
PREPRINT – To appear in: The Common Component Modeling Example:

Comparing Software Component Models, LNCS, 2007, Springer

Linking Programs to Architectures:

An Object-Oriented Hierarchical Software

Model based on Boxes

Jan Schäfer, Markus Reitz, Jean-Marie Gaillourdet, and Arnd Poetzsch-Heffter

University of Kaiserslautern, Germany

1 Introduction

Modeling software systems has several purposes. The model provides a commu-
nication means between developers, a backbone to specify and check properties
of the system, and a structure to organize, explain, and develop the implemen-
tation of the system. The focus of our approach is to address these purposes
for hierarchically structured, object-oriented software systems. The hierarchical
structure refers to the component instances at runtime: a runtime component

may consist of a dynamically changing number of objects and other runtime
components. Our modeling technique builds on and extends the concepts of
class-based object-oriented languages. Runtime components are created by in-
stantiating box classes. The modeling technique provides ports to tame object
references and aliasing and to decouple components from their environment.
It supports dynamic linkage, i.e. ports can be connected and disconnected at
runtime. The used concurrency model is based on the join calculus.

Hierarchical software models allow to structure a system into components of
different sizes where large components are recursively built from smaller ones.
Dynamic linkage enables modeling of client–server behavior and open systems.
For such systems, it is more difficult to separate the typical architectural level
that deals with components and connectors and the realization level that de-
scribes the internals of components. The reasons are:

1. The architectural description on one layer of the hierarchy is the implemen-
tation of the component one layer up in the hierarchy.

2. Dynamic linkage is tighter intertwined with realization aspects.

Our approach to achieve a deeper integration of the architectural and component
realization is by integrating them based on a common semantical framework
supporting executable models. The development of our modeling technique is
still in progress. CoCoME provided us with an interesting case study to evaluate
our approach and to compare it to other techniques.

Fig. 1. The Cowch approach

1.1 Goals and Scope of the Component Model

The goal of our approach is to fill the gap between high-level description tech-
niques and the implementation of component-based systems. We use a two-layer
approach with an executable modeling layer just above the implementation to
describe the behavior of a system, and a graphical description language on top of
that layer to describe the runtime architecture of the executable layer. Our com-
ponent model is closely related to object-oriented programming languages allow-
ing us to clearly identify components on the code-level. This is the cornerstone
to achieve consistency between architectural descriptions and implementation.

1.2 Modeled Cutout of CoCoME

We used our graphical architectural description technique to give a hierarchical
overview to the whole CoCoME system. Our focus are the structural aspects
of the system at runtime. The behavior of the system can be fully described
by our executable model. However, we only show this exemplarily in this pa-
per, as our executable model is closely related to the implementation level it
is straightforward to create that model for CoCoME. Although we are working
on the behavioral specification of object-oriented components, we are not able
to formulate functional properties yet. Non-functional properties are not in the
focus of our approach, but could be integrated in principle.

1.3 Benefit of the Modeling

Our modeling technique has the benefit that it is close to the underlying im-
plementation. This allows to identify components on the code-level, providing
a link between high-level descriptions and implementation. This link makes it
easier to ensure consistency between these layers, preventing erosion of architec-
tures. As our model is hierarchical, it allows to concisely describe the architecture
of an implementation in a top-down fashion. Our system describes the runtime
structure of an object-oriented system, allowing to capture the aliasing of com-
ponents, which is an important feature distinguishing our approach from others
that only describe the class and package-level of systems. In addition, we provide
a high-level concurrency mechanism based on the join calculus which allows to
express concurrency in terms of asynchronous messages and synchronization by
join patterns.

1.4 Effort and Lessons Learned

We needed one person month to understand any detail of the system to be
modeled. This includes understanding the delivered reference documentation as
well as the delivered reference implementation. As our executable model is close
to the underlying implementation it was not difficult to find an executable model
for CoCoME. Most time went into drawing the graphical architectural model,
as we do not have productive tools for this task, yet. Altogether it took us
approximately one person month for creating our models. An additional person
month was needed to write this paper. So the CoCoME contest took us about
three person months in total.

We have been able to successfully model the CoCoME system with the
Cowch approach. The resulting MCowch diagrams provide high-level and con-
cise views to the CoCoME system. The CoCoME contest gave us valuable feed-
back to improve our modeling technique.

Related Work. Architectural Description Languages (ADLs) [1] serve as high-
level structuring techniques for software systems. Examples include Darwin [2],
Wright [3], Rapide [4], and UniCon [5]. These languages allow the formal de-
scription of software architectures as well as the specification and verification
of architectural and behavioral properties on the architectural level. However,
ADLs are loosely coupled to implementation languages, making it difficult to
check consistency of architectural description and the actual implementation.
Without consistency, however, all guarantees on the architectural level are lost
on the implementation level.

A different approach is to extend programming languages by architectural
elements. Examples for these approaches are ArchJava [6], ComponentJ [7], and
ACOEL [8]. The advantage of these approaches it that there is no gap between
architecture and implementation. The disadvantage is that they do not provide
high-level views on the structure of a system. In addition, these approaches do

not introduce new concurrency constructs, making it difficult to apply them to
distributed systems.

Our approach falls into both mentioned categories. We define an executable
modeling language which is closely related to the underlying implementation
language. This language contains architectural elements which define the runtime
structure of programs within the programming language. In addition, we define
a graphical description language to describe the architecture of a system. The
semantics of that language is closely related to the executable modeling language
so consistency checking is easier, when compared to implementation-independent
ADLs.

Overview. The remainder of this paper is structured as follows. In the next
section we give a general overview and introduction to our approach. Section 2.1
explains the executable modeling layer. The parts of the architectural model
layer used in this paper are described in Section 2.2. Our model of the CoCoME
system is given in Section 3. We shortly discuss analysis techniques for our
approach in Section 4. Current tool support is sketched in Section 5. Finally, we
give a summary in Section 6.

