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Abstract 

System and chip synthesis must evaluate candidate Register-Transfer (RT} architectures with respect 

to finished physical designs. Current RT level cost measures, however, are highly simplified and do 

not reflect the real physical design. Complete physical design, on the other hand, is quite costly, 

and infeasible to be iterated many times. In order to establish a more realistic assessment o/ layout 

effects, we proposed a new layout model which efficiently accounts for the effects of wiring and 

floorplanning on the area and performance of RT level designs, be/ore the physical design process. 

Benchmarking has shown that our model is quite accurate. 

Keywords: Layout, Area, Delay, Estimation, High-Level Design 



1 Introduction 

T HE Design of a VLSI chip starts with an abstract behavioral or functional specification and ends with a 

detailed specification of the layout mask level geometries. In between these two stages of the design is 

a hierarchy of design steps (automatic or manual) involving functional partitioning, architectural and logic 

synthesis, floorplanning, placement and routing. The global decisions made during the initial phases of 

design have a pronounced impact on the final chip 's performance and consequences of these decisions will 

not be apparent until very late in the design process. Consequently, during the early design stages, there is 

a need for accurate design quality metrics which can take into consideration the effects of the subsequent 

design steps and provide guidance for the global design decisions. 

The various design synthesis tasks which take place prior to physical design usually comprise architec­

tural ( or behavioral) synthesis, register-transfer level synthesis, and logic synthesis. These tasks could be 

performed either manually or automatically. Each one of these synthesis tasks usually attempts to optimize a 

cost function representing the layout area, delay, or a combination of both. Since there is no physical layout 

information readily available at this point, typical area cost functions that actually get optimized are usually 

over-simplified models of layout design which are based solely on the contribution of active logic (i.e. gates 

or functional units) to both area and delay. Such abstract metrics do not accurately reflect the quality of the 

real physical design because they do not consider important layout effects such as wiring and floorplanning. 

For large designs, these physical design considerations tend to dominate layout area and delay. The lack 

of such realistic modeling of layout could result in "misleading" the synthesis tasks into generating inferior 

designs. This was indeed the conclusion in McFarland's work [1]. As technology provides smaller and 

smaller feature sizes and higher density, it is expected that physical effects will play an even more important 

role in the overall design area and performance. Therefore, such effects can no longer be ignored. 

1.1 Previous work 

Most of the previous work in developing predictive models of layout was done at the gate or transistor 

levels. The standard cells style, being the most popular design method for custom random logic applications 

was studied by researchers, and predictive models of standard cell layouts were developed. Most notable is 

the work by Pedram and Preas [2], [3] who developed accurate analytical models for area and wire length 

estimatioÍl, and Zimmerman [4] who developed a novel slicing technique for estimating the area and shape 

function of custom layouts. Ali these models were benchmarked and found to predict the area of standard 

cell layouts with errors around 5 to 10%. The work in [5, 6] describes a layout area and delay predicti.on 

approach using a hardware model which combines analytical and constructive predictive models of layout. 

By controlling the relative contribution of each of the two sets of models to the prediction results, it is 

possible to tradeoff accuracy of the estímate versus runtime. 

These gate level predictive models are of great value in early chip planning and layout tasks (such as 

floorplanning). However, in order to address the specific problems in high level synthesis described earlier, 
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Figure 1: Error vs efficiency of predictive models 

predictive models must operate at a higher level of design abstraction. The output of a typical high level 

synthesis phase consists of Rf level components, control, and memories. Oearly, such a design would 

not be laid out as a large piece of random logic. Thus, any high level predictive model must be able to 

handle several variations in design sty les and must reflect the effects of high level design tradeoffs on silicon 

accordingly. 

In [7] and [8], abstracted layout area and timing models for high level synthesis were presented. These 

models were experimentally shown to accurately and efficiently reflect the effects of the data path design 

tradeoffs on the final layout. However, these models concentrated on modeling the datapath and controller 

separately and did not consider the impact of floorplanning which could generally be a significant factor in 

area and delay. 

1.2 Contributions of our work 

In this paper, we propose an overall layout model which can be used to efficiently obtain accurate area 

and timing information of a given RT level design. Clearly, accuracy and runtime efficiency are mutually 

competing goals as shown in Figure 1. Simple hardware models (usually analytical) are quite fast to evaluate 

but are generally not accurate. More complex models (usually constructive) are generally more accurate but 

also more costly to evaluate. In the extreme case, one can get exact values of design quality measures by 

going thróugh the ful1 physicai design steps. However, this would be too costly, especially if a large number . 
of candidate RT level designs are to be evaluated when going through iterative design improvement steps. 

0ur model offers a reasonable compromise between accuracy and efficiency and furthermore, allows the 

user to tradeoff these two criteria. Our additional contributions over previous work are the following: 

• We model chip level designs (using the Fmite State Machine with Datapath, or FSMD paradigm [9]), 

as opposed to gate level designs, thus achieving a higher leve! of abstraction compared to [ 4], [2], and 

[5] without sacrificing accuracy or efficiency, 
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• we incorporate floorplanning information into the prediction and have provably good wiring models 

of global interconnect Thus, our prediction model accurately reflects the e:ffects of layout and 

fioorplanning on area, timing, and system clock cycle time. Therefore, our system can achieve chip 

level modeling whereas [7] and [8] concentrated on blocks leve! modeling and estimation, and 

• we have validated our model with fully constructed and simulated layouts of standard high leve! 

synthesis benchmarks, and sorne real industry standard designs, using industrial layout tools. 

In developing our models, we sought as much as possible to maintain simplicity and runtime ef:ficiency 

without sacri:ficing accuracy. Both accuracy and ef:ficiency are primary criteria at this level of abstraction, 

accuracy for obvious reasons, and ef:ficiency because during early design and synthesis tasks, a large number 

of candidate designs (or design decisions) are typically generated and must be evaluated as fastas possible. 

An inef:ficient estimator can easily become a runtime bottleneck and thus render the encapsulating synthesis 

tool intractable in runtime. Since these two goals are competing, one must concentrate on developing 

estimators which can provide the most beneficia! tradeoff between accuracy and ef:ficiency. 

