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Abstract We show that the problem at critical growth, involving the 1-Laplace operator
and obtained by relaxation of —Aju = Alu|"'u + lu|"" =2 4, admits a nontrivial solution
u € BV(RQ2) for any L > A;. Nonstandard linking structures, for the associated functional,
are recognized.
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1 Introduction and main result

Let 2 be a bounded domain in R", n > 2, with Lipschitz boundary. We are interested in the
existence of nontrivial solutions u to the problem which comes from the relaxation of

. Vu u oo .
—divl — ) =2 — + |u| u in Q,
[Vul lut]

u=20 on 092,

(1.1)
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592 M. Degiovanni, P. Magrone

where A € R and 1* = n/(n — 1) is the critical Sobolev exponent for the embedding of
Wy () in L9(Q).
Problem (1.1) looks as the formal limit, as p — 17, of the problem at critical growth

—div (|VulP72Vu) = AulP"2u + [ul”" "2u inQ,

(1.2)
u=0 on 9€2,
where p* = np/(n — p). Let us set, whenever 1 < p < n,
L IVulPd
S = S(n, p) := inf M - ue CX®N\{0) (13)
(f |u|p* dx)p/p ¢
Rl’l
) |Vul? dx
M= M(Q, p) = mf[f?mwdx: uech(sz)\{O}]. (1.4)
Q

Problem (1.2) has received much attention in the last years, starting from the celebrated paper
of Brezis and Nirenberg [5], where it was shown that, for p = 2, problem (1.2) admits a
positive solution u for every A € ]0, A{[ and n > 4. The result has been extended by Egnell,
Garcia Azorero-Peral Alonso, Guedda-Veron [19,22,25], who have proved that (1.2) admits
a positive solution u for any A € ]0, A{[, provided that p > 1 and n > pz. Such a solution u
can be obtained via the Mountain pass theorem of Ambrosetti and Rabinowitz [1] applied to
the C!-functional f : WO1 "7 (€) —> R defined as

1 A 1 «
fu)=— /|Vu|pdx—— /|u|pdx——* /|u|p dx
p p p
Q Q Q

and satisfies
1
0< fu) <— 8", (1.5)
n

When A > A1, itis still meaningful to look for nontrivial solutions u, but the situation is quite
different in the two cases p = 2 and p # 2. If p = 2, it has been proved by Capozzi et al. [7]
that problem (1.2) has a nontrivial solution u# for any A > A1, provided that n > 5 (see also
Gazzola and Ruf [23, Corollary 1]). Such a solution can be obtained via the Linking theorem
of Rabinowitz (see e.g. [31, Theorem 5.3]) applied to the functional f and still satisfies (1.5).

On the other hand, when p # 2 there is in general no direct sum decomposition of
WO1 "7 (Q), which allows to recognize a linking structure in a standard way, unless A belongs
to a suitable right neighborhood [A1, [ of A1, as shown in Arioli and Gazzola [3], where it

is proved that, for any p > 1, problem (1.2) has a nontrivial solution « for any A € [A1, A[,

provided that " > p>. Nevertheless, the result of Capozzi—Fortunato—Palmieri has been

recently extended, via a nonstandard linking construction, in Degiovanni and Lancelotti [13],
where it is shown that the result of Arioli-Gazzola actually holds for any A > Aj.

Coming to the case p = 1, let us first give a precise relaxed formulation of (1.1). First of
all, denote by || ||, the usual norm in L? and by .77 k the k-dimensional Hausdorff measure.
For every u € BV (Q2) (see e.g. [2,24]), let us set

|Du|(€2) := sup /udivvdx v e CR(RY), v)leo <1
Q
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Linking solutions for the “1-Laplace” operator 593

Then, according to Kawohl and Schuricht [28], we mean that we are looking foru € BV (2)
such that

there exist z € L°(2; R") and y € L*°(2) such that

lzlloo < 1, divz € L"(Q), — [qudivzdx = |Du| () + [,q luld#"",
(1.6)
IVlleo <1, ylul=u ae.in L,

—divz=Ay +ul"?u  ae.inQ,

(n is the exponent conjugate to 1*). Other equivalent formulations can be obtained applying
the next Proposition 3.1. Since u = 0 is a solution for any A (take (z, y) = (0, 0)), we say
that u = 0 is the trivial solution of (1.6). Let us also define a locally Lipschitz functional
f:BV(Q2) — Rby

1 .
fu) = |Du|(sz)+/|u|d,%ﬂ"*1 —A/Iuldx—l—* /|u|l dx.
Q2 Q Q

The resul of Brezis—Nirenberg has been extended also to this setting by Demengel [17], who
has proved that (1.6) admits a nonnegative, nontrivial solution u satisfying

0< flu) < %sn (1.7)

for any A €]0, A1[. The argument is based on an approximation procedure from the case
p > 1.