2 Component Model

Our Cowch1 provides three layers of abstraction: the implementation layer,
the executable modeling layer, and the architectural modeling layer (cf. Fig-
ure 1). On the implementation layer, the system is described using ordinary
programming languages. In our current setting, we use Java as the language of
the implementation layer.

To describe executable models, we develop an object-oriented modeling lan-
guage called JCowch. JCowch provides support for hierarchical heap struc-
turing and encapsulation, ports to make component interfaces and component
linkage more explicit, and a high-level concurrency mechanisms based on the join
calculus [9]. The sequential core of JCowch is based on Java’s statements and
object-oriented features. An implementation is consistent with a JCowch model
if it has the same behavior at the interfaces of runtime components (see [10] for
a formal treatment of component behavior). In the future we plan to specify
the behavior of components on the architectural layer. We also plan to develop
(semi-)automatic methods to verify consistency between executable modeling
and implementation layer. Another goal is to generate efficient and consistent
implementations from executable models.

The architectural modeling layer provides a high-level view on the system
which only consists of the hierarchy of component instances and their commu-
nication structure. This layer abstracts from the creation and linkage phase of
components and describes dynamic restructuring behavior of a system only by

1 Component-oriented Development with Channels

underspecification (in the future this layer will as well support behavioral spec-
ification of component properties). The architectural model is consistent with
an executable model if the structure and component connections of the system
during runtime correspond to the structures and connections described by the
architectural models. Again, consistency can be achieved by checking techniques
and by generating the structural aspects of the executable model from the ar-
chitectural model.

Software components have to support composition by providing contractually
specified interfaces and explicit dependency descriptions [11, p. 41]. As a prereq-
uisite for this, the Cowch approach provides the notion of runtime components
with well-defined boundaries and ports as communication points to its surround-
ing environment. Ingoing ports represent functionality usable by other entities
within the environment whereas outgoing ports define functionality needed for
proper functioning of the component. Communication with other entities in a
component’s environment is routed through its ports. Components which cre-
ate other runtime components are responsible for establishing the connections
between them.

2.1 The Executable Modeling Layer

In this section we describe the executable modeling language JCowch. The
sequential part of JCowch is based on Java’s statements and object-oriented
features. We do not explain these standard features here and refer to the Java
language specification [12]. Here we explain the central constructs to structure
the heap, to control component interfaces, and to handle concurrency. We first
describe the core elements of the language, and then show convenience exten-
sions.

JCowch: Core Language

Boxes. A runtime component or component instance in our approach is called
a box. A box consists of an owner object and a set of other objects. A box is
created together with its owner by instantiating the class of its owner. Boxes
are tree-structured, that is, a box b can have inner boxes. We distinguish two
kinds of classes, normal classes and box classes (annotated by the keyword box).
The instantiation of a normal class creates an object in the current box, that
is, in the box of the current this-object. The instantiation of a box class creates
a new inner box of the current box together with its owner. For simplicity,
we do not support the direct creation of objects outside the current box. Such
nonlocal creations can only be done by using a method. Note that this is similar
to a distributed setting with remote method invocation. Currently, we do not
support the transfer of objects from one box to another one.

Our approach only uses structural aspects of ownership (similar to [13]). It
uses the box boundary to distinguishes between local method calls and external
calls, i.e. calls on ports or objects of other boxes. We use the term component for
the pair consisting of a box class and its code base where the code base of a class

is defined as the smallest set containing all classes and interfaces transitively
used by the class.

Boxes allow to clearly separate objects into groups which semantically belong
together. This clear separation can then be used to describe the behavior of such
runtime components in a representation-independent way [10]. In Cowch, boxes
are the foundation for interfaces and the architectural structure. Boxes are used
to control object references crossing box boundaries. Only the box owner is
allowed to be used directly from the outside. All other internal objects can only
be accessed through ports. Currently, this restriction is not enforced by the type
system of JCowch, so the programmer must manually ensure this discipline.
Work to incorporate ownership type systems into JCowch are under way (see
[14] for first steps).

Channels and Ports. A formally well-understood way to structure commu-
nication is to use channels [15, 16]. A channel is a point-to-point connection
between two partners. In our approach, these partners are ports or objects.
Channels are anonymous, i.e. two partners connected via a channel communicate
without “knowing” each other. This supports a loose-coupling of communication
partners. It also allows transparent exogenous coordination [16], i.e. communi-
cation partners can be transparently changed at runtime. The anonymity of
channels allows to specify component behavior in an abstract way. A channel is
also private, as communication cannot accidentally or intentionally be interfered
by third parties [16]. This also means that it is always clear which entities can
communicate with each other by looking at the channel structure. This gives
strong invariants which support system verification.

In JCowch we use channels to express box communication. Peer boxes, i.e.
boxes with the same surrounding box, can only communicate via channels. In
addition, the surrounding box is allowed to directly call methods on inner boxes
by using the reference returned when an inner box was created. Communication
links crossing more than one layer in the box hierarchy can only be established
by forwarding. Thus the surrounding box controls all communication to and
from inner boxes.

The notion of a port defines a component’s relationship to its surrounding
environment. Ingoing ports represent functionality usable by other entities within
the environment whereas outgoing ports define functionality needed for proper
functioning of the component.

Ingoing Ports. An ingoing port in JCowch is a member of a class and is declared
by the keyword inport. A simple ingoing port declaration may look as follows:

box class A {
inport J p {

void m() { }
}

}

Class A has a single ingoing port p of type J. J is an interface with a single method
m(). The ingoing port in this example provides a trivial, empty implementation
of interface J. An inport can be used by connecting it to another port (see below)
or by direct use from the surrounding box. If a is variable of type A referencing
an inner box, method m() of port p can be invoked by a.p.m(). It is also possible
to treat ports similar to objects, to assign them to local variables, and to use
them like ordinary object references, e.g. J b = a.p.

