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Abstract

Background: Estrogen is a vital hormone that regulates many biological functions within the body. These include

roles in the development of the secondary sexual organs in both sexes, plus uterine angiogenesis and proliferation

during the menstrual cycle and pregnancy in women. The varied biological roles of estrogens in human health also

make them a therapeutic target for contraception, mitigation of the adverse effects of the menopause, and

treatment of estrogen-responsive tumours. In addition, endogenous (e.g. genetic variation) and external (e.g.

exposure to estrogen-like chemicals) factors are known to impact estrogen biology. To understand how these

multiple factors interact to determine an individual’s response to therapy is complex, and may be best approached

through a systems approach.

Methods: We present a physiologically-based pharmacokinetic model (PBPK) of estradiol, and validate it against

plasma kinetics in humans following intravenous and oral exposure. We extend this model by replacing the intrinsic

clearance term with: a detailed kinetic model of estrogen metabolism in the liver; or, a genome-scale model of liver

metabolism. Both models were validated by their ability to reproduce clinical data on estradiol exposure. We

hypothesise that the enhanced mechanistic information contained within these models will lead to more robust

predictions of the biological phenotype that emerges from the complex interactions between estrogens and the body.

Results: To demonstrate the utility of these models we examine the known drug-drug interactions between

phenytoin and oral estradiol. We are able to reproduce the approximate 50% reduction in area under the

concentration-time curve for estradiol associated with this interaction. Importantly, the inclusion of a genome-scale

metabolic model allows the prediction of this interaction without directly specifying it within the model. In addition,

we predict that PXR activation by drugs results in an enhanced ability of the liver to excrete glucose. This has

important implications for the relationship between drug treatment and metabolic syndrome.

Conclusions: We demonstrate how the novel coupling of PBPK models with genome-scale metabolic networks has

the potential to aid prediction of drug action, including both drug-drug interactions and changes to the metabolic

landscape that may predispose an individual to disease development.
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Background
Estradiol is a major endocrine hormone, and is respon-

sible for modulating multiple biological functionalities

throughout the human life cycle. Most notably, it plays a

central role in development of the reproductive organs,

and continue to be important in the reproductive cycle

throughout life [1]. During the menstrual cycle and

pregnancy estradiol plays a central role in uterine angio-

genesis and endometrial proliferation [2, 3]. Plasma con-

centrations of total estradiol vary through the menstrual

cycle (0.1-1 nM: [4, 5]), increasing steadily through preg-

nancy to reach approximately 100 nM at term [6].

Given the role of estradiol in core body functions, it is

perhaps not surprising that its level has been associated

with a number of disease states, and that estradiol-

mediated biology is a key therapeutic target. Elevated

plasma estrogens have been associated with protection

against cardiovascular disease [7], but also an increased risk

of breast cancer in post-menopausal women; a two-fold in-

crease in estradiol levels being associated with a 1.3-fold in-

crease in relative risk [8]. This carcinogenic effect is

probably mediated through a number of mechanisms, in-

cluding the generation of genotoxic catecholamine metabo-

lites [9] as well as the modulation of cell proliferation and

angiogenesis [2, 10].

Pharmacological agents are used to impact on both the

normal biological functions of estradiol (e.g. oral contra-

ceptives), and disease processes (e.g. anti-estrogenic can-

cer chemotherapy). The action of these therapies may be

altered through enzyme induction/inhibition elicited by

concomitantly administered drugs (e.g. anticonvulsants

such as phenytoin), environmental exposure to estrogen-

like endocrine disrupting chemicals [11], or ingestion of

phyto-estrogens in the diet [12]. In addition to pharmaco-

logical impacts on estrogen biology, there are a number of

genetic polymorphisms that may be of clinical importance.

For example, genetic variants within CYP19 and 17B–

HSD, important enzymes in the biosynthetic pathway of

estradiol, are associated with different circulating concen-

trations of estrogen [13, 14]. Likewise, polymorphisms

within the degradation pathways have been associated

with altered clearance of estrogens and the increased pro-

duction of the genotoxic catecholamines [15, 16].

Given the complex biological effects of estrogens, both

positive and negative, and the potential for gene/drug/en-

vironment interactions, the prediction of an individual’s

estrogen biological profile is complex. The related disci-

plines of computational and systems biology have devel-

oped to address questions such as this, allowing the

examination of large scale, complex networks to predict

the emergent biological response [17, 18]. A first stage in

the prediction of the biological phenotype elicited by any

chemical is the generation of robust disposition models,

most commonly as physiologically-based pharmacokinetic

models (PBPK [19]), which allow the prediction of

concentration-time curves for chemicals within the body.

Enhancing these models with mechanistically-detailed

models of biologically important hubs will further increase

their predictive power [17, 18].

In the current work, we extend the estrogen PBPK

model of Plowchalk and Teeguarden [20], increasing the

number of physiological compartments from seven to

18. We demonstrate that this extended model is able to

reproduce blood concentration-time curves for estradiol

in women following intravenous and oral exposures. We

expand this model, replacing the fitted intrinsic clear-

ance term with either a fully mechanistic model of estro-

gen metabolism within the liver, or a genome-scale

model of hepatic metabolism. To demonstrate the utility

of these models, we examine the impact of concomitant

exposure to the anticonvulsant phenytoin on blood es-

tradiol concentrations, demonstrating the ability to iden-

tify a clinically important drug-drug interaction (DDIs).

Methods

PBPK model structure

The PBPK model was created in COPASI v4.14 [21], and

was based upon the previously published human female

model of Plowchalk and Teeguarden [20]. The model pre-

dicts the disposition of estradiol (E2) through 16 tissue

compartments plus arterial and venous blood compart-

ments. Estradiol is synthesised within the compartment

{gonads}, and subject to extrahepatic clearance (CLeh)

and intrinsic clearance (CLint) from the compartments

{kidney} and {liver}, respectively. The overall structure of

the PBPK model is summarised in Fig. 1.

