions during 

manure composting, and simultaneously establish a link 

between N2O fluxes and the information of related func-

tional bacterial communities.

Materials and methods
Experimental design

�e windrow composting experiment was initiated 

on December 24, 2013 in a commercial organic ferti-

lizer company (Jiangyin Lianye Biological Science and 

Technology Co., Ltd), located in Jiangsu Province, China. 

�e total composting period was lasted for 64  days, 

and two types of composts were carried out: CK and 

Biochar. Each treatment was set up with three repli-

cated composting piles. Each plie was sized as 12  m 

(length) × 2.8 m (width) × 1 m (height). Before the piles 

were constructed, compost feedstocks, including cattle 

manure and rice-chaff, were mixed in a ratio of 75:25 % 

(v/v) on a fresh weight basis. �e cattle manure and rice 

straw were obtained from a cattle ranch and local paddy 

rice fields, respectively. �e piles of biochar were received 

an additional biochar amendment with 3  % (w/v). Bio-

char used in this study was produced from wheat straw 

at a temperature of approximately 450  °C from a local 

company. Physicochemical properties of biochar were 

listed as follows: a total C content of 467.0 g kg−1, a total 

N content of 5.6 g kg−1, a pH of 9.4 (1:2.5 H2O), cation 

exchange capacity of 24.1 cmol kg−1 and ash content of 

20.8 %.

�e composting process can be generally divided into 

two phases. �e phase I was the bio-oxidative phase 

that mechanical turning was taken once every 2  days 

for 24  days (December 24, 2013 to January 16, 2014). 

�ereafter, the piles were moved to the aside place for 

post-maturation during the phase II. �e phase II was 

the cooling and maturing phase without pile turning for 

40 days (January 17, 2014 to February 26, 2014) (Bernal 

et al. 2009; Chen et al. 2014).

Measurement of N2O �uxes

Besides that gas samples were collected regularly once 

a week over the whole composting process, supplemen-

tary gas sampling episodes were occasionally taken as 

needed to capture high flux peaks for the two pile treat-

ments. �e N2O emission was simultaneously measured 

using a modified vented chamber method (Chen et  al. 

2014; Hou et  al. 2001; Mosier and Hutchinson 1981; 

Zou et  al. 2005). Before sampling, PVC chamber bases 

(30 cm length × 30 cm width × 25 cm height) were pre-

inserted 25 cm into the peak of piles to reduce the distur-

bance. When gas sampling, the opaque chamber (30 cm 

length × 30 cm width × 50 cm height) was placed on the 

bases and the bottom edge was sealed by water. At 0, 5, 

10, 20, and 30  min after chamber closure, gas samples 

were extracted using 60 mL plastic syringes and immedi-

ately injected into 50 mL pre-evacuated Exetainer (Chen 

et al. 2014; Hou et al. 2001).

�e N2O concentration was determined using the gas 

chromatograph method (Zou et  al. 2005), which was 

performed with a modified gas chromatograph (Agilent 

7890, Agilent Technologies) equipped with an electron 

capture detector (ECD) (Liu et al. 2012; Zou et al. 2005). 

Each pile along its length was sub-divided into three 
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sections that were treated as three parallel locations to 

minimize spatial heterogeneity of gas and compost sam-

pling. �e N2O fluxes were calculated by a non-linear 

approach and the mean of fluxes taken from three par-

allel sections within each windrow represent flux meas-

urement of the sampling windrows. Average fluxes 

and standard deviations of N2O were calculated from 

three replicated windrows. �e cumulative N2O emis-

sions were sequentially accumulated from the emissions 

between every two adjacent intervals of the measure-

ments (Zou et al. 2005).

Physicochemical parameters determination

Windrow temperature at 30 cm depth of piles was meas-

ured using a mercury thermometer on each gas sampling 

day. To examine dynamics of physiochemical parameters 

and functional microbial abundance, the compost sam-

ples were randomly collected from three longitudinal 

locations from different parts of piles. �e collected sam-

ples were divided into three parts. Two parts were imme-

diately preserved at 4 °C or −80 °C, while the other part 

was air-dried, sieved, and stored for further analysis. �e 

moisture content of different fresh samples was deter-

mined based on the weight loss by oven-drying at 105 °C. 