In order to compare difference predictive models we introduce two measures: predictor quality and 

predictor fidelity. Given a design description D, and let V = {D1, D 2 , ••• , Dn} be a set of different 

implementations of that description. Given metric type M of design quality (say area or performance, for 

example), consider two predictive models, A and B for M. Given a finite amount of runtime, T, and that 

models A and B can predict the value of metric M of the same implementation Di of D ( call the predictions 

};¿(D;) and Ms(D¡), respectively) with relative errors of EA(D¡) and EB(D¡), respectively, then the 

prediction quality of Model A is higher that the prediction quality of Model B if 

(1) 

Predictor fidelity is another important property defined as follows: Consider two designs Di, Di, 1 ~ 

i, j ~ n. Define µii as follows: 

1 i/ (M(Di) - M(D;))(MA(D;)- MA(D¡)) >o, 
i f. j, 1 ~ i, j ~ n 

µ¡¡ = 1 i/ M(D¡) -M(D;) = MA(D¡)- ~(D;) =o, 
i f. j, 1 ~ i, j ~ n 

O otherwise 

Then, the fidelity of Model A (denoted by F(A)) can be defined as a percentage by the following 

equation: 
2 n 

F(A) = 100 x n(n _ l) ~ µ¡¡ 
,,,=1 

(2) 

i<j 
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For example Model A has perfect (100%) fidelity if F(A) = 100. The experimental results described 

in Section 7 indicate that our models are not only highly cost-effective, but that they achieve a high-fidelity 

when compared with other existing models. 

Fmally, while our layout model is clearly not the only possibility to go from Rr level to silicon, we 

maintain that our approach at the chip level allows for the incorporation of other design styles. In that case, 

one must develop new estimation model for each new style used within the chip model. 

The paper is organized as follows: Section 2 presents sorne preliminaries on modeling of digital VLSI 

systems. The datapath models are presented in Section 3, and the controller models are described in Section 

4. The chip level models are described in Section 6. Section 7 shows sorne experimental results which 

demonstrate the accuracy of the model. Conclusions are drawn in Section 8. 

2 Preliminaries 

2.1 General modellng of digital systems 

A digital system can generally be described using the FS!vID (Fmite State Machine with Datapath) model 

[9] shown in Figure 11. Ideally, one would like a predictive layout model to read in design specifications in 

which only high level constructs are described and partitions the FS!vID specifications into four structurally 

distinct blocks, which are: 

1. datapath, 

2. controller, 

3. macros (e.g. multipliers), and 

4. memories. 

Clearly, the automatic generation of such a partitioning is a problem of considerable difficulty which has 

only recently been addressed by researchers [ 1 O]. As a first step in abstracting the leve! of predictive models, 

we assume for now that the input to our model is a an FS!vID [9] descripti.on of the system as a partitioned 

RT level design in which components have been assigned to structurally distinct blocks. 

The chip layout of such a description is composed of blocks which can be either hard macros (e.g. 

datapath, multi.pliers, memory, PLA), or soft macros ( e.g. controller, random logic). Thus, in order to model 

the chip leve! layout, we must estimate the dimensions of each of these block:s, and use these estimates to 

predict the dimensions of the complete chip. The fiow of our modeling technique is as follows: we first 

compute estimates of the dimensions, as well as the timing of each RT leve! block1• These models are 

described in Sections 3, 4, and 5. Next, our chip level model uses the estimates of the RT level components 

to obtain an approximate topology of the complete chip as well as the wiring component connecting the 

1 Given the uncertainty in aspect ratio (which is not known until the whole chip is laid out), our models produce shape functions 
for each block. Shape functions are further treated in Section 6. 
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blocks together. From this topology, estimates of chip area and timing information (clock cycle) can be 

derived. 

Tue subsequent sections will describe area and timing models for datapath, controller (random logic or 

PLA), and macrocells (including memories), as well as models for the overall chip. 

2.2 Electrical timing models 

Ali of our high level timing models are based on the well known lumped RC model, also called the Elmore 

delay model [11], which is widely used for delay calculation. In this model, the propagation delay along 

a path :from the start point to the end point (tp(start,end)) is computed as a product of lumping ali of the 

resistances R1 and capacitances C k along the path, that is, 

tp(start, end) = L R¡ X¿ ck. (3) 
j k 

We can use Equation 3 to obtain the delay of a connecting wire between two components, or between two 

blocks of components. In CMOS technology we modela component as having input capacitance (C¡n) and 

outputresistance CRout). The well-known 7r-model is used to model the connecting wire having capacitance 

C w and resistance Rw. 

The propagation delay, tp(n ), through a wire n connecting the output of (comp¡) and driving load 

components (comp1, 1 s; j s; n) can be computed as 

n 

tp(n) = (Rout(comp¡) + Rw)(Cw + L cin(comp;)). (4) 
J=l 

Thus, the delay for signals to propagate :from the input of comp¡, through a wire n, to one of the inputs of 

component comp1, driven by comp¡, is 

(5) 

where tp ( comp¡) is the interna! delay of component comp¡. 

This model can be generalized to account for the total delay through a path P(I, O) in a circuit starting 

:from input pin I to output pin O by adcling a1l the component to component delays and the net delays along 

P(I, O) as follows: 

(6) 
VcompkEP(I,O) VneP(I,O) 

Oearly, this model is accurate when considering systems running at medium to high frequencies. For 

very high frequencies (200~ or more) the accuracy of the lumped RC model decreases and other more 

elaborate models must be used instead. In addi tion, for very fine technologies (0.5 µ or less) other factors su ch 
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as the input waveform and layout pattem dependencies must be considered when estimating the propagation 

delay. 

3 Datapath Layout Model 

Figure 2 shows a popular layout architecture for datapaths known as bit-sliced standard cells, where each 

slice of a microarchitecrure unit is realized with standard cells. This architecture is curren.tl.y being used in 

industry (see [12], for example). In this architecture, standard cells of each bit slice are placed vertically 

in one or more rows and routing channels are used to connect different cells inside one complete bit slice. 

