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Abstract. A novel realization of the Starobinsky inflationary model within a moderate exten-
sion of the Minimal Supersymmetric Standard Model (MSSM) is presented. The proposed su-
perpotential is uniquely determined by applying a continuous R and a Z2 discrete symmetry,
whereas the Kähler potential is associated with a no-scale-type SU(54, 1)/ SU(54)×U(1)R×Z2

Kähler manifold. The inflaton is identified with a Higgs-like modulus whose the vacuum ex-
pectation value controls the gravitational strength. Thanks to a strong enough coupling
(with a parameter cT involved) between the inflaton and the Ricci scalar curvature, inflation
can be attained even for subplanckian values of the inflaton with cT ≥ 76 and the corre-
sponding effective theory being valid up to the Planck scale. The inflationary observables
turn out to be in agreement with the current data and the inflaton mass is predicted to be
3 · 1013 GeV. At the cost of a relatively small superpotential coupling constant, the model
offers also a resolution of the µ problem of MSSM for cT ≤ 4500 and gravitino heavier than
about 104 GeV. Supplementing MSSM by three right-handed neutrinos we show that spon-
taneously arising couplings between the inflaton and the particle content of MSSM not only
ensure a sufficiently low reheating temperature but also support a scenario of non-thermal
leptogenesis consistently with the neutrino oscillation parameters.
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1 Introduction

After the announcement of the recent PLANCK results [1, 2], inflation based on the potential
of the Starobinsky model [3–5] has gained a lot of momentum [6–20] since it predicts [3–5, 21]
a (scalar) spectral index very close to the one favored by the fitting of the observations by
the standard power-law cosmological model with cold dark matter (CDM) and a cosmo-
logical constant (ΛCDM). In particular, it has been shown that Starobinsky-type inflation
can be realized within extensions of the Standard Model (SM) [22, 23] or Minimal SUSY
SM (MSSM) [24, 25]. However, the realization of this type of inflation within Supergravity
(SUGRA) is not unique. Different super- and Kähler potentials are proposed [7–9] which
result to the same scalar potential. Prominent, however, is the idea [6, 7] of implementing
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this type of inflation using a Kähler potential, K, corresponding to a SU(N, 1)/ SU(N)×U(1)
Kähler manifold inspired by the no-scale models [26–28]. Such a symmetry fixes beautifully
the form of K up to an holomorphic function fK which exclusively depends on a modulus-
like field and plays the role of a varying gravitational coupling. The stabilization of the
non-inflaton accompanying field can to be conveniently arranged by higher order terms in
K. In this context, a variety of models are proposed in which inflaton can be identified with
either a matter-like [6, 7, 24, 25] or a modulus-like [7, 8] inflaton. The former option seems
to offer a more suitable framework [24, 25] for connecting the inflationary physics with a
low-energy theory, such as the MSSM endowed with right handed neutrinos, N c

i , since the
non-inflaton modulus is involved in the no-scale mechanism of soft SUSY breaking (SSB). On
the other hand, the inflationary superpotential, WMI, is arbitrarily chosen and not protected
by any symmetry. Given that, the inflaton takes transplanckian values during inflation,
higher order corrections — e.g., by non-renormalizable terms in WMI — with not carefully
tuned coefficients may easily invalidate or strongly affect [10, 29–31] the predictions of an
otherwise successful inflationary scenario.

It would be interesting, therefore, to investigate if the shortcoming above can be avoided
in the presence of a strong enough coupling of the inflaton to gravity [32–36], as done [37–44]
in the models of non-minimal Inflation (nMI). This idea can be implemented keeping the no-
scale structure of K, since the involved fK can be an analytic function, selected conveniently.
In view of the fact that fK depends only on a modulus-like field, we here focus on this
kind of inflaton — contrary to refs. [24, 25]. As a consequence, the direct connection of the
inflationary model with the mechanism of the SSB is lost. Note, in passing, that despite
their attractive features, the no-scale models [24, 25] of SSB enface difficulties — e.g., viable
SUSY spectra are obtained only when the boundary conditions for the SSB terms are imposed
beyond the Grand Unified Theory (GUT) scale and so the low energy observables depend on
the specific GUT.

Focusing on a modulus-like inflaton, the link to MSSM can be established through the
adopted WMI. Its form in our work is fixed by imposing a continuous R symmetry, which
reduces to the well-known R-parity of MSSM, and a Z2 discrete symmetry. As a consequence,
WMI resembles the one used in the widely employed models [45–47] of standard F-term Hybrid
Inflation (FHI) — with singlet waterfall field though. As a bonus, a dynamical generation of
the reduced Planck scale arises in Jordan Frame (JF) through the vacuum expectation value
(v.e.v) of the inflaton. Therefore the inflaton acquires a higgs-character as in the theories
of induced gravity [48–54]. To produce an inflationary plateau with the selected WMI, fK is
to be taken quadratic, in accordance with the adopted symmetries. This is to be contrasted
with the so-called modified Cecotti model [7–10, 55, 56] where the inflaton appears linearly
in the super- and Kähler potentials. The inclusion of two extra parameters compared to
the original model — cf. refs. [7, 8, 10] — allows us to attain inflationary solutions for
subplanckian values of the inflaton with the successful inflationary predictions of the model
being remained intact. As a bonus, the ultaviolet (UV) cut-off scale [11, 57–63] of the theory
can be identified with the Planck scale and so, concerns regarding the naturalness of the
model can be safely eluded.

Our inflationary model — let name it for short no-scale modular inflation (nSMI) —
has ramifications to other fundamental open problems of the MSSM and post-inflationary
cosmological evolution. As a consequence of the adopted U(1)R symmetry, the generation [47,
64–67] of the mixing term between the two electroweak Higgses is explained via the v.e.v of
the non-inflaton accompanying field, provided that a coupling constant in WMI is rather
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suppressed and the masses of the gravitino (G̃) lie in the multi-TeV region — as dictated
in many versions [68–75] of MSSM after the recent LHC [76, 77] results on the Higgs boson
mass. Finally, the observed [78] baryon asymmetry of the universe (BAU) can be explained
via spontaneous [79, 80] non-thermal leptogenesis (nTL) [81–83] — consistently with the G̃
constraint [84–91] and the data [92, 93] on the neutrino oscillation parameters.

The basic ingredients — particle content and structure of the super- and Kähler po-
tentials — of our model are presented in section 2. In section 3 we describe the inflationary
potential, derive the inflationary observables and confront them with observations. Section 4
is devoted to the resolution of the µ problem of MSSM. In section 5 we outline the scenario
of nTL, exhibit the relevant imposed constraints and describe our predictions for neutrino
masses. Our conclusions are summarized in section 6. Throughout the text, the subscript of
type, χ denotes derivation with respect to (w.r.t.) the field χ (e.g., ,χχ = ∂2/∂χ2) and charge
conjugation is denoted by a star.

2 Model description

We focus on a moderated extension of MSSM with three N c
i ’s augmented by two superfields, a

matter-like S and a modulus-like T , which are singlets under GSM = SU(3)c×SU(2)L×U(1)Y .
Besides the local symmetry of MSSM, GSM, the model possesses also the baryon number
symmetry U(1)B, a nonanomalous R symmetry U(1)R and a discrete Z2. Note that global
continuous symmetries can effectively arise [94] in many compactified string theories. The
charge assignments under the global symmetries of the various matter and Higgs superfields
are listed in table 1. We below present the structure of the superpotential (section 2.1) and
the Kähler potential (section 2.2) of our model.

2.1 The superpotential

The superpotential of our model naturally splits into two parts:

W =WMSSM +WMI, (2.1a)

where WMSSM is the part of W which contains the usual terms — except for the µ term —
of MSSM, supplemented by Yukawa interactions among the left-handed leptons and N c

i

WMSSM = hijEe
c
iLjHd + hijDd

c
iQjHd + hijUu

c
iQjHu + hijNN

c
i LjHu. (2.1b)

Here the ith generation SU(2)L doublet left-handed quark and lepton superfields are denoted
by Qi and Li respectively, whereas the SU(2)L singlet antiquark [antilepton] superfields by
uci and di

c [eci and N c
i ] respectively. The electroweak Higgs superfields which couple to the

up [down] quark superfields are denoted by Hu [Hd].
On the other hand, WMI is the part of W which is relevant for nSMI, the generation of

the µ term of MSSM and the Majorana masses for N c
i ’s. It takes the form

WMI = λS
(
T 2 −M2/2

)
+ λµSHuHd +

1

2
MiNcN c2

i + λijNcT 2N c
iN

c
j /2mP, (2.1c)

where mP = 2.44 · 1018 GeV is the reduced Planck mass. The imposed U(1)R symmetry
ensures the linearity of WMI w.r.t. S. This fact allows us to isolate easily via its derivative
the contribution of the inflaton T into the F-term SUGRA scalar potential, placing S at
the origin. The imposed Z2 prohibits the existence of the term ST which, although does
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S T Hu Hd Li νci eci Qi uci dci
U(1)B 0 0 0 0 0 0 0 1/3 -1/3 -1/3

U(1)R 2 0 0 0 1 1 1 1 1 1

Z2 0 1 0 0 0 0 0 0 0 0

Table 1. The global charges of the superfields of our model.

not drastically modifies our proposal, it complicates the determination of SUSY vacuum and
the inflationary dynamics. On the other hand, the imposed symmetries do not forbid non-
renormalizable terms of the form T 2n+2 where n ≥ 1 is an integer. For this reason we are
obliged to restrict ourselves to subplanckian values of T .