Our purpose is to cover the case A > A1, in the line of the result of Capozzi—Fortunato—
Palmieri, by a direct approach. Our result is the following

Theorem 1.1 Let Q be a bounded open subset of R", n > 2, with Lipschitz boundary.
Then, for every . > A1, problem (1.6) admits a nontrivial solution u € BV () N L>®(Q)
satisfying (1.7).

For the proof, we will apply (nonsmooth) variational methods to the functional f. A first
idea could be to apply the approach of Chang [8] to the locally Lipschitz functional f defined
on BV (£2). However, it has been already observed that, in such a setting, the Palais—Smale
condition fails even in the subcritical case, as the norm-convergence of BV cannot be usually
obtained for a Palais—Smale sequence (see Marzocchi [29] and Degiovanni et al. [15]). For
this reason, it is more convenient to extend the functional f to L (2) with value 400 outside
BV (). In this setting, the nonsmoothness increases, as f is only lower semicontinuous, but
the techniques of Corvellec—Degiovanni—-Marzocchi, loffe-Schwartzman, Katriel [11,26,27]
can be applied, in particular as specified in Degiovanni and Schuricht [16]. On the other hand,
we have more compactness and in Theorem 5.3 we will show that f satisfies (P S). whenever
¢ < (1/n)S", as one may expect from the case p > 1 (see [25, Theorem 3.4]).

A second difficulty, typical in the case p # 2 when A > Ay, is that there is no direct sum
decomposition which allows to recognize a linking structure in a standard way. Therefore, as
in [13], we will apply the Linking theorem of [12], in which linear subspaces are substituted
by cones.

In the next section we recall mainly from [16] some tools of nonsmooth analysis. In Sect. 3
we specify our functional framework, taking advantage of the results of [28]. In Sect. 4 we
build the cones which have to substitute linear subspaces in the linking structure. Sect. 5 is
devoted to the Palais—Smale condition, while in the last section we prove the main result.
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594 M. Degiovanni, P. Magrone

2 Tools of nonsmooth analysis

Let Y be a metric space endowed with the distance d and let f : ¥ — [—o0, +00] be a
function. We set

dom(f)={ue?Y: |f(u)| < +oo}

and consider

epi (f) ={(u,s) €Y xR: f(u) <s}

endowed with the topology induced by ¥ x R. The next definition, equivalent to that of [14],
is taken from [6].

Definition 2.1 For every u € dom(f), we denote by |df| (u) the supremum of the o’s
in [0, +oo[ such that there exist a neighborhood W of (u, f(u)) in epi(f), § > 0 and a
continuous map ¢ : W x [0, 6] — Y satisfying

d(%((l}’s)vt)»v)fl" f(%((vvs)vt))fs_at;

whenever (v, s) € Wandr € [0, §].
The extended real number |df | (u) is called the weak slope of f at u.

The idea is to look for local deformations .77, along which the function f can be decreased
with a certain rate o with respect to the displacement d (5 ((v, s), t), v), and then optimize o .
In particular, if Y is an open subset of a normed space and f is of class C 1 then |df| (u) =
Il f/(w)]| for every u € Y (see [14, Corollary 2.12]).
Moreover, it is easily seen that |df| is lower semicontinuous with respect to the graph
topology: if (ux) is a sequence convergent to u in dom( f) with f(ux) — f(u), then

liminf |df1 (ux) = 1df] ().

Definition 2.2 Anelement u € Y is said to be a (lower) critical point of f,if | f(u)| < 400
and |df| (u) = 0. A real number c is said to be a (lower) critical value of f, if there exists a
(lower) critical point u of f with f(u) = c.

Definition 2.3 A Palais—Smale sequence ((P S)-sequence, for short) for f is a sequence (uy)
in Y such that

sup | f(ux)| < 400
K

and such that |df| (ug) — 0.

Given a real number ¢, a Palais—Smale sequence at level ¢ ((PS).-sequence, for short) is
a (PS)-sequence (uy) such that f(u;) — c.

The function f is said to satisfy (PS), if every (PS).-sequence admits a convergent
subsequence in Y.

Assume now that X is a real Banach space, whose dual space will be denoted by X’. In
the following, 8f (1) will denote the Clarke—Rockafellar subdifferential and f° (u; v) the
associated generalized directional derivative [10,32].

