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Abstract—3D Point Cloud Semantic Segmentation (PCSS) is

attracting increasing interest, due to its applicability in remote
sensing, computer vision and robotics, and due to the new
possibilities offered by deep learning techniques. In order to
provide a needed up-to-date review of recent developments in
PCSS, this article summarizes existing studies on this topic.
Firstly, we outline the acquisition and evolution of the 3D point
cloud from the perspective of remote sensing and computer
vision, as well as the published benchmarks for PCSS studies.
Then, traditional and advanced techniques used for Point Cloud
Segmentation (PCS) and PCSS are reviewed and compared.
Finally, important issues and open questions in PCSS studies
are discussed.

Index Terms—review, point cloud, segmentation, semantic
segmentation, deep learning.

I. MOTIVATION

Semantic segmentation, in which pixels are associated with

semantic labels, is a fundamental research challenge in image

processing. Point Cloud Semantic Segmentation (PCSS) is the

3D form of semantic segmentation, in which regular or irreg-

ular distributed points in 3D space are used instead of regular

distributed pixels in a 2D image. The point cloud can be

acquired directly from sensors with distance measurability, or

generated from stereo- or multi-view imagery. Due to recently

developed stereovision algorithms and the deployment of all

kinds of 3D sensors, point clouds, basic 3D data, have become

easily accessible. High-quality point clouds provide a way to

connect the virtual world to the real one. Specifically, they

generate 2.5D/3D geometric structures, with which modeling

is possible.

A. Segmentation, classification, and semantic segmentation

Research on PCSS has a long tradition involving different

fields and defining distinct concepts for similar tasks. A brief

clarification of some concepts is therefore necessary to avoid

misunderstandings. The term PCSS is widely used in computer

vision, especially in recent deep learning applications [1]–[3].

However, in photogrammetry and remote sensing, PCSS is

usually called “point cloud classification” [4]–[6]. Or in some

cases, this task is also called “point labeling” [7]–[9]. In this

article, to avoid confusion and to make this literature review

keep up with latest deep learning techniques, we refer to point

cloud semantic segmentation/classification/labeling, i.e., the

task of associating each point of a point cloud with a semantic

label, as PCSS.

Before effective supervised learning methods were widely

applied in semantic segmentation, unsupervised Point Cloud

Segmentation (PCS) was a significant task for 2.5D/3D data.

PCS aims at grouping points with similar geometric/spectral

characteristics without considering semantic information. In

the PCSS workflow, PCS can be utilized as a presegmentation

step, influencing the final results. Hence, PCS approaches are

also included in this paper.

Single objects or the same classes of structures cannot be

acquired from a raw point cloud directly. However, instance-

level or class-level objects are required for object recognition.

For example, urban planning and Building Information Model-

ing (BIM) need buildings and other man-made ground objects

for reference [10], [11]. Forest remote sensing monitoring

needs individual tree information based on their geometric

structures [12], [13]. Robotics applications, like Simultaneous

Localization And Mapping (SLAM), need detailed indoor

objects for mapping [7], [14]. In some applications related

to computer vision, such as autonomous driving, object detec-

tion, segmentation, and classification are necessary with the

construction of a High Definition (HD) Map [15]. For the

mentioned cases, PCSS and PCS are basic and critical tasks

for 3D applications.

B. New challenges and possibilities

Papers [16] and [17] provide two of the best available

reviews for PCS and PCSS, but lack detailed information,

especially for PCSS. Futhermore, in the past two years, deep

learning has largely driven studies in PCSS. To meet the

demand of deep learning, 3D datasets have improved, both in

quality and diversity. Therefore, an updated study on current

PCSS techniques is necessary. This paper starts with the

introduction of existing techniques to acquire point clouds
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and the existing benchmarks for point cloud study (section

II). In section III and IV, the major categories of algorithms

are reviewed, for both PCS and PCSS. In section V, some

issues related to data and techniques are discussed. Section

VI concludes this paper with a technical outlook.

II. AN INTRODUCTION TO POINT CLOUD

A. Point cloud data acquisition

In computer vision and remote sensing, point clouds can

be acquired with four main techniques: 1) Image-derived

methods; 2) Light Detection And Ranging (LiDAR) systems;

3) Red Green Blue -Depth (RGB-D) cameras; and 4) Syn-

thetic Aperture Radar (SAR) systems. Due to the differences

in survey principles and platforms, their data features and

application ranges are very diverse. A brief introduction to

these techniques is provided below.
1) Image-derived point cloud: Image-derived methods gen-

erate a point cloud indirectly from spectral imagery. First,

they acquire stereo- or multi-view images through electro-

optical systems, e.g., cameras. Then they calculate 3D isolated

point information according to principles in photogramme-

try or computer vision theory, either automatically or semi-

automatically [18], [19]. Based on distinct platforms, stereo-

and multi-view image-derived systems can be divided into

airborne, spaceborne, UAV-based, and close-range categories.

Early aerial traditional photogrammetry produced 3D points

with semi-automatic human-computer interaction in digital

photogrammetric systems, characterized by strict geometric

constraints and high survey accuracy [20]. To produce this

type of point data was time expensive due to many manual

works. Therefore it was not feasible to generate dense points

for large areas in this way. In the surveying and remote

sensing industry, those early-form “point clouds” were used

in mapping and producing Digital Surface Models (DSMs)

and Digital Elevation Models (DEMs). Due to the limitation

of image resolutioan and the ability of processing multi-view

images, traditional photogrammetry could only acquire close

to nadir views with few building façades from aerial/satellite

platforms, which only generated a 2.5D point cloud rather than

full 3D. At this stage, photogrammetry principles could also

be applied as close-range photogrammetry in order to obtain

points from certain objects or small-area scenes, but manual

editing would also be necessary in the point cloud generating

procedure.

Dense matching [21]–[23], Multiple View Stereovision

(MVS) [24], [25], and Structure from Motion (SfM) [19], [26],

[27], changed the image-derived point cloud, and opened the

era of multiple view stereovision. SfM can estimate camera

positions and orientations automatically, making it capable

of processing multiview images simultaneously, while dense

matching and MVS algorithms provide the ability to generate

large volume of point clouds. In recent years, city-scale full 3D

dense point clouds can be acquired easily through an oblique

photography technique based on SfM and MVS. However, the

quality of point clouds from SfM and MVS is not as good

as those generated by traditional photogrammetry or LiDAR

techniques, and it is especially unreliable for large regions

[28].

Compared to airborne photogrammetry, satellite stereo sys-

tem is disadvantaged in terms of spatial resolution and avail-

ability of multi-view imagery. However, satellite cameras are

able to map large regions in a short period of time with

relatively lower cost. Also due to new dense matching tech-

niques and their improved spatial resolution, satellite imagery

is becoming an important data source for image-derived point

clouds.

2) LiDAR point cloud: Light Detection And Ranging (Li-

DAR) is a surveying and remote sensing technique. As its

name suggests, LiDAR utilizes laser energy to measure the

distance between the sensor and the object to be surveyed [29].

Most LiDAR systems are pulse-based. The basic principle

of pulse-based measuring is to emit a pulse of laser energy

and then measure the time it takes for that energy to travel

to a target. Depending on sensors and platforms, the point

density or resolution varies greatly, from less than 10 points

per m2 (pts/m2) to thousands of points per m2 [30]. Based on

platforms, LiDAR systems are divided into airborne LiDAR

scanning (ALS), terrestrial LiDAR scanning (TLS), mobile

LiDAR scanning (MLS) and unmanned LiDAR scanning

(ULS) systems.

ALS operates from airborne platforms. Early ALS LiDAR

data are 2.5D point clouds, which are similar to traditional

photogrammetric point clouds. The density of ALS points is

normally low, as the distance from an airborne platform to the

ground is large. In comparison to traditional photogrammetry,

ALS point clouds are more expensive to acquire and nor-

mally contain no spectral information. Vaihingen point cloud

semantic labeling dataset [31] is a typical ALS benchmark

dataset. Multispectral airborne LiDAR is a special form of

an ALS system that obtains data using different wavelengths.

Multispectral LiDAR performs well for the extraction of water,

vegetation and shadows, but the data are not easily available

[32], [33].

TLS, also called static LiDAR scanning, scans with a tripod-

mounted stationary sensor. Since it is used in a middle- or

close-range environment, the point cloud density is very high.

Its advantage is its ability to provide real, high quality 3D

models. Until now TLS has been commonly used for modeling

small urban or forest sites, and heritage or artwork documenta-

tion. Semantic3D.net [34] is a typical TLS benchmark dataset.

MLS operates from a moving vehicle on the ground, with

the most common platforms being cars. Currently, research

and development on autonomous driving is a hot topic, for

which HD maps are essential. The generation of HD maps

is therefore the most significant application for MLS. Several

mainstream point cloud benchmark datasets belong to MLS

[35], [36].