The original model comprised seven biological com-

partments: systemic plasma, poorly perfused tissue,

richly perfused tissue, pituitary, uterus, ovaries and liver.

In addition, an IV input compartment fed into the sys-

temic plasma, while an oral dosing compartment fed

into the liver. Here, venous and arterial blood compart-

ments are presented separately, along with 16 tissue

compartments, representing the major organs as defined

by Peters [22]. Rather than represent uterus and ovaries

separately, they are combined in the compartment {go-

nads}, which represents estradiol target tissues. This re-

flects a compromise between the desire to predict the

distribution of estradiol to target tissues, and the experi-

mental data to validate these predictions. With the ex-

ception of the liver and gonads, all compartments are

described as well-mixed, rapid equilibrium compart-

ments. The liver and uterus are treated as a

permeability-limited compartment with a separate tissue

blood compartment [20, 23]. Finally, compartments to

represent intravenous (i.v.) and oral (p.o.) delivery were

added to the model, inputting into the venous blood and

intestine compartments, respectively.
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As estradiol is an endogenous compound, an estrogen

biosynthesis reaction was added using mass action kinetics,

generating estradiol into the compartment {gonads_cells}.

The rate constant for this reaction was fitted to achieve a

steady-state blood concentration of 0.15 nM total estradiol,

consistent with the published literature [4, 5]. As estradiol

in the blood is approximately 98% bound to plasma pro-

teins, this equates to a free plasma concentration of ap-

proximately 0.003 nM [24].

An overview of the model structure is presented as Fig. 1,

while a full description of reaction parameters, balance

equations, global quantities and initial conditions is pre-

sented as Additional file 1. Generic physiological parame-

ters were taken from Bosgra [23] and estradiol-specific

parameters from Plowchalk and Teeguarden [20]. These

values were used to populate ordinary differential equations

as described by Peters [22]. The model is available for

download from BioModels [25] and www.LiverSystems.org.

PBPK-LiverODE model structure

A mechanistic model of estrogen metabolism within the

liver was created, hereafter denoted as LiverODE

(Additional file 1: Figure S3). The model comprises five

compartments: an input compartment representing ei-

ther medium or blood; an output compartment repre-

senting medium or bile; and three compartments

representing parts of the hepatocyte, namely apical

membrane space, basolateral membrane space, and cell

interior. Within the input compartment, estradiol is

present as E2 and E2free to represent diffusion-limited

access of estradiol to cells. E2free represents the bulk of

estradiol in the input compartment, while E2 represents

estradiol immediately bordering cells that can gain ac-

cess to the cell membrane and enter cells. This

diffusion-limited access is simulated through first order

kinetics, with a rate constant based upon previously used

estimates for chemical diffusion through medium [26].

Movement between compartments is through either pas-

sive diffusion or active transport. Within the hepatocyte,

estradiol is subject to sequestration through both spe-

cific (i.e. binding to the estrogen receptor) and non-

specific binding. Finally, estradiol undergoes a number

of metabolic conversions: it is interconverted with es-

trone through the actions of 17β-hydroxysteroid de-

hydrogenase 1 and 2 [27, 28]; both estradiol and estrone

are metabolised via CYP1A1 and CYP3A4 during Phase

I metabolism to form hydroxylated metabolites [29, 30];

the catecholamine metabolites from these reactions are

potent mutagens, and are readily deactivated through

the action of catechol-O-methyltransferase (COMT)

[31]; finally, both estradiol and estrone are metabolised

via SULT1E1, SULT2A1, UGT1A1, UGT1A3 and

UGT2B7 during Phase II metabolism [32] to form

sulphate and glucoronide conjugates, respectively. These

interconversions were selected as they represent the

major metabolic fates of estradiol in the liver, and robust

parameter values were available within the literature.

The LiverODE model was used to replace the intrinsic

clearance term (Clint) of the base PBPK model by mer-

ging of the {liver_plasma} compartment of the PBPK

model and the {medium} compartment of the LiverODE

model. This model is hereafter designated the PBPK-

LiverODE model. The model was validated against in

vitro data for estradiol clearance in primary human he-

patocytes (Additional file 1: Figure S4).

A full description, including overall structure, reaction

parameters, balance equations, global quantities and ini-

tial conditions, of the model is presented as Additional

file 1. The model is available for download from BioMo-

dels [25] and www.LiverSystems.org.

Fig. 1 Physiologically based Pharmacokinetic model for estradiol in

women. Distribution of estradiol between venous and arterial blood

compartments and 16 tissue compartments is represented. The liver

and gonads are represented as permeability-limited tissues, and all

other compartments well mixed. Estradiol enters the model through

synthesis into the gonads, oral dosing (p.o.) into the intestine, and

intravenous dosing (i.v.) into the venous blood. Estradiol is removed

from the model through extra-hepatic clearance (CLeh) from the

kidney, and intrinsic clearance from the liver. Intrinsic clearance is

modelled as either a single ODE (Clint), ODE-based model of liver

metabolism (LiverODE), or a genome-scale metabolic network (GSMN) as

described in text
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PBPK-GSMN model structure

The PBPK-GSMN model is based upon the PBPK

model, but with the Clint term replaced by a genome

scale metabolic network (GSMN). Briefly, GSMNs cap-

ture the total connectivity of a metabolic network within

a stoichiometric matrix, and coupled with constraint

based modelling approaches allow the examination of

metabolite flow through the entire network [18, 33].

Here, we used the Recon2 GSMN, the most comprehen-

sive general reconstruction of human metabolism, com-

prising 7440 reactions and 5764 metabolites [34].

To decrease the solution space for constraint based mod-

elling approaches additional constraints can be added, in-

creasing the robustness of predictions. Each reaction within

the GSMN is constrained by an upper bound (UB) and

lower bound (LB), representing the maximum and mini-

mum flux, respectively. Within Recon2, the maximum value

for a bound is 1000, with directionality reflected in the sign

of this value. Hence, a unidirectional forward reaction is de-

fined as 0,1000 (LB, UB), a unidirectional reverse reaction

(−1000,0), and a bidirectional reaction (−1000,1000). The

LB and UB can be reduced to further constrain the solution

space where additional biological information is present.