A class having an ingoing port p of a type J is responsible for providing an
implementation for p. This implementation can be provided directly as part of
the port declaration (see above) or indirectly by connecting the ingoing port
to an inner object or port (connections are explained below). In that case the
ingoing port is declared without a body.

Outgoing Ports. Outgoing ports are declared by the keyword outport. Like in-
going ports they have a type and a name, but they do not provide an implemen-
tation. From a class’s perspective, an outgoing port is an interaction point with
the environment. The implementation of outgoing ports must be provided by
the environment, which is complementary to ingoing ports. A simple declaration
of an outgoing port may look as follows.

box class B {
outport J q;
void n() {

q.m();
}

}

Class B declares an outgoing port q of type J. Like ingoing ports, outgoing
ports can be used like regular object references. The difference is that the actual
implementation of an outgoing port is determined at runtime depending on the
channels established by the environment.

Connect Statements. To provide an implementation for an outgoing port, the
environment has to create a channel from that port to another port or object.
A channel in JCowch is created by a connect statement with the following
syntax:

connect <source> to <sink>

The source parameter has to be a reference to a port, the sink parameter can
be either an object reference or a port reference. After the connect statement
has been executed, all method invocations on the source are forwarded to the
sink. As connect statements must not break type-safety, the type of the sink
expression has to be a subtype of the source expression. Calling a method on an
unconnected outgoing port results in a runtime exception being thrown.

The following example reuses the classes A and B. The outgoing port q of an
instance of A is connected to the ingoing port q of an instance of B. As port b.q
is connected to port a.p and method n invokes m on port q, the effect of b.n() is
essentially the same as calling a.p.m() directly.

box class C {
A a = new A();
B b = new B();
void k() {

connect b.q to a.p;
b.n();
a.p.m(); // same effect

}
}

Deleting a previously created channel is performed by the disconnect statement,
having the following syntax:

disconnect <source> from <sink>

If no channel exists from the given source to the given sink, the statement has
no effect.

Concurrency. Modern software systems need distributed and local concur-
rency. A modeling language has to be both flexible with respect to the con-
currency patterns it supports and restrictive to achieve controlled concurrent
behavior. To approach these goals, JCowch combines the concurrency model
of the join calculus [9] with the structuring and interfacing techniques of boxes.
Concurrency models based on the join calculus have already been integrated into
OCaml (called JoCaml [17]), C# (called Cω[18]), and Java (called Join Java [19]).
Similar to these realization, JCowch does not support the explicit creation of
threads. Instead, it distinguishes between synchronous and asynchronous meth-
ods.

Synchronous methods are syntactically and semantically similar to methods
in object-oriented programming languages like Java or C#. The caller waits until
the called method terminates, receives its return value if any, and continues
execution. Asynchronous methods are denoted by the keyword async in place
of a return type. They have no return value. Calling an asynchronous method
causes it to be executed concurrently to the caller without blocking the caller.
Calls to asynchronous methods implicitly spawn a new thread. Synchronization
of threads is expressed by chords.

Chords. Chords, or join patterns, provide a powerful and elegant synchroniza-
tion mechanism which groups methods that wait for each other and share one
method body. That is, chords can be considered as a generalized construct for
method declaration. Syntactically, a chord is a method with multiple method sig-
natures separated by &. In the body, the arguments of all method signatures are
accessible. There may be at most one synchronous method per chord. The body
of a chord is executed when all methods it includes have been called, i.e. calls to
methods which are part of a chord are enqueued until the chord is executed.

A method header may appear in several chords. It is dynamically decided
to which chord it contributes, depending on which chord is executable first.
These unbounded method queues extend the state space of objects. Chords must

not appear in interfaces, whereas the methods they consist of are declared in
interfaces.

The code in Fig. 2 shows an unbounded asynchronous buffer for strings.
An arbitrary number of calls of method put is stored in conjunction with the
corresponding arguments and removed when appropriate get method calls arrive.

interface StringBuffer {
async put(String s);
String get();

}
class StringBufferImpl implements StringBuffer {

String get() & put(String s) { return s; }
}

Fig. 2. An unbounded buffer.

JCowch: Convenient Extensions to the Core

The language elements described so far are the core of JCowch. We now intro-
duce some additional concepts which can be seen as convenience constructs to
make the life easier for developers in practice.

Optional Ports. We said above that the environment has to provide an imple-
mentation for an outgoing port. Invoking a method on an unconnected outgoing
port results in a runtime exception. However, it is often the case that a compo-
nent has outgoing ports which it does not require to work properly. For example,
a logger port for debugging purposes is in general not needed by a component.
It is just a port to inform the environment of some events happening inside the
class. These kinds of messages are typically called oneway messages [20]. For
this reason we introduce optional outgoing ports in contrast to required out-
going ports. Outgoing ports are by default required and can be declared to be
optional by using the optional keyword. An unconnected optional port acts as
a Null Object [21]. If a method is called on such a port, the method call is
silently ignored. For simplicity, we only allow calls to void and async methods
on optional ports.

Nested Ports. So far ports have been flat in the sense that they only contained
methods. However, to be able to hierarchically structure interfaces of larger
components, it is essential to have nested ports. To enable port nesting, interfaces
have to be extended to allow the declaration of ports. A simple interface J with
a single port declaration of type K may look as follows:

interface J {
port K k;

}

The direction of a nested port is left open in the interface. Thus such interfaces
can be used for ingoing as well as outgoing ports. The direction of the nested
ports is always equal to the direction of its surrounding port. For example, a
class can have a port of type J, which in turn has nested port K. If that port is
an ingoing port, the class has to provide an implementation for the port itself
and the nested port. Assuming an interface K containing a single method m(),
this looks as follows.

class A {
inport J p {

inport K k {
void m() { }

}
}

}

Method Channels. In many cases interface-based wiring of ports and objects
is the right choice. However, there are at least three situations in which interface-
based connections are inconvenient.