Let fo : X —>] — 00, 400] be a convex, lower semicontinuous function and f1, g :
X — R two locally Lipschitz continuous functions. Let also f = fy + f1 and

M={ueX: gu) =0}
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Linking solutions for the “1-Laplace” operator 595

In such a case, according to the results of [16], we have that the functions
|df| : dom(f) —> [0, 4+00], |d (f],,)|: dom(f) N M —> [0, +o0]

are lower semicontinuous with respect to the topology induced by X.

We are first interested in a (nonsmooth) extension of the Linking theorem, in which linear
subspaces are substituted by symmetric cones. If A € X\{0} is symmetric, we denote by
Index (A) the Z,-cohomological index of Fadell and Rabinowitz [20,21]. Let us recall that
yT(A) < Index (A) < y~(A), where, according to [9],

¥T(A) = sup{m € N : there exists an odd continuous map ¥ : R™\{0} — A},
¥ (A) =inf {m € N : there exists an odd continuous map ¥ : A — R"\{0}}.

Theorem 2.4 Let X_, X be two symmetric cones in X such that X ; is closed in X,

X_NXy ={0}
Index (X_\{0}) = Index (X\X,) < 0.

Letalsoe € X\X_,0<ry <r_,

Sy ={veXi: vl=rsh
O={tet+tu:t>0, ueX_, |tetul <r_},
P={ueX_: u|<r_}Uf{te+u: t>0, ueX_, |tedul|| =r_}

be such that

sup f < inf f, sup f < +o0.
P S+ 0

Then f admits a (P S).-sequence with

inf f <c<supf.
Sy 0
In particular, if f satisfies (PS), then c is a critical value of f.

Proof Tf f : X —> Ris of class C!, by [12, Corollary 2.9] the assertion is a particular case
of [12, Theorem 2.2]. If f : X — R is continuous, the proof is exactly the same, by the
Deformation theorem of [11]. The case we are treating can be reduced to the continuous one
arguing, as in [16], on the continuous function ¢y : epi (/) — R defined by ¥ (u, s) = s.
O

We also need an information in the constrained case.
Theorem 2.5 Assume that f and g are even with g(0) # 0 and that
Index {u € M : f(u) < +00}) = co.

Suppose also that fy is bounded from below, satisfies (PS). for any ¢ € R and that, for
everyu € M with f(u) < 400, there exist ux € X such that f(uy) < 400 and

go(u;u,—u)<0, go(u;u—u+)<0.

For everym > 1, let

cm = inf [supf 1 AC M, A is symmetric and Index (A) > m]
A
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596 M. Degiovanni, P. Magrone

Then ¢, — +00 and, for every m > 1 and ¢ with ¢, < ¢ < ¢p+1, we have

Index {u e M : f(u) <c}) =m.

Proof In the C! setting, the assertion follows from the Deformation theorem (see e.g. [12,
Theorem 3.2]). For the extension to the nonsmooth case we are treating, we may argue as in
the previous proof. o

Finally, let us recall from [16, Theorem 3.5] two results which connect the metric notion
of weak slope with that of subdifferential.

Theorem 2.6 Let u € X with f(u) < +oo and |df| (u) < +00. Then there exist w € X'
with |w| < |df| (u) and a € 3f1(u) such that —a + w € dfo(u), i.e.

fo(w) = fou) — (o, v —u) + (w,v—u), YvelX.

Theorem 2.7 Let u € M with f(u) < +o0o and |d (f|M)| (u) < +o00. Assume also that
there exist uy+ € X such that f(uy) < 400 and

go(u;u_—u)<0, go(u;u—u+)<0.

Then there exist w € X' with ||w|| < |d (f|M)| (u) and a € df1(u), B € 9g(u), A € R such
that —a + AB + w € dfp(u), i.e.

fow) = fou) — (o, v —u) +A(B,v—u) + (w,v—u), YvelX.

3 The functional framework

Let 2 be abounded open subset of R”, n > 2, with Lipschitz boundary and let .. € R. Accord-
ing to [28], let us define a convex, lower semicontinuous functional f{ : Ll*(Q) —> [0, +00]
by

|Du| (2) + fasz lulds"='  ifu e BV(Q),

fo(w) =

+00 ifue LY (Q\BV(Q),

and two locally Lipschitz continuous functionals fi, g : LY (Q) — R by
1 *

fiwy =2 [luldz =55 [ " ax.