Here, these bounds were further constrained in two ways.

First, the physiological import-physiological export set was

used (PIPES; [35]), which only permits exchange of metabo-

lites normally present under physiological conditions. The

LB and UB for exchange reactions present within PIPES

were set to −1 and 1000, respectively, reflecting limited con-

sumption but unlimited production of these metabolites by

the cell. For all exchange reactions not present within

PIPES, UB and LB values were set to 0. Second, PIPES ex-

change reaction bounds were further constrained through

experimentally-derived nutrient production and consump-

tion rates, where available [36]. Jain et al. determined the

consumption and production rates for 219 metabolites

across the NCI60 cell culture collection. We assume that

the maximal values for consumption of each metabolite

across these immortal cell lines at least equals, and most

likely exceeds, that observed in vivo. We can therefore use

these values to set the LB for exchange reactions within the

PIPES. For example, the maximal rate of glucose depletion

from the medium across the NCI60 cell culture collection

was −1.723855 mmol/gDW/h, reflecting the maximal con-

sumption rate by cells. On this basis, the exchange reaction

for glucose (Recon2 ID: R_EX_glc_LPAREN_e_RPAREN)

was constrained with lower and upper bounds of −1.723855

and 1000, respectively.

Traditionally, constraint-based modelling approaches

have used the Biomass Reaction as an objective function

(R_Biomass_Reaction), which represents those constituents

required for cell division (e.g. ATP, amino acids, nucleotides

etc.) and thus can be used as a surrogate for cell division

[33].. While this is appropriate for many prokaryotic

models, where a main objective is to grow, it is inappropri-

ate for many eukaryotic cells. For example, liver cells are ef-

fectively senescent, but do retain a significant regenerative

capacity following liver injury. To represent this regenera-

tive capacity, a ‘Liver turnover’ constraint node was added,

which requires a minimum flux through the Biomass Reac-

tion (0.007). This further constrains the solution space to

represent the potential for cell division, but does not re-

quire the simulation to optimise for cell growth. Two ob-

jective functions for the flux balance analysis of the GSMN

are used within the current work, representing homeostatic

functions of the liver. First, we explore glucose-lactate

homeostasis: Lactate is constantly produced by red blood

cells through respiration, but blood levels must be main-

tained to prevent acidosis. The liver consumes lactate and

converts it to glucose, which is reflected by setting opti-

misation of external glucose production as the first

objective function. Glucose production (R_EX_glc_ LPARE-

N_e_RPAREN_) and lactate consumption (R_EX_lac_L_L-

PAREN_e_RPAREN_) fluxes are extracted from an

example flux distribution predicted by flux balance analysis

and used to predict blood concentrations of lactate and glu-

cose. Second, the role of the liver in estrogen and urea me-

tabolism is explored: Estrogen is an important endocrine

signalling molecule, while ammonia is produced through

the metabolism of amino acids throughout the body,

and converted to urea in the liver for subsequent elimin-

ation through the urine. Estradiol secretion is set as the sec-

ond objective function, representing the intrinsic clearance

of estradiol by the liver. Fluxes of interest are read from an

example flux distribution predicted by flux balance analysis:

excretion of urea (Recon2 ID: R_EX_Urea_LPAREN_e_R-

PAREN_), excretion of estradiol (Recon2 ID: R_EX_estra-

diol_LPAREN_e_RPAREN), formation of estrone sulphate

(Recon2 ID: R_ESTSULT), and formation of 2-OH estradiol

(Recon2 ID: R_RE3013R). Flux toward urea and estradiol

excretion are used to predict blood concentrations, flux to-

ward estrone sulphate measures a major metabolic fate of

estradiol, and flux toward 2-OH estradiol represents cat-

echolamine formation [33].

The PBPK and GSMN parts of the model were coupled

through the species ‘E2{liver_cells}’, representing free es-

tradiol within the hepatocyte. The model was constructed

in MuFINS [37], in which ODE-based networks are repre-

sented in Petri net (PN) formalism and linked to the

GSMN through special directed arcs using our quasi

steady-state Petri net (QSSPN) approach [38]. This allows

connection of metabolite (fluxes) between the PN and

GSMN parts of the model, as well as the setting of flux

bounds within the GSMN by the PN part of the model.

An advantage of the modelling approach used here is

the ability to dynamically alter flux bounds within the

GSMN [37]. This allows, for example, the exploration of

the impact of drug action on global metabolism. Here, we
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model drug-drug interactions occurring through activa-

tion of the pregnane X-receptor (PXR). PXR is a member

of the nuclear receptor superfamily, and is activated by a

large range of both endogenous and exogenous chemicals,

altering the expression of metabolic enzymes and mem-

brane transporters to respond to the stimulus [39]. Drug

interaction with PXR is represented by mass action kinet-

ics, with kon and koff rates set to reproduce the experi-

mentally determined affinity. Binding of an agonist with

PXR forms PXRL, the active form of PXR, which increases

the transcription of PXR target genes. Predicted concen-

tration of the encoded protein species vary from 111 nM

(basal transcription, no PXRL present) to 518 nM (max-

imal transcription, maximal level of PXRL). These protein

concentrations are used to inform the flux bounds for

mapped reactions [37, 38], with the Petri net place repre-

senting the encoded protein containing a comment that

sets the upper and lower reaction flux bounds for different

predicted protein concentrations: these range from 0,0.23

(lower bound, upper bound) at 100 nM protein to 0,0.63

at 550 nM protein, which are values that reproduce the

known rates of metabolism of estradiol in primary human

hepatocytes (Additional file 1).