To analyze the water-soluble fractions of the compost 

material, the mixture of 20 g fresh compost samples with 

200 mL deionized water (1:10 w/v ratio) was shaken on a 

horizontal shaker at 25 °C (Castaldi et al. 2008). To deter-

mine the NH4
+ and NO3

− concentration of compost 

samples, 5 g of fresh samples were extracted with 100 mL 

2 M KCl solution (1:20 w/v ratio) at room temperature. 

�e solutions were measured using the three wavelength 

ultraviolet spectrometry by an ultraviolet spectropho-

tometer (HITACHI, U-2900, Japan).

DNA extraction

DNA was extracted from the compost samples using 

the Ultraclean soil DNA isolation kit (MoBio, USA), as 

described in the manufacturer’s instructions. Each DNA 

sample for next-analysis was the mixture of three inde-

pendent DNA extractions from one compost sample. �e 

DNA sample concentration was determined by a Nan-

odrop (�ermo Scientific, USA).

Real-time q-PCR assay

Real-time q-PCR assays were performed for investiga-

tion of the functional microbial community dynam-

ics during the composting process. 16S rRNA and two 

genes, encoding the key enzymes involved in N2O emis-

sion, nitrite reductase (nirK) and nitrous oxide reductase 

(nosZ), were amplified using SYBR® Premix ExTaq™ kit 

(Takara, Dalian). �e sequences of the primers used were 

referenced in Table 1. For the standard curve preparation, 

the PCR amplified fragments for three genes were cloned 

into pMD 18-T vector and sequenced.

�e q-PCR assays was carried out in 20  μL reaction 

volume containing 10  μL SYBR Premix ExTaq, 0.4  μL 

each primer (10  μmol−1), 0.4  μL ROX reference dye II 

(50×), 2  μL template DNA and 6.8  μL sterlized water. 

Reactions were perfomed triplicate using 7500 system 

(Appled Biosytem, USA). �e information of primers and 

q-PCR reaction process was listed in Table 1. Target gene 

copy numbers in compost samples were calculated from 

the standard curves and dry weight of compost samples.

Statistics

All data were reported as means and standard deviations. 

�e pairwise correlation was conducted for the correla-

tion between N2O fluxes, functional gene abundance 

(nirK and nosZ), and related physiochemical parameters 

(temperature, moisture, NH4
+, NO3

−). A linear model 

with the personality of ordinary least squares (OLS) was 

used to fit the N2O fluxes by physiochemical parame-

ters and related functional gene abundance. All statisti-

cal analyses were performed using JMP version 9.0 (SAS 

Institute, USA, 2010).

Results
N2O �uxes

�e fluxes of N2O were low during the early composting 

stage in both piles and got raised since 26  days. A sub-

stantially higher N2O emission peak was captured in the 

control pile on day 34 as compared with that in the bio-

char-amended pile (148.65 vs. 25.56 mg m2 h−1). �ere-

after, N2O fluxes were similar both the two treatments, 

ranging from 10.00 to 45.00 mg m2 h−1 until the end of 

experiment (Fig. 1). Over the 65-day compositing period, 

biochar amendment significantly decreased the cumu-

lative N2O emissions by 54.1  % relative to the controls 

(Fig. 2).

Physiochemical parameters

On average, biochar amendment increased the pile tem-

perature as compared with control pile over the total 

observation cycle (Fig. 3a). Peak of the composting tem-

perature in the biochar-amended piles was observed on 

day 14 (approximately 50.6 °C) and was kept for 6 days, 

while the temperature of control piles reached 50.7  °C 

on day 17 but rapidly levelled off. Afterwards, the tem-

perature of both pile types gradually decreased to below 

30  °C and then remained stable till the end (Fig.  3a). 

Significant decreases in water content were observed 

during the composting process for both piles, and bio-

char addition led to relatively lower water content as 

compared to the control pile over the observation cycle 

(Fig. 3b).
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Obvious decrease of NH4
+ and corresponding increase 

of NO3
− occurred at the maturation stages in both piles 

(after 47  days). �e highest concentration of NO3
− was 

relatively lower in biochar-amended piles than in the con-

trol piles (541.83 vs. 593.70 mg kg−1, day 56, Table 2), but 

their difference was not statistically significant (p > 0.05).