ULS systems are usually deployed on drones or other

unmanned vehicles. Since they are relatively cheap and very

flexible, this recent addition to the LiDAR family is currently

becoming more and more popular. Compared to ALS, where

the platform is working above the objects, ULS can provide a

shorter-distance LiDAR survey application, collecting denser

point clouds with higher accuracy. Thanks to the small size

and light weight of its platform, ULS offers high operational

flexibility. Therefore, in addition to traditional LiDAR tasks
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(e.g., acquiring DSMs), ULS has advantages in agriculture and

forestry surveying, disaster monitoring and mining surveying

[37]–[39].

For LiDAR scanning, since the system is always moving

with the platform, it is necessary to combine points’ positions

with Global Navigation Satellite System (GNSS) and Iner-

tial Measurement Unit (IMU) data to ensure a high-quality

matching point cloud. Until now, LiDAR has been the most

important data source for point cloud research and has been

used to provide ground truth to evaluate the quality of other

point clouds.

3) RGB-D point cloud: An RGB-D camera is a type of

sensor that can acquire both RGB and depth information.

There are three kinds of RGB-D sensors, based on different

principles: (a) structured light [40], (b) stereo [41], and (c)

time of flight [42]. Similar to LiDAR, the RGB-D camera can

measure the distance between the camera to the objects, but

pixel-wise. However, an RGB-D sensor is much cheaper than a

LiDAR system. Microsoft’s Kinect is a well-known and widely

used RGB-D sensor [40], [42]. In an RGB-D camera, relative

orientation elements between or among different sensors are

calibrated and known, so co-registered synchronized RGB

images and depth maps can be easily acquired. Obviously,

the point cloud is not the direct product of RGB-D scanning.

But since the position of the camera’s center point is known,

the 3D space position of each pixel in a depth map can be

easily obtained, and then directly used to generate the point

cloud. RGB-D cameras have three main applications: object

tracking, human pose or signature recognition, and SLAM-

based environment reconstruction. Since mainstream RGB-D

sensors are close-range, even much closer than TLS, they are

usually employed in indoor environments. Several mainstream

indoor point cloud segmentation benchmarks are RGB-D data

[43], [44].

4) SAR point cloud: Interferometric Synthetic Aperture

Radar (InSAR), a radar technique crucial to remote sensing,

generates maps of surface deformation or digital elevation

based on the comparison of multiple SAR image pairs. A

rising star, InSAR-based point cloud has showed its value

over the past few years and is creating new possibilities for

point cloud applications [45]–[49]. Synthetic Aperture Radar

tomography (TomoSAR) and Persistent Scatterer Interferome-

try (PSI) are two major techniques that generate point clouds

with InSAR, extending the principle of SAR into 3D [50],

[51]. Compared with PSI, TomoSAR’s advantage is its detailed

reconstruction and monitoring of urban areas, especially man-

made infrastructure [51]. The TomoSAR point cloud has a

point density that is comparable to ALS LiDAR [52], [53].

These point clouds can be employed for applications in build-

ing reconstruction in urban areas, as they have the following

features [46]:

(a) TomoSAR point clouds reconstructed from spaceborne

data have a moderate 3D positioning accuracy on the order of

1 m [54], even able to reach a decimeter level by geocoding

error correction techniques [55], while ALS LiDAR provides

accuracy typically on the order of 0.1 m [56].

(b) Due to their coherent imaging nature and side-looking

geometry, TomoSAR point clouds emphasize different objects

with respect to LiDAR systems: a) The side-looking SAR

geometry enables TomoSAR point clouds to possess rich

façade information: results using pixel-wise TomoSAR for

the high-resolution reconstruction of a building complex with

a very high level of detail from spaceborne SAR data are

presented in [57]; b) temporarily incoherent objects, e.g.,

trees, cannot be reconstructed from multipass spaceborne SAR

image stacks; and c) to obtain the full structure of individual

buildings from space, façade reconstruction using TomoSAR

point clouds from multiple viewing angles is required [45],

[58].

(c) Complementary to LiDAR and optical sensors, SAR is

so far the only sensor capable of providing fourth dimension

information from space, i.e., temporal deformation of the

building complex [59], and microwave scattering properties

of the façade reflect geometrical and material features.

InSAR point clouds have two main shortcomings that affect

their accuracy: (1) Due to limited orbit spread and the small

number of images, the location error of TomoSAR points is

highly anisotropic, with an elevation error typically one or two

orders of magnitude higher than in range and azimuth; (2)

Due to multiple scattering, ghost scatterers may be generated,

appearing as outliers far away from a realistic 3D position

[60].

Compared with the aforementioned image-derived, LiDAR-

based, and RGB-D-based point cloud, the data from SAR

have not yet been widely used for studies and applications.

However, mature SAR satellites, such as TerraSAR-X, have

collected rich global SAR data, which are available for InSAR-

based reconstruction at global scale [61]. Hence, the SAR

point cloud can be expected to play a conspicuous role in

the future.

B. Point cloud characters

From the perspective of sensor development and various

applications, we have cataloged point clouds into: (a) sparse

(less than 20 pts/m2), (b) dense (hundreds of pts/m2), and

(c) multi-source.

(a) In their early stage, which was limited by matching

techniques and computation ability, photogrammetric point

clouds were sparse and small in volume. At that time, laser

scanning systems had limited types and were not widely used.

ALS point clouds, mainstream laser data, were also sparse.

Limited by the point density, point clouds at this stage were not

able to represent land covers in object level. Therefore there

was no specific demand for precise PCS or PCSS. Researchers

mainly focused on 3D mapping (DEM generation), and simple

object extraction (e.g., rooftops).

(b) Computer vision algorithms, such as dense matching,

and high-efficiency point cloud generators, such as various

LiDAR systems and RGB-D sensors, opened the big data era

of the dense point cloud. Dense and large-volume point clouds

created more possibilities in 3D applications but also had

a stronger desire for practicable algorithms. PCS and PCSS

were newly proposed and became increasingly necessary, since

only a class-level or instance-level point cloud further connect

virtual word to the real one. Both computer vision and remote
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sensing need PCS and PCSS solutions to develop class-level

interactive applications.

(c) From the perspective of general computer vision, re-

search on the point cloud and its related algorithms remain at

stage (b). However, as a benefit to the development of space-

borne platforms and multi-sensors, remote sensing researchers

developed a new understanding of the point cloud. New-

generation point clouds, such as satellite photogrammetric

point clouds and TomoSAR point clouds, stimulated demand

for relevant algorithms. Multi-source data fusion has become

a trend in remote sensing [62]–[64], but current algorithms

in computer vision are insufficient for such remote sensing

datasets. To fully exploit multi-source point cloud data, more

research is needed.

As we have reviewed, different point clouds have different

features and application environments. Table I provides an

overview of basic information about various point clouds,

including point density, advantages, disadvantages, and appli-

cations.

C. Point cloud application

In the studies on PCS and PCSS, data and algorithm selec-

tions are driven by the requirements of specific applications.

In this section, we outline most of the studies focusing on

PCS and PCSS reviewed in this article (see Table II). These

works are classified according to their point cloud data types

and working environments. The latter include urban, forest,

industry, and indoor settings. In Table II, texts in brackets,

after each reference, contain the corresponding publishing

year and main methods. Algorithm types are represented as

abbreviations.

Several issues can be summarized from Table II: (a) LiDAR

point clouds are the most commomly used data in PCS. They

have been widely used for buildings (urban environments) and

trees (forests). Buildings are also the most popular research

objects in traditional PCS. As buildings are usually constructed

with regular planes, plane segmentation is a fundamental topic

in building segmentation.

(b) Image-derived point clouds have been frequently used

in real-world scenarios. However, mainly due to the limitation

of available annotated benchmarks, there are not many PCS

and PCSS studies on image-based data. Currently, there is

only one public influential dataset based on image-derived

points, whose range is only a very small area around one single

building [132]. More efforts are therefore needed in this area.

(c) RGB-D sensors are limited by their close range, so they

are usually applied in an indoor environment. In PCS studies,

plane segmentation is the main task for RGB-D data. In PCSS

studies, since there are several benchmark datasets from RGB-

D sensors, many deep learning-based methods are tested on

them.

(d) As for InSAR point clouds, although there are not many

PCS or PCSS studies, these have shown potential in urban

monitoring, especially building structure segmentation.

D. Benchmark datasets

Public standard benchmark datasets achieve significant ef-

fectiveness for algorithm development, evaluation and com-

parison. It should be noted that most of them are labeled for

PCSS rather than PCS. Since 2009, several benchmark datasets

have been available for PCSS. However, early datasets have

plenty of shortcomings. For example, the Oakland outdoor

MLS dataset [96], the Sydney Urban Objects MLS dataset

[133], the Paris-rue-Madame MLS dataset [134], the IQmu-

lus & TerraMobilita Contest MLS dataset [35] and ETHZ

CVL RueMonge 2014 multiview stereo dataset [132] can not

sufficiently provide both different object representations and

labeled points. KITTI [135] and NYUv2 [136] have more

objects and points than the aforementioned datasets, but they

do not provide a labeled point cloud directly. These must be

generated from 3D bounding boxes in KITTI or depth images

in NYUv2.