1*
Q Q
gu) = / luldx — 1.
Q

As usual, the dual of L!"(£2) will be identified with L(m/(Q) = L"(2). Moreover, fjis a
norm on BV (2) equivalent to the canonical one. According to [17,28], we have

S = S(n, 1) = min [ {Zﬁ”) Cue BV(Q)\{O}], 3.1)
1*

A= A1(2, 1) = min [ ﬁ(ﬁ‘) Cue BV(Q)\{O}], (3.2)
1
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Linking solutions for the “1-Laplace” operator 597

where S, A1 are defined in (1.3), (1.4). In particular, contrary to the case p > 1, the constant S
is achieved in (3.1), for instance on characteristic functions of balls contained in €2 (see [4]).

We are interested in the application of variational methods to f = fy + f1 on the whole
space L (f2) and to fy constrained on

M= [u cL(Q): gw) = o].
In order to apply the results of the previous section, let us first recall from [28] the next

Proposition 3.1 Let u € BV (2) and w € L"(R2). Then the following facts are equivalent:
(a) we have w € dfy(u);
(b) we have

/uwdx = |Du|(sz)+/|u|dyf"*l
Q IR

and there exists z € L°°(2; R") such that ||z]co < 1 and —divz = w;

(¢) there exists z € L*°(2; R") such that ||z]|co < 1, —divz = w and

/uwfpdx —/uz -Vedx = sup /udivd/dx DY eCEMRYLGRY), Y] <9
Q Q Q
Sfor every ¢ € C2°(R™) with ¢ > 0.

Proof 1t is enough to combine [28, Proposition 4.23] with [28, Proposition A.12] and recall
that the function defined as

u on <2,

0 onR"\,
belongs to BV (R"). O

In general, the graph of the subdifferential of a convex, lower semicontinuous functional
is strong-weak™ closed. In our case, we have a better property which will be useful later.

Proposition 3.2 Let (uy) be a sequence in BV (2) and (wy) a sequence in L™ (2) such that
(uy) is weakly convergent to u in L]*(SZ), (wg) is weakly convergent to w in L"(2) and
wy € dfo(uy) for every k € N.

Then u € BV (2) and w € dfy(u).

Proof Forevery h > 0, define Ty, R, : R —> R by T}, (s) = min{max{s, —h}, h}, Ry(s) =
s — Ty (s). By [2, Theorem 3.99] we have

|Du| (€2) = [D(Th(w))| (€2) + |D(Rn(w))| (£2),
hence

Jow) = fo(Tr(w)) + fo(Ry(w)), Vu € BV(Q). (3.3)

First of all, from the inequality

0= fo(0) = folux) — / wylg dx

Q
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598 M. Degiovanni, P. Magrone

we see that (ug) is bounded in BV (R2). It follows that u € BV (2) and that (T} (uy)) is
strongly convergent to Ty, (u) in L' (), for every h > 0.
We also have

Jo) + fo(Rn(ur)) = fo(v + Ru(ur)) = folug) + / wi (v + Ry (ug) — uyg) dx
Q

= fo(Th(ur)) + fo(Rn(ui)) + / wi (v — Ty (ug)) dx,
Q

whence
fo) = fo(Th (uyp)) + / wi (v — Ty (ug)) dx.
Q

Passing to the limit as k — oo and taking into account the lower semicontinuity of fp, we
get

Jo) = fo(Th(w)) + / w( — Tp(u)) dx.

Q

Passing to the limit as 7 — oo, the assertion follows. O

Let us also prove a simple regularity property. A related result is contained in [18,
Proposition 7].

Proposition 3.3 Let u € BV (Q2) with dfy(u) # @. Then u € L*°(Q).

Proof Letw € L"(2) with w € dfy(u). For every h > 0, we have
So(Tn(u)) > fo(u) +/w(Th(u) —u)dx.
Q
By (3.1), (3.3) and Holder’s inequality, it follows
1/n

S||Rh(u)||l*EfO(Rh(M))E/WRh(M)dXE / widx | IRy

Q {lul>h}

If h is large enough to guarantee that

1/n

/ |w|" dx <3S,

{lul>h}

we infer that || Ry (1) |1+ = 0 and the assertion follows. o
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Linking solutions for the “1-Laplace” operator 599

Finally, from [28] we have the

Proposition 3.4 Let u € BV () with |df| (u) < +oco. Then u € L*°(2) and there exist
y € L®(Q) and w € L"(Q2) such that ||y ||co < 1, || = u ae. in Q, |w|, < |df| (u) and

7o) = o)+ [y =wdx+ [ 2ue - dx
Q Q
+/ w —u)dx, Yve BV(Q).
Q
Proof 1t is enough to combine Theorem 2.6 with Proposition 3.3 and [28, Proposition 4.23].
O

Corollary 3.5 Ifu € Ll*(Q) is a critical point of f, thenu € BV () N L*°(Q) and u is a
solution of (1.6).