1. If two ports with different interfaces should be connected.
2. If only single methods, but not all methods of a port are of interest.
3. If a class only needs one or two outgoing methods with no fitting interface.

The first situation requires the creation of an adapter class that has a port
of each interface and which forwards each method of the first interface to the
appropriate method of the second interface. The second situation requires the
implementation of methods with empty bodies. In the third case the introduction
of an artificial interface is needed. Because of these reasons we allow the wiring
of single methods.

Method Connections. To be able to connect single methods, we extend the
connect statement to take method targets as sources and sinks. A method tar-
get consists of two parts, the first part is an expression which defines the target
object or port of the method, and the second part defines the method which
should be used. The second part can be either a simple method name or a full
method signature. The latter is needed if the target method is overloaded.

To maintain type-safety the parameter and result types of the sink method
must match the parameter and result types of the source method. The matching
rules are equal to the overriding rules in regular Java, i.e. the parameter types
can be contra-variant and the result types can be co-variant. However, method
names are irrelevant when connecting methods, only the parameter and return
types are important.

Outgoing methods. To avoid artificial interfaces when only single methods are
of interest, we allow the declaration of single outgoing methods without ports.
Outgoing methods are declared by the keyword out and have no body. They
can be seen as anonymous ports with a single method. Like outgoing ports,
outgoing methods can be declared to be optional by the optional keyword. A
simple outgoing method declaration may look as follows.

class A {
out void m();

}

A Larger Example

Figure 3 illustrates the use of the discussed concepts. Box class A’s only func-
tionality is to forward a call of p.m to q.m after having increased the passed
integer parameter by one. Method m of box class B of port in is implemented by
calling the outgoing printInt method with the passed integer value being used as
parameter. The constructor of box class C creates two inner boxes, one of box
class A and one of box class B, and forwards ingoing port in to port p of the
inner box A using the connect statement. The q port of box A is connected to
port in of box B by the connect statement. Finally, the outgoing method printInt
of box B is forwarded to the print method of the printer port.

Box class C represents a composing entity which creates and wires instances
of box class A and B. We defined a new box component with a distinguished
behavior. A call of in.m results in increasing the passed integer value by one and
then printing the new value to the output stream.

2.2 The Architectural Modeling Layer

The architectural modeling layer consists of a graphical language – MCowch –
depicting the structure and communication topology of the modeled systems. A
single MCowch diagram describes the internal structure and the communica-
tion endpoints of one component of the JCowch implementation. The described
component is denoted in the upper left corner of the diagram with its full quali-
fied package name. The boundary of a diagram must show all nonprivate methods
and ports of the declared box class. Thus an MCowch diagram always shows
the complete external interface of a component.

Beside this easily derivable information, the diagram shows a conservative
view to the runtime structure of its described component, which is done by the
following architectural elements.

Architectural Elements. Within MCowch diagrams the following architec-
tural elements can appear.

Inner boxes are indicated by rectangles.

interface Print {
void print(int i);
...

}

interface J {
void m(int i);

}

box class A {
outport J q;
inport J p {

void m(int i) {
q.m(i+1)

}
}

}

box class B {
inport J in {

void m(int i) { printInt(i); }
}
out void printInt(int i);

}

box class C {
private A a = new A();
private B b = new B();
outport Print printer;
inport J in;
C() {

connect in to a.p;
connect a.q to b.in;
connect b.printInt(int) to printer.print(int);

}
}

Fig. 3. Code example which shows the usage of port and connections

Ports are depicted by the symbols for outgoing ports and for ingoing ports.
Ports that have interfaces which only consist of asynchronous methods are
represented by the symbols and .

Methods are depicted by the symbols for ingoing methods and for outgoing
methods. Asynchronous methods are depicted by and , respectively.

Channels are indicated by lines with arrows. Thick lines represent port chan-
nels, thin lines represent method channels.

Figure 4 shows an MCowch diagram which is consistent to the JCowch

example in Figure 3 on Page 12. It contains most of the architectural elements.
The semantics of MCowch diagrams is explained in the next section.

Relation to the Executable Modeling Layer. An architectural model de-
notes the static aspects of a program in the executable modeling layer. The
semantics of the model are described, rather than defined, by relating the archi-
tectural elements of the model to artefacts of the program.

Boxes. Every rectangle drawn in a MCowch diagram represents a box that is
created by the defined component at runtime. The exact number is determined
by the given multiplicity with a default of one. If the given multiplicity is con-
stant it means that during the whole lifetime of the component instance the
stated number of boxes exist. This means that these boxes have to be created
in the constructor of the component. A plus (+) used as multiplicity denotes
one or more boxes, i.e. at least one box must exist during the whole lifetime

Fig. 4. Example of an MCowch diagram

of the component. A star (*) indicates an arbitrary number of boxes (including
zero) being created during the box lifetime. Boxes can be drawn by dashed lines
denoting a multiplicity of zero or one.

To be consistent to the underlying implementation, the MCowch diagram
must show all possibly created boxes. That is, if a diagram is consistent to the
underlying implementation, the implementation cannot create boxes that do not
appear in the diagram. In addition, all boxes appearing in a diagram can only
communicate via the indicated channels.

Channels. The channels appearing in MCowch diagrams represent channels cre-
ated by connect statements in the executable layer during runtime of the defined
component. We distinguish durable channels and optional channels. A solid line
indicates a durable channel and represents a channel that always exists at run-
time when both connected boxes exist. Usually this means that the channel is
directly created after both boxes are created, and it is never disconnected. A
dotted line denotes an optional channel, expressing the fact that the channel
might exist at runtime.