To overcome the drawbacks of early datasets, new bench-

mark data have been made available in recent years. Currently,

mainstream PCSS benchmark datasets are from either LiDAR

or RGB-D sensors. A nonexhaustive list of these datasets

follows.

1) Semantic3D.net: The semantic3D.net [34] is a represen-

tative large-scale outdoor TLS PCSS dataset. It is a collection

of urban scenes with over four billion labeled 3D points

in total for PCSS purposes only. Those scenes contain a

range of diverse urban objects, divided into eight classes,

including man-made terrain, natural terrain, high vegetation,

low vegetation, buildings, hardscape, scanning artefacts, and

cars. In consideration of the efficiency of different algorithms,

two types of sub-datasets were designed, semantic-8 and

reduced-8. Semantic-8 is the full dataset, while reduced-8

uses training data in the same way as semantic-8, but only

includes four small-sized subsets as test data. This dataset

can be downloaded at http://www.semantic3d.net/. To learn the

performance of different algorithms on this dataset, readers are

recommended to refer to [2], [67], [112].

2) Stanford Large-scale 3D Indoor Spaces Dataset

(S3DIS): Unlike semantic3D.net, S3DIS [44] is a large-scale

indoor RGB-D dataset, which is also a part of the 2D-3D-S

dataset [137]. It is a collection of over 215 million points,

covering an area of over 6,000 m2 in six indoor regions origi-

nating from three buildings. The main covered areas are for ed-

ucational and office use. Annotations in S3DIS have been pre-

pared at an instance level. Objects are divided into structural

and movable elements, which are further classified into 13

classes (structural elements: ceiling, floor, wall, beam, column,

window, door; movable elements: table, chair, sofa, bookcase,

board, clutter for all other elements). The dataset can be

requested from http://buildingparser.stanford.edu/dataset.html.

To learn the performance of different algorithms on this

dataset, readers are recommended to refer to [2], [70], [100],

[119].

3) Vaihingen point cloud semantic labeling dataset: This

dataset [31] is the most well-known published benckmark

dataset in the remote sensing field in recent years. It is a

collection of ALS point cloud, consisting of 10 strips captured

by a Leica ALS50 system with a 45◦ field of view and 500

m mean flying height over Vaihingen, Germany. The average

overlap between two neighboring strips is around 30% and

the median point density is 6.7 points/m2 [31]. This dataset

http://www.semantic3d.net/
http://buildingparser.stanford.edu/dataset.html
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TABLE I
AN OVERVIEW OF VARIOUS POINT CLOUDS

Point density Advantages Disadvantages Applications

Image-derived From sparse (<10pts/m2)

to very high

(>400pts/m2), depending

on the spatial resolution of

the stereo- or multi-view

images

With color (RGB, multi-

spectral) information; suit-

able for large area (air-

borne, spaceborne)

Influenced by light; accu-

racy depends on available

precise camera models, im-

age matching algorithms,

stereo angles, image resolu-

tion and image quality; not

suitable for areas or objects

without texture, such as

water or snow-covered re-

gions; influenced by shad-

ows in images

Urban monitoring; vegeta-

tion monitoring; 3D object

reconstruction; etc.

ALS Sparse (<20pts/m2);

when the survey distance

is shorter, the density is

higher

High accuracy (<15cm);

suitable for large area; not

affected by weather

Urban monitoring; vegeta-

tion monitoring; power line

detection; etc.

LiDAR

MLS

Dense (>100pts/m2);

when the survey distance

is shorter, the density is

higher

High accuracy (cm-level) Expensive; affected by mir-

ror reflection; long scan-

ning time

HD map; urban monitoring

TLS

Dense (>100pts/m2);

when the survey distance

is shorter, the density is

higher

High accuracy (mm-level) Small-area 3D reconstruc-

tion

ULS

Dense (>100pts/m2);

when the survey distance

is shorter, the density is

higher

High accuracy (cm-level) Forestry survey;

mining survey; disaster

monitoring; etc.

RGB-D

Middle-density

Cheap; flexible Close-range; limited accu-

racy

Indoor reconstruction; ob-

ject tracking; human pose

recognition; etc.

InSAR

Sparse (<20pts/m2)

Global data is available;

compared to ALS,

complete building façade

information is available;

4D information; middle-

accuracy; not affected by

weather

Expensive data; ghost scat-

terers; preprocessing tech-

niques are needed

Urban monitoring; forest

monitoring; etc.
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TABLE II
AN OVERVIEW OF PCS AND PCSS APPLICATIONS SORTED ACCORDING TO DATA ACQUISITIONS

RG is short for Region Growing. HT is short for Hough Transform. R is short for RANSAC. C is short for Clustering-based. O is short for Oversegnentation.

ML is short for Machine Learning. DL is short for Deep Learning.

Urban Forest Industry Indoor

Image-derived

Building façades: [65] (2018/RG), [66] (2005/RG); PCSS:

[67] (2018/DL), [68] (2018/DL), [69] (2017/DL), [70]

(2019/DL)

Plane PCS: [71] (2015/HT)

ALS

Building plane PCS: [72] (2015/R), [73] (2014/R), [74]

(2007/R, HT), [75] (2002/HT), [76] (2006/C), [77] (2010/C),

[78] (2012/C), [79] (2014/C); Urban scene: [80] (2007/C),

[81] (2009/C); PCSS: [82] (2007/ML), [83] (2009/ML),

[84] (2009/ML), [85] (2010/ML), [86] (2012/ML), [87]

(2014/ML), [88] (2017/HT, R, ML), [89] (2011/ML), [90]

(2014/ML), [4] (2013/HT, ML)

Tree structure

PCS:

[91](2004/C);

Forest structure:

[92] (2010/C)

MLS

Buildings: [93] (2015/RG); Urban objects: [94] (2012/RG);

PCSS: [89] (2011/ML), [95] (2015/ML), [5] (2015/ML),

[8] (2012/ML), [90] (2014/ML), [96] (2009/ML), [97]

(2017/ML), [98] (2017/DL), [99] (2018/DL), [100] (2019/O,

DL)

Plane PCS: [101] (2013/R), [102]

(2017/R)

TLS

Building/building structure PCS: [103] (2007/R), [93]

(2015/RG), [104] (2018/RG, C), [105] (2008/C); Buildings

and trees: [106] (2009/RG); Urban scene: [107] (2016/O, C),

[108] (2017/O, C), [109] (2018/O, C); PCSS: [6] (2015/ML),

[110] (2009/O, ML), [111] (2016/ML), [67] (2018/DL),

[98] (2017/DL), [2] (2018/O, DL), [112] (2019/DL) [70]

(2019/DL)

Tree PCSS: [113]

(2005/ML)

Plane PCS: [114] (2011/HT)

RGB-D

Plane PCS: [115] (2014/HT),

[104] (2018/RG, C); PCSS:

[116] (2012/ML), [117]

(2013/ML), [118] (2018/DL),

[119] (2018/DL), [98] (2017/DL),

[1] (2017/DL), [120] (2017/DL),

[3] (2018/DL), [2] (2018/DL),

[99] (2018/DL), [121] (2018/DL),

[70] (2019/DL), [112] (2019/DL),

[122] (2019/DL), [123]

(2019/DL), [124] (2019/DL),

[125] (2019/DL), [126]

(2019/DL), [100] (2019/O,

DL); Instance segmentation:

[127] (2018/DL), [128]

(2019/DL), [123] (2019/DL),

[124] (2019/DL)

InSAR

Building/building structure: [47] (2015/C), [45] (2012/C),

[46] (2014/C)

Tree PCS: [48]

(2015/C)

Not mentioned

data

[129](2005/HT),

[130] (2015/R),

[131] (2018/R)
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had no label at a point level at first. Niemeyer et al. [87]

first used it for a PCSS test and labeled points in three areas.

Now the labeled point cloud is divided into nine classes as

an algorithm evaluation standard. Although this dataset has

significantly fewer points compared with semantic3D.net and

S3DIS, it is an influential ALS dataset for remote sensing.

The dataset can be requested from http://www2.isprs.org/

commissions/comm3/wg4/3d-semantic-labeling.html.

4) Paris-Lille-3D: The Paris-Lille-3D [36] is a brand new

benchmark for PCSS, as it was published in 2018. It is an

MLS point cloud dataset with more than 140 million labelled

points, including 50 different urban object classes along 2 km
of streets in two French cities, Paris and Lille. As an MLS

dataset, it also could be used for autonomous vehicles. As this

is a recent dataset, only a few validated results are shown on

the related website. This dataset is available at http://npm3d.

fr/paris-lille-3d.