Proof 1t is enough to combine Proposition 3.1 with Proposition 3.4. O

4 Symmetric cones related to the 1-Laplace operator

In this section we show how to build, for the 1-Laplace operator, two cones X_, X with the
properties required in Theorem 2.4. The construction is based on a sequence of eigenvalues
for the 1-Laplace operator. We refer the reader to Milbers and Schuricht [30] for a slightly
different construction of such a sequence.

Proposition 4.1 The following facts hold:
(a) foreveryu € BV(2) N M, there exist u+ € BV (2) such that
go(u;u_—u) <0, go(u;u—u+) < 0
(b) foreveryu € BV(2) N M with |d (f0|M)| (u) < +00, we have u € L°°(Q2) and there

exist A € R, y € L®(Q) and w € L"(Q) such that |y|lco < 1, ylu| = u a.e. in Q,
lwlla < |d (fou)] () and

So() = fo(uw) +A/y(v —u)dx +/w(v —u)dx, Yve BV(Q);
Q Q
(¢) the functionals fy and g are even with g(0) # 0 and Index (BV (2) N M) = oo with

respect to the topology of LY (Q); moreover, Joju is bounded from below and satisfies
(PS)c forany c € R.

Proof In the proof of [28, Theorem 4.6] it is shown that (a) holds. Then assertion (b) follows
from Theorem 2.7, Proposition 3.3 and [28, Proposition 4.23]. Since BV (£2) has infinite
dimension, it is obvious that y T (BV () N M) = oo, also with respect to the topology of
Ll*(Q). Therefore Index (BV (2) N M) = oo.

If (ug) is a (P S)-sequence for fo 3, by (b) we have

7o) = fotu) +2a [ 7o = dx + [ wo —wdx Vo€ BV@)
Q Q
with Ay € R, yx € L*°(R2) and wi € L"(Q2) satisfying [|Vklleco < 1, Ykluxl = ug a.e. in

Q and ||wg|l, — 0. Since fy is an equivalent norm in BV (£2), up to a subsequence (uy) is
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600 M. Degiovanni, P. Magrone

convergenttou € BV (2) weakly in LY () and strongly in L' (), while () is convergent
to y in the weak™ topology of L°°(£2). Moreover, by Proposition 3.1 we have

So(ug) Z?»k/ykukdx-F/wkukdx

Q Q
=Xk/|uk|dx+/wkukdx=kk+/wkukdx.
Q Q Q

Therefore, also (Ag) is bounded, hence convergent, up to a subsequence, to some A. From
Proposition 3.2 it follows that Ay € dfy(u), whence, by Proposition 3.1,

li]?lfo(uk) =li]£n Ak/ykukdx—}—/wkukdx =k/yudx = fo(u).
Q Q Q

From [15, Theorem 4.10] we conclude that () is strongly convergent to u in Ll*(Q).
The other assertions contained in (c) are obvious. ]

For every m > 1, let
Am = inf [sup fo: A C M, Aissymmetric and Index (A) > m]
A

Since Index (A) = 0 only for A = {J, the definition of A; agrees with (3.2).

Theorem 4.2 We have that A, — +00. Moreover, for every m > 1 and p with L, < u <
Am+1, we have

Index u € BV(Q)\{0} : |Du|(£2)+/|u|dif"_1 §/L/|u|dx =m
aQ Q

with respect to the topology of L7(Q).

Proof Since fjand || ||; are both positively homogeneous of degree 1, itis enough to combine
Theorem 2.5 with Proposition 4.1. O

In view of the application of Theorem 2.4, let us see a first possible choice of X_, X .

Theorem 4.3 Letm > 1 and let 1, < |t < hy+1. Then there exist a symmetric cone X _ in
BV (R2) and a symmetric cone X 1 in L () such that X _ is closed in L' (), X4 is closed
in L' (Q) and:

(a) we have

X_CjueBV(Q): IDuI(Q)—}-/Iulde%ﬂ'Fl <Am /Iuldx N L2 ();
Q2 Q

(b) X_ N M is bounded in L®(2) and strongly compact in L' (Q);
(¢c) we have

X, NBV(Q) S {uecBV(Q): |Du|(sz)+/|u|djf"*1 zu/luldx :
0 Q
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Linking solutions for the “1-Laplace” operator 601

(d) we have Index (X_\{0}) = Index (Ll*(Q)\XJr) = m with respect to the topology of
LY(Q).