Table 1 The primers used for quantitative PCR in this study

M A/C, R A/G

Gene Name Sequence (5′–3′) Thermal pro�le No. cycles Product size 
(bp)

Reference

nirK nirKF1aCu ATCATGGTSCTGCCGCG 30 s-95 °C,
95 °C-15 s, 55 °C-30 s, 72 °C-30 s,
 80 °C-30 s

1 473 Henry et al. (2004)

nirKR3Cu GCCTCGATCAGRTTGTGGTT 95 °C-5 s, 58 °C-34 s, 72 °C-15 s 95 °C-15 s, 
55 °C-30 s, 72 °C-30 s, 80 °C-30 s

40

nosZ nosZ-F AGAACGACCAGCTGATCGACA 30 s-95 °C,
s,
80 °C-30 s

1 300 Scala and Kerkhof (1998)

nosZ-R TCCATGGTGACGCCGTGGTTG 95 °C-5 s, 60 °C-34 s, 72 °C-15 s 95 °C-15 s, 
55 °C-30 s, 72 °C-30 s,

80 °C-30 s

40

16S rRNA 515F GTGCCAGCMGCCGCGG 30 s-95 °C, 1 392 Zhou et al. (2011)

907R CCGTCAATTCMTTTRAGTTT 95 °C-5 s, 55 °C-34 s, 72 °C-15 s 95 °C-15 s, 
55 °C-30 s,72 °C-30 s, 80 °C-30 s

40

Fig. 1 Changes in N2O emission rate during the windrow compost-

ing (mean ± 1 SD)

Fig. 2 The cumulative N2O emissions during the 65-day period of 

composting

Fig. 3 Changes in temperature (a) and moisture (b) of composting 

materials during the windrow composting process
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Abundance dynamics of denitrifying bacteria community

Similar patterns of the copy numbers of total bacterial 

16S rRNA during the composting process were observed 

between the two pile treatments, suggesting biochar 

amendment did not significantly alter the whole bacte-

rial density (Fig. 4). Specifically, the abundance remained 

high but stable during the thermophilic stage (day 5–14) 

and then substantially decreased after the temperature 

reaching the peak on day 34. Subsequently, the popula-

tion abundance remained at low level until the end of 

experiment (Fig. 4).

In the control piles, the nirK abundance was gradu-

ally increased and attained its peak of 9.29 log copy 

numbers·g−1 on day 34, corresponding to the peak of 

N2O fluxes at the same time (Fig.  5a). However, no 

such peaks occurred in biochar-amended piles, and 

population levels of nirK kept stable and relatively 

lower over the whole composting cycle, ranging from 

7.64 to 8.25 log copy numbers·g−1 (Fig.  5a). Dynamic 

patterns of nosZ density were similar between the 

both pile treatments, showing a significant decrease 

Table 2 The concentration of NH4
+ and NO3

− during the composting process

Data was presented as mean ± standarderror

Composting
 time (days)

NH4
+(mg/kg) NO3

− (mg/kg)

CK Biochar CK Biochar

5 1026.45 ± 156.30 1150.39 ± 123.72 143.08 ± 21.95 151.68 ± 16.33

12 608.99 ± 89.77 552.07 ± 89.23 179.55 ± 17.40 205.35 ± 36.72

14 547.95 ± 101.23 580.66 ± 78.01 182.57 ± 29.80 192.59 ± 9.70

17 568.46 ± 45.89 552.64 ± 46.93 157.66 ± 31.90 175.10 ± 23.89

26 558.96 ± 56.11 580.70 ± 23.43 141.73 ± 10.91 168.62 ± 30.01

34 498.31 ± 30.03 573.46 ± 92.10 247.79 ± 27.18 177.87 ± 29.55

47 415.75 ± 56.30 544.38 ± 64.02 345.26 ± 38.45 218.10 ± 48.74

56 113.93 ± 19.78 212.17 ± 59.30 593.70 ± 68.29 541.83 ± 83.29

65 125.02 ± 34.04 288.12 ± 32.91 591.53 ± 56.48 503.60 ± 76.20

Fig. 4 Changes in gene copy numbers per gram of compost (dry 

matter) for 16S rRNA. Error bars indicate standard error of the mean 

(SE) of triplicate q-PCR reactions

Fig. 5 Dynamics of population of nirK (a) and nosZ (b) and the 

nirK gene abundance minus nosZ gene abundance (c) during the 

windrow composting process. Error bars indicate standard error of the 

mean (SE)
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trend from day 14 to day 34, and then remained sta-

ble around 6.70 log copy numbers·g−1 to the end of 

experiment (Fig. 5b). In contrast, the nirK-nosZ value 

showed an overall increase in both piles, and the mean 

values in control piles were greater than those in the 

biochar-added piles, especially the values on day 

34 (1.40 in the control piles vs. 1.13 in the biochar-

amendment piles, Fig. 5c). And then, the values in both 

pile treatments had a tendency to be uniform until the 

end of experiment.