PXR target genes were identified through a two-step

process: First, transcriptomic data from the Japanese Toxi-

cogenomics Program for primary human hepatocytes ex-

posed to 2.8μM, 14μM and 70μM of the classical PXR

ligand rifampicin for 2, 8 and 24 h [40] were extracted from

ArrayExpress (E-MTAB-798) [41]. Array analysis was per-

formed within the Bioconductor R suite with data pre-

processing using affy, and differential gene expression using

limma. Second, the list of differentially expressed genes was

further refined to include only direct targets of PXR. These

genes were identified through literature evidence of a direct

interaction via chromatin immunoprecipitation.

A cartoon of this model is presented as Additional file 1:

Figure S5, with a full description, including overall struc-

ture, reaction parameters, global quantities, initial condi-

tions, and literature evidence for PXR target genes also

presented as Additional file 1.

Virtual patient population

A virtual population was generated using the National

Health and Nutrition Examination Survey (NHANES)

2013–14 anthropometric data [42], representing a mod-

ern U.S. population. Briefly, anthropometric data was ex-

tracted for 1495 women aged 18–45 years inclusive.

Individual weight (Kg) and height (m) data are used to

calculate body mass index [weight/height2] and body

surface area [0.00718*weight0.425*(height*100)0.725].

These four parameters are used to predict individual

organ weights and blood flows using the equations pre-

sented in Bosgra et al. [23]. Summary statistics for the

NHANES cohort are presented as Additional file 1.

Model simulation and analysis

Both the PBPK and PBPK-LiverODE models were simu-

lated in COPASI [21], while the PBPK-GSMN model

was simulated using MuFINS [37]. Statistical analysis

was undertaken using GraphPad Prism v6.01 (GraphPad

Software Inc., La Jolla, USA). Datasets were compared

through a two-way ANOVA with Sidak’s multiple com-

parison test. The level of statistical significance was set a

priori at p < 0.05.

Results and discussion

Validation of models against clinical data

We first explored the ability of the three models to re-

produce known human responses to estradiol exposure.

First, we examined the ability of the models to repro-

duce the binding of estradiol to plasma proteins, specif-

ically albumin and steroid hormone binding protein

(SHBG). Second, we predicted the concentration-time

curve for plasma estradiol in humans following i.v. dos-

ing, and compared this to in vivo data. Third, concentra-

tions time curves for oral dosing were compared to

human data. Fourth, we explored how predicted com-

partment dispositions may reflect the in vivo situation.

Within the plasma compartment, the model predicts

concentrations of free estradiol, plus estradiol bound to al-

bumin and SHBG. Using a concentration of 25 nM estra-

diol, the distribution of estradiol within the plasma were

predicted for the original Plowchalk and Teeguarden PBPK

model and our expanded PBPK model (Fig. 2a). Modelled

free fractions are consistent between the two models (ap-

proximately 2%), and equivalent to the experimental data of

Sodergard et al. [43]. The predicted distribution of plasma

protein bound estradiol between albumin and SHBG is also

reproduced between the two models (approximately 58%

albumin-bound and 40% SHBG-bound), but differs from

the clinical data, which indicates approximately 52% of es-

tradiol is albumin-bound and 46% SHBG-bound. In the

Plowchalk and Teeguarden model, disassociation constants

of 17 μM and 1.5 nM were used for the interaction of estra-

diol with albumin and SHBG, respectively. In contrast, the

work of Sodergard et al. reports values of 23.8 μM and

3.18 nM, respectively [43]. When these values are used, free

estradiol remains at approximately 2%, but the resultant

distribution of bound estradiol is consistent with the clin-

ical data [44]. These latter values were adopted within the

PBPK model. When the PBPK model was expanded to in-

clude the mechanistic model of estradiol metabolism

(PBPK-LiverODE) or the GSMN (PBPK-GSMN) these per-

centage distributions were maintained (Fig. 2b).

Estrogens are clinically administered through a number

of routes, including intravenous, subcutaneous, oral, der-

mal and rectal. Here, i.v. and oral exposure routes have

been modelled, and validated against in vivo data. Kuhnz

et al. measured plasma levels of estradiol in young women
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following intravenous administration of a 0.3 mg bolus

[45]. Figure 3a, presents this in vivo data, plus simulations

for the virtual patient population. In each model, the

0.3 mg bolus was represented by an initial 1101nmoles of

estradiol in the {dose_IV} compartment. This was deliv-

ered to the {plasma_venous} compartment through a first

order mass action kinetics with a rate constant of 250 h−1,

which was essentially complete within 3 min. Entry to the

liver is permeability-limited, with a permeability rate of

1000 L.h−1 being used in the original of Plowchalk and

Teeguarden paper [20]. For the base PBPK model and the

PBPK-GSMN model this was replaced by uptake and ef-

flux rate constants of 1000 L.h−1 and 277.8 L.h−1, respect-

ively, reflecting a plasma:tissue coefficient of 3.6 [46]. For

the PBPK-LiverODE model, it was necessary to vary these

constants to best fit the clinical data, while maintaining a

plasma:tissue coefficient of 3.6: values of 150 L.h−1 and

41.7 L.h−1 were used, for uptake and efflux respectively.

This represents a 6.7-fold difference in the magnitude of

the rate constants between the two model systems. The

reason underlying this difference is unclear but may re-

flect parameter robustness in the LiverODE model. Kin-

etic parameters are derived from multiple in vitro systems,

while protein concentrations are measured using different

technical approaches. The parameters derived from these

approaches will each have their own precision level, and

the sum of these errors will influence the intrinsic clear-

ance of estradiol from the liver. As demonstrated in Fig. 3a,

all models were able to reproduce the clinical data with a

good degree of accuracy. Root mean square error (RMSE)

values decrease across the models, with RMSE values of

3.7, 1.2 and 0.9 for the PBPK, PBPK-LiverODE and PBPK-

GSMN models, respectively. The decrease in RMSE value

across the models is primarily driven by under prediction

at higher concentrations in the base PBPK model.