Proof Let

X_={ueBV(Q): |Du|(Q)+/|u|d%"”_1 <Am /|u|dx

Since 5(; — N'M is an odd deformation retract of X ~\{0}, by Theorem 4.2 we have that
Index (X_ N M) = m. Moreover, X_ N M is strongly compact in L' ().
Let Ty, Rj, be defined as before. First of all, we claim that there exists 2 > 0 such that

fo (Th@)) < Am /|Th(u)|dx, Yue X_NM; .1
/lTh(u)|dx > % YueX_NM. (4.2)
Q

Actually, for every u € BV (2) Holder’s inequality and (3.1) yield

1
™

/|u|dx < 2" (u £ O /|u| x| < éz" (0D F folw).

Since for every u € BV (£2) N M we have Rj,(u) € BV (2) and

1=/|u|dx > / uldx = h2" ((Ry(w) # 0)),
{Rp (u)7#0}

it follows

Shi /|Rh(u)|dx < fo(Ry(u)) Yu e BV(Q)N M.
Q

Then, if A is large enough, we have

m /IRh(u)ldx < fo(Rp(uw)) Vu e BV(Q)NM

and (4.1) follows from (3.3). Moreover, if u € X_ N M, we also have

1
Sht [ IRWIdx = fo(Ruw0) = fow) = .
Q
Then (4.2) also follows, provided that % is large enough.
With this choice of &, let
Xo={tThw: t>0, ue X_NM}.

Then X_ is a symmetric cone in BV (2) N L°°(2). From (4.1) it follows that X_ C X_,
while (4.2) implies that

[vlloo < 2R ([v]l1, Yve X_.
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602 M. Degiovanni, P. Magrone

In particular, X _ N M is bounded in L°°(£2). Since the surjective map

X_NM—X_NM
Ty (u)
| T () 111

is odd and continuous with respect to the topology of L "(Q), we have

Index (X_\{0}) > Index (X_ N M) > Index (X_ N M) = m.

Actually, equality holds, as X _ C X_. Finally, the above map is also continuous with respect
to the topology of L' (). Therefore X _ N M is strongly compact in L'(£2) and X_ is closed
in L1(Q).

Again from Theorem 4.2 we know that

Index | {u e BV(Q)NM : |Du|(sz)+/|u|dyf"*1 <ut|=m.
02

Let U be a symmetric open neighborhood of such a set satisfying Index (U) = m. Then
Xy =L@\ {tu: t >0, ueU)}

has the required properties. O

5 The Palais—Smale condition

Lemma 5.1 Let (uy) be a (PS) sequence for f and let u € BV (). Assume that (uy) is
bounded in BV (2) and weakly convergent to u in LY(Q).
Then we have

tim (fotue) = luel17) = fotw) = ull}:,
tim sup ( fo(Ri(i)) = [IRa@12) < So(Ra@) = [RuGOI, VA > 0.
k
Proof By Proposition 3.4, there exist (yx) in L°°(2) and (wy) in L™ (2) such that || ¢ [loo < 1,
Velur] = ug a.e.in 2, |willn — 0and Ay + |u]" ~2ux + wi € 3fo(ug). Moreover, (ug) is
also strongly convergent to 1 in L' (€2) and, up to a subsequence, (y) is convergent to some

y in the weak* topology of L*°(£2). By Proposition 3.2 it follows Ay + [u|'" ~2u € dfy(u).
Then by Proposition 3.1 we have

So(uk) =)\/Vkukdx+/|”k|1*dx+/wk”kdx
Q

Q Q
:A/Iukldx+/Iukll*dx—i-/wkukdx, 5.1
Q Q Q
fow) :A/yudx+/|u|‘*dx,
Q Q

@ Springer



Linking solutions for the “1-Laplace” operator

603

whence

lim fo(uk)—/|uk|‘*dx = lim A/ykukdx—i—/wkukdx

k
Q Q Q

:)L/yudx:fo(u)—/|u|l*dx.
Q

Q

By (3.3) we also have

fo(R(r)) — 1Ry (i) 11

= (folwo) = Nual2) = foTi @) + (el 12 = NRa @i 117

On the other hand, (7}, (ux)) is convergent to 7} (u) in L (€2) and we have that

0<Is|" = IRy <els|" 4+ Che, Ve > 0.
From [12, Lemma 4.2] it follows that
tim (el = 1Ry Gel1) = (Il = IRAGOIE)-
By the lower semicontinuity of fj, the second assertion also follows.

Lemma 5.2 Each (PS) sequence for f is bounded in BV (Q2).

Proof Let (uy) be a (PS) sequence for f. Assume, for a contradiction, that fo(uz) — +o0.