The second term in the right-hand side (r.h.s.) of eq. (2.1c) provides the µ term of
MSSM along the lines of refs. [47, 64–67] — see section 4. The third term is the Majorana
mass term for the N c

i ’s and we assume that it overshadows (for sufficiently low λijNc ’s) the
last non-renormalizable term which is neglected henceforth. Here we work in the so-called
right-handed neutrino basis, whereMiNc is diagonal, real and positive. These masses together
with the Dirac neutrino masses in eq. (2.1b) lead to the light neutrino masses via the seesaw
mechanism. The same term is important for the decay [79, 80] of the inflaton after the end
of nSMI to Ñ c

i , whose subsequent decay can activate nTL. As a result of the imposed Z2, a
term of the form TN c2

i is prohibited and so the decay of T into N c
i is processed by suppressed

SUGRA-induced interactions [79], guaranteing thereby a sufficiently low reheat temperature
compatible with the G̃ constraint and successful nTL — see section 5.1.

In the limit where mP tends to infinity, we can obtain the SUSY limit, VSUSY, of the
SUGRA potential — see section 3.1 —, which corresponds to WMI in eq. (2.1c). This is

VSUSY =
∣∣λT 2 + λµHuHd − λM2/2

∣∣2 + 4λ2|ST |2 +M2
iNc |Ñ c

i |2 + λ2µ
(
|Hu|2 + |Hd|2

)
|S|2,
(2.2a)

where the complex scalar components of the superfields T and S are denoted by the same
symbol. From the potential in eq. (2.2a), we find that the SUSY vacuum lies at

〈Hu〉 = 〈Hd〉 = 〈Ñ c
i 〉 = 0, 〈S〉 ≃ 0 and

√
2|〈T 〉| =M. (2.2b)

Contrary to the Cecotti model [7, 8, 55, 56] our modulus T can take values M ≤ mP at
the SUSY vacuum. Also, 〈T 〉 breaks spontaneously the imposed Z2 and so, it can comfort-
ably decay via SUGRA-inspired decay channels — see section 5.1 — reheating the universe
and rendering [80] spontaneous nTL possible. No domain walls are produced due to the
spontaneous breaking of Z2 at the SUSY vacuum, since this is broken already during nSMI.

With the addition of SSB terms, as required in a realistic model, the position of the
vacuum shifts [47, 64–67] to non-zero 〈S〉 and an effective µ term is generated from the
second term in the r.h.s. of eq. (2.1c) — see section 4. Let us emphasize that SSB effects
explicitly break U(1)R to the ZR2 matter parity, under which all the matter (quark and lepton)
superfields change sign. Combining Z

R
2 with the Z

f
2 fermion parity, under which all fermions

change sign, yields the well-known R-parity. Recall that this residual symmetry prevents
the rapid proton decay, guarantees the stability of the lightest SUSY particle (LSP) and
therefore it provides a well-motivated CDM candidate. Needless to say, finally, that such
a connection of the Starobinsky-type inflation with this vital for MSSM R-symmetry can
not be established within the modified Cecotti model [8, 9, 55, 56], since no symmetry can
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prohibit a quadratic term for the modulus-like field in conjunction with the tadpole term
in WMI.

2.2 The Kähler potential

According to the general discussion of [26, 27], the Kähler manifold which corresponds to a
Kähler potential of the form

K = −3m2
P ln

(
fK(T ) + f∗K(T ∗)− ΦAΦ

∗Ā

3m2
P

+ kSΦA

|S|2|ΦA|2
3m4

P

+ · · ·
)
, (2.3a)

with fK being an holomorphic function of T , exhibits a SU(N, 1)/ SU(N)×U(1)R×Z2 global
symmetry. Here N − 1 = 53 is the number of scalar components of S, N c

i and the MSSM
superfields which are collectively denoted as

ΦA = ẽci , ũ
c
i , d̃

c
i , Ñ

c
i , L̃i, Q̃i, Hu, Hd and S. (2.3b)

Note that summation over the repeated (small or capital) Greek indices is implied. The
third term in the r.h.s. of eq. (2.3a) — with coefficients kSΦA being taken, for simplicity,
real — is included since it has an impact on the scalar mass spectrum along the inflationary
track — see section 3.1. In particular, the term with coefficient kSS = kS ≃ 1 assists us to
avoid the tachyonic instabilities encountered in similar models [7–9, 32–36] — see section 3.1.
The ellipsis represents higher order terms which are irrelevant for the inflationary dynamics
since they do not mix the inflaton T with the matter fields. This is, in practice, a great
simplification compared to the models of nMI — cf. ref. [44]. Contrary to other realizations
of the Starobinsky model — cf. refs. [7–9] —, we choose fK to be quadratic and not linear
with respect to T , i.e.,

fK(T ) = cTT
2/m2

P (2.3c)

in accordance with the imposed Z2 symmetry which forbids a linear term — the coefficient
cT is taken real too. As in the case of eq. (2.1c), non-renormalizable terms of the form
T 2n+2, with integer n ≥ 1, are allowed but we can safely ignore them restricting ourselves to
T ≤ mP.

The interpretation of the adopted K in eq. (2.3a) can be given in the “physical” frame
by writing the JF action for the scalar fields Φα = ΦA, T . To extract it, we start with the
corresponding EF action within SUGRA [32–34, 38, 44] which can be written as

S =

∫
d4x
√

−ĝ

(
−1

2
m2

PR̂+Kαβ̄Φ̇
αΦ̇∗β̄ − V̂MI0 + · · ·

)
, (2.4a)

where Kαβ̄ = K̂,ΦαΦ∗β̄ with K β̄αKαγ̄ = δβ̄γ̄ , ĝ is the determinant of the EF metric ĝµν , R̂ is

the EF Ricci scalar curvature, V̂MI0 is defined in section 3.1, the dot denotes derivation w.r.t.
the JF cosmic time and the ellipsis represents terms irrelevant for our analysis. Performing
then a suitable conformal transformation, along the lines of refs. [38, 44] we end up with the
following action in the JF

S =

∫
d4x

√
−g

(
−m

2
P

2

(
−Ω

3

)
R+m2

PΩαβ̄Φ̇
αΦ̇∗β̄ − VSUSY + · · ·

)
, (2.4b)
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where gµν = − (3/Ω) ĝµν is the JF metric with determinant g, R is the JF Ricci scalar
curvature, and we use the shorthand notation Ωα = Ω,Φα and Ωᾱ = Ω,Φ∗ᾱ . The corresponding
frame function can be found from the relation

− Ω

3
= e−K/3m

2
P = fK(T ) + f∗K(T ∗)− ΦAΦ

∗Ā

3m2
P

+ kSΦA

|S|2|ΦA|2
3m4

P

+ · · · · (2.4c)

The last result reveals that T has no kinetic term, since Ω,TT ∗ = 0. This is a crucial difference
between the Starobinsky-type models and those [44] of nMI, with interest consequences [11]
to the derivation of the ultraviolet cutoff scale of the theory — see section 3.2. Furthermore,
given that 〈ΦA〉 ≃ 0, recovering the conventional Einstein gravity at the SUSY vacuum,
eq. (2.2b), dictates

fK(〈T 〉) + f∗K(〈T ∗〉) = 1 ⇒ M = mP/
√
cT . (2.5)

Given that the analysis of inflation in both frames yields equivalent results [21, 95–97], we
below — see section 3.1 and 3.2 — carry out the derivation of the inflationary observables
exclusively in the EF.

3 The inflationary scenario

In this section we outline the salient features of our inflationary scenario (section 3.1) and
then, we present its predictions in section 3.4, calculating a number of observable quantities
introduced in section 3.2. We also provide a detailed analysis of the UV behavior of the
model in section 3.3.