Connecting a line to a rectangle with a multiplicity greater than one implies
that there exist a channel for each box of the box set. This allows to express 1 and
N:1 connections. To express arbitrary N:M connections we use a special unknown

connection indicated by a question mark which indicates that connections exist
but leaves the exact wiring unspecified.

Helper Objects. An MCowch diagram only illustrates the inner box structure
of a component, i.e. all instances of box classes and their connections. It does
not show helper objects which are used by the component implementation, i.e.
objects of regular non–box classes.

Complete Diagrams. An MCowch diagram can be specified to be complete. To
be complete, the corresponding component implementation may not have any

behavior other than specified by the diagram, it has a constant number of boxes
and only durable channels. From a complete MCowch diagram it is always pos-
sible to generate its executable model.

Active and Reactive Components. An additional property of components is
shown in MCowch diagrams which can be derived from the executable layer,
namely whether a component is active or reactive. Reactive components are only
able of reacting to incoming method invocations. This means that after the in-
voking thread has left the component, a reactive component cannot send any
further messages on its outgoing methods or ports. On the other hand, an active
component can send messages on its outgoing entities whether or not a method
has been invoked on it. On the modeling layer, a component can be identified to
be active if it either uses an active component or has an asynchronous method
that appears in a chord without a synchronous method, as only these chords
can create new threads. If a component has neither an outgoing method nor
an outgoing port, the component is always reactive, as the environment cannot
observe any activity.

MCowch diagrams of active components are declared to be active in the
meta-bar, otherwise they are reactive. In addition, active boxes are drawn with
a thicker border than reactive boxes when appearing as boxes in MCowch

diagrams.

Graphical Channel Combiner. To graphically express that a channel is only
connected to a part of a port and not the whole port, we allow to explicitly
name the connected part and write it next to the channel. This can be combined
with the graphical channel combiner. For example in the MCowch diagram in
Figure 4 the printInt method of the B box is connected to the print method of
the printer port.

Examples. To better understand the relation between the modeling and the
architectural layer we give some simple examples shown in Figures 6, 7, 8, and 9.
On the left side we show the implementation in JCowch and on the right side
we show an MCowch diagram which is consistent to that. We use the interface
and the box classes shown in Figure 5 for this purpose.

interface J {
void m();
void n();

}

box class B {
inport J q;
outport J p;
// ...

}

box class C {
inport J q;
// ...

}

Fig. 5. An interface and two box classes needed by the following examples.

box class A {
inport J q;
B b; C c;
A() {

b = new B();
c = new C();
connect this.q to b.q;
connect b.p to c.q;

}
}

Fig. 6. An implementation of a box class and its corresponding MCowch diagram.

box class D {
inport J q;
B b;
D(boolean createB) {

if (createB) {
b = new B();
connect b.p to c.q;

}
}

}

Fig. 7. An example of an optional inner box.

box class E {
C c;
B[] b;
E(int numB) {

c = new C();
b = new B[numB];
for (int i=0; i <numB; i++) {

b[i] = new B();
connect b[i].p to c.q;

}
}

}

Fig. 8. An example of an arbitrary multiplicity

box class F {
outport J q;
B b;
F(boolean createChannel) {

b = new B();
if (createChannel) {

connect b.p to this.q;
}

}
}

Fig. 9. An example of an optional channel

3 Modeling the CoCoME

We now present our model of the CoCoME system. Figure 10 shows a high-level
view on the CoCoME system specified by an MCowch diagram. An instance
of the CoCoME component consists of a TradingSystem box and a Bank box. In
addition, the outgoing bank port (depicted by) of the TradingSystem box is
connected to the Bank box. Notice that the rectangle of the TradingSystem box
is drawn with a thicker line than the Bank box rectangle, which indicates that
the TradingSystem is active and the Bank is reactive. As the CoCoME component
has no further functionality the diagram is specified to be complete.

Fig. 10. The top level view on CoCoME

3.1 The Bank Component

The Bank component is used to validate credit cards and to debit money from
bank accounts. As it is an external component, not modeled by CoCoME, we
only give its interface which consists of two ingoing methods (cf. Figure 11).

3.2 The TradingSystem Component

To go deeper into the CoCoME system we take a look at the TradingSystem com-
ponent (cf. Figure 12). The first difference to the CoCoME component is that

Fig. 11. The Bank component

the TradingSystem component has a port declaration. In this case the port has
name bank and is of type Bank. The symbol indicates that it is an outgoing
port. This port declaration is consistent to the port usage in the previous dia-
gram, where the bank port is connected to a Bank instance. The TradingSystem
component uses three different components, namely EnterpiseClient, StoreModel,
and Database. The number of StoreModel and EnterpriseClient boxes is left un-
specified, indicated by a star (*), but there exists exactly one Database box
per TradingSystem box as this is the default multiplicity. No matter how many
EnterpriseClient or StoreModel boxes exist, the diagram specifies that the db port
of each of them is connected to the ingoing () jdbc port of the Database box
(the bullet () graphically summarizes these two parallel running lines). In ad-
dition, the bank port of each existing Store box is connected to the bank port of
the TradingSystem box.

Fig. 12. The TradingSystem component

3.3 The EnterpriseClient Component

The EnterpriseClient component is shown in Figure 13. It offers the enterprise
manager the possibility to look at the statistical data of the enterprise by using
the graphical user interface of the Reporting box. To access the database the
EnterpriseClient box uses Application and Data boxes and forwards the outgoing
port of the Data box to its own outgoing db port of type JDBC.