If we set
Uk

T foun)”

up to a subsequence (vg) is strongly convergent in L' (2) to some v € BV (£2). Since

S ug)
So(ur)

1 *__ *
= 1=l — 4 Fow) ™~ llvellis,

from the boundedness of ( f (ux)) we deduce that (vi) is strongly convergent to O in L (2).

On the other hand, as before it holds (5.1) with |jwg]||,, — 0. It follows

1 1
F) =+ Ut = 1+ 1 /wkuk dx,

Q

namely

fay 1
four) n

1
[ = Aol + /wkvkdx.
Q

Passing to the limit as k — 0o, we get 0 = 1/n and a contradiction follows.

Theorem 5.3 For any A € R, the functional f satisfies (PS). whenever ¢ < (1/n)S".
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Proof Let (ux) be a (PS). sequence with ¢ < (1/n)S". We already know that (uy) is
bounded in BV (2), hence convergent, up to a subsequence, to some u € BV (£2) weakly in
L (f2) and strongly in L' (). From (5.1) it also follows that

1 *
f) = - +/wkukdx,
Q

with ||wg|l, — 0, whence
lim lugll s~ = (o)™ < s.
Given ¢ > 0, let & > 0 be such that
fo(Rn@) = IRy @)1} < & (S = (ne)'/").

Then we have

lim sup || Ry, (ug) 1171 < (ne) /™
k

and, by (3.1),
(S = IR @OI") IRR @O = fo(Ra@i)) = I Ra@l -

From Lemma 5.1 it follows

lim sup || Ry (up)ll1+ < e,
k
whence | R, (1) 1+ < &. Since (T}, (uy)) is strongly convergent to 7y, (u) in Ll*(Q), we have
lim sup [lug — ull1+ < limsup |7y (ui) — T (u) 1+
k k
+limsup || Ry (i) 11+ + | Rp () |1+ < 2¢
k

and the assertion follows by the arbitrariness of ¢. O

6 Proof of the main result

Let xo € 2 and let

e, = nn—l pl—n XBp(xo)-

Then it is well known (see [4]) that e, € BV (R") and

|De,|(R") = / le|" dx = s, 6.1)
Rn

/}up| dx = n""' £ (B, (0)) p. (6.2)

RV(

LetA > Xj,letm > 1besuchthat A, <A < Apyiandlet A < p < Ayqq. Let X, X be
as in Theorem 4.3. Let also

Vp = XR"\Ba,(xo) Vs Yve X_;
X’ = {vp T veE X,}.
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Lemma 6.1 There exist C, p > 0 such that Bz (xo) € Q and

1/1*
fowp) < fo(v) + Cp" ! /Ivll* dx , (6.3)
/|vp|1*dx 3/|v|1*dx—cp"/|v|1*dx, (6.4)
Q Q Q
1/1%
/|vp|dx Z/|v|dx—Cp” /|v|1*dx , (6.5)
Q Q Q
e, & X” and X’ is closed in L' (), (6.6)
X" N X; ={0}, Index (X”\{0}) = Index (Ll*(sz)\x+) —m, 6.7)

foreveryv € X_ and p €]0, p].

Proof Let first p > 0 be such that Byz (xg) € Q2 and let 0 < p < p. According to [2]
and Theorem 4.3, we have
fowe) < o) + 1o 1D X8y x0) [ (R) < fow) + C p" ! ]l

whence (6.3). The proof of (6.4) and (6.5) is similar and even simpler.
Itis clear that e, ¢ X” . From (6.3), (6.5) and Theorem 4.3 it also follows that

1
fowp) = 5 —HL)/valdx, Voex.

provided that p is small enough. Therefore X” N X, = {0}. Moreover, for every v € X _
we have

1
™

1
/Ivldx <j” sz (xo) 5 /|v| dx + / lv| dx

Q\ B2, (x0)
<S5 2" (By (xo)) Jo(v) + / lvldx
Q\ By (x0)
l
< S 2" (Bay (x0)) "/Ivldx—l— / lv] dx.
Q\ B2y (x0)

If p is small enough, we get

/|v|dx§C / [v|dx foreveryv e X_.
Q\ B2y (x0)

First of all, it follows that we have v, = 0 only for v = 0. Since {v — v,} is continuous
and odd with respect to the topology of LY (Q) from X_\{0} to X”\{0}, we get

Index (X”\{0}) > Index (X_\{0}) = Index (Ll*(sz)\x+) =m.
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Actually, equality holds, as X \{0} € L ()\X.. Finally, let (v®) be a sequence in
X_ with (v convergent to some u in L' (). Then (v®) is bounded in L' (2\ By, (x0)),
hence in L' (€2), hence in BV (). Up to a subsequence, w®yis L! (£2)-convergent to some
element of X_, whence u € X”. Therefore, X” is closed in L! (). |