3.1 The inflationary potential

The EF F-term (tree level) SUGRA scalar potential, V̂MI0, of our model — see eq. (2.4a) —
is obtained from WMI in eq. (2.1c) and K in eq. (2.3a) by applying the standard formula:

V̂MI0 = eK/m
2
P

(
Kαβ̄FαF

∗
β̄ − 3

|WMI|2
m2

P

)
, (3.1)

where Fα =WMI,Φα +K,ΦαWMI/m
2
P. Setting the fields Φα = S, Ñ c

i , Hu and Hd at the origin

the only surviving term of V̂MI0 is

V̂MI0 = eK/m
2
PKSS∗

WMI,SW
∗
MI,S∗ =

λ2|2T 2 −M2|2
4(fK + f∗K)2

· (3.2)

It is obvious from the result above that a form of fK as the one proposed in eq. (2.3c) can
flatten V̂MI0 sufficiently so that it can drive nSMI. Employing the dimensionless variables

xφ = φ/mP, fT = 1− cTx
2
φ and xM =M/mP with φ = |T |/

√
2 (3.3)

and setting arg T = 0, V̂MI0 and the corresponding Hubble parameter ĤMI read

V̂MI0 =
λ2m4

P(x
2
φ − x2M )2

4c2Tx
4
φ

=
λ2m4

Pf
2
T

4c4Tx
4
φ

and ĤMI =
V̂

1/2
MI0√
3mP

≃ λmP

2
√
3c2T

, (3.4)

where we put xM = 1/
√
cT — by virtue of eq. (2.5) — in the final expressions.
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Expanding T and Φα in real and imaginary parts as follows

T =
φ√
2
eiθ/mP and Xα =

xα + ix̄α√
2

with Xα = S,Hu, Hd, Ñ
c
i (3.5)

we can check the stability of the inflationary direction

θ = xα = x̄α = 0 where xα = s, hu, hd, ν̃
c
i , (3.6)

w.r.t. the fluctuations of the various fields. In particular, we examine the validity of the
extremum and minimum conditions, i.e.,

∂V̂MI0

∂χ̂α

∣∣∣∣∣
eq. (3.6)

= 0 and m̂2
χα > 0 with χα = θ, xα, x̄α. (3.7a)

Here m̂2
χα are the eigenvalues of the mass matrix with elements

M̂2
αβ =

∂2V̂MI0

∂χ̂α∂χ̂β

∣∣∣∣∣
eq. (3.6)

with χα = θ, xα, x̄α (3.7b)

and hat denotes the EF canonically normalized fields. Taking into account that along the
configuration of eq. (3.6) Kαβ̄ defined below eq. (2.4a) takes the form

(
Kαβ̄

)
= diag


6/x2φ, 1/cTx

2
φ, . . . , 1/cTx

2
φ︸ ︷︷ ︸

8 elements


 (3.8)

— here we take into account that Hu and Hd are SU(2)L doublets —, the kinetic terms of
the various scalars in eq. (2.4a) can be brought into the following form

Kαβ̄Φ̇
αΦ̇∗β̄ =

1

2

(
˙̂
φ
2

+
˙̂
θ
2
)
+

1

2

(
˙̂xα ˙̂x

α
+ ˙̂xα

˙̂x
α)

, (3.9a)

where the hatted fields are defined as follows

dφ̂/dφ = J =
√
6/xφ, θ̂ =

√
6θ, x̂α = xα/

√
cTxφ and ̂̄xα = x̄α/

√
cTxφ. (3.9b)

Upon diagonalization of the relevant sub-matrices of M̂2
αβ , eq. (3.7b), we construct

the scalar mass spectrum of the theory along the direction in eq. (3.6). Our results are
summarized in table 2, assuming kSHu ≃ kSHd

= kSH in order to avoid very lengthy formulas

for the masses of ĥ± and ̂̄h±. The various unspecified there eigenvalues are defined as follows:

ĥ± = (ĥu ± ĥd)/
√
2, ̂̄h± = (̂̄hu ± ̂̄hd)/

√
2 and ψ̂± = (ψ̂T ± ψ̂S)/

√
2, (3.10a)

where the spinors ψT , ψS and N c
i associated with the superfields S, T and N c

i are related to
the normalized ones in table 2 as follows:

ψ̂S =
√
6ψS/xφ, ψ̂T = ψT /

√
cTxφ and N̂ c

i = N c
i /
√
cTxφ. (3.10b)

We also use the shorthand notation:

fSH = 2 + 3kSHcTx
2
φ and f

SÑc
i
= 2 + 3k

SÑc
i
cTx

2
φ. (3.11)
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Fields Eingestates Masses Squared

1 real scalar θ̂ m̂2
θ = λ2m2

P(fT + 2c2Tx
2
φ)/3c

4
Tx

4
φ ≃ 4Ĥ2

MI

2 real scalars ŝ, ̂̄s m̂2
s = λ2m2

P(1 + cTx
2
φ(2− cTx

2
φ + 6kSf

2
T ))/6c

4
Tx

4
φ

4 real scalars ĥ+,
̂̄h+ m̂2

h+ = λm2
PfT (λfT fSH − 6λµc

2
Tx

2
φ)/12c

4
Tx

4
φ

4 real scalars ĥ−,
̂̄h− m̂2

h− = λm2
PfT (λfT fSH + 6λµc

2
Tx

2
φ)/12c

4
Tx

4
φ

6 real scalars ̂̃νci , ̂̄̃ν
c

i m̂2
iνc = (λ2m2

Pf
2
T fSÑc

i
+ 12M2

iNcc3Tx
2
φ)/12c

4
Tx

4
φ

2 Weyl spinors ψ̂± m̂2
ψ± ≃ λ2m2

P/3c
4
Tx

4
φ

3 Weyl spinors N̂ c
i m̂2

iNc =M2
iNc/cTx

2
φ

Table 2. The mass spectrum of our model along the inflationary trajectory of eq. (3.6).

Note that, due to the large effective masses that the χ’s in eq. (3.7b) acquire during nSMI,
they enter a phase of oscillations about χ = 0 with reducing amplitude. As a consequence

— see eq. (3.9b) —, ˙̂χ ≃ χ̇/
√
fK since the quantity ˙fK/2f

3/2
K χ, involved in relating ˙̂χ to

χ̇, turns out to be negligibly small compared with χ̇/
√
fK — cf. ref. [43]. Moreover, we

have numerically verified that the various masses remain greater than ĤMI during the last 50
e-foldings of nSMI, and so any inflationary perturbations of the fields other than the inflaton
are safely eliminated — see also section 3.4.

From table 2 it is evident that kS & 1 assists us to achieve m̂2
s > 0 — in accordance

with the results of [7–9]. On the other hand, given that fT ≤ 0, m̂2
h− > 0 requires

λfT fSH + 6λµc
2
Tx

2
φ < 0 ⇒ λµ < −λfT fSH

6c2Tx
2
φ

≃ λ

3cT
+

1

2
λkSHx

2
φ ≃ 2 · 10−5 − 10−6, (3.12)

as kSH decreases from 3 to 0.5. Here we have made use of eqs. (3.16a) and (3.20b) — see
section 3.2. We do not consider such a condition on λµ as unnatural, given that h1U in
eq. (2.1b) is of the same order of magnitude too — cf. ref. [98]. In table 2 we also present the
masses squared of chiral fermions along the trajectory of eq. (3.6), which can be served for
the calculation of the one-loop radiative corrections. Employing the well-known Coleman-
Weinberg formula [99], we find that the one-loop corrected inflationary potential is

V̂MI = V̂MI0 +
1

64π2


m̂4

θ ln
m̂2
θ

Λ2
+ 2m̂4

s ln
m̂2
s

Λ2
+ 4m̂4

h+ ln
m̂2
h+

Λ2
+ 4m̂4

h− ln
m̂2
h−

Λ2

+ 2
3∑

i=1

(
m̂4
iνc ln

m̂2
iνc

Λ2
− m̂4

iNc ln
m̂2
iNc

Λ2

)
− 4m̂4

ψ±
ln
m2
ψ̂±

Λ2


 , (3.13)

where Λ is a renormalization group (RG) mass scale. As we numerically verify the one-loop
corrections have no impact on our results. The absence of gauge interactions and of a direct
renormalizable coupling between T and N c

i assists to that direction — cf. refs. [44, 100].

Based on V̂MI, we can proceed to the analysis of nSMI in the EF, employing the standard
slow-roll approximation [101–104]. It can be shown [48–51] that the results calculated this
way are the same as if we had calculated them using the non-minimally coupled scalar field
in the JF.
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3.2 The inflationary observables — requirements

A successful inflationary scenario has to be compatible with a number of observational re-
quirements which are outlined in the following.