5) ScanNet: ScanNet [43] is an instance-level indoor RGB-

D dataset that includes both 2D and 3D data. In contrast

to the benchmarks mentioned above, ScanNet is a collection

of labeled voxels rather than points or objects. Up to now,

ScanNet v2, the newest version of ScanNet, has collected 1513

annotated scans with an approximate 90% surface coverage.

In the semantic segmentation task, this dataset is marked

in 20 classes of annotated 3D voxelized objects. Each class

corresponds to one category of furniture. This dataset can be

requested from http://www.scan-net.org/index#code-and-data.

To learn the performance of different algorithms on this

dataset, readers are recommended to refer to [70], [120], [123],

[124].

III. POINT CLOUD SEGMENTATION TECHNIQUES

PCS algorithms are mainly based on strict hand-crafted

features from geometric constraints and statistical rules. The

main process of PCS aims at grouping raw 3D points into

non overlapping regions. Those regions correspond to specific

structures or objects in one scene. Since no supervised prior

knowledge is required in such a segmentation procedure, the

delivered results have no strong semantic information. Those

approaches could be categorized into four major groups: edge-

based, region growing, model fitting, and clustering-based.

A. Edge-based

Edge-based PCS approaches were directly transferred from

2D images to 3D point clouds, which were mainly used in

the very early stage of PCS. As the shapes of objects are

described by edges, PCS can be solved by finding the points

that are close to the edge regions. The principle of edge-based

methods is to locate the points that have a rapid change in

intensity [16], which is similar to some 2D image segmentation

approaches.

According to the definition from [138], an edge-based

segmentation algorithm is formed by two main stages: (1)

edge detection, where the boundaries of different regions are

extracted, and (2) grouping points, where the final segments

are generated by grouping points inside the boundaries from

(1). For example, in [139], the authors designed a gradient-

based algorithm for edge detection, fitting 3D lines to a

set of points and detecting changes in the direction of unit

normal vectors on the surface. In [140], the authors proposed

a fast segmentation approach based on high-level segmentation

primitives (curve segments), in which the amount of data could

be significantly reduced. Compared to the method presented

in [139], this algorithm is both accurate and efficient, but it is

only suitable for range images, and may not work for uneven-

density point clouds. Moreover, paper [141] extracted close

contours from a binary edge map for fast segmentation. Paper

[142] introduced a parallel edge-based segmentation algorithm

extracting three types of edges. An algorithm optimization

mechanism, named reconfigurable multiRing network, was

applied in this algorithm to reduce its runtime.

The edge-based algorithms enable a fast PCS due to its

simplicity, but their good performance can only be maintained

when simple scenes with ideal points are provided (e.g., low

noise, even density). Some of them are only suitable for

range images rather than 3D points. Thus this approach is

rarely applied for dense and/or large-area point cloud datasets

nowadays. Besides, in 3D space, such methods often deliver

disconnected edges, which cannot be used to identify closed

segments directly, without a filling or interpretation procedure

[17], [143].

B. Region growing

Region growing is a classical PCS method, which is still

widely used today. It uses criteria, combining features between

two points or two region units in order to measure the

similarities among pixels (2D), points (3D), or voxels (3D),

and merge them together if they are spatially close and have

similar surface properties. Besl and Jain [144] introduced a

two-step initial algorithm: (1) coarse segmentation, in which

seed pixels are selected based on the mean and Gaussian

curvature of each point and its sign; and (2) region growing,

in which interactive region growing is used to refine the result

of step (1) based on a variable order bivariate surface fitting.

Initially, this method was primarily used in 2D segmentation.

As in the early stage of PCS research most point clouds

were actually 2.5D airborne LiDAR data, in which only one

layer has a view in the z direction, the general preprocessing

step was to transform points from 3D space into a 2D raster

domain [145]. With the more easily available real 3D point

clouds, region growing was soon adopted directly in 3D space.

This 3D region growing technique has been widely applied in

the segmentation of building plane structures [75], [93], [94],

[101], [104].

Similar to the 2D case, 3D region growing comprises two

steps: (1) select seed points or seed units; and (2) region

growing, driven by certain principles. To design a region

growing algorithm, three crucial factors should be taken into

consideration: criteria (similarity measures), growth unit, and

seed point selection. For the criteria factor, geometric features,

e.g., Euclidean distance or normal vectors, are commonly used.

For example, Ning et al. [106] employed the normal vector

as criterion, so that the coplanar may share the same normal

http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html
http://npm3d.fr/paris-lille-3d
http://npm3d.fr/paris-lille-3d
http://www.scan-net.org/index#code-and-data
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orientation. Tovari et al. [146] applied normal vectors, the

distance of the neighboring points to the adjusting plane, and

the distance between the current point and candidate points

as the criteria for merging a point to a seed region that was

randomly picked from the dataset after manually filtering areas

near edges. Dong et al. [104] chose normal vectors and the

distance between two units.

For growth unit factor, there are usually three strategies:

(1) single points, (2) region units, e.g., voxel grids and

octree structures, and (3) hybrid units. Selecting single points

as region units was the main approach in the early stages

[106], [138]. However, for massive point clouds, point-wise

calculation is time-consuming. To reduce the data volume of

the raw point cloud and improve calculation efficiency, e.g.,

neighborhood search with a k-d tree in raw data [147], the

region unit is an alternative idea of direct points in 3D region

growing. In a point cloud scene, the number of voxelized units

is smaller than the number of points. In this way, the region

growing process can be accelerated significantly. Guided by

this strategy, Deschaud et al. [147] presented a voxel-based

region growing algorithm to improve efficiency by replacing

points with voxels during the region growing procedure. Vo

et al. [93] proposed an adaptive octree-based region growing

algorithm for fast surface patch segmentation by incrementally

grouping adjacent voxels with a similar saliency feature. As

a balance of accuracy and efficiency, hybrid units were also

proposed and tested by several studies. For example, Xiao et

al. [101] combined single points with subwindows as growth

units to detect planes. Dong et al. [104] utilized a hybrid

region growing algorithm, based on units of both single points

and supervoxels, to realize coarse segmentation before global

energy optimization.

For Seed point selection, since many region growing algo-

rithms aim at plane segmentation, a usual practice is designing

a fitting plane for a certain point and its neighbor points first,

and then choosing the point with minimum residual to the

fitting plane as a seed point [106], [138]. The residual is

usually estimated by the distance between one point and its

fitting plane [106], [138] or the curvature of the point [94],

[104].

Nonuniversality is a nontrivial problem for region growing

[93]. The accuracy of these algorithms relies on the growth

criteria and locations of the seeds, which should be prede-

fined and adjusted for different datasets. In addition, these

algorithms are computationally intensive and may require a

reduction in data volume for a trade-off between accuracy and

efficiency.

C. Model fitting

The core idea of model fitting is matching the point clouds

to different primitive geometric shapes, thus it has been

normally regarded as a shape detection or extraction method.

However, when dealing with scenes with parameter geometric

shapes/models, e.g., planes, spheres, and cylinders, model

fitting can also be regarded as a segmentation approach. Most

widely used model-fitting methods are built on two classical

algorithms, Hough Transform (HT) and RANdom SAmple

Consensus (RANSAC).

1) HT: HT is a classical feature detection technique in

digital image processing. It was initially presented in [148]

for line detection in 2D images. There are three main steps

in HT [149]: (1) mapping every sample (e.g., pixels in 2D

images and points in point clouds) of the original space into a

discretized parameter space; (2) laying an accumulator with a

cell array on the parameter space and then, for each input

sample, casting a vote for the basic geometric element of

which they are inliers in the parameter space; and (3) selecting

the cell with the local maximal score, of which parameter

coordinates are used to represent a geometric segment in

original space. The most basic version of HT is Generalized

Hough Transform (GHT), also called the Standard Hough

Transform (SHT), which is introduced in [150]. GHT uses

an angle-radius parameterization instead of the original slope-

intercept form, in order to avoid the infinite slope problem and

simplify the computation. The GHT is based on:

ρ = x cos(θ) + y sin(θ) (1)

where x and y are the image coordinates of a corresponding

sample pixel, ρ is the distance between the origin and the

line through the corresponding pixel, and θ is the angle

between the normal of the above-mentioned line and the x-

axis. Angle-radius parameterization can also be extended into

3D space, and thus can be used in 3D feature detection and

regular geometric structure segmentation. Compared with the

2D form, in 3D space, there is one more angle parameter, φ:

ρ = x cos(θ) sin(φ) + y sin(θ) sin(φ) + z cos(φ) (2)

where x, y, and z are corresponding coordinates of a 3D

sample (e.g., one specific point from the whole point cloud),

and θ and φ are polar coordinates of the normal vector of the

plane, which includes the 3D sample.