The ability of the models to reproduce oral dosing was

examined next. Lyrenas et al., exposed women to 2 mg

and 4 mg of radiolabelled estradiol, and then measured

plasma estradiol over the subsequent 50 h [47]. In each

model, the estradiol dose was represented by an initial

7342nmoles or 14685nmoles of estradiol (2 mg and 4 mg,

respectively) in the {dose_oral} compartment, and deliv-

ered to the {intestine} compartment through a first order

mass action kinetics with a rate constant of 0.025 h−1. In

addition to absorption into the intestine, estradiol within

the {dose_oral} compartment was depleted with a first

order rate constant of 0.01 h−1 to represent loss through

excretion. These values are consistent with the values used

by Plowchalk and Teeguarden [20]. As presented in

Fig. 3b, all three models are able to reproduce the clinical

data, demonstrating an initial rising phase comprising

drug absorption and clearance followed by a declining

phase comprising clearance only. Root mean square error

(RMSE) values decrease across the models, with RMSE

values 2 mg/4 mg oral dose of 0.113/0.175, 0.112/0.174

and 0.110/0.164 for the PBPK, PBPK-LiverODE and

PBPK-GSMN models, respectively. The decrease in RMSE

value across the models is, again, primarily driven by

under prediction at higher concentrations in the base

PBPK model. However, we note that there is considerable

variability in the clinical samples and as such comments

on data fit must be treated with caution.

To further explore the model performance, we calcu-

lated the maximal concentration (Cmax), time to Cmax

(Tmax) and the area under the concentration-time curve

(AUC
∞
) for each simulation (±s.d.) and compared them

to the respective in vivo data (Table 1). Prediction of

AUC for an i.v. bolus was extremely good for the base

PBPK model, and slightly under predicted by both the

PBP-LiverODE and PBPK-GSMN models. This under-

prediction is driven by under prediction of E2 plasma

concentration during the first 30 min after dosing. With

Fig. 2 Prediction of estradiol binding to plasma proteins. a Steady-state

binding of 25 nM estradiol to albumin and steroid hormone binding

globulin (SHBG) were simulated within the PBPK model and compared

to clinical data and the prediction of Plowchalk and Teeguarden. b

Steady-state binding of 25 nM estradiol to albumin and SHBG were

simulated for the PBPK model and compared to prediction from the

PBPK-LiverODE and PBPK-GSMN models, and experimental data of

Sodergard et al. [43]
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regards to oral exposures, we note that the model of

Plowchalk and Teeguraden was unable to accurately re-

produce oral dose data, with the Tmax values off by sev-

eral hours [20]. All three models presented here produce

good predictions of AUC, Tmax and Cmax following a

2 mg oral dose when compared to the in vivo data of

Lyrenas [47]. Simulations of the response to a 4 mg oral

dose of estradiol over predict with regard to Cmax and

AUC, although prediction of Tmax is robust. However,

examination of the in vivo data shows one individual

Fig. 3 Prediction of estradiol kinetics in women. Estradiol venous blood concentrations were simulated for the 1495-person virtual population

following a 0.3 mg i.v. bolus and b 2 mg or 4 mg oral bolus exposures, and presented as mean (±s.d.). The i.v. bolus data was compared to clinical data

from Kuhnz et al. [45], which is shown as mean (±s.d.), while oral dose simulations were compared to clinical data from Lyrenas et al. [47]

Table 1 Pharmacokinetic parameters for three models

In vivo PBPK PBPK-LiverODE PBPK-GSMN

i.v. – 0.3 mg AUC 10.2 ± 1.18 10.4 ± 0.23 6.1 ± 0.17 5.9 ± 0.56

Oral – 2 mg Tmax 3.8 ± 0.4 2.5 ± 0.34 3.5 ± 0.38 2.4 ± 0.18

Cmax 0.44 ± 0.24 0.34 ± 0.19 0.35 ± 0.24 0.32 ± 0.23

AUC 10.3 ± 1.18 8.9 ± 0.19 9.2 ± 0.13 8.1 ± 0.04

Oral – 4 mg Tmax 3.4 ± 0.6 3.1 ± 0.31 3.2 ± 0.35 2.3 ± 0.26

Cmax 0.63 ± 0.3 0.67 ± 0.25 0.71 ± 0.26 0.65 ± 0.21

AUC 13.4 ± 3.47 17.3 ± 0.38 17.4 ± 0.24 16.2 ± 0.09
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whose response to 4 mg oral estradiol is markedly differ-

ent, being closer to the response of those individuals ex-

posed to 2 mg oral estradiol. If this individual is

removed, then model prediction is within the error of

the in vivo data for both Cmax and AUC.

In addition to predicting estradiol plasma concentra-

tion, the model predicts concentration-time curves for

estradiol disposition into 16 tissue compartments. As

shown in Fig. 4a, IV dosing with 0.3 mg estradiol is pre-

dicted to increase concentrations in each compartment

at different rates, with Tmax values varying between

0.1 h {kidney} and 0.93 h {adipose} for the base PBPK

model. Clearance of estradiol through the kidney (CLeh)

and liver (CLint) results in a decrease in organ concen-

trations that is essentially complete by 15 h. The distri-

bution to, and clearance from, each organ is qualitatively

similar between the three models, but there are quanti-

tative differences. For example, predicted Cmax values

for the {liver} compartment is 50.3 nM, 7.9 nM and

75.7 nM for the PBPK, PBPK-LiverODE and PBPK-

GSMN models, respectively. We note that the fold-

difference in Cmax between the LiverODE model and

PBPK (6.4) or PBPK-GSMN (9.6) is consistent with the

difference in permeability-limited rate constants between

these systems (6.7-fold). Comparison of predicted organ

concentration against in vivo data is difficult due a lack

of robust in vivo data. Human data is not available, but

studies in rodents have been undertaken. Fig. 4b pre-

sents correlations between the predictions from each of

the models and the mouse disposition data of Benard et

al., where disposition of [18F]fluorinated-E2 was exam-

ined 1-h after i.v. dosing [48]. All three models success-

fully predict organ concentrations: RMSE is 4.9, 5.5, 3.4

for the PBPK, PBPK-LiverODE and PBPK-GSMN

models, respectively. The largest source of variation is in

the prediction of E2 concentration within the {gonads}

compartment. However, we note the substantial

variation in the literature for this measurement, with

plasma ratios ranging between 10 and 133. [48–51]. In

the current study the ratio is 49.7, 21.3 and 28.5 for the

PBPK, PBPK-LiverODE and PBPK-GSMN models,

respectively, and as such is consistent with the general

literature.