3.2.1 The number of e-foldings

The number of e-foldings N̂∗, that the scale k∗ = 0.05/Mpc suffers during nSMI has to be
adequate to resolve the horizon and flatness problems of the standard Big Bang cosmology.
Assuming that nSMI is followed in turn by a decaying-particle, radiation and matter dom-
ination and employing standard methods [37], we can easily derive the required N̂∗ for our
model, with the result:

N̂∗ ≃ 19.4 + 2 ln
V̂MI(φ∗)

1/4

1 GeV
− 4

3
ln
V̂MI(φf)

1/4

1 GeV
+

1

3
ln

Trh
1 GeV

+
1

2
ln

fK(φ∗)

fK(φf)1/3
, (3.14)

where φ∗ [φ̂∗] is the value of φ [φ̂] when k∗ crosses the inflationary horizon. Also φf [φ̂f ] is
the value of φ [φ̂] at the end of nSMI determined, in the slow-roll approximation, by the
condition:

max{ǫ̂(φf), |η̂(φf)|} = 1, (3.15a)

where the slow-roll parameters read

ǫ̂ =
m2

P

2

(
V̂
MI,φ̂

V̂MI

)2

=
m2

P

2J2

(
V̂MI,φ

V̂MI

)2

≃ 4

3f2T
(3.15b)

and

η̂ = m2
P

V̂
MI,φ̂φ̂

V̂MI

=
m2

P

J2

(
V̂MI,φφ

V̂MI

− V̂MI,φ

V̂MI

J,φ
J

)
≃ 4(1 + fT )

3f2T
· (3.15c)

The termination of nSMI is triggered by the violation of the ǫ criterion at a value of φ equal
to φf , which is calculated to be

ǫ̂ (φf) = 1 ⇒ φf = mP

(
(1 + 2/

√
3)/cT

)1/2
, (3.16a)

since the violation of the η criterion occurs at φ = φ̃f such that

η̂
(
φ̃f

)
= 1 ⇒ φ̃f = mP (5/3cT )

1/2 < φf . (3.16b)

On the other hand, N̂∗ can be calculated via the relation

N̂∗ =
1

m2
P

∫ φ̂∗

φ̂f

dφ̂
V̂MI

V̂
MI,φ̂

=
1

m2
P

∫ φ∗

φf

dφ J2 V̂MI

V̂MI,φ

· (3.17)

Given that φf ≪ φ∗, we can find a relation between φ∗ and N̂∗ as follows

N̂∗ ≃
3cT
4m2

P

(
φ2∗ − φ2f

)
⇒ φ∗ ≃ 2mP

√
N̂∗/3cT . (3.18a)

Obviously, nSMI with subplanckian φ’s can be achieved if

φ∗ ≤ mP ⇒ cT ≥ 4N̂∗/3 ≃ 76 (3.18b)

for N̂∗ ≃ 52. Therefore we need relatively large cT ’s.
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3.2.2 The curvature perturbation

The amplitude As of the power spectrum of the curvature perturbation generated by φ at
the pivot scale k∗ is to be confronted with the data [1, 2], i.e.

A1/2
s =

1

2
√
3πm3

P

V̂MI(φ̂∗)
3/2

|V̂
MI,φ̂

(φ̂∗)|
=

1

2πm2
P

√
V̂MI(φ∗)

6ǫ̂ (φ∗)
≃ 4.685 · 10−5. (3.19)

Since the scalars listed in table 2 are massive enough during nSMI, the curvature perturba-
tions generated by φ are solely responsible for As. Substituting eqs. (3.15b) and (3.18a) into
the relation above, we obtain

√
As =

λm2
PfT (φ∗)

2

8
√
2πc2Tφ

2
∗

⇒ λ ≃ 6π
√
2AscT /N̂∗. (3.20a)

Combining the last equality with eq. (3.19), we find that λ is to be proportional to cT , for
almost constant N̂∗. Indeed, we obtain

λ ≃ 3.97 · 10−4πcT /N̂∗ ⇒ cT ≃ 41637λ for N̂∗ ≃ 52. (3.20b)

3.2.3 The other observables

The (scalar) spectral index ns, its running as, and the scalar-to-tensor ratio r must be con-
sistent with the fitting [1, 2] of the observational data, i.e.,

(a) ns = 0.96± 0.014, (b) − 0.0314 ≤ as ≤ 0.0046 and (c) r < 0.11 (3.21)

at 95% confidence level (c.l.). The observable quantities above can be estimated through the
relations:

ns = 1− 6ǫ̂∗ + 2η̂∗ ≃ 1− 2/N̂∗ − 9/2N̂2
∗ , (3.22a)

as =
2

3

(
4η̂2∗ − (ns − 1)2

)
− 2ξ̂∗ ≃ −2ξ̂∗ ≃ −2/N̂2

∗ + 3/2N̂3
∗ , (3.22b)

r = 16ǫ̂∗ ≃ 12/N̂2
∗ , (3.22c)

where ξ̂ = m4
PV̂MI,φ̂

V̂
MI,φ̂φ̂φ̂

/V̂ 2
MI = mP

√
2ǫ̂η̂,φ/J + 2η̂ǫ̂. The variables with subscript ∗ are

evaluated at φ = φ∗ and eqs. (3.15b) and (3.15c) have been employed.

3.3 The effective cut-off scale

As anticipated in eq. (3.18b), the realization of nSMI with subplanckian φ’s requires relatively
large cT ’s. This fact may [57–60] jeopardize the validity of the classical approximation, on
which the analysis of the inflationary behavior is based. To see if this problem — which is
rather questionable [32–34, 61–63] though — insists here, we have to extract the UV cut-off
scale, ΛUV, of the effective theory.

We first determine ΛUV analyzing the small-field behavior of the model in EF along the
lines of ref. [11]. The EF action S in eq. (2.4a) along the path of eq. (3.6) is written as

S =

∫
d4x
√
−ĝ

(
−1

2
m2

PR̂+
1

2
J2φ̇2 − V̂MI0 + · · ·

)
. (3.23a)
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Given the form of J in eq. (3.9b) an expansion of the kinetic term in eq. (3.23a) about zero
is not doable. Therefore we expand it about 〈φ〉 = mP/

√
cT — see eqs. (2.2b) and (2.5) —

and we find

J2φ̇2 = 6cT

(
1− 2

√
cT δφ

mP
+

3cT δφ
2

m2
P

− 4cT
√
cT δφ

3

m3
P

+
5c2T δφ

4

m4
P

− · · ·
)
φ̇2, (3.23b)

where δφ = (φ−M). Since there is no canonically normalized leading kinetic term, we define

the canonically normalized inflaton at the SUSY vacuum δ̂φ =
√
6cT δφ— see also section 5.1

— and we reexpress eq. (3.23b) in terms of δ̂φ, with result

J2φ̇2 =

(
1−

√
2

3

δ̂φ

mP
+

1

2

δ̂φ
2

m2
P

−
√
2

3
√
3

δ̂φ
3

m3
P

+
5

36

δ̂φ
4

m4
P

− · · ·
)

˙̂
δφ

2

. (3.23c)

On the other hand, V̂MI0 in eq. (3.4) can be expanded also in terms of δ̂φ as follows

V̂MI0 =
λ2m2

P

6c2T
δ̂φ

2

(
1−

√
3

2

δ̂φ

mP
+

25

24

δ̂φ
2

m2
P

− · · ·
)
· (3.23d)

From the derived expressions in eqs. (3.23c) and (3.23d) we conclude that ΛUV = mP and
therefore our model is valid up to mP as the original Starobinsky model [11].

The resulting ΛUV represents essentially the unitarity-violation scale [57–60] of the δφ−
δφ scattering process via s-channel graviton, hµν , exchange in the JF. The relevant vertex is
cT δφ

2�h/mP — with h = hµµ — can be derived from the first term in the r.h.s. of eq. (2.4b)
expanding the JF metric gµν about the flat spacetime metric ηµν and the inflaton φ about
its v.e.v as follows:

gµν ≃ ηµν + hµν/mP and φ = 〈φ〉+ δφ. (3.24)

Retaining only the terms with two derivatives of the excitations, the part of the lagrangian
corresponding to the two first terms in the r.h.s. of eq. (2.4b) takes the form

δL = −〈fK〉
4

FEH (hµν) +

(
mP〈fK,φ〉+

cT δφ

2mP

)
(�h− ∂µ∂νh

µν) δφ + · · ·

= −1

8
FEH

(
h̄µν
)
+

1

2
∂µδφ∂

µδφ+
1

2
√
2

cT
mP

√
〈fK〉

〈f̄K〉 δφ
2
�h̄ + · · · , (3.25a)

where the function FEH, related to the the linearized Einstein-Hilbert part of the lagrangian,
reads

FEH (hµν) = hµν�hµν − h�h+ 2∂ρh
µρ∂νhµν − 2∂νh

µν∂µh (3.25b)

and the JF canonically normalized fields h̄µν and δφ are defined by the relations

δφ =

√
〈f̄K〉
〈fK〉δφ and

h̄µν√
2
=
√

〈fK〉hµν +
mP〈fK,φ〉√

〈fK〉
ηµνδφ with f̄K = 3m2

Pf
2
K,φ. (3.25c)

The interaction originating from the last term in the r.h.s. of eq. (3.25a) gives rise to a
scattering amplitude which is written in terms of the center-of-mass energy E as follows

A ∼
(

E

ΛUV

)2

with ΛUV =
mP

3
√
2cT

〈f̄K〉√
〈fK〉

= mP, (3.26)
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where 〈fK〉 = 1/2 and 〈f̄K〉 = 3cT and ΛUV is identified as the UV cut-off scale in the JF,
since A remains within the validity of the perturbation theory provided that E < ΛUV.