Correlations of N2O �uxes with gene abundance 

and physiochemical parameters

For physiochemical parameters, the NO3
− content 

was positively correlated with N2O fluxes, while tem-

perature, moisture, and NH4
+ content showed a nega-

tive correlation with N2O fluxes (Fig. 6a). A significant 

positive correlation was observed between nirK abun-

dance and N2O fluxes (r2  =  0.67, p  <  0.01), while a 

negative correlation existed between nosZ density 

and N2O fluxes (r2  =  0.55, p  <  0.01) (Fig.  6a). In par-

ticular, the linear regression analysis suggested a sig-

nificant positive correlation between N2O fluxes and 

nirK-nosZ value (r2 =  0.80, p  <  0.001) in the both pile 

types (Fig. 6b), which could also serve as a good predic-

tor in regression model for stimulating N2O emissions 

from windrow composting systems. �ereby, we further 

developed a statistical model for explaining the dynam-

ics of N2O fluxes by simultaneously taking abundance 

of both nirK and nosZ genes into account (Fig. 7). �e 

significant correlation (r2 = 0.88) between the predicted 

and observed N2O fluxes suggested that the statistical 

model established based on the abundance of functional 

genes could be applied to estimate GHG emissions from 

windrow composting systems (Fig. 7).

Discussion
As recognized as an importance source of CH4 and N2O, 

manure composting has gained extensive attention of 

developing available strategies for alleviating GHG emis-

sions (Chadwick et al. 2011; Owen and Silver 2015; Tsut-

sui et  al. 2013). In this study, primary N2O fluxes were 

observed at middle stage of the composting in both piles 

(after 26 days), mainly because of the decreased temper-

ature and limited oxygen availability. �e fluxes of N2O 

in this study have also been supported by numerous pre-

vious relevant studies (Sanchez-Monedero et  al. 2010; 

Tsutsui et  al. 2013; Wang et  al. 2013). Importantly, bio-

char amendment effectively reduced the N2O fluxes dur-

ing the manure composting by 54.1 % as compared with 

the control piles, especially after the cooling stage from 

34 days after treatment (Figs. 1, 2), suggesting its poten-

tial of application in agricultural production for migrat-

ing GHG emissions.

Previous studies have highlighted the positive perfor-

mance of biochar on reduction of N2O emissions in both 

composting and soil systems. �e involved mechanisms 

have been summarized as physical absorption, improved 

soil aeration (Zhang et al. 2010), mediation of denitrifiers 

(Wang et al. 2013), repressing denitrification and induc-

ing N2O-reductase activities (Yanai et al. 2007), and regu-

lating of N transformations (Clough and Condron 2010). 

Recently, it has been recognized that the N2O emissions 

during manure composting were the balance between 

production (NO3
−  →  N2O, primarily catalyzed by 

nitrite reductase encoding by nirS/nirK) and consump-

tion (N2O → N2, catalyzed by nitrite reductase encoding 

by nosZ) (Maeda et  al. 2011). Since nirK has been sug-

gested to be the dominant denitrification gene as com-

pared with nirS in the composting system (Wang et  al. 

2013; Zhang et al. 2015), the abundance of nirK and nosZ 

Fig. 6 a Correlation analysis between N2O emission and physiochemical/microbial factors. b Simple regression analysis of N2O emission and the 

nirK gene abundance minus nosZ gene abundance
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was investigated for understanding the microbial mecha-

nisms that involved in the biochar-mediated N2O mitiga-

tion. As expected, addition of biochar counteracted the 

significant raise of nirK abundance as compared with 

the control pile, especially on day 34 at which the N2O 

emissions reached peak in the control piles in contrast 

to much lower N2O fluxes in the biochar-amended piles 

(Figs. 1, 6a). Moreover, the population of nosZ was found 

to be similar in both piles (Fig. 6b), therefore it could be 

hypothesized that the N2O reduced by biochar amend-

ment was mainly attributed to the alternation of bacterial 

gene abundance of nirK. Previous studies also highlighted 

that biochar application could lowered the abundance of 

nirK in manure composting (Wang et al. 2013), and nirS 

(or relative proportion) under field condition (Anderson 

et al. 2014; Bai et al. 2015).

�ere are several probable explanations for the effects 

of biochar amendment on denitrification gene abun-

dance. First, improvement of soil aeration by biochar 

amendment due to its nano-porosity and large specific 

surface areas, as well as the consequent lower moisture 

content (Fig.  4), could influence the oxygen availability 

and redox condition, thereby depress the abundance, 

diversity, and activity of the denitrifiers (Wang et  al. 