Control lines run horizontally in second metal and power and data lines run vertically in first metal or poly. 

In the following sections, we develop area and timing models for this architecture. Should other approaches 

be used to layout the data path, other area and timing models should be developed to accommodate such 

approaches. 
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3.1 Datapath area model 

We conservatively assume that the standard cell technology used for the data path does not have over-the-cell 

routing tracks, hence a routing area is always needed. Thus, the total area of a bit slice is the sum of the unit 

areas and the routing area The wiring area is proportional to the number of routing tracks used to connect 

units. We can first calculate the area of one bit slice, and obtain the total area by multiplying the area of one 

bit slice with the stack's bit width. The area of each bit slice consists of two parts: the unit area and the 

wiring area 

Unit area. Each unit consists of one or severa! rows of standard cells, where the height of each row is 

fixed and the width of each standard cell is proportional to number of transistors (see Figure 2(a)). Both 

dimensions are assumed to be known from technology and cell library information. We first describe the 

wiring area estimation model for units composed of one standard cell row each. Essentially, the model 

assumes a linear placement of cells where terminals are uniformly distributed such that probability of a wire 

emerging for a pin is ~, where N is the number of two-point nets2
, and w is the total number of pins on the 

linear placement (which is also proportional to the total cell width. The length of a wire is assumed to be a 

random variable, L, with aprobability density functionpL(l) = pq1
-

1
, where l/p is the average wire length 

in pin pitches, estimated empirically using Feuer's formula [14], and q = 1 - p. Thus, the expected number 

of tracks at a point x on the linear placement, E { d( x)} is estimated él:8 the number of wires bom before ( or 

to the left of) x, and terminating after (orto the right of) x. given by: 

E{d(x)} = ~ (1- qx)(l - qw-x+1). 
wpq 

(7) 

Thus, thenumberoftracksneededforroutinginsidetheunit,TU is estimatedas TUest = max1:5x:5w E{ d(x )}, 

which occurs at Xmax = rwtl l · For large units, a single row layout may result in overly long slices which 

. may be inef:ficient to layout In this case, units are laid out using multiple rows as shown in Figure 2(a) 

where each unit is laid out using two standard cell rows. The above singlerow model is extended to handle 

multiple row cases. The multiple row model is described in [13] and is used in this case to compute T Uest. 

Once TUest is computed, we can estimate the width of the wiring channel as (3 x TUest inside a unit, 

where (3, is the wiring pitch (or the mínimum spacing between two adjacent wires) which depends on the 

design rules of the layout technology. The total width of a unit, Wunit' can now be computed as: 

(8) 

where r is the number of rows in the unit, and Wrow is the width of each row. The unit height, or H unit, is 

2For modeling purposes only, multi-point nets are decomposed into two point segments. Thus, N is actually the number of 
equivalent two-point nets 
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estimated as: 

(9) 

where Hce11( i) is the span (or height) of cell i and mis the number of cells in the unit Now, the total unit 

area, Aunit = Wunit X H unit• 

Wiring area. Given a particular technology, the wiring area depends on the routing density which can 

only be determined after bit-sliced units have been physically placed. However, the placement procedure is 

often expensive in terms of computation runtime. Hence, we use an inexpensive, yet reasonably accurate 

placement model for wiring estimation. Given a netlist, we use a highly efficient min-cut partitioning 

heuristic to approximate the linear placement of the units along the bit slice (Shown in Figure 2(b)). This 

would result in a bitslice unit having a height of H.,1ice = :Lj=1 Hunit(j), where Hunit(j) is the height of 

unit(j), unit(j) is a functional unit, register, or interconnect unit; and nis the # ofunits in one bit slice. 

Next, the linear placement is scanned and the track density is estimated at the beginning (or top edge) 

of each unit j, call it x1. Let d( x1) be that estimate, the number of routing tracks in the bit slice is now 

estimated as T Se 8 t, given by: 

T Seat = max{ m~ { d( Xj )}, d(H.,1ice)}, 
l~J~n 

(10) 

where d( H.,zice) is the estimated density at the edge of the bit slice. Thus, the width of the inter-unit wiring 

area, Wwire = /3 X T Seat, and the width of the bit slice, W.,ucei is 

(11) 

Finally, as shown in Figure 2(c), the overall area cost of the datapath, Adp is 

(12) 

where w is the bit width of the datapath. 

Note that our chip level model (which will be described in Section 6) allows the user to partition 

the datapath into several blocks where each block would be bit-sliced and laid out separately. Thus, this 

modeling technique is flexible enough to allow the designer to experiment with different ways of partitioning 

the datapath, ranging from a single datapath block, al1 the way to a multi-block strategy in which each block 

represents the layout of an individual RT leve! component 

3.2. Datapath delay model 

Given the datapath architectures described in Section 3.1, computation of the propagation delay from one 

datapath component to another in the same datapath block requires two elements: interna! delay of the 

9 



component and wiring delay. Typically, the intemal delays of components are provided by the targeted 

component library. 

In order to estimate the wiring delay we need to estimare the wiring length. The length of a net can 

be estimated based on the approximate topology provided by the area model. Given this information, the 

propagation delay between two datapath components (comp¡ and compi) via a net (n) is computed as 

follows: let (xi, y¡) and (xi, Yi) be to coordinates of comp¡ and compi respectively. If both components 

are on the same bitslice, then x¡ = xi and the length L( n) of net n is 1 y, - Yi j. If the components are in 

different bitslices k and l, respectively, then L( n) can be estimated as follows: 

L(n) = jy¡ - Yil + jk- lj X W.dice (13) 

Where Wslice is the wifth of a single bit slice, computed as shown in Equation 11. Given L( n), the wiring 

delay can now be estimated using Equations 4 and 5. 

4 Controller Models 

G1ven an RT level datapath _design, the controller (usually specified as a state diagram, or state table) is 

usually implemented in two phases. Frrst the state table is input to state encoding, logic synthesis, and 

technology mapping tools (e.g. :MIS, NOVA), and hence a gate level netlist is obtained. Next, the netlist is 

placed and the interconnections routed (typically in standard cells design style). 