Although the expansions in eqs. (3.23d) and (3.25a) are obtained for φ ≃ 〈φ〉 and are
not valid [61–63] during nSMI, we consider ΛUV as the overall UV cut-off scale of the model
since reheating is an unavoidable stage of the inflationary dynamics [11]. Therefore, the
validity of the effective theory implies [57–60]

V̂MI(φ∗)
1/4 ≪ ΛUV with ΛUV = mP, (3.27)

which is much less restrictive than the corresponding condition applied in the models of nMI
with quartic scalar potential, where ΛUV turns out to be equal to mP divided by the strength
of the non-minimal coupling to gravity — cf. refs. [11, 38–40, 44].

3.4 Numerical results

As can be easily seen from the relevant expressions above, the inflationary dynamics of our
model depends on the following parameters:

λ, cT , λµ, kSS = kS , kSH , kSÑc , MiNc and Trh.

Recall thatM is related to cT via eq. (2.5). Our results are essentially independent of λµ and
k’s, provided that we choose them so as m̂2

h− and m̂2
s in table 2 are positive for every allowed

λ. We therefore set λµ = 10−6, kS = k
SÑc = 1 and kSH = 1.5 throughout our calculation.

Moreover we take into account the contribution to V̂MI, eq. (3.13), only from the heaviest N c
i

which is taken to be M3Nc = 1014 GeV — cf. section 5.5. We also choose Λ ≃ 1013 GeV so
as the one-loop corrections in eq. (3.13) vanish at the SUSY vacuum, eqs. (2.2b) and (2.5).
Finally Trh can be calculated self-consistently in our model as a function of the inflaton mass,
m̂δφ and the strength of the various inflaton decays — see section 5.1. However, since the
inflationary predictions depend very weakly on Trh — see eq. (3.14) — we prefer to take here
a constant Trh = 6 ·108 GeV as suggested by our results on post-inflationary evolution — see
section 5.5. Upon substitution of V̂MI from eq. (3.13) in eqs. (3.15a), (3.17) and (3.19) we
extract the inflationary observables as functions of cT , λ and φ∗. The two latter parameters
can be determined by enforcing the fulfilment of eq. (3.14) and (3.19), for every chosen cT .
Our numerical findings are quite close to the analytic ones listed in section 3.2 for the sake
of presentation.

The importance of the two extra variables (M and cT ) — in eqs. (2.1c), (2.3a) and (2.3c)
— compared to the Cecotti model [7–10] in reducing φ∗ below mP can be easily inferred from

figure 1. We there depict V̂
1/4
MI as a function of φ (both normalized to mP) for λ = 2.26 ·10−5

and cT = 1 or λ = 0.0017 and cT = 76 or λ = 0.1 and cT = 4500 — the last value saturates
an upper bound on cT derived in section 4. Note that for cT = 1 (or xM = 1) our result
matches that of the original Starobinsky model [6, 95–97] — with the mass scale appearing in
that model being replaced by λmP ≃ 2.2 · 1013 GeV. Increasing cT , λ increases too, whereas
φ∗ and M decrease and for cT ≥ 76, φ∗ becomes subplanckian. On the other hand, we have
to clarify that the corresponding values of the inflaton in the EF remain transplanckian, since
integrating the first equation in eq. (3.9b) and using eqs. (3.18a) and (3.16a) we find:

φ̂ = φ̂c +
√
6mP ln (φ/M) ⇒

{
φ̂∗ − φ̂c ≃

√
6mP ln 2(N̂∗/3)

1/2

φ̂f − φ̂c ≃
√
6mP ln(1 + 2/

√
3)1/2.

(3.28)

– 12 –



J
C
A
P
0
4
(
2
0
1
4
)
0
2
4

0.01 0.1 1 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

c
T
 = 1

 φ  / m
P

 φ
f
 / m

P

 

 

V
M

I1
/4
 /
 m

P
 (

1
0

-3
)

φ / m
P

*

  

c
T
 = 76

c
T
 = 4500

>

Figure 1. The inflationary scale V̂
1/4
MI

as a function of φ for λ = 2.26 · 10−5 and M = mP (cT = 1) or
λ = 1.7 · 10−3 and M/mP = 0.115 (cT = 76) or λ = 0.1 and M/mP = 0.015 (cT = 4500). The values
corresponding to φ∗ and φf are also depicted.

where φ̂c is a constant of integration. E.g., setting φ̂c = 0, we obtain φ̂∗ = 5.3mP and
φ̂f = 0.94mP for any cT — with constant N̂∗. We do not consider this result as an upset of
our proposal, since the inflaton field defined in the JF entersWMI and K. Therefore, possible
corrections from non-renormalizable terms, which may be avoided for subplanckian values of
inflaton, are applied in this frame, which is mostly considered as the physical frame.

From figure 1 we also infer that V̂
1/4
MI /mP remains almost constant during nSMI. Indeed,

if we plug eqs. (3.18a) and (3.20b) into eq. (3.4), we obtain

V̂MI0(φ∗)
1/4/mP ≃

(
3π
√

2As/N̂∗

)1/2
≃ 0.0033 ≪ 1. (3.29)

This result is more explicitly displayed in figure 2 too, where we draw the allowed values of
cT (solid line), 103xM (dashed line) and 103V̂MI(φ∗)

1/4/mP (dotted line) [φf (solid line) and
φ∗ (dashed line)] versus λ (a) [(b)]. The lower bound of the depicted lines comes from the
saturation of eq. (3.18b) whereas the upper bound originates from the perturbative bound
on λ, λ ≤

√
4π ≃ 3.54. In figure 2a we see that eq. (3.27) is readily satisfied along the various

curves and we can verify our analytic estimation in eq. (3.20b). Moreover, the variation of φf
and φ∗ as a function of λ — drawn in figure 2b — is consistent with eqs. (3.16a) and (3.18a).
The overall allowed parameter space of our model is

76 . cT . 1.5 · 105, 0.11 & xM & 0.002 and 1.7 · 10−3 . λ . 3.54 for N̂∗ ≃ 52. (3.30a)

Letting λ or cT vary within its allowed region in eq. (3.30a), we obtain

0.961 . ns . 0.963, −7.4 . as/10
−4 . −6.7 and 4.2 & r/10−3 & 3.8, (3.30b)

whereas the masses of the various scalars in table 2 remain well above ĤMI both during and
after nSMI for the selected kS , λµ and M3Nc . E.g., for φ = φ∗ and cT = 150, we obtain

(
m̂2
θ, m̂

2
s, m̂

2
h−, m̂

2
h+, m̂

2
3νc
)
/Ĥ2

MI ≃ (4, 905, 342, 342, 282). (3.30c)
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Figure 2. The allowed by eqs. (3.14), (3.19) and (3.27) values of cT (solid line), 103xM (dashed

line) and 103V̂MI(φ∗)
1/4/ΛUV (dotted line) [φf (solid line) and φ∗ (dashed line)] versus λ (a) [(b)] for

kS = 1, λµ = 10−6, M3Nc = 1014 GeV and Trh = 6 · 108 GeV.

Clearly, the predicted as and r lie within the allowed ranges given in eq. (3.21b) and eq. (3.21c)
respectively, whereas ns turns out to be impressively close to its central observationally
favored value — see eq. (3.21a). Therefore, the inclusion of extra parameters, compared
to the Cecotti model [7–10], does not affect the successful predictions on the inflationary
observables.