One of the major disadvantages of GHT is the lack of

boundaries in the parameter space, which leads to high mem-

ory consumption and long calculation time [151]. Therefore,

some studies have been conducted to improve the performance

of HT by reducing the cost of the voting process [71].

Such algorithms include Probabilistic Hough transform (PHT)

[152], Adaptive probabilistic Hough transform (APHT) [153],

Progressive Probabilistic Hough Transform (PPHT) [154],

Randomized Hough Transform (RHT) [149], and Kernel-based

Hough Transform (KHT) [155]. In addition to computational

costs, choosing a proper accumulator representation is also a

way to optimize HT performance [114].

Several review articles involving 3D HT are available [71],

[114], [151]. As with region growing in the 3D field, planes are

the most frequent research objects in HT-based segmentation

[71], [74], [115], [156]. In addition to planes, other basic

geometric primitives can also be segmented by HT. For

example, Rabbani et al. [129] used a Hough-based method to

detect cylinders in point clouds, similar to plane detection. In

addition, a comprehensive introduction to sphere recognition

based on HT methods is presented in [157].

To evaluate different HT algorithms on point clouds, Bor-

rmann et al. [114] compared improved HT algorithms and

concluded that RHT was the best one for PCS at that time,
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due to its high efficiency. Limberger et al. [71] extended

KHT [155] to 3D space, and proved that 3D KHT performed

better than previous HT techniques, including RHT, for plane

detection. The 3D KHT approach is also robust to noise and

even to irregularly distributed samples [71].

2) RANSAC: The RANSAC technique is the other popular

model fitting method [158]. Several reviews about general

RANSAC-based methods have been published. Learning more

about the RANSAC family and their performance is highly

recommended, particularly in [159]–[161]. The RANSAC-

based algorithm has two main phases: (1) generate a hypoth-

esis from random samples (hypothesis generation), and (2)

verify it to the data (hypothesis evaluation/model verification)

[159], [160]. Before step (1), as in the case of HT-based

methods, models have to be manually defined or selected.

Depending on the structure of 3D scenes, in PCS, these are

usually planes, spheres, or other geometric primitives that can

be represented by algebraic formulas.

In hypothesis generation, RANSAC randomly chooses N
sample points and estimates a set of model parameters using

those sample points. For example, in PCS, if the given model

is a plane, then N = 3 since 3 non-collinear points determine

a plane. The plane model can be represented by:

aX + bY + cZ + d = 0 (3)

where [a, b, c, d]T is the parameter set to be estimated.

In hypothesis evaluation, RANSAC chooses the most prob-

able hypothesis from all estimated parameter sets. RANSAC

uses Eq. 4 to solve the selection problem, which is regarded

as an optimization problem [159]:

M̂ = argmin
M

{
∑

d∈D

Loss(Err(d;M))} (4)

where D is data, Loss represents a loss function, and Err
is an error function such as geometric distance.

As an advantage of random sampling, RANSAC-based

algorithms do not require complex optimization or high mem-

ory resources. Compared to HT methods, efficiency and the

percentage of successful detected objects are two main ad-

vantages for RANSAC in 3D PCS [74]. Moreover, RANSAC

algorithms have the ability to process data with a high amount

of noise, even outliers [162]. For PCS, as with HT and region

growing, RANSAC is widely used in plane segmentation,

such as building façades [65], [66], [103], building roofs [73],

and indoor scenes [102]. In some fields there is demand for

the segmentation of more complex structures than planes.

Schnabel et al. [162] proposed an automatic RANSAC-based

algorithm framework to detect basic geometric shapes in un-

organized point clouds. Those shapes include not only planes,

but also spheres, cylinders, cones, and tori. RANSAC-based

PCS segmentation algorithms were also utilized for cylinder

objects in [130] and [131].

RANSAC is a nondeterministic algorithm, and thus its main

shortcoming is its spurious surface: the probability exists that

models detected by RANSAC-based algorithm do not exist in

reality (Fig. 1). To overcome the adverse effect of RANSAC in

PCS, a soft-threshold voting function was presented to improve

Fig. 1. An example of a spurious plane [102]. Two well-estimated hypothesis
planes are shown in blue. A spurious plane (in orange) is generated using the
same threshold.

Fig. 2. RANSAC family with algorithms categorized according to their
performance and basic strategies [159], [164], [165].

the segmentation quality in [72], in which both the point-plane

distance and the consistency between the normal vectors were

taken into consideration. Li et al. [102] proposed an improved

RANSAC method based on NDT cells [163], also in order to

avoid spurious surface problem in 3D PCS.

As with HT, many improved algorithms based on RANSAC

have emerged over the past decades to further improve its

efficiency, accuracy and robustness. These approaches have

been categorized by their research objectives and are shown

in Fig. 2. The figure has been originally described in [159],

in which seven subclasses according to seven strategies are

used. Venn diagrams are utilized here to describe connections

between methods and strategies, since a method may use two

strategies. For detail description and explanation on those

strategies, please refer to [159]. Considering that [159] is

obsolete, we add two recently published methods, EVSAC

[164] and GC-RANSAC [165] on original figure to make it

keep up with the times.

D. Unsupervised clustering-based

Clustering-based methods are widely used for unsupervised

PCS task. Strictly speaking, clustering-based methods are not

based on a specific mathematical theory. This methodology

family is a mixture of different methods that share a similar

aim, which is grouping points with similar geometric features,

spectral features or spatial distribution into the same homo-

geneous pattern. Unlike region growing and model fitting,

these patterns usually are not defined in advance [166], and

thus clustering-based algorithms can be employed for irregular

object segmentation, e.g., vegetation. Moreover, seed points

are not required by clustering-based approaches, in contrast to

region growing methods [109]. In the early stage, K-means

[45], [46], [76], [77], [91], mean shift [47], [48], [80], [92],

and fuzzy clustering [77], [105] were the main algorithms in



IEEE GEOSCIENCE AND REMOTE SENSING MAGZINE, PREPRINT. 10

the clustering-based point cloud segmentation family. For each

clustering approach, several similarity measures with different

features can be selected, including Euclidean distance, density,

and normal vector [109]. From the perspective of mathematics

and statistics, the clustering problem can be regarded as

a graph-based optimization problem, so several graph-based

methods have been experimented in PCS [78], [79], [167].

1) K-means: K-means is a basic and widely used unsuper-

vised cluster analysis algorithm. It separates the point cloud

dataset into K unlabeled classes. The clustering centers of K-

means are different than the seed points of region growing. In

K-means, every point should be compared to every cluster

center in each iteration step, and the cluster centers will

change when absorbing a new point. The process of K-means

is “clustering” rather than “growing”. It has been adopted

for single tree crown segmentation on ALS data [91] and

planar structure extraction from roofs [76]. Shahzad et al.

[45] and Zhu et al. [46] utilized K-means for building façade

segmentation on TomoSAR point clouds.

One advantage of K-means is that it can be easily adapted

to all kinds of feature attributes, and can even be used in a

multidimensional feature space. The main drawback of K-

means is that it is sometimes difficult to predefine the value

of K properly.

2) Fuzzy clustering: Fuzzy clustering algorithms are im-

proved versions of K-means. K-means is a hard clustering

method, which means the weight of a sample point to a

cluster center is either 1 or 0. In contrast, fuzzy methods use

soft clustering, meaning a sample point can belong to several

clusters with certain nonzero weights.

In PCS, a no-initialization framework was proposed in

[105], by combining two fuzzy algorithms, Fuzzy C-Means

(FCM) algorithm and Possibilistic C-Means (PCM). This

framework was tested on three point clouds, including a one-

scan TLS outdoor dataset with building structures. Those ex-

periments showed that fuzzy clustering segmentation worked

robustly on planer surfaces. Sampath et al. [77] employed

fuzzy K-means for segmentation and reconstruction of build-

ing roofs from an ALS point cloud.

3) Mean-shift: In contrast to K-means, mean-shift is a

classic nonparametric clustering algorithm and hence avoids

the predefined K problem in K-means [168]–[170]. It has

been applied effectively on ALS data in urban and forest

terrain [80], [92]. Mean-shift have also been adopted on

TomoSAR point clouds, enabling building façades and single

trees to be extracted [47], [48].

As both the cluster number and the shape of each clus-

ter are unknown, mean-shift delivers with high-probability

oversegmented result [81]. Hence, it is usually used as a

presegmentation step before partitioning or refinement.

4) Graph-based: In 2D computer vision, introducing

graphs to represent data units such as pixels or superpixels has

proven to be an effective strategy for the segmentation task.

In this case, the segmentation problem can be transformed

into a graph construction and partitioning problem. Inspired

by graph-based methods from 2D, some studies have applied

similar strategies in PCS and achieved results in different

datasets.