Fig. 13. The EnterpriseClient component

3.4 The TradingSystem::Store Component

Figure 14 shows the Store component, which represent a single store. Such a
component does not exist in the reference description of CoCoME. We believe
that such a component is useful and thus we give a model here. A Store box
consists of a single CashDeskLine box, an Application and a Data box to abstract
from the JDBC interface, and an unspecified number of Inventory::GUI boxes
to allow the stock manager and the store manager to access the database. In
the CoCoME reference implementation the CashDeskLine and the Application
communicates via an event bus as well as via RMI. We model the bus communi-
cation by an asynchronous method channel, the RMI communication is modeled
by synchronous port channels.

Fig. 14. The Store component

3.5 The CashDeskLine Component

The CashDeskLine component is shown in Figure 15. An instance of a CashDeskLine
consists of several CashDesk boxes and a single Coordinator box. The Coordinator
box manages the express checkout, wheras the CashDesk boxes represent the cash
desks. Like before, we model the bus communication by asynchronous method
channels. In addition, the outgoing bank and inventory ports, as well as the
accountSale method of each CashDesk box are forwarded to the corresponding
ports and method of the CashDeskLine component.

Fig. 15. The CashDeskLine component

3.6 The Coordinator Component

Figure 16 shows the Coordinator component, which is responsible for managing
express checkouts. For this reason it has an inner SaleStatistics box which collects
information about sales. When a call to the saleRegistered is made, it informs
an inner SaleStatistics box about the new sale and asks it whether an express
mode is needed. If this is the case the outgoing method expressMode is invoked
with the previously passed cashdesk string. The MCowch diagram is shown in
Figure 16. What might not be obvious is that the Coordinator component is ac-
tive. To clearify this we give its JCowch model in Figure 17. As the Coordinator
component must access the iternal SaleStatistics box in a sequential way, it has
to sequentialize its incoming asynchronous saleRegistered messages. For this rea-
son it has an internal loop which sequentially handles these messages, which is
started by invoking the asynchronous waitForMessage method in the constructor.
The loop sequentially calls the synchronous handleNextMessage method. As this
method is in a chord together with the saleRegistered method, it is only executed
when that method has been invoked. This realization ensures a sequential access
to the internal SaleStatistics box. It also resembles the semantics of the event
bus system which is used by the CoCoME reference implementation.

3.7 The SaleStatistics Component

Figure 18 shows the SaleStatistics component. It calculates the express mode
necessity depending on the sale history. As it has no further inner boxes, the

Fig. 16. The MCowch diagram of the Coordinator component

public box class Coordinator {
private SaleStatistics saleStats;

public out async expressModeEnabled(String cashDesk);
public async saleRegistered(String cashDesk, int quantity, PaymentMode pm);

public Coordinator() {
saleStats = new SaleStatistics();
allowAccess();
waitForMessage();

}

private void handleNextMessage()
& saleRegistered(String cashDesk, int quantity, PaymentMode pm);

{
saleStats.registerSale(quantity,pm);
if (saleStats.isExpressModeNeeded()) {

expressModeEnabled(cashDesk);
}

}

private async waitForMessage() {
while (true) {

handleNextMessage();
}

}
}

Fig. 17. The JCowch model of the Coordinator component

MCowch diagram only shows its external interface consisting of two ingoing
methods.

Fig. 18. The SaleStatistics component

3.8 The CashDesk Component

The CashDesk component is the most complex component in the CoCoME sys-
tem. We decided not to directly model the event bus. Instead we present a
conceptional view on the CashDesk component which is behavioral equivalent
to the actual implementation. For this reason we structured the different events
of the bus that semantically belong together into several new interfaces, which
can be seen in Figure 19. Figure 20 shows the CashDesk component. This ar-
chitectural view shows the exact communication structure of a single cash desk.

3.9 The CardReaderController Component

The CardReaderController component abstracts from the card reader hardware
(cf. Figure 21). To be able to react to express mode changes, it has an ingoing
expressMode port. To send card reader events it has an outgoing events port.

3.10 The ScannerController Component

The ScannerController component handles events from the barcode scanner and
emits them on its outgoing events port by sending productBarcodeScanned events
(Figure 22). As we do not model the scanner hardware, it has no further inner
boxes.

3.11 The LightDisplayController Component

The LightDisplayController reacts on incoming expressMode messages and switches
the light display on or off. It has no further inner boxes (Figure 23).

3.12 The CashDesk::Application Component

The CashDesk::Application component is shown in Figure 24. It can be seen as
the control center of the CashDesk component. It contains the application logic
of the CashDesk component, and it handles the external communication with the
Bank, the Inventory and the Coordinator components. As it has no further inner
boxes the MCowch diagram only shows its interface.

public interface ScannerEvents {
async productBarcodeScanned(Barcode b);

}

public interface ApplicationEvents {
async runningTotalChanged(String productName, double productPrice,

double runningTotal);
async changeAmountCalculated(double changeAmount);
async saleSuccess();
async productBarcodeNotValid(long barcode);
async invalidCreditCard();

}

public interface CashBoxEvents {
async saleStarted();
async saleFinished();
async paymentMode(PaymentMode paymentMode);
async cashAmountEntered(KeyStroke keyStroke);
async cashBoxClosed();

}

public interface CardReaderEvents {
async pinEntered(int pin);
async creditCardScanned(String cardInfo);

}

public interface ExpressMode {
async expressModeEnabled(String cashBox);
async expressModeDisabled();

}

Fig. 19. The different interfaces summarizing bus events

F
ig

.
2
0
.
T

h
e

C
a
sh

D
es

k
co

m
p
o
n
en

t

Fig. 21. The CardReaderController component

Fig. 22. The ScannerController component

Fig. 23. The light display controller

Fig. 24. The Application component

3.13 The CashBoxController Component

The CashBoxController component is shown in Figure 25. It represents the cash
box which is operated by the cashier. It has an outgoing port events of type
CashBoxEvents as well as an outgoing method expressModeDisabled(), which rep-
resent the different kinds of keys which may be pressed by the cashier. The only
ingoing method cashAmountCalculated(double) opens the cash box.