As described in the preceding paragraphs, all three

models perform acceptably using a range of metrics.

They are able to reproduce with an acceptable degree of

accuracy both clinical data and the predictions of the

other models. Where there are differences between the

model predictions, this may represent the different par-

ameter sets used within the models themselves or the

modelling framework used. Clearance from the liver is

represented by either a single ODE (CLint), a more com-

prehensive ODE-based model of estradiol metabolism in

the liver, or a genome-scale metabolic network. In each

case, the representation of biology has its uncertainties

based around model reduction, parameter robustness

etc. In addition, the PBPK and PBPK-ODE models are

simulated within COPASI, while the PBPK-GSMN

model is simulated in MuFINS. This may lead to differ-

ences in prediction due to the modelling software. Ex-

tensive comparison of model simulations in COPASI

and MuFINS suggests that overall model behaviours and

the magnitude of observed changes are consistent, but

that the exact timing of events may vary. This is most

likely due to the application of PNs in the MuFINS soft-

ware, whereby reactions are simulated through a pro-

pensity function that describes the probability that any

given transition will fire. Hence, for any given model the

same behaviour will occur regardless of the software

architecture, but the exact timing of an event may vary.

Impact of drug exposure on the metabolic phenotype

An important use of in silico models in drug develop-

ment is the prediction of interactions. Interaction with

therapeutic agents, exogenous chemicals (e.g. food com-

ponents/contaminants), or endogenous chemicals may

lead to a reduction in drug efficacy or increased risk of

toxicity. In addition, the metabolic adaptation that can

occur during chronic drug exposure may predispose in-

dividuals to an increased risk of disease development/

progression. Here, we explore the impact of chronic

phenytoin exposure on two endpoints; the clinically-

relevant interaction with estradiol, and the impact on

glucose secretion capacity in the liver.

The use of estrogens as both contraceptives and to

treat symptoms of the menopause means that individ-

uals are likely to be exposed for chronic periods. This

raises the possibility of concomitant exposure to other

drugs, and hence the potential for drug-drug interac-

tions. Traditionally, modelling drug-drug interactions

has involved a priori knowledge of the interaction, with

or without any underpinning mechanistic information.

The use of a genome-scale metabolic network has the

advantage that metabolite fluxes are based upon known

network connectivity and the production/consumption

of substrates/cofactors. As such, drug-drug interactions

should emerge from the simulation as a result of altered

fluxes within the metabolic network, without a priori

knowledge of the interaction [37]. This may improve the

ability to predict potential DDIs early in drug develop-

ment, allowing risk-benefit scenarios to be considered.

One scenario where clinically important drug-drug in-

teractions have been identified is during the concomitant

use of estrogens and antiepileptic drugs [52, 53]: this

scenario is especially important given the teratogenic li-

ability of several anticonvulsant drugs [54]. Nearly one-

fifth of fertile women with epilepsy use oral contracep-

tives, only slightly lower that than the overall population
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average of 25%, meaning that this is a significant consid-

eration for drug prescription [55]. To demonstrate how

a GSMN may aid prediction of DDIs we extended the

base PBPK-GSMN model to include PXR-mediated

induction of gene expression. PXR is a member of the

nuclear receptor family of ligand activated transcription

factors and regulates the gene expression of a range of

metabolic enzymes [39, 56]. The anticonvulsant pheny-

toin is a low affinity ligand for PXR [39, 57, 58], and ac-

tivates the expression of a range of proteins involved in

the metabolism of estrogens [39, 56]. As such, activation

of PXR is the mechanistic underpinning for the

phenytoin-estradiol DDI, as well as a large number of

other clinically important DDIs [59, 60]. A module

representing the activation of PXR by phenytoin, plus

the subsequent transcription and translation of 20 target

genes was developed, and is depicted in Fig. 5. These

target genes include phase I metabolic enzymes (e.g.

CYP3A4), phase II metabolic enzymes (e.g. GSTA1), and

drug transporters (e.g. ABBC3). While this is not an

Fig. 4 Prediction of estradiol organ distribution. a estradiol organ concentrations were simulated over 15 hours following a 0.3mg i.v. bolus.

b Predicted organ concentrations 1 hour following a 0.3mg i.v. bolus are compared to experimental data from the mouse, presented as mean

(+/- s.d.) [48]
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exhaustive list of all direct PXR target genes, and ex-

cludes indirect target genes and inhibition of expression,

it is interesting to note that it maps to 173/7440 (2.3%)

reactions within Recon2. As detailed in the Additional

file 1, where possible kinetic parameters are based upon

literature values and have been previously published

[61]. We note that we use an approach analogous to

PBPK model construction, whereby a generic model may

be tailored through the use of chemical-specific

parameters. Here, we use a previously published ODE-

based model of the transcriptional effects of PXR, with

rifampicin as the modelled ligand [61]. This model is al-

tered to represent phenytoin-mediated induction by

changing the parameters representing Kd between ligand

and PXR. Such an approach presumes that the down-

stream effects of PXR activation are analogous between

the two ligands, a reasonable starting assumption unless

evidence exists to the contrary. Predictions from the

Fig. 5 Activation of PXR-mediated gene expression. To represent drug-drug interactions, a kinetic model of PXR-mediated gene expression was generated,

based upon Kolodkin et al. [61]. The nuclear receptor PXR is activated by the low affinity ligand Phenytoin (P), forming PXRL. This increases transcription of

20 PXR target genes, leading to increased concentrations of the encoded target proteins. Predicted fold-inductions of CYP3A mRNA and protein are

consistent with data from Luo et al. [58]. n.d. = not determined. These target proteins are mapped to reactions within the Recon2 genome scale metabolic

network, with their concentration setting reaction bounds within the network. This results in an altered metabolic capacity within the network, leading to

increased estradiol (E) metabolism
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resultant model were compared to the experimental data

of [58].