For instance, Golovinskiy and Funkhouser [167] proposed

a PCS algorithm based on min-cut [171], by constructing a

graph using k-nearest neighbors. The min-cut was then suc-

cessfully applied for outdoor urban object detection [167]. Ural

et al. [78] also used min-cut to solve the energy minimization

problem for ALS PCS. Each point is considered to be a

node in the graph, and each node is connected to its 3D

voronoi neighbors with an edge. For the roof segmentation

task, Yan et al. [79] used an extended α-expansion algorithm

[172] to minimize the energy function from the PCS problem.

Moreover, Yao et al. [81] applied a modified normalized cut

(N-cut) in their hybrid PCS method.

Markov Random Field (MRF) and Conditional Random

Field (CRF) are machine learning approaches to solve graph-

based segmentation problems. They are usually used as su-

pervised methods or postprocessing stages for PCSS. Major

studies using CRF and supervised MRFs belong to PCSS

rather than PCS. For more information about supervised

approaches, please refer to section IV-A.

E. Oversegmentation, supervoxels, and presegmentation

To reduce the calculation cost and negative effects from

noise, a frequently used strategy is to oversegment a raw

point cloud into small regions before applying computationally

expensive algorithms. Voxels can be regarded as the simplest

oversegmentation structures. Similar to superpixels in 2D

images, supervoxels are small regions of perceptually similar

voxels. Since supervoxels can largely reduce the data volume

of a raw point cloud with low information loss and mini-

mal overlapping, they are usually utilized in presegmentation

before executing other computationally expensive algorithms.

Once oversegments like supervoxels are generated, these are

fed to postprocessing PCS algorithms rather than initial points.

The most classical point cloud oversegmentation algorithm

is Voxel Cloud Connectivity Segmentation (VCCS) [173]. In

this method, a point cloud is first voxelized by the octree.

Then a K-means clustering algorithm is employed to realize

supervoxel segmentation. However, since VCCS adopts fixed

resolution and relies on initialization of seed points, the quality

of segmentation boundaries in a non-uniform density cannot

be guaranteed. To overcome this problem, Song et al. [174]

proposed a two-stage supervoxel oversegmentation approach,

named Boundary-Enhanced Supervoxel Segmentation (BESS).

BESS preserves the shape of the object, but it also has an

obvious limitation for the assumption that points are sequen-

tially ordered in one direction. Recently, Lin et al. [175]

summarized the limitations of previous studies, and formalized

oversegmentation as a subset selection problem. This method

adopts an adaptive resolution to preserve boundaries, a new

practice in supervoxel generation. Landrieu and Boussaha

[100] presented the first supervised framework for 3D point

cloud oversegmentation, achieving significant improvements

compared to [173], [175]. For PCS tasks, several studies have

been based on supervoxel-based presegmentation [107]–[109],

[176], [177].

As mentioned in section III-D, in addition to supervoxels,

other methods can also be employed as presegmentation. For
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Fig. 3. The PCSS framework by [95]. The term “semantic segmentation” in
our review is defined as “supervised classification” in [95].

example, Yao et al. [81] utilized mean-shift to oversegment

ALS data in urban areas.

IV. POINT CLOUD SEMANTIC SEGMENTATION TECHNIQUES

The procedure of PCSS is similar to clustering-based PCS.

But in contrast to non-semantic PCS methods, PCSS tech-

niques generate semantic information for every point, and

are not limited to clustering. Therefore, PCSS is usually

realized by supervised learning methods, including “regular”

supervised machine learning and state-of-the-art deep learning.

A. Regular supervised machine learning

In this section, regular supervised machine learning refers

to non-deep supervised learning algorithms. Comprehensive

and comparative analysis on different PCSS methods based

on regular supervised machine learning has been provided by

previous researchers [87], [88], [95], [97].

Paper [5] pointed out that supervised machine learning ap-

plied to PCSS could be divided into two groups. One group, in-

dividual PCSS, classifies each point or each point cluster based

only on its individual features, such as Maximum Likelihood

classifiers based on Gaussian Mixture Models [113], Support

Vector Machines [4], [111], AdaBoost [6], [82], a cascade

of binary classifiers [83], Random Forests [84], and Bayesian

Discriminant Classifiers [116]. The other group is statistical

contextual models, such as Associative and Non-Associative

Markov Networks [85], [90], [96], Conditional Random Fields

[86]–[88], [110], [178], Simplified Markov Random Fields

[8], multistage inference procedures focusing on point cloud

statistics and relational information over different scales [89],

and spatial inference machines modeling mid- and long-range

dependencies inherent in the data [117].

The general procedure of the individual classification for

PCSS has been well described in [95]. As Fig. 3 shows, the

procedure entails four stages: neighborhood selection, feature

extraction, feature selection, and semantic segmentation. For

each stage, paper [95] summarized several crucial methods

and tested different methods on two datasets to compare

their performance. According to the authors’ experiment, in

individual PCSS, the Random Forest classifier had a good

trade-off between accuracy and efficiency on two datasets. It

should be noted that [95] used a so-called “deep learning”

classifier in their experiments, but that is an old neural network

appearing in the time of regular machine learning, not the

recent deep learning methods described in section IV-B.

Since individual PCSS does not take contextual features of

points into consideration, individual classifiers work efficiently

but generate unavoidable noise that cause unsmooth PCSS

Fig. 4. The PCSS framework by [97]. The term “semantic segmentation” in
our review is defined as “supervised classification” in [97].

results. Statistical context models can mitigate this problem.

Conditional Random Fields (CRF) is the most widely used

context model in PCSS. Niemeyer et al. [87] provided a very

clear introduction about how CRF has been used on PCSS, and

tested several CRF-based approaches on the Vaihingen dataset.

Based on the individual PCSS framework [95], Landrieu et

al. [97] proposed a new PCSS framework that combines

individual classification and context classification. As shown in

Fig. 4, in this framework a graph-based contextual strategy was

introduced to overcome the noise problem of initial labeling,

from which the process was named structured regularization

or “smoothing”.

For the regularization process, Li et al. [111] utilized a mul-

tilabel graph-cut algorithm to optimize the initial segmentation

result from Support Vector Machine (SVM). Landrieu et al.

[97] compared various postprocess methods in their studies,

which proved that regularization indeed improved the accuracy

of PCSS.

B. Deep learning

Deep learning is the most influential and fastest-growing

current technique in pattern recognition, computer vision, and

data analysis [179]. As its name indicates, deep learning uses

more than two hidden layers to obtain high-dimension features

from training data, while traditional handcrafted features are

designed with domain-specific knowledge. Before being ap-

plied in 3D data, deep learning appeared as an effective power

in a variety of tasks in 2D computer vision and image process-

ing, such as image recognition [180], [181], object detection

[182], [183], and semantic segmentation [184], [185]. It has

been attracting more interest in 3D analysis since 2015, driven

by the multiview-based idea proposed by [186], and voxel-

based 3D Convolutional Neural Network (CNN) by [187].

Standard convolutions originally designed for raster images

cannot easily be directly applied to PCSS, as the point cloud

is unordered and unstructured/irregular/non-raster. Thus, in

order to solve this problem, a transformation of the raw point

cloud becomes essential. Depending on the format of the

data ingested into neural networks, deep learning-based PCSS

approaches can be divided into three categories: multiview-

based, voxel-based, and point-based, respectively.
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Fig. 5. The Workflow of SnapNet [67].

1) Multiview-based: One of the early solutions to applying

deep learning in 3D is dimensionality reduction. In short, the

3D data is represented by multi-view 2D images, which can be

processed based on 2D CNNs. Subsequently, the classification

results can be restored into 3D. The most influential multi-view

deep learning in 3D analysis is MVCNN [186]. Although the

original MVCNN algorithm did not experiment on PCSS, it

is a good example for learning about the multiview concept.

The multiview-based methods have solved the structuring

problems of point cloud data well, but there are two serious

shortcomings in these methods. Firstly, they cause numerous

limitations and a loss in geometric structures, as 2D multiview

images are just an approximation of 3D scenes. As a result,

complex tasks such as PCSS could yield limited and unsat-

isfactory performances. Secondly, multiview projected images

must cover all spaces containing points. For large, complex

scenes, it is difficult to choose enough proper viewpoints

for multiview projection. Thus, few studies used multiview-

based deep learning architecture for PCSS. One of exceptions

is SnapNet [9], [67], which uses full dataset semantic-8 of

semantic3D.net as the test dataset. Fig. 5 shows the work-

flow of SnapNet. In SnapNet, the preprocessing step aims

at decimating the point cloud, computing point features and

generating a mesh. Snap generation is to generate RGB images

and depth composite images of the mesh, based on various

virtual cameras. Semantic labeling is to realize image semantic

segmentation from the two types of input images, by image-

based deep learning. The last step is to project 2D semantic

segmentation results back to 3D space, thereby 3D semantics

can be acquired.

2) Voxel-based: Combining voxels with 3D CNNs is the

other early approach in deep learning-based PCSS. Voxeliza-

tion solves both unordered and unstructured problems of the

raw point cloud. Voxelized data can be further processed by 3D

convolutions, as in the case of pixels in 2D neural networks.