Fig. 25. The CashBoxController component

3.14 PrinterController

The PrinterController component is shown in Figure 26. It reacts to certain events
from the Application and the CashBox component and prints useful information
for the customer on a receipt.

Fig. 26. The PrinterController component

3.15 CashDeskGUI

Figure 27 shows the CashDeskGUI component. Its purpose is to show useful
information on a little display for the customer as well as the cashier. For this
reason it has a set of ingoing ports for certain kinds of events.

3.16 Inventory::Application

The Inventory::Application component is responsible for abstracting from the di-
rect access to the Inventory::Data component, as well as handling accountSale

Fig. 27. The CashDeskGUI component

messages. The runtime structure of the component is shown in Figure 28. It
internally consists of three inner boxes, namly a Reporting, a Store box, and a
ProductDispatcher box. The ingoing ports are forwarded to the Reporting and the
Store box, respectively. In addition, the Application component has an ingoing
accountSale method, which is handled internally and not shown by the MCowch

diagram. The Store box uses the ProductDispatcher box to realize the product
exchange among different stores (Use Case 8). All three inner boxes need access
to the DataIf interface which is done by forwarding their corresponding ports to
the outgoing data port.

Fig. 28. The Inventory::Application component

3.17 Inventory::Data

The reference implementation of the Inventory::Data component does not fit well
into our model. We found two problems that make this task difficult. The Data
component of the reference implementation provides three interfaces namely Per-
sistenceIf, StoreQueryIf, and EnterpriseQueryIf. Instances of these interfaces can

be created by the DataIf interface. In order to use the StoreQueryIf and the Enter-
priseQueryIf, however, a client must first get an instance of the PersistenceIf and
then obtain a PersistenceContext by calling the getPersistenceContext() method
on that interface. After that the client can use the other two interfaces, as all
methods of these expect a PersistenceContext as an additional parameter.

This implementation does not follow an object-oriented programming style
and thus does not fit well into our model. To give a more object-oriented model
of the Data component, we changed the implementation in the following way.
We removed the methods from the DataIf interface that allow to gain references
to the EnterpriseQueryIf and the StoreQueryIf interfaces. We left PersistenceIf
as it is, but we changed the PersistenceContext interface by adding two ports
that allow access to the EnterpriseQueryIf and StoreQueryIf interfaces. We then
could simplify the EnterpriseQueryIf and StoreQueryIf interfaces, as we were able
to remove all PersistentContext parameters. The new interfaces are shown in
Figure 29 The interesting aspect is that the Cowch approach led to a cleaner,
more object-oriented design.

3.18 Missing Parts

Because of space reasons we did not present all parts of the CoCoME system.
We left out the Inventory::GUI component as well as the architecture of the
Inventory::Data component. We also mainly showed the architectural diagrams
instead of the JCowch models, which we believe are more interesting.

4 Analysis

The Cowch approach provides a hierarchical structuring of runtime components
and their communication structure. The runtime structure is the cornerstone
to enable a modular specification of the behavior of components. Modularity
is a key-property for the scalability of any analysis technique. So we see our
approach as a basis to enable scalable analysis for object-oriented programs. Our
approach is still at the beginning. We plan to develop behavioral specifications
of components to be able to specify and verify functional properties.

While (manually) applying the Cowch approach to the CoCoME system we
discovered some design flaws as well as errors. The main design flaw we found
was the realization of the Data component. The Cowch approach forced us to
find a different design. The result is cleaner and more object-oriented than the
original design. Other errors we found were mainly inconsistencies between the
reference implementation and the documentation. We found one “real” error in
the reference implementation. Due to the explicit communication structure of
the MCowch models, we discovered that the reference implementation of the
CardReaderController did not receive any messages. Thus the card reader was not
disabled when the ExpressModeEnabledEnabled event was sent. Other errors have
been posted to the CoCoME forum [22].

public interface DataIf {
port PersistenceIf persistenceManager;

}

public interface PersistenceIf {
PersistenceContext getPersistanceContext();

}

public interface PersistenceContext {
port EnterpriseQueryIf enterpriseQuery;
port StoreQueryIf storeQuery;
port TransactionContext transactionContext;
void makePersistent(Object o);
void close();

}

public interface EnterpriseQueryIf {
TradingEnterprise queryEnterpriseById(long enterpriseId);
long getMeanTimeToDelivery(ProductSupplier supplier,

TradingEnterprise enterprise);
}

public interface StoreQueryIf {
Store queryStoreById(long storeId);
Collection<Product> queryProducts(long storeId);
Collection<StockItem> queryLowStockItems(long storeId);
Collection<StockItem> queryAllStockItems(long storeId);
ProductOrder queryOrderById(long orderId);
StockItem queryStockItem(long storeId, long productbarcode);
StockItem queryStockItemById(long stockId);
Product queryProductById(long productId);
Collection<StockItem> getStockItems(long storeId, long[] productIds);

}

Fig. 29. The new interfaces of the Inventory::Data component

5 Tools

As our approach is still in an early phase, we cannot yet provide finished tools.
However, we currently work on three different tools. First, we work on a library-
based implementation of JCowch in Java called JCowchLib. It is based on
Java’s reflection mechanisms, thus it works with standard Java tools. Second,
we work on a modification of the Eclipse Java Development Tools [23] called
JCowchDT. This will lead to an integrated development environment for JCowch.
And third, we work on a tool called CowchGM which is based on the Eclipse
Modeling Framework [24]. The goal of this tool is to be able to create MCowch
models. At a later stage we will merge CowchGM with JCowchDT to ensure the
consistency of the architectural model and the underlying implementation. For
certain kinds of models it will even be able to directly generate working code.