4 The R symmetry and the µ problem of MSSM

A byproduct of the R symmetry associated with our model is that it assists us to understand
the origin of µ term of MSSM. To see how this works, we write the part of the scalar potential
which includes the SSB terms corresponding to WMI in eq. (2.1c). We have

Vsoft =
(
λAλST

2 + λµAµSHuHd +BiNcMiNcN c
iN

c
i − aSSλM

2 + h.c.
)
+m2

α |Φα|2 , (4.1)

where mα, Aλ, Aµ, BiNc and aS are SSB mass parameters. Rotating S in the real axis by
an appropriate R-transformation, choosing conveniently the phases of Aλ and aS so as the
total low energy potential Vtot = VSUSY + Vsoft to be minimized — see eq. (2.2a) — and
substituting in Vsoft the SUSY v.e.vs of T,Hu, Hd and N c

i from eq. (2.2b) we get

〈Vtot(S)〉 = 2λ2M2S2 − λ (|Aλ|+ |aS |)M2S, (4.2a)

where we take into account thatmS ≪M . The minimization condition for the total potential
in eq. (4.2a) w.r.t. S leads to a non vanishing 〈S〉 as follows:

∂

∂S
〈Vtot(S)〉 = 0 ⇒ 〈S〉 ≃ (|Aλ|+ |aS |) /2λ. (4.2b)

The generated µ term from the second term in the r.h.s. of eq. (2.1c) is

µ = λµ〈S〉 ≃ λµ (|Aλ|+ |aS |) /2λ ∼ λµm3/2/λ, (4.2c)

– 14 –



J
C
A
P
0
4
(
2
0
1
4
)
0
2
4

wherem3/2 is the G̃ mass. Due to eq. (3.12) the generation of the correct size of µ ≥ 102 GeV,
as required by the radiative electroweak symmetry breaking, entails rather large m3/2’s.
Taking into account that relatively large m3/2’s are necessitated in various versions [68–75]
of MSSM in order for the mass mh of the lighter CP-even higgs boson, h, to be consistent
with the latest LHC data [76, 77], we conservatively impose the bound m3/2 ≤ 106 GeV.
Combining the bounds above on µ and m3/2 with those in eqs. (3.12) and (3.30a), we end
up with the overall allowed regions of our model:

10−7 . λµ . 10−5 and 1.7 · 10−3 . λ . 0.1 ⇒ 76 . cT . 4500, (4.3)

where kSH = 1.5, we use eq. (3.20b) and we assume that the renormalization of the quantities
above is negligible. Obviously the proposed resolution of the µ problem of MSSM relies on the
existence of non-zero Aλ and/or aS and the viability of the radiative electroweak symmetry
breaking with µ ≪ m3/2. These issues depend on the adopted model of SSB. We single out
the following cases:

(i) If we wish to be fully consistent the no-scale structure of K and suppose that the
modulus, z, which is responsible for the SSB, is contained (somehow) in the logarithm
of eq. (2.3a), K is of the “sequestered-sector” form [105–107] and has the property that
it generates no tree-level SSB scalar masses for the visible-sector fields and vanishing
trilinear coupling constants. In this case the anomaly-mediated SSB [64–67, 105–107]
is the dominant mechanism for obtaining Aλ 6= 0 and/or aS 6= 0. Since the involved
superfields T and S are GSM singlets, we expect Aλ = 0. However, according to the
superconformal formalism, M2 can be rescaled as M2ϕ2 (where ϕ is a superconformal
compensator) and, in the presence of SSB, a non vanishing aS = 2m3/2 comes out. From
the derived [68, 69] sparticle spectra in this kind of models the situation µ≪ m3/2 can
be easily accommodated with m3/2 ∼ (105–106) GeV.

(ii) If we decide to deviate from the no-scale form of K in eq. (2.3a), we can suppose that
z is not contained in the logarithm, and has an almost canonical Kähler potential [12,
13, 108]. In a such circumstance, both Aλ and aS are expected to be non-zero, as in
the gravity-mediated SSB [108], giving rise again to 〈S〉 6= 0. The hierarchy µ≪ m3/2

can be established in the so-called focus-point region [70–72] of the parameter space
of MSSM, and more especially in portions of this region with low tuning and LSP
abundance lower than the expectations [78].

In both cases above, our superpotential in eq. (2.1a) has to be extended by a SSB
sector which should ensure the successful stabilization of z — cf. refs. [12, 13, 105–107, 109–
111]. We expect that these terms do not disturb the inflationary dynamics. Alternatively,
the µ problem can be resolved [112] by imposing a Peccei-Quinn symmetry which is broken
spontaneously at an intermediate scale by the v.e.vs of two GSM singlets which enter the
supepotential via non-renormalizable terms. This scheme, already adopted, e.g., in refs. [39,
40, 113], can be applied as first realized in [112] in the case (ii) above and somehow modified
in the case (i).

Let us clarify, finally, that the due hierarchy in eq. (3.12) between λµ and λ, is the
inverse to that imposed in the models [47] of FHI, where S plays the role of inflaton and
T, Hu and Hd are confined at zero — playing the role of the waterfall fields. This is because,
at the end of FHI, the mass squared of T becomes negative for S < M/

√
2 and the mass

matrix squared of the scalars Hu − Hd develop a negative eigenvalue for S < M
√
λ/2λµ.
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Consequently, the correct cosmological scenario can be attained if we ensure that, at the
end of FHI, T acquires its v.e.v, while Hu and Hd remain equal to zero. To this end we
demand [47] λµ > λ so as the tachyonic instability in the T direction occurs first, and T
start evolving towards its v.e.v, whereas Hu and Hd continue to be confined to zero. In our
case, though, |T | is the inflaton while S and the Hu −Hd system are safely stabilized at the
origin both during and after the end of nSMI. Therefore, |T | is led at its vacuum whereas
Hu and Hd take their non-vanishing v.e.vs during the electroweak phase transition triggered
by radiative corrections.

5 Non-thermal leptogenesis and neutrino masses

We below specify how our inflationary scenario makes a transition to the radiation dominated
era (section 5.1) and give an explanation of the observed BAU (section 5.2) consistently with
the G̃ constraint and the low energy neutrino data (section 5.3). Our results are summarized
in section 5.5.

5.1 The inflaton decay

When nSMI is over, the inflaton continues to roll down towards the SUSY vacuum, eq. (2.2b).
Soon after, it settles into a phase of damped oscillations around the minimum of V̂MI0 — note
that θ is stabilized during and after nSMI at the origin and so, it does not participate neither
into inflationary nor to post-inflationary dynamics. The (canonically normalized) inflaton,

δ̂φ =
√
6cT δφ — see, also, section 3.3 —, acquires mass which is given by

m̂δφ =
〈
V̂
MI0,φ̂φ̂

〉1/2
=
〈
V̂MI0,φφ/J

2
〉1/2

= λmP/
√
3cT ≃ 3 · 1013 GeV, (5.1)

where we make use of eq. (3.20b) in the last step. Since eq. (3.8) implies 〈KAĀ〉 = 1 for
〈xφ〉 = 1/

√
cT — see eqs. (3.3), (2.2b) and (2.5) —, the EF canonically normalized fields ΦA

in eq. (2.3b) are not distinguished from the JF ones at the SUSY vacuum.

The decay of δ̂φ is processed through the following decay channels:

5.1.1 Decay channel into N c
i ’s

The lagrangian which describes these decay channels arises from the part of the SUGRA
langrangian [108] containing two fermions. In particular,

L
δ̂φ→Nc

i

= −1

2
eK/2m

2
PW,Nc

i N
c
i
N c
iN

c
i + h.c. =

3

2

M

mP
c
1/2
T δφ N c

iN
c
i + · · ·

= λiNc δ̂φ N c
iN

c
i + · · · with λiNc =

√
3MiNc/2

√
2mP, (5.2a)

where an expansion around 〈φ〉 is performed in order to extract the result above. We observe
that although there is not direct coupling between T and N c

i inWMI — recall that we assume
that the third term in the r.h.s. of eq. (2.1c) prevails over the last one —, an adequately
efficient decay channel arises, which gives rise to the following decay width

Γ̂δφ→Nc
i
=

1

16π
λ2iNcm̂δφ

(
1− 4M2

iNc/m̂2
δφ

)3/2
, (5.2b)

where we take into account that δ̂φ decays to identical particles.
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5.1.2 Decay channel into Hu and Hd

The lagrangian term which describes the relevant interaction comes from the F-term SUGRA
scalar potential in eq. (3.1). Namely, we obtain

L
δ̂φ→HuHd

= −1

2
eK/m

2
PKSS∗ |WS |2 = −1

2
λλµ

(
φ2 −M2

)
Hu

∗Hd
∗ + · · ·

= −λHm̂δφδ̂φHu
∗Hd

∗ + · · · with λH = λµ/
√
2. (5.3a)

This interaction gives rise to the following decay width

Γ̂δφ→H =
2

8π
λ2Hm̂δφ, (5.3b)

where we take into account that Hu and Hd are SU(2)L doublets. Eq. (3.12) facilitates the
reduction of Γ̂δφ→H to a level which allows for the decay mode into N c

i ’s playing its important
role for nTL.