A complete model of the controller from state diagram necessitates a modeling of the logic as well as 

the physical design phases. Modeling the impact of logic synthesis is an extremely complex task which 

has received very little attention in the past. Given the difficulty of such a modeling, and the efficiency 

requirements of the overall prediction modelling, our models of logic synthesis are simple but efficient in 

nature. 

4.1 Controller area modeling 

A control unit can be described by a control state-table that specifies next-state and control signals as a 

function of present states and conditional signals. We assume that the present states and the next states are 

encoded as binary values P1r: ••• p1po and n.1: ... n1 no, where k = flog 2 Sl - 1 and S is the number of states, 

respectively. Thus, the total number of inputs to the control unit I equals flog 2 Sl + C, where C is the total 

number of conditional signals. 

We consider the impact of optimization procedures by deriving a simplified model that is geared toward 

estimation of the lower bound delay of the control logic. In our model, each next-state ·and control signa! 

is represented as sum of products of the present-state and conditional/starus signals. The product term 

is implemented with AND gates and the sum with OR gates. Since, the target component library will 
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Figure 3: Random logic layout model:(a) decomposition of a product term, and (b) a multi-level imple­
mentation. 

usually provide AND and OR gates with a limited number of inputs, the sum and product terms need to be 

decomposed into a multi-level implementation when the large AND or OR gates are not available in the 

target library. 

Figure 3 shows an example of a multi-level implementation of a sum-of-products expression with 

maximum three inputs AND gates. The multi-level implementation is represented by a trinary tree shown 

in Figure 3(a) and its equivalent gate implementation is shown in Figure 3(b). The netlist generated as such 

partially models the effects of logic optimization. 

The multi-level decomposition aims to produce an implementation with the minimal number of levels. 

Tu.is is guided by the fact that a multi-level implementation of a product term with I number of literals 

using AND gates with a maximum of n inputs is in the form of an n-ary tree; where each intemal node 

in the tree denotes an AND gate, each leaf denotes a literal, and each edge denotes a net in the gate-level 

implementation. The height of the tree equals flogn fl, and the critical path of the product terms is denoted 

by the path that defines the height of the tree. 

Given the netlist generated as shown above, we use a constructive/analyticalmodel to estimate the shape 

function of the controller block. This enables the chip level layout model ( described in Section 6) to es ti.mate 

the aspect ratio which results in the most optima! packing of the overall chip ftoorplan. Essentially, the 

constructive/analytical model starts with a circuit netlist as input The netlist is then recursively partitioned 

to generate a slicing tree, but instead of slicing all the way down to the cell level (as in fully constructive 

approaches, such as [4]), the depth of the slicing tree is restricted to a small number of levels for reasons 
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of runtime efficiency. We use the analytical predictor described in Section 3.1 at the leaf level to generate 

estimates of the shape functions for the leaf circuits. The slicing tree is traversed bottom up and the shape 

functions of the sibling nodes are used to form the shape function of the parent node. This procedure is 

carried out al1 the way up to the root node, at which point, a prediction of the chip shape function is obtained 

(see Figure 4). Since only a prediction of the controller dimensions is desired, we need not decide on the 

orientation of the slice line when traversing the slicing tree bottom up. Instead, we only keep track of the 

slicings (horizontal or vertical) which results in a smaller area configurations at each intermediate node in 

the slicing tree3
• It can be proven [4] that this procedure does not result in the loss of any optimal points on 

the shape function. The main advantage of this approach is that it offers a reasonable compromize between 

accuracy and runtime efficiency. 

When the slicing tree is traversed bottom up, and the shape functions of parent blocks are formed, the 

predicted dimensions of the parent block must include an estimate of the wiring area needed to route the 

nets connecting the two blocks. Given any two sibling blocks A and B, and a vertical or horizontal slice 

orientation the wiring area is estimated by first computing the track utilization factor ªA as a A = Ti: A , 

where TA is the number of tracks in block A, w A is the width of block A and NA is the number of nets in 

block A. In order to accommodate the extra routing needed for the interblock nets, we need to add sorne 

extra tracks in blocks A and B. We as sume that this addi tion will not appreciably change the track utilization 

factor a A in TA. Let N AB be the number of nets crossing between blocks A and B. We can estimate TAw, 

the number of tracks needed in block A after routing the inter-block nets as 

TAw = TAwA(NA + NB + NAB), 
NA(wA + wB) 

(14) 

. anda similar estimate is derived for TBw· Given TAw' TBw and the dimensions of A and B, the total area 

of the parent block AB can now be estimated. This procedure is carried out ali the way to the root of the 

slicing tree to obtain an estimate of the controller shape function. 

4.2 Controller timing model 

The controller timing model assumes that the controller netlist is described as blocks of random logic (next 

state, and output logic) bounded by state or status registers as depicted in Figure 11. Given this netlist, 

the delay 'in the combinational logic bounded by registers R¡ and R; can be expressed as the sum of three 

delay components on the worst case input to output path, ca1l it Path, between R¡ and R;. The first two 

components are the contributions of the intrinsic cell delay and the fanout delay in P ath and can be estimated 

from the cell library and the netlist. In order to estímate the third component (i. e. the wiring delay), we use 

the Elm.ore delay model of Section 2.2 which requires the knowledge of the wire length, L( n ), of each net 

nin Path. 

3 This composition techniqueis further explainedin Section 6.1 
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In order to estimate L ( n), we use the approximate layout topology generated by the area model described 

in Section 4.1. The area model essentially generates an approximate placement of the combinational block 

in which the relative locations of the leaf clusters are known. The size of the leaf cluster depends on the 

depth of the slicing tree as described in Section 4.1. The location of a particular cell inside the leaf cluster has 

yet to be determ.ined in order to get an exact placement Given this partial placement information, the length 

of each wire is estimated as the sum of two components: the intercluster component, and the intracluster 

component, as shown in Figure 4. This approach results in accurate and efficient estimates of wire lengths. 