Voxel-based architectures still have serious shortcomings. In

comparison to the point cloud, the voxel structure is a low-

resolution form. Obviously, there is a loss in data represen-

tation. In addition, voxel structures not only store occupied

spaces, but also store free or unknown spaces, which can result

in high computational and memory requirements.

The most well-known voxel-based 3D CNN is VoxNet

[187], but this was only tested for object detection. On the

PCSS task, some papers, like [69], [98], [188] and [189],

proposed representative frameworks. SegCloud [98] is an end-

to-end PCSS framework that combines 3D-FCNN, trilinear

interpolation (TI), and fully connected Conditional Random

Fields (FC-CRF) to accomplish the PCSS task. Fig. 6 shows

the framework of SegCloud, which also provides a basic

Fig. 6. The Workflow of SegCloud [98].

pipeline of voxel-based semantic segmentation. In SegCloud,

the preprocessing step is to voxelize raw point clouds. Then a

3D fully convolutional neural netwotk is applied to generate

downsampled voxel labels. After that, a trilinear interpolation

layer is employed to transfer voxel labels back to 3D point

labels. Finally, a 3D fully connected CRF method is utilized to

regularize previous 3D PCSS results, and acquire final results.

SegCloud used to be the state-of-art approach in both S3DIS

and semantic3D.net, but it did not take any steps to optimize

high computational and memory problem from fixed-sized

voxels. With more advanced methods springing up, SegCloud

has fallen from favor in recent years.

To reduce unnecessary computation and memory consump-

tion, the flexible octree structure is an effective replacement

for fixed-size voxels in 3D CNNs. OctNet [69] and O-CNN

[188] are two representative approaches. Recently, VV-NET

[189] extended the use of voxels. VV-Net utilized a radial ba-

sis function-based Variational Auto-Encoder (VAE) network,

which provided a more information-rich representation for

point cloud compared with binary voxels. What is more,

Choy et al. [70] proposed 4-dimensional convolutional neural

networks (MinkowskiNets) to process 3D-videos, which are

a series of CNNs for high-dimensional spaces including the

4D spatio-temporal data. MinkowskiNets can also be applied

on 3D PCSS tasks. They have achieved good performance on

a series of PCSS benchmark datasets, especially a significant

accuracy improvement on ScanNet [43].

3) Directly process point cloud data: As there are serious

limitations in both multiview- and voxel-based methods (e.g.,

loss in structure resolution), exploring PCSS methods directly

on point is a natural choice. Up to now, many approaches

have emerged and are still emerging [1]–[3], [119], [120].

Unlike employing separated pretransformation operation in

multiview-based and voxel-based cases, in these approaches

the canonicalization is binding with the neural network archi-

tecture.

PointNet [1] is a pioneering deep learning framework which

has been performed directly on point. Different with recently

published point cloud networks, there is no convolution oper-

ator in PointNet. The basic principle of PointNet is:

f({x1, ..., xn}) ≈ g(h(x1), ..., h(xn)) (5)

where f : 2R
N

→ R and h : R
N → R

K . g :
R

K × ...× R
K

︸ ︷︷ ︸

n

→ R is a symmetric function, used to solve

the ordering problem of point clouds. As Fig. 7 shows,
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PointNet uses MultiLayer Perceptrons (MLPs) to approximate

h, which represents the per-point local features corresponding

to each point. The global features of point sets g are aggregated

by all per-point local features in a set, through a symmetric

function, max pooling. For the classification task, output scores

for k classes can be produced by a MLP operation on global

features. For the PCSS task, in addition to global features,

per-point local features are demanded. PointNet concatenates

aggregated global features and per-point local features into

combined point features. Subsequently, new per-point features

are extracted from the combined point features by MLPs. On

their basis, semantic labels are predicted.

Fig. 7. The Workflow of PointNet [1]. In this figure, “Classification Network”
is used for object classification. “Segmentation Network” is applied for the
PCSS mission.

Although more and more newly published networks out-

perform PointNet on various benchmark datasets, PointNet

is still a baseline for PCSS research. The original PointNet

uses no local structure information within neighboring points.

In a further study, Qi et al. [120] used a hierarchical neural

network to capture local geometric features to improve the

basic PointNet model and proposed PointNet++. Drawing

inspiration from PointNet/PointNet++, studies on 3D deep

learning focus on feature augmentation, especially to local

features/relationships among points, utilizing knowledge from

other fields to improve the performance of the basic Point-

Net/PointNet++ algorithms. For example, Engelmann et al.

[190] employed two extensions on the PointNet to incorporate

larger-scale spatial context. Wang et al. [3] considered that

missing local features was still a problem in PointNet++, since

it neglected the geometric relationships between a single point

and its neighbors. To overcome this problem, Wang et al. [3]

proposed Dynamic Graph CNN (DGCNN). In this network,

the authors designed a procedure called EdgeConv to ex-

tract edge features while maintaining permutation invariance.

Inspired by the idea of the attention mechanism, Wang et

al. [112] designed a Graph Attention Convolution (GAC), of

which kernels could be dynamically adapted to the structure

of an object. GAC can capture the structural features of point

clouds while avoiding feature contamination between objects.

To exploit richer edge features, Landrieu and Simonovsky [2]

introduced the SuperPoint Graph (SPG), offering both compact

and rich representation of contextual relationships among ob-

ject parts rather than points. The partition of the superpoint can

be regarded as a nonsemantic presegmentation step. After SPG

construction, each superpoint is embedded in a basic PointNet

network and then refined in Gated Recurrent Units (GRUs) for

PCSS. Benefiting from information-rich downsampling, SPG

is highly efficient for large-volume datasets.

Also in order to overcome the drawback of no local features

represented by neighboring points in PointNet, 3P-RNN [99]

adopted a Pointwise Pyramid Pooling (3P) module to capture

the local feature of each point. In addition, it employed a two-

direction Recurrent Neural Network (RNN) model to integrate

long-range context in PCSS tasks. The 3P-RNN technique

has increased overall accuracy at a negligible extra overhead.

Komarichev et al. [125] introduced an annular convolution,

which could capture the local neighborhood by specifying the

ring-shaped structures and directions in the computation, and

adapt to the geometric variabil1ity and scalability at the signal

processing level. Due to the fact that the K-nearest neighbor

search in PointNet++ may lead to the K neighbors falling

in one orientation, Jiang et al. [121] designed PointSIFT to

capture local features from eight orientations. In the whole

architecture, the PointSIFT module achieves multiscale repre-

sentation by stacking several Orientation-Encoding (OE) units.

The PointSIFT module can be integrated into all kinds of

PointNet-based 3D deep learning architectures to improve the

representational ability for 3D shapes. Built upon PointNet++,

PointWeb [126] utilized the Adaptive Feature Adjustment

(AFA) module to find the interaction between points. The

aim of AFA is also to capture and aggregate local features

of points.

Besides, based on PointNet/PointNet++, instance segmen-

tation can also be realized, even accompanied by PCSS.

For instance, Wang et al. [127] presented the Similarity

Group Proposal Network (SGPN). SGPN is the first pub-

lished point cloud instance segmentation framework. Yi et al.

[128] presented a Region-based PointNet (R-PointNet). The

core module of R-PointNet is named as Generative Shape

Proposal Network (GSPN), of which the base is PointNet.

Pham et al. [124] applied a Multi-task Pointwise Network

(MT-PNet) and a Multi-Value Conditional Random Field (MV-

CRF) to address PCSS and instance segmentation simultane-

ously. MV-CRF jointly realized the optimization of semantics

and instances. Wang et al. [123] proposed an Associatively

Segmenting Instances and Semantics (ASIS) module, making

PCSS and instance segmentation take advantage of each other,

leading to a win-win situation. In [123], the backbone that

networks employed are also PointNet and PointNet++.

An increasing number of researchers have chosen an alterna-

tive to PointNet, employing the convolution as a fundamental

and significant component. Some of them, like [3], [112],

[125], have been introduced above. In addition, PointCNN

used a X -transformation instead of symmetric functions to

canonicalize the order [119], which is a generalization of

CNNs to feature learning from unorderd and unstructured

point clouds. Su et al. [68] provided a PCSS framework

that could fuse 2D images with 3D point clouds, named

SParse LATtice Networks (SPLATNet), preserving spatial

information even in sparse regions. Recurrent Slice Networks

(RSN) [118] exploited a sequence of multiple 1×1 convolution

layers for feature learning, and a slice pooling layer to solve

the unordered problem of raw point clouds. A RNN model

was then applied on ordered sequences for the local depen-

dency modeling. Te et al. [191] proposed Regularized Graph
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CNN (RGCNN) and tested it on a part segmentation dataset,

ShapeNet [192]. Experiments show that RGCNN can reduce

computational complexity and is robust to low density and

noise. Regarding convolution kernels as nonlinear functions

of the local coordinates of 3D points comprised of weight

and density functions, Wu et al. [122] presented PointConv.