5.1.3 Three-particle decay channels

Focusing on the same part of the SUGRA langrangian [108] as in the paragraph 5.1.1, for a
typical trilinear superpotential term of the form Wy = yXY Z — cf. eq. (2.1b) —, where y
is a Yukawa coupling constant, we obtain the interactions described by

L
δ̂φ→XY Z

= −1

2
eK/2m

2
P (Wy,Y ZψY ψZ +Wy,XZψXψZ +Wy,XY ψXψY ) + h.c.

= λy
δ̂φ

mP
(XψY ψZ + Y ψXψZ + ZψXψY ) + h.c. with λy =

√
3/2(y/2), (5.4a)

where ψX , ψY and ψZ are the chiral fermions associated with the superfields X,Y and Z
whose the scalar components are denoted with the superfield symbol. Working in the large
tanβ regime which yields similar y’s for the 3rd generation, we conclude that the interaction
above gives rise to the following 3-body decay width

Γ̂δφ→XY Z =
14nf
512π3

λ2y
m̂3
δφ

m2
P

, (5.4b)

where for the third generation we take y ≃ (0.4–0.6), computed at the m̂δφ scale, and nf = 14
[nf = 16] for m̂δφ < M3Nc [m̂δφ > M3Nc ] — summation is taken over SU(3)c and SU(2)L
indices.

Since the decay width of the produced N c
i is much larger than Γ̂δφ the reheating tem-

perature, Trh, is exclusively determined by the inflaton decay and is given by [114]

Trh =

(
72

5π2g∗

)1/4√
Γ̂δφmP with Γ̂δφ = Γ̂δφ→Nc

i
+ Γ̂δφ→H + Γ̂δφ→XY Z , (5.5)

where g∗ ≃ 228.75 counts the effective number of relativistic degrees of freedom of the MSSM
spectrum at the temperature T ≃ Trh. Let us clarify here that in our models there is no
decay of a scalaron as in the original (non-SUSY) [3–5, 22, 23] Starobinsky inflation and
some [14–20] of its SUGRA realizations; thus, Trh in our case is slightly lower than that
obtained there. Indeed, spontaneous decay of the inflaton to scalars takes place only via
three-body interactions which are suppressed compared to the two-body decays of scalaron.
On the other hand, we here get also Γ̂δφ→H in eq. (5.3b), due to explicit coupling of δ̂φ into

Hu and Hd, which can be kept at the same level with Γ̂δφ→XY Z due to the rather low λµ’s
required here — see eq. (3.12).
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5.2 Lepton-number and gravitino abundances

The mechanism of nTL [81–83] can be activated by the out-of-equilibrium decay of the N c
i ’s

produced by the δ̂φ decay, via the interactions in eq. (5.2a). If Trh ≪ MiNc , the out-of-
equilibrium condition [115, 116] is automatically satisfied. Namely, N c

i decay into (fermionic
and bosonic components of) Hu and Li via the tree-level couplings derived from the last term
in the r.h.s. of eq. (2.1b). The resulting — see section 5.3 — lepton-number asymmetry εi
(per N c

i decay) after reheating can be partially converted via sphaleron effects into baryon-
number asymmetry. In particular, the B yield can be computed as

(a) YB = −0.35YL with (b) YL = 2
5

4

Trh
m̂δφ

3∑

i=1

Γ̂δφ→Nc
i

Γ̂δφ
εi· (5.6)

The numerical factor in the r.h.s. of eq. (5.6a) comes from the sphaleron effects, whereas the
one (5/4) in the r.h.s. of eq. (5.6b) is due to the slightly different calculation [114] of Trh —
cf. refs. [115, 116].

The required for successful nTL Trh must be compatible with constraints on the G̃
abundance, Y

G̃
, at the onset of nucleosynthesis (BBN). This is estimated to be [86–91]:

Y
G̃
≃ 1.9 · 10−22Trh/GeV, (5.7)

where we assume that G̃ is much heavier than the gauginos of MSSM. Let us note that
non-thermal G̃ production within SUGRA is [79] also possible but strongly dependent on
the mechanism of SSB. It can be easily suppressed [80, 117, 118] when a tiny mixing arises
between the inflaton and the field responsible for SSB provided that the mass of the latter is
much lower than the inflationary scale. Therefore, we here prefer to adopt the conservative
estimation of Y

G̃
in eq. (5.7).

Both eqs. (5.6) and (5.7) calculate the correct values of the B and G̃ abundances pro-
vided that no entropy production occurs for T < Trh. This fact can be achieved if the Polonyi-
like field z decays early enough without provoking a late episode of secondary reheating. In
both cases of section 4, z is expected to be displaced from its true minimum to lower values
due to large mass that it acquires during nSMI. In the course of the decaying-inflaton period
which follows nSMI, z adiabatically tracks an instantaneous minimum [119–121] until the
Hubble parameter becomes of the order of its mass. Successively it starts to oscillate about
the true SUSY breaking minimum and may or may not dominate the Universe, depending on
the initial amplitude of the coherent oscillations. The domination may be eluded in a very
promising scenario [12, 13, 109–111] which can be constructed assuming that z is strongly
stabilized through a large enough coupling in a higher order term of Kähler potential, similar
to that used for the stabilization of S — see eq. (2.3a). A subsequent difficulty is the possible
over-abundance of the LSPs which are produced by the z decay. From that perspective, it
seems that the case (ii) — cf. refs. [109–111, 119–121] — is more tolerable than the case (i)
— see refs. [122, 123].

5.3 Lepton-number asymmetry and neutrino masses

As mentioned in section 5.2, the decay of N c
i emerging from the δ̂φ decay, can generate [124–

126] a lepton asymmetry εi caused by the interference between the tree and one-loop decay
diagrams, provided that a CP-violation occurs in hijN ’s — see eq. (2.1b). The produced εi
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can be expressed in terms of the Dirac mass matrix of νi, mD, defined in the N c
i -basis, as

follows:

εi =
∑

j 6=i

Im
[
(m†

DmD)
2
ij

]

8π〈Hu〉2(m†
DmD)ii

(
FS (xij) + FV(xij)

)
, (5.8a)

where xij := MjNc/MiNc , 〈Hu〉 ≃ 174 GeV, for large tanβ and the functions FV,S read
[124–126]

FV (x) = −x ln
(
1 + x−2

)
and FS (x) =

−2x

x2 − 1
· (5.8b)

Also mD is the Dirac mass matrix of νi’s and m
†
DmD in eq. (5.8a) can be written as follows:

m†
DmD = U c†d†DdDU

c. (5.8c)

where U c are the 3×3 unitary matrix which relates N c
i in the N c

i -basis with the corresponding
in the weak basis. With the help of the seesaw formula, miD and MiNc involved in eq. (5.8a)
can be related to the light-neutrino mass matrix mν . Working in the N c

i -basis, we have

mν = −mD d−1
Nc m

T

D where dNc = diag (M1Nc ,M2Nc ,M3Nc) (5.9)

with M1Nc ≤ M2Nc ≤ M3Nc real and positive. Based on the analysis of [43, 128], we find
m̄ν via

m̄ν = U∗
ν dν U

†
ν where dν = diag (m1ν ,m2ν ,m3ν) (5.10)

withm1ν ,m2ν andm3ν being the real and positive light neutrino mass eigenvalues. These can
be found assuming normal [inverted] ordered (NO [IO]) miν ’s and using a reference neutrino
mass and the observed [92, 93] low energy neutrino mass-squared differences. Also Uν is the
PMNS matrix which is a function of the mixing angles θij and the CP-violating Majorana
(ϕ1 and ϕ2) and Dirac (δ) phases. Taking also miD as input parameters we can construct
the complex symmetric matrix

W = −d−1
D m̄νd

−1
D (5.11)

from which we can extract dNc as follows [43, 128]:

d−2
Nc = U c†WW †U c. (5.12)

Acting this way — see section 5.5 —, we can determine the elements of U c and the MiNc ’s,
compute m†

DmD through eq. (5.8c) and finally obtain the εi’s via eq. (5.8a).

5.4 Post-inflationary requirements

The success of our post-inflationary scenario can be judged, if, in addition to the constraints
of section 3.2, it is consistent with the following requirements:

5.4.1 The bounds on M1Nc

We impose the following bounds on M1Nc :

(a) M1Nc & 10Trh and (b) m̂δφ ≥ 2M1Nc . (5.13)

The first inequality is applied to avoid any erasure of the produced YL due to νc1 mediated

inverse decays and ∆L = 1 scatterings [128]. The second bound ensures that the decay of δ̂φ
into a pair of N c

i ’s is kinematically allowed for at least one species of the N c
i ’s.
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5.4.2 Constraints from neutrino physics

We take as inputs the best-fit values [92] — see also [93] — on the neutrino mass-squared
differences, ∆m2

21 = 7.62 · 10−3 eV2 and ∆m2
31 = (2.55 [−2.43]) · 10−3 eV2, on the mixing

angles, sin2 θ12 = 0.32, sin2 θ13 = 0.0246 [0.025], and sin2 θ23 = 0.613 [0.6] and the Dirac phase
δ = 0.8π [−0.03π] for NO [IO] miν ’s. Moreover, the sum of miν ’s is bounded from above by
the current data [1, 78], as follows

∑

i

miν ≤ 0.28 eV at 95% c.l. (5.14)

5.4.3 The observational results on YB

We take [1, 78]:
YB ≃ (8.55± 0.217) · 10−11 at 95% c.l. (5.15)

5.4.4 The bounds on Y3/2

Successful BBN entails [88–91]:

Y3/2 .