Let L( n) be the total length of net n which spans N ( n) clusters: cluster1, cluster2, · · ·, clusterN(n)· 

Intracluster components. The length of an intracluster net component inside any cluster i can be estimated 

as the length of the spanning tree connecting the cells inside the cluster. We use an analytícal estímator 

developed by Feuer [14] to estímate Awl( i), the average length of a two-pointnet segment in leaf cluster i. 

This average wire length value is used to weigh the edges of the spanning tree. Thus, the total contribution 

of the intracluster components, or L ª ( n) can be estimated as 

N(n) 

La(n) = L (nl(i, n)- 1) * Awl(i), (15) 

i=l 

where, nl ( i, n) is the number of cells belonging to leaf cluster i and connected to net n. 

lntercluster component. Once a1l the intracluster components of a net have been determined, the length 

of the net between leaf clusters ( or intercluster component) can be estímated as the length of the spanning 

tree that connects the leaf clusters. The distance between the centers of the leaf clusters (as estimated from 

the partial placement) is used to weigh the edges of the spanning tree. Thus, the length of the intercluster 

component, or Le( n) can be estimated as: Le( n) = M ST( cluster1, cluster2, · ·., clusterN(n)), Where 

M ST( cluster1, cluster2, · · ·, clusterN(n)) is thelengthoftheminimumspanningtreeconnectingclusters 1 

through N( n) by theircenterpoints. Given La( n) andLe( n ), the totallength ofnet.n, L( n) = La( n )+Le( n ), 

and thewireresistanceofnetn, Rw(n) = L~t)Ru andcapacitance, Cw(n) = L(n)WwCu whereWw is 

the width of the routing wire and R8 and C8 and the sheet resistance and capacitance per unit wire length, 

respectively. 

Once the net delays are· estimated, we can estímate the circuit delay through any input-output path by 

applying the Elmore delay model described in Sectíon 2.2. We need to determine the delay between input 

signal /¡ and output signal O 1, call it tp ( J¡, O 1). Let P ath( I;, O i) be the longest path connecting the input 

pin l; and output pin O i, which can be determined using topological sorting of the circuit netlist (See [ 6] 

for more details). Thus, the worst case delay between pins J¡ and O i is tp ( Path( l¡, O i)) computed using 

Equation 6. 

Path(It., 0 1) provides atopologicalestimateofthe worstcasedelay. However, in acombinationalblock 

described at the gate level, the topological delay estimation scheme may be overly pessimistic because of the 

possiblefalse paths [15] in the circuit In this case, the user mayas an option, invoke afu.nctionality-based 
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Figure 4: Wrre length estimation for random logic 

delay estimation heuristic modelwhich attempts to find the true worst case path at the expense of increased 

runtime. More details on the functionality based technique can be found in (16]. 

5 Macrocells and memories 

Sorne system components can be laid out as Macrocells. Macrocells can be either pre-designed, or param­

eterized. In the first case, the dimensions of the block and also the pin locations, are known in advance. 

Parameterized components are usually designed by replicating a bitslice of a bitcell in one or two dimensions 

by using generators such as GDT [17]. In this case the overall block dimensions can be easily calculated 

by using simple equations derived from the generating function. Other types of Macrocells include memory 

and PLA blocks. 

A typical memory macro can be described using a number of blocks such as row decoder, column 

decoder, sense amp, cell array and I/O ports. These blocks are arrays of smaller cells called modules. For 

example, a cell array can be built using memory cells placed in an array structure. Similarly, the row decoder 

is made of r number of row decoder cells, where r is the number of rows in the memory. A typical static 

RAM memory configuration is shown in Figure 5. Let r and e be the number of rows and columns in the 

memory block, respectively. Let hrow and Wrow be the height and width of the memory cells, hcd be the 

height of the column decoder, hsa the height of the sense amplifier, and wrd the width of the row decoder. 

Thus, the area of the memory block can be estimated as: 

(16) 
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The layout of a PLA is modelled as a rectangular block which contains latch-buffer circuitries and an 

AND-OR plane, as shown in the Figure 6. 

The width of the block is the sum of the width of the input latch-buffer circuitry, the width of a min-term 

buffer, Mbw, and the widthoftheoutputlatch-buffercircuitry. The widthoftheinputandoutputlatch-buffer 

is the product of maximum width of the latch Uw) or the buffer (bw) with the number of inputs (J n) and 

outputs (Out), respectively. Whereas, the height of the block is computed as the sum of the latch height (l h ), 

the buffer height (bh), and the height of the AND-OR plan.e. The height of the AND-OR plane is determined 

by the product of the number of min-terms (M int) and the vertical space between transistor rows in the 

plan.e (v,,p). Thus, the area is calculated as follows: 

APLA = [(In+ Out) X M AX(lw, bw) + Mbw] 

x[lh + bh + Mint X Vsp] 

6 Chip-Level Models 

(17) 

Once the dimensions of each block are determined, the chip level model uses these estimates to find an 

approximate topology of the complete chip, using the technique described in Section 6.1 below. Given 

this appróximate topology, information about the the chip area and timing (i.e. clock cycle, delay) can be 

estimated. 

6.1 Chip level area model 

Our chip level area model uses a slicing tree technique derived from [4] for evaluating the area of designs 

implemented using macro blocks and standard cell clusters. This technique is described next. 

The standard cells grouped into clusters called standard cell blocks and are treated as a single entity 
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while building the slicing tree and computing the shape function of the design. The shape function of the 

standard cell block can be evaluated using the model described in Section 4 with varying number of standard 

cellrows. 

The chip level slicing tree technique involves slicing down to the.leaf blocks which consists of either 

macros or standard cell clusters. This constructive approach does not consume excessive runtimes since the 

number of leaf blocks are limited to a relatively small number. This technique is illustrated in Figure 7. 

The previous subsections discussed the techniques to evaluate the shape function of leaf blocks which 

are either macro blocks or standard cell blocks. The shape function of the entire design is computed by 

constructively adding the shape function of these leaf blocks. In addition to the area of the leaf blocks, the 

wiring area used by the nets connecting these blocks also needs to be accounted for. 