PointConv is an extension to the Monte Carlo approximation

of the 3D continuous convolution operator. PCSS is realized

by a deconvolution version of PointConv.

As SPG [2], DGCNN [3], RGCNN [191] and GAC [112]

employed graph structures in neural networks, they can also

be regarded as Graph Neural Networks (GNNs) in 3D [193],

[194].

The research on PCSS based on deep learning is still

ongoing. New ideas and approaches on the topic of 3D deep

learning-based frameworks are keeping popping up. Current

achievements have proved that it is a great boost for the

accuracy of 3D PCSS.

C. Hybrid methods

In PCSS, hybrid segment-wise methods have been attracting

researchers’ attention in recent years. A hybrid approach

is usually made up of at least two stages: (1) utilize an

oversegmentation or PCS algorithm (introduced in section III)

as the presegmentation, and (2) apply PCSS on segments from

(1) rather than points. In general, as with presegmentation in

PCS, presegmentation in PCSS also has two main functions:

to reduce the data volume and to conduct local features.

Oversegmentation for supervoxels is a kind of presegmentation

algorithm in PCSS [110], since it is an effective way to

reduce the data volume with light accuracy loss. In addition,

because nonsemantic PCS methods can provide rich natural

local features, some PCSS studies also use them as presegmen-

tation. For example, Zhang et al. [4] employed region growing

before SVM. Vosselman et al. [88] applied HT to generate

planar patches in their PCSS algorithm framework as the

presegmentation. In deep learning, Landrieu and Simonovsky

[2] exploited a superpoint structure as the presegmentation

step, and provided a contextual PCSS network combining

superpoint graphs with PointNet and contextual segmentation.

Landrieu and Boussaha [100] used a supervised algorithm

to realize the presegmentation, which is the first supervised

framework for 3D point cloud oversegmentation.

V. DISCUSSION

A. Open issues in segmentation techniques

1) Features: One of the core questions in pattern recog-

nition is how to obtain effective features. Essentially, the

biggest differences among the various methods in PCSS or

PCS are the differences of feature design, selection, and

application. Feature selection is a trade-off between algorithm

accuracy and efficiency. Focusing on PCSS, Weinmann et

al. [5] analyzed features from three aspects: neighborhood

selection (fixed or individual); feature extraction (single-scale

or multi-scale); and classifier selection (individual classifier

or contextual classifier). Deep learning-based algorithms face

similar problems. The local feature is a significant aspect to

be improved after the birth of PointNet [1].

Even in a PCS task, different methods also show different

understandings of features. Model fitting is actually search-

ing for a group of points connected with certain geometric

primitives, which also can be defined as features. For this

reason, deep learning has been introduced into model fitting

recently [195]. The criteria or the similarity measure in region

growing or clustering is the feature of a point essentially.

The improvement of an algorithm reflects its ability to more

strongly capture features.

2) Hybrid: As mentioned in section IV-C, hybrid is a

strategy for PCSS. Presegmentation can provide local features

in a natural way. Once the development of neural network

architectures stabilizes, nonsemantic presegmentation might

become a progressive course for PCSS.

3) Contextual information: In PCSS tasks, contextual mod-

els are crucial tools for regular supervised machine learning,

widely exploited as a smoothing postprocessing step. In deep

learning, several methods, like [98], [2], [124] and [70], have

employed contextual segmentation, but there is still room for

further improvements.

4) PCSS with GNNs: GNN is becoming increasingly pop-

ular in 2D image processing [193], [194]. For PCSS tasks,

its excellent performance has been shown in [2], [3], [191]

and [112]. Similar to contextual models, the GNN might also

have some surprises for PCSS. But more research is required

in order to evaluate its performance.

5) Regular machine learning vs. deep learning: Before

deep learning emerged, regular machine learning was the

choice of supervised PCSS. Deep learning has changed the

way a point cloud is handled. Compared with regular machine

learning, deep learning has notable advantages: (1) it is more

efficient at handling large-volume datasets; (2) there is no

need to handcraft feature design and selection, a difficult

task in regular machine learning; and (3) it yields high

ranks (high-accuracy results) on public benchmark datasets.

Nevertheless, deep learning is not a universal solution. Firstly,

its principal shortcoming is poor interpretability. Currently, it

is well known how each type of layers (e.g., convolution,

pooling) works in a neural network. In pioneering PCSS

works, such knowledge has been used to develop a series

of functional networks [1], [119], [122]. However, a detailed

internal decision-making process for deep learning is not yet

understood, and therefore cannot be fully described. As a

result, certain fields demanding high-level safety or stability

cannot trust deep learning completely. A typical example that

is relevant to PCSS is autonomous driving. Secondly, data

limit the application of deep learning-based PCSS. Compared

with annotating 2D images, acquiring and annotating a point

cloud is much more complicated. Finally, although current

public datasets provide several indoor and outdoor scenes, they

cannot meet the demand in real applications sufficiently.

B. Remote sensing meets computer vision

Remote sensing and general computer vision might be two

of the most active groups interested in point clouds, having
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published many pioneering studies. The main difference be-

tween these two groups is that computer vision focuses on

new algorithms to further improve the accuracy of the results.

Remote sensing researchers, on the other hand, are trying to

apply these techniques on different types of datasets. However,

in many cases the algorithms proposed by computer vision

studies cannot be adopted in remote sensing directly.

1) Evaluation system: In generic computer vision, in order

to evaluate the accuracy, the overall accuracy is a significant

index. However, some remote sensing applications care more

about the accuracy of certain objects. For instance, for urban

monitoring the accuracy of buildings is crucial, while the

segmentation or the semantic segmentation of other objects

is less important. Thus, compared to computer vision, remote

sensing needs a different evaluation system for selecting

proper algorithms.

2) Multi-source Data: As discussed in section II, point

clouds in remote sensing and computer vision appear differ-

ently. For example, airborne/spaceborne 2.5D and/or sparse

point clouds are also crucial components of remote sensing

data, while computer vision focuses on denser full 3D.

3) Remote sensing algorithms: Published computer vision

algorithms are usually tested on a small-area dataset with

limited categories of objects. However, for remote sensing

applications, large-area data with more complex and specific

ground object categories are demanded. For example, in agri-

cultural remote sensing, vegetation is expected to be separated

into certain specific species, which is difficult for current

computer vision algorithms to solve.

4) Noise and outliers: Current computer vision algorithms

do not pay much attention to noise, while in remote sensing,

sensor noise is unavoidable. Currently, noise adaptive algo-

rithms are unavailable.

C. Limitation of public benchmark datasets

In section II-D, several popular benchmark datasets are

listed. Obviously, in comparison to the situation several years

ago, the number of large-scale datasets with dense point clouds

and rich information available to researchers has increased

considerably. Some datasets, such as semantic3D.net and

S3DIS, have hundreds of millions of points. However, those

benchmark datasets are still insufficient for PCSS tasks.

1) Limited data types: Despite the fact that several large

datasets for PCSS are available, there is still demand for more

varied data. In the real world, there are much more object

categories than the ones considered in current benchmark

datasets. For example, semantic3D.net provides a large-scale

urban point cloud benchmark. However, it only covers one

kind of cities. If researchers chose a different city for a PCSS

task, in which building styles, vegetation species, and even

ground object types would differ, algorithm results might in

turn be different.

2) Limited data sources: Most mainstream point cloud

benchmark datasets are acquired from either LiDAR or RGB-

D. But in practical applications, image-derived point clouds

cannot be ignored. As previously mentioned, in remote sensing

the airborne 2.5D point cloud is an important category, but for

PCSS tasks only the Vaihingen dataset [31], [87] is published

as a benchmark dataset. New data types, such as satellite

photogrammetric point clouds, InSAR point clouds, and even

multi-source fusion data, are also necessary to establish cor-

responding baselines and standards.

VI. CONCLUSION

This paper provided a review of current PCSS and PCS

techniques. This review not only summarizes the main cat-

egories of relevant algorithms, but also briefly introduces

the acquisition methodology and evolution of point clouds.

In addition, the advanced deep learning methods that have

been proposed in recent years are compared and discussed.

Due to the complexity of the point cloud, PCSS is more

challenging than 2D semantic segmentation. Although many

approaches are available, they have each been tested on very

limited and dissimilar datasets, so it is difficult to select the

optimal approach for practical applications. Deep learning-

based methods have ranked high for most of the benchmark-

based evaluations, yet there is no standard neural network

publicly available. Improved neural networks for the solution

of PCSS problems can be expected to be designed in coming

years.

Most current methods have only considered point features,

but in practical applications such as remote sensing the noise

and outliers are still problems that cannot be avoided. Im-

proving the robustness of current approaches, and combining

initial point-based algorithms with different sensor theories to

denoise the data are two potential future fields of research for

semantic segmentation.
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