Exposure of cells to 2, 10 or 20μM phenytoin results in

a fold induction (±s.d.) of 0.9 (±0.26), 1.6 (±0.29) and 2.2

(±0.25) in CYP3A mRNA, respectively. As shown in Fig. 5,

these values are consistent with fold increases predicted

by the model. Under normal therapeutic use, the steady-

state blood concentration of phenytoin is in the range 10-

20μg/ml, which is equivalent to 40–80μM. We therefore

undertook simulations under these conditions, with

CYP3A transcripts predicted to increase from 0.067 nM

to 0.21 nM and 0.28 nM, while concentration of the

encoded protein is predicted to rise from 111 nM to

351.5 nM and 467.9 nM, respectively; these are equivalent

to 3.2–fold and 4.2–fold inductions. This increase in pro-

tein expression is reflected in the GSMN through altered

bounds for all mapped reactions. For example, the

CYP3A4 protein is mapped to nine reactions within the

Recon2 GSMN, including the metabolic conversion of es-

tradiol to its catecholamine metabolites (R_RE3013C and

R_RE3013R). Under basal conditions, where CYP3A4 pro-

tein concentration is 111 nM, flux bounds for these reac-

tions are 0,0.23 (LB < UB), reflecting an irreversible

reaction. Activation of PXR results, and thus increased

CYP3A4 protein levels, increases the UB to 0.48 and 0.58

at 351 nM and 467 nM, respectively (Fig. 5). It should be

noted that this increases the bounds of the reactions, but

does not necessarily increase flux through these reactions;

this will only occur if the previous bound was limiting

with respect to maximisation of the objective function. In

the case of estradiol metabolism, these flux bounds are

limiting, as the predicted flux for metabolism of estradiol

by CYP3A4 increases from 0.23 to 0.48 and 0.58 as the

bounds increase (Additional file 1: Figure S6).

The impact of concomitant exposure to phenytoin and

oral estradiol is shown in Fig. 6. Simulations are carried

out assuming chronic administration of phenytoin,

meaning that phenytoin-mediated changes in protein

levels have reached a steady-state. Initial levels of PXR

target genes (mRNA and protein) are set to 0.21/

351.5 nM and 0.28/467.9 nM for 40μM and 80μM

phenytoin scenarios, respectively, compared to 0.067

/111 nM in the non-induced condition. Initially, we ex-

amined the impact of phenytoin co-exposure on the re-

sponse to a single oral dose of estradiol. Estradiol is

commonly prescribed at doses equivalent to 0.5 mg/day,

1 mg/day and 2 mg/day, and at all three dose levels con-

comitant exposure to phenytoin is predicted to alter es-

tradiol kinetics (Fig. 6). Tmax values do not alter,

remaining at just over two hours, but there are signifi-

cant decreases in Cmax and AUC. On average, estradiol

plasma AUC values decrease to 56%, 54% and 53%

(0.5 mg, 1 mg and 2 mg estradiol, respectively) with con-

comitant exposure to 40μM phenytoin. These further

decrease to 47%, 47% and 46% with 80μM phenytoin.

These values are consistent with the approximate 50%

decrease reported in the literature [52, 62].

Estradiol is most likely to be prescribed over a chronic

period of time when used as an oral contraceptive. We

therefore examined the impact of concomitant pheny-

toin exposure on such a scenario. As before, initial con-

ditions of PXR activation and target gene expression

were set for 0μM, 40μM and 80μM phenytoin to reflect

an individual already on therapy. Simulations were then

undertaken for a 10-day period where estradiol was ad-

ministered as an oral dose of 0.5 mg/day, 1 mg/day or

2 mg/day. As shown in Fig. 7, a once-a-day dosing re-

gime is sufficient to achieve a steady state exposure to

estradiol. There is a significant intra-day variability, with

peak and trough concentrations varying by approxi-

mately 2-fold for all exposures. Concomitant exposure

to phenytoin is predicted to produce a similar fold-

decrease in AUC as seen for the single oral dose, being

approximately 55% and 47% of the control value for

40μM and 80μM phenytoin, respectively. Trough plasma

estradiol concentrations are also predicted to decrease

by a similar level (Fig. 7).

The impact of chronic drug exposure is unlikely to be

limited to drug-drug interactions, with a current chal-

lenge being to predict the potential long-term adverse

health impacts of such chronic exposure. To explore

this, we examined sample steady-state flux distributions

within the GSMN under both basal (i.e. no phenytoin)

and 80μM phenytoin exposure scenarios. Under basal

conditions, a maximal rate of glucose secretion of 6.8

mmole/g dry weight/h was predicted. In contrast,

chronic exposure to 80μM phenytoin was predicted to

increase this to 7.2 mmole/g dry weight/h. A full list of

reaction fluxes for each scenario is provided as

Additional file 2: 1032 reactions are different between

the two sample solutions, representing approximately

14% of the total reaction in the GSMN. It should be

noted, however, that some of these differences are likely

to represent technical artefacts where the solver can

identify two flux distributions that reach the same opti-

mal solution. These alternate solutions may represent

the known redundancy in biological networks, which

contributes to the overall robustness of the system. Re-

gardless, this supports the notion that drugs can have

large-scale impacts on metabolic systems. It should be

noted that while we have used phenytoin as the drug in

this example, as the driver for metabolic adaptation is

activation of PXR then any PXR agonist could cause

these effects. Nuclear receptors, most notably PPARs,

have been linked to energy metabolism within the body,

but increasing evidence supports the role of a number of

other nuclear receptors [63, 64]. Increased levels of PXR

has been associated with metabolic syndrome, most
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commonly liver steatosis and obesity, but the mechanis-

tic rationale is unclear [65]. Here, we predict that in-

creased activation of PXR target genes can cause an

increased potential for glucose production from the liver,

an important driver of metabolic syndrome.