As shown in Figure 7, the design could be implemented using hard macros (multiplier, memory) or soft 

macros ( controller). The layout of hard macros is fixed and hence the pin locations are known. In the case 

of soft macros, the pin locations have to be approximately determined to the extent of the side location. . 

The pin side location can be determined by evaluating the shape function of the design prior to wiring 

area calculation. This process determines the approximate location of the blocks in the design. From the 

connectivity information, the blocks connected to any pin can be determined. By evaluating the mean 

location of these blocks, a preferred side location of each pin can be determined and is designated as 

pseudo-pin for each slicing tree window shown in Figure 8. 

The area of the design is built up by looking at a window of the slicing tree as shown in Figure 8. This 

window consists of slice level i and slice level i + 1. The area of tj:le slices can be obtained by estimating the 

wiring channels at the slices. The shape function of the pseudo block AB is determined by the height and 

width of channels Hl, H2, H3 and Vl, V2, V3 and V 4. Pseudo block AB is a composite block and could 

be composed of parallel slices or orthogonal slices. Let x m Yn be the number of nets connecting pins in side 
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x of block m to pins in side y of block n, where x, y E { t, b, l, r} as shown in Figure 8. Assuming a parallel 

slice, the widths of the channels around block A are estimated using the following formulas: 

Hl = 
H2 = 
Vl = 

V2 = 

(t1t2 + tir2 + til2 + tib2)/2 

(2b1t2 + b1r2 + bib2 + lir2)/2 

(t1t2 + 2t1l2 + tib2 + l1t2 

+lil2 + l1r2 + l1b2)/2 

(t1t2 + 2t1r2 + t1b2 + r1r2 

+r1l2 + rib2)/2 

(18) 

(19) 

(20) 

(21) 

Similarly, given an orthogonal slice, the widths of the channels around block A are estimated using the 

following formulas: 

Hl = (t1l2+t1r2+t1t2+l1r2/3 

+Zit2 + l1l2/4)/2 

H2 = (b1l2 + bir2 + bil2 + bib2 

+l1l2 + lib2 + l1r2/3)/2 

Vl = (t1l2f 4 + tib2 + bit2)/2 

V2 = (3t1l2/4 + t1b2 + b1l2/4 + b1t2 + r1r2 

+r1b2 + r1l2/4 + r1t2 + 1112/4)/2 
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Figure 8: A Mixed design wiring estimation 

A similar set of formulas can also be applied to block B to estimate H3, V3, and V 4. Once the channel 

widths are known. They are added to the total estimated area ofblock AB as shown in Figure 8. 

This process of building the composite blocks is performed in a post-order manner from the leaves of 

the slicing tree towards the root, thus determining the area of the entire design. This technique allows us 

to model the different types of blocks that constitute the various system components and to accounts for 

the effects of global routing. For each two sibling blocks, there exists two possible ways of generating the 

parent block depending on the orientation of the slice. It is easy to see that this would result in a very large 

number of combinations very rapidly, even if only the non-inferior points of the shape function are retained. 

To reduce the problem to manageable proportions, we use an approach similar to the one reported in [4]. 

Since only a prediction of the chip dimensions is desired, we need not perform an actual floor plan of the 

chip from the slicing tree. Therefore, we need not decide on the orientation of the slice line when traversing 

the slicing tree bottom up. For each two siblings, two shape functions of the parent block are generated: one 

assuming a horizontal slice and another assuming a vertical slice. The two curves are then superimposed 

and a "lower bound" curve is generated by keeping only the smaller of the two slice opentations at each x 

as shown in Figure 9. The resulting shape function is taken as the set of predicted dimension pairs for the 

optima! layout area of the parent block. Zimmerman [4] has proven that if carried out up to the root node 

of the slicing tree, this method will indeed result in a shape function of the whole chip containing only the 
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non-inferior 4 layout configurations (see Figure 9). 

At the end of this phase, we can estimate the area of the overall chip, and, more importantly, we have an 

approximate topology of the chip which can be used in the subsequent timing models described next 

6.2 Chip level timing model 

In general, the netlist of a combinational block may consist of standard cell blocks ( which are used to 

implement the datapath units, e.g. muxes, adders, as well as controllers) and of Macrocells which may 

implement more complex functions (such as combinational multipliers). We assume that all the timing 

information of these components is readily available from various standard cell and Macrocell libraries. 

Given such a combinational network, our chip level area model described in Section 6.1 outputs an 

approximate fioorplan which provides estimates of the relative locations of the consti tuent blocks and hence, 

estimates of the interblocks connection lengths. In order to estímate these connection length, we need to 

determine the pin locations of the connection terminals. Our model assumes three levels of information on 
' pin locations as illustrated in Figure 1 O. For predesigned blocks (e.g. Block B in Figure 1 O), the pin locations 

can be exactly known. For other types of blocks, the pin location can be either completely unknown (Block 

A), or known up to the side location (Block C). In the first case, the pin coordinates are estimated at the 

center of the block. In the second case, the pin coordinates are estimated at the midpoint of the block side. 

Given the terminal pin locations of a net n, we can use Equations 4 and 5 to compute its propagation 

4 A configuration is non-inferior if there does not exist any other configurations having one of its dimensions equal to the 
non-inferior one but has smaller area. 
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delay. Let (Ax, Ay) and (Bx, By) be the coordinares of the pins connected by n. The length of n is 

estimated as L(n) = IAx - Bxl + IAy - Byl· Thus, Rw(n) and Cw(n), theinter-block wiringresistance 

and capad tance, respectively, can now be estimated as described in Section 4.2. The propagation delay of 

nis then computed using Equations 4 and 5. 

6.3 Clock cycle model 

The clock cycle is determined by the worst register-to-register delay that includes the propagation delays in 

the control uni t, in the datapath and between blocks. In our implementation, the clock computation is based 

on a simple Finite-State-Machine Datapath model (FSNID), as shown in Figure 11. 