2013; Zhang et  al. 2010). Second, ethylene generated 

from biochar could inhibit the abundance and activity of 

soil microbiota (Spokas et  al. 2010). Nevertheless, addi-

tional studies are highly needed to exploring the detailed 

response mechanisms of denitrifier as responses to bio-

char amendment.

Applicable schematic model for predication of N2O 

fluxes is necessary for estimating the GHGs emission 

under various biogeochemical parameters, and could 

offer potential implications for GHGs mitigation. Cur-

rently, most of the developed N2O models were associ-

ated with physicochemical characteristics (e.g., pH, water 

content, oxygen level, climatic information, nitrogen 

inputs, etc.) or potential denitrification/nitrification rates 

(Hu et al. 2015). However, limitations of these models in 

predication of N2O emissions in different circumstances 

have also been marked, and there is an urgent demand to 

exploit novel N2O emission models on account of nitro-

gen-cycling microbes or indicator genes determined by 

molecular strategies (Wallenstein and Hall 2011). In this 

study, the significant correlation between N2O fluxes 

and bacterial denitrification genes population, as well 

Fig. 7 A schematic model for explaining the N2O fluxes dynamics associated with abundance of nirK and nosZ
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as nirK-nosZ value (Fig.  6a, b) was supported by previ-

ous studies (Wang et al. 2013). �e derived linear regres-

sion model based on nirK-nosZ value could explain 80 % 

of the variance in N2O fluxes during windrow compost-

ing, which was similar to the model raised recently using 

nirS-nosZ value as the proxy (Morales et al. 2010). A pre-

vious field study also highlighted the linear correlation 

between nirS-nosZ value and N2O fluxes (Morales et al. 

2010). It has been documented that nitrite reductase 

encoded by nirS was predominate as compared with nirK 

in most natural environments (Bothe et al. 2000), while it 

seemed that nirK gene was more dominant in compost-

ing systems (Wang et  al. 2013). Furthermore, we devel-

oped a modified model for predicting of the N2O fluxes 

associated with the detailed abundances of denitrifica-

tion functional genes (nirK and nosZ) during the manure 

composting (Fig. 7). �e higher explaining fitting of this 

model (explaining 88 % of the variance in N2O fluxes) as 

compared with the linear model suggested that this linear 

equation was more effective in predicating N2O fluxes 

during composting based on the abundance of relevant 

functional genes (Fig. 7). �is model highlighted the sig-

nificant roles of denitrification in N2O emissions, which 

was the balance between N2O production (catalyzed by 

nirK) and consumption (catalyzed by nosZ) (Maeda et al. 

2011; Wang et al. 2013).

Biochar amendment could also alleviate the N2O emis-

sions through other ways independent of bacteria. For 

example, metal oxides, such as TiO2 distributing near 

the biochar, could catalyze the reduction of N2O to N2 

(Ovideo and Sanz 2005). Moreover, the concentration 

of NO3
− was observed to be significantly lower in the 

biochar-amended piles than in the control piles, which 

could also have reduced N2O fluxes. However, whether 

the reduced NO3
− was directly attributed to the biochar 

amendment or indirectly caused by the effect of biochar 

on microbial metabolism still needs further investigation.

Besides of the mitigation effects on N2O emissions, 

biochar amendment also revealed other positive effects 

on manure composting. It was observed that addition of 

biochar accelerated the temperature rising and prolong 

the thermal stage of the composting (Fig. 3), which could 

improve the degradation of the organic substrates and 

shorten the composting period. �is phenomenon has 

also been reported previously, and the involved mecha-

nisms might be improvements of aeration and nutrients 

brought by the biochar (Wang et al. 2013).

In conclusion, this research presented that biochar 

amendment significantly reduced N2O emissions from 

manure composing, primarily through alternation of 

abundance of denitrification genes (nirK). Our study 

also highlighted the significant positive correlation 

between nirK-nosZ value and N2O fluxes, and developed 

a schematic model for predicting of the N2O fluxes asso-

ciated with denitrification functional genes. It should be 

noticed that compared with advanced strategies such as 

next-generation sequencing and transcriptional profil-

ing analysis, q-PCR has limitations both on data size and 

reliability (activity in vivo). �erefore, in the future more 

available approaches should be used for deeply exploring 

the microbial process involved in the biochar-mediated 

mitigation, especially in the detailed response of denitri-

fication groups to biochar.
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