6 Summary

The Cowch approach is still at its beginning and under development. The Co-
CoME modeling contest gave us the opportunity to evaluate our approach on a
larger example system. During the modeling of the system we gained valuable
insights which will influence the further development of our approach.

6.1 Limitations

With the architectural description language we are only able to show the struc-
ture of object-oriented systems. This includes the component structure as well
as the communication structure. Currently, we are not able to specify functional
and nonfunctional properties.

6.2 Future Work

In this paper we described our architectural description techniques and applied it
to the CoCoME system. Consistency checking between architectural, executable,
and implementation layer is currently done manually without tool support. In
addition, the semantics of the executable layer is only partially formalized. We
have a formal model of the Box Model semantics which we explain elsewhere [10].
As our concurrency model is based on the join calculus [9] we have a solid formal
basis for this part as well. We are currently working on a formal description of
the port and channel constructs which is the third part of our Java extension.

The architectural modeling is the basis to allow modular behavioral specifica-
tions of components. For the future we plan to develop behavioral specifications
techniques to describe the behavior of concurrent object-oriented components
and to be able to specify and verify functional properties.

6.3 Response to the Jury Comments

The main criticism of the Jury is that the approach only provides weak ab-
straction mechanisms and that the modeling technique is too close to the code
level.

Our approach considers three layers (cf. Figure 1). To keep consistency be-
tween these layers manageable, we assume certain semantic similarities for the
languages used on these layers. In principle, the approach is open to use less
coupled languages as long as the consistency criteria is expressible.

It is true that the level of abstraction of our approach is not as high as
compared to UML. However, both modeling layers in Cowch support well-defined
and helpful abstractions. The executable modeling layer allows us to abstract
from communication technologies and distribution and provides a more abstract
notion of concurrency and synchronization. The architectural modeling layer
allows to abstract from method implementations, from the process of creating
and initializing components, and from dynamic system reconfigurations.

Acknowledgments

We thank the reviewers Antonio Cansado, Eric Madelaine, and Ludovic Henrio
for their helpful comments on previous versions of this paper.

Bibliography

[1] Medvidovic, N., Taylor, R.N.: A classification and comparison framework
for software architecture description languages. IEEE Trans. Softw. Eng.
26(1) (2000) 70–93

[2] Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed
software architectures. In Schäfer, W., Botella, P., eds.: Proc. 5th European
Software Engineering Conf. (ESEC 95). Volume 989., Sitges, Spain, Springer
(1995) 137–153

[3] Allen, R., Garlan, D.: A formal basis for architectural connection. ACM
Trans. Softw. Eng. Methodol. 6(3) (1997) 213–249

[4] Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann,
W.: Specification and analysis of system architecture using rapide. IEEE
Trans. Softw. Eng. 21(4) (1995) 336–355

[5] Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.:
Abstractions for software architecture and tools to support them. IEEE
Trans. Softw. Eng. 21(4) (1995) 314–335

[6] Aldrich, J., Chambers, C., Notkin, D.: ArchJava: connecting software ar-
chitecture to implementation. In: ICSE ’02: Proceedings of the 24th Inter-
national Conference on Software Engineering, ACM Press (2002) 187–197

[7] Seco, J.C., Caires, L.: A basic model of typed components. In Bertino, E.,
ed.: Proc. ECOOP’00. Volume 1850 of LNCS., Springer (2000) 108–128

[8] Sreedhar, V.C.: Mixin’up components. In: ICSE ’02: Proceedings of the 24th
International Conference on Software Engineering, ACM (2002) 198–207

[9] Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In:
Proceedings of the 23th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’96), ACM Press (1996) 372–385

[10] Poetzsch-Heffter, A., Schäfer, J.: A representation-independent behavioral
semantics for object-oriented components. In: 9th IFIP International Con-
ference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS). LNCS, Springer (2007) to appear.

[11] Szyperski, C.: Component Software - Beyond Object-Oriented Program-
ming. Second edn. Addison-Wesley Publishing Company Inc. (2002)

[12] Gosling, J., Joy, B., Steele, G., Bracha, G.: The JavaTM Language Specifi-
cation – Second Edition. Addison-Wesley (2000)

[13] Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Ver-
ification of object-oriented programs with invariants. Journal of Object
Technology 3(6) (2004)

[14] Poetzsch-Heffter, A., Geilmann, K., Schäfer, J.: Infering ownership types
for encapsulated object-oriented program components. In: Program Anal-
ysis and Compilation, Theory and Practice: Essays Dedicated to Reinhard
Wilhelm, Springer (2007) to appear.

[15] Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press (1999)

[16] Scholten, J.G., Arbab, F., de Boer, F.S., Bonsangue, M.M.: Mobile chan-
nels, implementation within and outside component. Electronical Notes in
Theoretical Computer Science 66(4) (2002)

[17] Institut National de Recherche en Informatique et en Automatique: JoCaml
(2007) http://jocaml.inria.fr.

[18] Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for
C#. In Magnusson, B., ed.: Proc. ECOOP 2002. Volume 2374 of LNCS.,
Springer (2002) 415–440

[19] von Itzstein, G.S.: Introduction of High Level Concurrency Semantics in
Object Oriented Languages. PhD thesis, University of South Australia
(2005)

[20] Lea, D.: Concurrent Programming in Java Second Edition. Addison-Wesley
(2000)

[21] Woolf, B.: Null object. In Martin, R.C., Riehle, D., Ruschman, F., eds.:
Pattern Languages of Program Design 3, Addison-Wesley (1998) 5–18

[22] : The CoCoME forum. (2007) http://naf.informatik.uni-kl.de/php/phpBB2/
index.php.

[23] The Eclipse Foundation: Eclipse Java Development Tools (JDT) (2007)
http://www.eclipse.org/jdt/.

[24] The Eclipse Foundation: Eclipse Modeling Framework Project (EMF)
(2007) http://www.eclipse.org/modeling/emf/.