In Figure 11, the critical path (Pathl) is :from the State register, through the Control logic, the Datapath, 

the N ext-state logic and back to the State register. Thus, the clock period is the sum of the propagation delays 

ofth.eState register(tp( State register )), the Control logic (tp( Control logic) ), theDatapath ( tp( DP) ), the 

Next-state logic ( tP ( N ext-state logic) ), and the set-up delay of the State register (taetup( State register )), 

that is, 

tclock = tp(State register) + tp(Control logic) 

+tp(DP) + tP(N ext-state logic) 

+taetup( State register) (26) 

tp (Control l ogic) and tp ( N ext-state l ogic) are computed using one of the models described in Section 

4 and include the wiring delay at the output of each block. tp(DP) is determined by the worst register-to-
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register delay in the datapath. Since the access time to a RAM is slow and often tak:es several clock cycles, 

we consider only the storage units as registers ora register file. For each operation op, implemented by a 

functional unit FU, let Rl, and R2 be the input registers, and R3 be the output register, connected to op 

through Cl, C2, and C3, respectively. In general Cl, C2, and C3 are implemented as wires or interconnect 

units such as a muxes ora buses. Thus, for a single-cycle operation, ora single-cycle chaining operation, 

op, the register-to-register délay of operation op is computed as 

tp(op) = max{tp(Rl), tp(R2)} + tp(FU) + t$etup(R3) 

+max{tp(Cl), tp(C2)} + tp(C3) (27) 

and the longest register-to-register delay for each clock-cycle among ali operations opi in the datapath, is 

tp(DP) = max{V'¡tp( op¡)}. 

The effects of clock skew can also be accounted for: since our area model can provide approximate 

locati.ons of the major blocks (and therefore estimate the length of the clock tree branches), the clock arrival 

times at these blocks can be estimated and used to adjust the clock cycle estimates accordingly. Modeling of 

multi-phase clocking schemes is accomplished assuming the assignment of phases to registers is determined. 

In this case, the timing estimati.on model estimates the delays of ali the combinational logic blocks and can 

feed this informati.on into more sophisticated clocking models (such as [18], for example) to determine a 

lower bound on the clock period and a clocking scheme. This fiexibility allows the use of our models to 

explore the effect of different clocking schemes on layout performance. 

7 Experimental Results 

7.1 Experimental procedure 
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EFl 2t 2º 11 28 2040 19 
EF2 3t 1º 10 32 2221 21 
EF3 1t 1º 10 20 1757 28 
EF4 1t 1º 10 23 1702 28 
EF5 1t 1º 12/5RF 14 948 29 
EF6 2t l6 10 26 2213 21 * 

18 
7 2 2450 

t = Carry-lookahead, i= Ripple-carry, º= Macrocell. non­
pipelined, ·= Shift-add Bitslice Unit, RF=Registe.r File 

* Numbe.r of control steps. Shift-add multiplie.r takes 16 clock 
cycles to execute, numbe.r of clock cycles = 77 

Table 1: Description of the benchmark designs 

In order to benchmark the accuracy of our layout model, we used 8 layouts described in Table 1. These 

layouts were generated from tlrree standard high level synthesis benchmarks[19]: (1) the Elliptic Filter [20] 

(EF1-EF6), (2) the AMD 2901 cpu [21], and (3) the AMD 2910 micro-sequencer [21]. Ali the EF designs 

have 16 bit datapaths and use muxed functional units and registers and were derived manually except for 

EF5 which is implemented using register files and described in [22]. The specifications of the AMD 2901 

and 2910 were mostl.y structural and thus, only one RT level implementation of each was considered. The 

2901 was designed with a bit width of 4 and the 2910 with a bit width of 12. Both used Carry-lookahead 

adders. Altogether, the RT-level implementations spanned a reasonably large set of design variations that 

are likely to be considered during high level design. 

While one may comment that these design examples are small compared to real industrial designs, we 

argue the following reasons in favor of our choice: (1) large size industrial designs are extremely hard to 

obtain from industry for obvious proprietary reasons, (2) even when such designs are made available, they 

are usually described in non-standard format which requires substantial modifications in order to process, (3) 

most of the large real life examples have a fixed structure, and it is usually quite difficult to generate several 

variations of each designas is done in high level synthesis, (4) simulating large designs is too costly and 

sometimes cannot be handled, even by our "industrial strength" tools, and finally (5) two of our examples, 

the 2901 and the 2910 describe standard chips (albeit small ones) used extensively in real life designs. 

Ali the RT-level implementations were written in VHDL and verified for correctness at the functional 

leve!. The Mentor Graphics GDT tools were used to generate and simulate the final layouts which were 

based on the layout methodology explained in Sections 3, 4, 5, and 6. The ~ain difference was that the 

controller netlist was actually synthesized (instead of "estimated") using a combination of the Berkeley logic 

design tools and the GDT Autologic tools. For consistency, the same library of standard cells and Macrocells 

(SCMOS 3µ) was used across ali the designs5• Each layout was functionallyverified using GDT's simulator, 

5 0ur choice of this technology was mainly dueto is availability in the GDT tools. Clearly, the estimation models themselves 
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Benchmark Measured Estimated % Measured Estimated % 
design Area (µ2 ) Area (µ 2

) error clock cycle (ns) clock cycle (ns) error 

EFl 11327x4928 11236x4944 0.4 394 354 10.1 
EF2 9141 x4798 9338x4650 0.4 413 373 9.6 
EF3 7574x4943 8621x4794 9.4 274 258 5.8 
EF4 7885x4297 8019x4304 1.8 290 274 5.5 
EF5 4881 x6143 4285x6409 6.8 419 404 3.2 
EF6 6553x4049 6917x4144 7.4 260 242 6.9 

2901 5340x 1874 5289x 1652 12.7 303 332 9.5 
2910 3375x3815 3414x3980 5.1 246 231 6.0 

1 Average error 1 5.5 11 7.1 

Table 2: Estimation results 

Lsim in switch mode, and the extracted netlist was backannotated and subsequently simulated in the Lsim 

ADEPT mode to obtain accurate timing waveforms. The worst case cycle delay time was measured from 

the Lsim output waveforms. 