Conclusion

The central role of estrogens in mammalian biology is clear.

However, the complex nature of this biology, with multiple

factors impacting on estradiol kinetics and multiple bio-

logical targets effected by the hormone, raises an important

challenge with regard to predicting these effects. This is es-

pecially pertinent given the increasing concern about envir-

onmental exposure to endocrine disrupting compounds,

and the epidemiological evidence linking such exposure to

chronic conditions. PBPK modelling has traditionally been

used to predict drug disposition within individuals and pop-

ulations. Such models are informed by, and validated

through, experimental data, with a lack of correlation

highlighting areas for model refinement in a truly iterative

process [19, 66]. One advantage of such approaches is that

they do not try to model all potential interactions between

the drug and the body. Rather, they use a reductionist ap-

proach to reproduce the main emergent behaviours of the

system. However, this is also a disadvantage as mechanistic

detail is lost at the expense of model reduction. To balance

these pros and cons, we and others propose the addition of

biologically important, mechanistically-detailed hubs within

a more general reductionist model [17, 18]. To demonstrate

such an approach, we have expanded a classical PBPK

model of estradiol [20] in two distinct ways; First, through

the addition of a fully deterministic kinetic model of

Fig. 6 Impact of phenytoin on single oral dose estradiol kinetics in women. Estradiol venous blood concentrations were simulated for the 1495-

person virtual population following a 0.5 mg, b 1 mg, or c 2 mg oral estradiol. PXR occupancy, PXR target-gene mRNA and protein levels were set to

reflect concomitant exposure to 0μM, 40μM or 80μM phenytoin, as indicated. A representative concentration-time plot is shown in the left panel, with

AUC and Cmax (mean ± s.d.) presented in the middle and right panels, respectively. Statistical significance was assessed using a two-way ANOVA with

Sidak’s multiple comparison test. *** = p < 0.001 compared to 0μM phenytoin
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estrogen metabolism within the liver; second, through the

addition of a genome scale metabolic network to encompass

all metabolic pathways in the liver. We demonstrate that all

three models can reproduce experimental data on the

plasma kinetics of estradiol following both i.v. bolus and oral

exposures. The utility of these two approaches is then exam-

ined. Generation of a fully deterministic model for chemical

metabolism is time-consuming, as it requires the derivation

of robust parameters for all ODEs. This may not be possible

for all compounds, as full metabolic (and kinetic) profiling

will not have been undertaken. However, when generated,

such a model has the potential to underpin/inform the set-

ting of an intrinsic clearance term, predicting the contribu-

tion of different enzymes on the final clearance rate. In

addition, the extra mechanistic information also has the

potential to allow examination of specific scenarios, such as

the impact of genetic variation. In contrast to the time re-

quired to develop a mechanism-based deterministic model,

GSMNs are now available ‘off-the-shelf ’. In this case, the

challenge here has been that analysis of GSMNs has trad-

itionally relied upon the assumption of a steady-state, mean-

ing that the adaption of metabolic systems to chemical

exposure cannot be robustly modelled. Here, we use our

QSSPN approach to integrate a GSMN with both a PBPK

model and an ODE-based model of PXR-mediated gene ex-

pression. We demonstrate how these models can reproduce

a complex biological phenomenon, and one with important

clinical implications: drug-drug interactions. The central ad-

vantage of such an approach is that the DDI emerges from

the network connectivity captured by the GSMN, rather

Fig. 7 Impact of phenytoin on repeat oral dose estradiol kinetics in women. Estradiol venous blood concentrations were simulated for the 1495-

person virtual population following a 0.5 mg, b 1 mg, or c 2 mg oral estradiol. A representative concentration-time plot is shown in the left panel,

with AUC and trough concentration (mean ± s.d) presented in the middle and right panels, respectively. Statistical significance was assessed using

a two-way ANOVA with Sidak’s multiple comparison test. *** = p < 0.001 compared to 0μM phenytoin
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than having to be described explicitly. Essentially, the induc-

tion of PXR-target genes by phenytoin causes a change in

the flux bounds for a range of reactions within the GSMN.

As some of these reactions are related to estradiol, then its

metabolism may be impacted, which would lead to the

emergence of the DDI. An advantage of this approach is that

the alteration in bounds leads to the possibility of a DDI,

but does not necessarily determine that it will occur. If, for

example, estradiol metabolism was not limited by the

bounds set in the original GSMN then the induction would

be biologically silent as there was already sufficient capacity

in the system to meet the biological demand.

Finally, we demonstrate how this approach can be

used to explore the implications of chronic drug use.

Adaptation of metabolism to chemical exposure is a well

described phenomenon, and one that underpins the con-

cept of homeostasis. However, such adaptation often

comes at a biological cost, with some areas of metabol-

ism being deprioritised to meet the immediate metabolic

demand. If exposure to the drug is acute this may have a

limited impact, but upon chronic exposure this alter-

ation in metabolic landscape may have significant conse-

quences. For example, some of the adverse health effects

associated with chronic drug exposure are almost cer-

tainly due to such metabolic reprogramming [64, 65].

We believe that the use of these extended modelling ap-

proaches will allow more precise mechanistic questions to

be addressed, helping to interpret of complex biological

datasets. This will add significant biological insight to un-

derstanding drug actions on the body, and the factors that

may influence the emergent biological effect [67].

Additional files

Additional file 1: Full description of PBPK, PBPK-LiverODE and PBPK-

GSMN models, including overall structure, reaction parameters, balance

equations, global quantities and initial conditions. In addition, further

validation and sensitivity analysis of model behaviours are included, as

well as further details of the anthropometric data used for the virtual

population. (DOCX 1617 kb)

Additional file 2: Sample steady-state flux distributions within the

GSMN of the PBPK-GSMN model under both basal (i.e. no phenytoin) and

80mM phenytoin exposure scenarios. (XLSX 376 kb)
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