Lemma 6.2 There exist p, § > 0 such that
1
sup{ftep+u): 1 >0, ue X’} <-8"(1-38p)", V¥pel0,pl (6.8)
n

Proof Let p > 0 be first such that the assertion of Lemma 6.1 holds and let 0 < p < p.
Since X” is a cone, it is easily seen that
sup{f(tep—l—u) c1t>0, ue Xf}
1 [Sup[fo(ep+u)—x||ep+u||1 e XQHH
n llep + ulli-
n

1 e,) — Alle + u Mlu

1 [S pl (fole) = Mleyl) Gow —Hlo) XpH |
n (lepllfs + Nlullix)

as e, and u have disjoint supports. Writing u = v, with v € X_, the assertion we need to
prove takes the form

- (folep) — Aleylh) + (fo<vpl)l—A||vp||1) vex L osasm
(lep s+l 1) M

If we set 0 = n~1 2" (B (0)), by (6.1), (6.2), Lemma 6.1 and the fact that A,, < X, we
have

(folep) = Rllepllt) + (fowp) = Allv,lh)
(lep Il + v, 0t "

(8" = ap) + (Co" vl + ACo" [v]11+)
(57 + lvllz = Comlull )T

=

Now, arguing by contradiction, let § = 1/k, let py — 01 and let v® € X_ be such that

(k) (k)
(foten) = Hlepn) + (fotwi) = Avit'lh) (-2

k
(e +10t:)”

It follows

(Sn_o‘pk)+( tHivgll+ + ACpf ||Uk||1*) Pk
> S(l— *)
|1*)1/1 k

Up to subsequences, it is enough to consider the three cases:

(" + llogll}s — Copllvg|

@ Mvklls — o0,
(i) Nkl — €€10, +oof,
(i) fels — 0.
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In case (i) we get

(8" = ap) + (Cop~ uellss +ACo] luklh»)

= /T —0
(8" + vk llis — Cogllvill )
while in case (ii) we obtain
(8" = api) + (o~ loelli= + 2Cpf luellr-) 5
» ™ /T - <5
(8" + kel — Cofllvk i) (Sn+ 1)

In both cases, a contradiction follows. In case (iii) we have, eventually as k — oo,

(8" = op) + (Cop ™ vl +2Cpf e+
(5" + luells — o el 1) 7™
(8" = op) + (Cop " llvelhis +ACof k-
= gn—1
= 5= 8""pi (o= Cppuellns = 2Co " vkl

Then a contradiction follows also in this case. m]

Proof of Theorem 1.1 Let X > Ay,letm > 1besuchthati,, <A < Xipirandletd < pu <
Am+1-Let X_, X4 be as in Theorem 4.3 and let p > 0 be small enough to guarantee that the
assertions of Lemmata 6.1 and 6.2 hold.

Since A < u, for every u € X1 we have

Fa = (1=2) sl = = g,
> . =

Therefore, there exist 74, & > 0 such that f(u) > « forevery u € X4 with |lu||1+ = r4.On

the other hand, since A > A,,, by Lemma 6.1 we also have, for every v € X _,

_ 1 * C * *
Fwp) < Co" Ml + ACo" |v]l1+ — = Ivll{s + — p"llvll{+ < vl

o
1* 2 2-1%
provided that p > 0 is small enough. Combining this fact with Lemmata 6.1 and 6.2, we see
that there exists p > 0 such that e, ¢ X’ X* is closed in L(2) and
X? N Xy ={0}, Index (X”\{0}) = Index (L‘*(Q)\X+) —m,
1
sup{f (te,+u): 1 >0, ue X’} <-5"
n

sup{f(w): ueXx’}<

N R

Since X” is closed in L' (£2), hence in L'" (), there exists b > 0 such that
lizepllix + llulli+ < blite, +ull;»  foreveryt €e Randu € X
(see also [12]). Consequently, there exists &' > 0 such that

fou) < b'||lully« forevery u € Re, + X”,
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whence
f() — —oo  whenever |lu||i+ — oo withu € Re, + X7,

In particular, there exists r— > ry such that f(u) < O whenever u € Re, + X P with
luell = = r—.

From Theorems 2.4 and Theorem 5.3 we deduce that f admits a critical value ¢ with
0<c< % S". By Corollary 3.5, there exists a solution u € BV (2) N L°*°(2) of (1.6) with

0< fu) < 1S”.
n

Of course, u is a nontrivial solution. O
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