In order to assess the accuracy of our chip level mode, we produced estimates of the chip area and delay 

using the datapath area and delay models _described in Sections 3.1 and 3.2. The controller netlist generated 

by the logic synthesis tools was input to the controller model described in Section 4. For designs with 

register files as macrocells, the dimensions of these macrocells were easily derived using simple equations 

based on the macrocell generators provided within the GDT tools. Once the area and delay information of 

all the blocks were estimated, we used the chip level area and timing models described in Sections 6.1, 6.2, 

and 6.3 to obtain estimates of the total chip area and a lower bound on the clock cycle time. 

. 7.2 Results 

The estimation results are shown in Table 2. Frrst, we note that our area estimate are within 10% with 

the exception of the AMD2901 where our estimation error was 12.7% Figure 12 graphically compares the 

ordering of the actual and the estimated layout areas for the designs. We note that the ordering of the 

areas is the same except for EF5 and EF6, whose ranking was reversed by the estimator. However, given 

a 10% maximum area error margin, one can say that the two designs are almost equal in area, which can 

be concluded when the actual areas are compared. Another interesting comparison is between designs EF4 

and EF3 which have the same number of control steps and the same number of functional units and similar 

register count, but di:fferent register and mux allocations. 

Figure 12 also compares the estimates of area using our moclel, and other partial models including: 

functional unit (FU) area (Model B), (FU+register) area (Model C), (FU+register+mux) or datapath area 

(Model D), and (FU+register+mux+controller) area (Model E). The difference between the last model and 

the actual area clearly shows that the effect of global wiring and floorplanning is significant in a1l the 

are technology independent and can accommodate newer technologies as well. For very fine technologies (0.5µ and below) and 
very high frequencies, however, the Elrnore model described in Section 2.2 must be relpaced by a more accurate one. 
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Figure 12: Area comparisons 

examples. It is important to note that the FU, mux, register and controller area curves shown in Figure 12 

were obtained using our block level models described in Sections 3.1, 4.1, and 5 which account for both cell 

area and wiring area inside each of the major blocks. When comparing our model to the other models in the 

graph, we observe that our model is by far the most accurate and the highert quality, with an average error of 

5.5% (using Equation 1) while achieving a fidelity of about 93% (using Equation 2) over the Elliptic Filter 

examples. By comparison, the average errors for models B, C, D, and E are: 63%, 49%, 40%, and 29%, 

respectively on the same Elliptic Filter examples. The fidelities of these models are: 93%, 80%, 93%, and 

80%, in the same order. 

The clock cycle estimation results show a maximum error of 10%, andan average error of 7.1 %. One 

interesting design is EFl in which the long bitslice datapath wires clearly affected the clock cycle time 

adversely. The same effect is reflected in the model which shows a proportionately large estimate of EFl 's 

cycle time. Another interesting tradeoff is between EF5, which uses register files outside the datapath and 

EF4 which uses muxed registers inside the data path bitslice. Both designs have one adder and one multiplier 

each. Note that the cycle time of EF5 is significan tly larger than EF4 mainly because of the combined effects 

of the ripple carry adder delay and the delay in accessing registers inside the register files, which are located 

outside the bitslice datapath. These effects were also accurately reflected in the cycle time estimated by our 

model 

Many high level synthesis systems compute the clock cycle time as the cycle delay of the slowest 

operator among those used in the Rr level design [23]. To assess the accuracy and fidelity of our estimation 

of this metric, we plotted in Figure 13 the actual and estimated clock cycle times for ali 9 designs along wi th 

the delay of the slowest operator in each design. It can be clearly seen that the latter metric is inadequate 
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Figure 13: Comparison of measured, predicted clock cycle times, and slowest operator dela y 

because it does not take the register, mux, and wiring delays into consideration6 and does indeed achieve 

low fidelity (26%) as defined by Equation 2. By contrast, our model shows an excellent tracking ability of 

the actual cycle delay values and achieves 100% fidelity. 

Figure 14 is a plot of the area versus overall input-to-output delay (i.e. cycleJime x # ...clock...cycles) for 

each EF design 7. Oearly, the slowestEiliptic Filter design is EF6 which uses an add-shift multiplier whereas 

the fastest design is EFl which uses two multiplier and two adders and is scheduled in 19 time steps. The 

tradeoffs between the other designs are estimated accurately by our model. For example, EF2 is correctly 

predicted as inferior by our model. 

For ali the benchmarks, the runtime of the model to estimate both the area and cycle times was under 1 O 

seconds of SUN4 CPU time per design. This is expected, since the heuristics used in the model are either 

constant time, linear time, or pseudo-linear time. Of course, we need to run larger examples with man y more 

RT level components and benchmark their runtime before making a general statement about the model's 

efficiency. 

8 Conclusions 

We presented a new layoutpredictive model for high level applications. This model accurately and efficiently 

accounts for a variety of Rf level design styles on a chip as is normally required for digital systems layout. 

We tested our model on a variety of high level design benchmarks. The results show that this model can 

6The only exception is EF6, where the add-shift multiplier cycle delay was dominant. However, the add-shift multiplier itself 
was implemented as a bitslice unit whose cycle delay was computed using our model. 

7We did not include the delays of the AMD designs because they have a variable number of control steps. 
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refiect the effects of layout on design area and performance much more accurately than typical high level 

synthesis cost models. 

Clearly, more benchmarking on a wider range of design styles is needed before it is possible to mak:e a 

more general assessment of the accuracy and efficiency of our models. Another issue of importance is to 

model the effects of control logic optimization on oontroller area and delay. Our current behavioral controller 

models can only account for a fraction of these effects. Large scale systems, especially control-dominated 

systems usually have a large controller contribution to both area and delay. In such cases, the simple 

modeling of logic synthesis may result in large prediction errors. Thus, we need to develop a more complete 

paradigm of the overall logic optimization procedure in order to abstract the level of modeling used for the 

controller. Fmally, we need to look into means of incorporating these prediction models into the overall 

design process with the aim of generating better solutions. These issues and others are open problems and 

subjects of current research. 
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