10−14

10−13

10−12
for m3/2 ≃




0.69 TeV,
10.6 TeV,
13.5 TeV.

(5.16)

Here we consider the conservative case where G̃ decays with a tiny hadronic branching ratio.

5.5 Numerical results

As shown in section 5.1, nSMI predicts a constant value of m̂δφ. Consequently, Trh and YB
— see eqs. (5.5) and (5.6) — are largely independent of the precise value of cT and λ in
the range of eq. (3.30a) — contrary to the case of FHI [45, 46, 113]. Just for definiteness
we specify that throughout this section we take cT = 150 which corresponds to λ = 0.0034,
ns = 0.963 and m̂δφ = 3 · 1013 GeV. On the other hand, Trh and YB depend on λµ, y and

the masses of the N c
i ’s into which δ̂φ decays. Throughout our computation we take y = 0.5,

which is a typical value encountered [98] into various MSSM settings with large tanβ, and
so the corresponding decay width via eq. (5.4b) is confined to Γ̂δφ→XY Z = 0.45 GeV. Note

that varying y in its plausible [98] range (0.4–0.6), Γ̂δφ→XY Z ranges from 0.28 to 0.64 GeV
causing minor changes to our results.

Following the bottom-up approach described in section 5.3, we find the MiNc ’s by using
as inputs the miD’s, a reference mass of the νi’s — m1ν for NO miν ’s, or m3ν for IO miν ’s —,
the two Majorana phases ϕ1 and ϕ2 of the PMNS matrix, and the best-fit values, mentioned
in section 5.4, for the low energy parameters of neutrino physics. In our numerical code, we
also estimate, following [127], the RG evolved values of the latter parameters at the scale of
nTL, ΛL = m̂δφ, by considering the MSSM with tanβ ≃ 50 as an effective theory between
ΛL and the SSB scale, MSUSY = 1.5 TeV. We evaluate the MiNc ’s at ΛL, and we neglect any
possible running of the miD’s and MiNc ’s. Therefore, we present their values at ΛL.

Fixing λµ at an intermediate value in its allowed region — see eq. (4.3) — λµ = 10−6

which results, via eq. (5.3b) in Γ̂δφ→H = 1.3 GeV we can get a first picture for the parameters
which yield YB and Y3/2 compatible with eqs. (5.15) and (5.16), respectively in table 3. We
consider strongly NO (cases A and B), almost degenerate (cases C, D and E) and strongly IO
(cases F and G) miν ’s. In all cases the current limit of eq. (5.14) is safely met — in the case
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Parameters Cases

A B C D E F G

Normal Almost Inverted

Hierarchy Degeneracy Hierarchy

Low Scale Parameters

m1ν/0.1 eV 0.01 0.1 0.5 0.7 0.7 0.5 0.49

m2ν/0.1 eV 0.09 0.1 0.51 0.7 0.7 0.51 0.5

m3ν/0.1 eV 0.5 0.5 0.71 0.86 0.5 0.1 0.05

∑
imiν/0.1 eV 0.6 0.7 1.7 2.3 1.9 1.1 1

ϕ1 0 2π/3 π/2 π/2 0 −3π/4 π/4

ϕ2 π/2 π/2 π/3 2π/3 −2π/3 5π/4 −2π/3

Leptogenesis-Scale Parameters

m1D/0.1 GeV 16 15 9 20 7 20 5

m2D/GeV 40 8.3 10.5 10.3 7.5 5.3 11.8

m3D/10 GeV 10 10 3.56 10 10 10 4

M1Nc/1011 GeV 12.3 2.2 0.16 0.58 0.11 0.7 0.12

M2Nc/1012 GeV 22.2 1.8 1.8 1.75 1 1.6 2.2

M3Nc/1014 GeV 25 4 0.15 0.73 0.74 2.7 1.2

Open Decay Channels of the Inflaton, δ̂φ, Into N c
i

δ̂φ → N c
1 N c

1,2 N c
1,2,3 N c

1,2 N c
1,2 N c

1,2 N c
1,2

Γ̂δφ→Nc
i
/Γ̂δφ (%) 3 7 7 6.5 2.3 5 9.8

Resulting B-Yield

1011YB 8.54 8.7 8.7 8.5 8.4 8.4 8.5

Resulting Trh and G̃-Yield

Trh/10
8 GeV 5.9 5.9 6.3 5.9 5.8 5.9 6.1

1013Y3/2 1.1 1.1 1.2 1.13 1.11 1.1 1.15

Table 3. Parameters yielding the correct BAU for various neutrino mass schemes, kSH = 1.5, λµ =

10−6 and y = 0.5. Shown also are the branching ratios of the δ̂φ decay into N c
i with i = 2 except for

the case A where i = 1. Recall that these results are independent of the variables λ, cT , kS and kSÑc
.
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D this limit is almost saturated. We observe that with NO or IO miν ’s, the resulting MiNc ’s
are also hierarchical. With degenerate miν ’s, the resulting Miν ’s are closer to one another.
Consequently, in the latter case more δ̂φ-decay channels are available, whereas for the case A
only a single decay channel is open. In all other cases — even in the case C where the decay
channel δ̂φ → N c

3N
c
3 is kinematically permitted —, the dominant contributions to YB arise

from ε2. Therefore, the branching ratios, which are also presented in table 3, Γ̂δφ→Nc
i
/Γ̂δφ

with i = 1 for the case A and i = 2 for the other cases are crucial for the calculation YB from
eq. (5.6). We notice that these ratios introduce a considerable reduction in the derivation
of YB, given that Γ̂δφ→Nc

i
< Γ̂δφ→XY Z < Γ̂δφ→H . This reduction can be eluded if we adopt

— as in refs. [39, 40, 45, 46, 113] — the resolution of the µ problem proposed in [112] since
then the decay mode in eq. (5.3a) disappears. In table 3 shown also are the values of Trh, the
majority of which are close to 6 ·108 GeV, and the corresponding Y3/2’s, which are consistent
with eq. (5.16) mostly for m3/2 & 11 TeV. These large values are in nice agreement with the
ones needed for the solution of the µ problem of MSSM, as explained in section 4.

Since we do not consider any particular GUT here, the miD’s are free parameters.
For the sake of comparison, however, we mention that the simplest realization of a SUSY
Left-Right [Pati-Salam] GUT predicts [113, 129] hiN = hiE [miD = miU ], where miU are the
masses of the up-type quarks and we ignore any possible mixing between generations. Taking
into account the SUSY threshold corrections [98] in the context of MSSM with universal
gaugino masses and tanβ ≃ 50 — favored by the recent LHC results [76, 77] — these
predictions are translated as follows:

(
m0

1D,m
0
2D,m

0
3D

)
≃
{

(0.023, 4.9, 100) GeV for a Left-Right GUT,
(0.0005, 0.24, 100) GeV for a Pati-Salam GUT.

(5.17)

Comparing these values with those listed in table 3, we remark that our model is not compat-
ible with any GUT-inspired pattern of large hierarchy between the miD’s, especially in the
two lighter generations, since m1D ≫ m0

1D and m2D > m0
2D. On the other hand, in the cases

A, B, D, E and F we are able to place m3D ≃ m0
3D. This arrangement can be understand

if we take into account that m1D and m2D separately influences the derivation of M1Nc and
M2Nc respectively — see, e.g., refs. [39, 40, 128]. Consequently, the displayed m2D ∼ 10 GeV
assists us to obtain the ε2’s required by eq. (5.15) — note that in the case A m2D ≃ 40 GeV

kinematically blocks the channel δ̂φ→ N c
2N

c
2 . On the other hand, m1D & 0.5 GeV is neces-

sitated in order to obtain the observationally favored ε1 in the case A and fulfill eq. (5.13a)
in the other cases. Note that the phases ϕ1 and ϕ2 in table 3 are selected in each case, so
that the required miD and MiNc , which dominate the YB calculation, and the resulting Trh
are almost minimized.

In order to extend the conclusions inferred from table 3 to the case of a variable λµ, we
can examine how the central value of YB in eq. (5.15) can be achieved by varying m2D as a
function of λµ. The resulting contours in the κ−m2D plane are presented in figure 3 — since
the range of YB in eq. (5.15) is very narrow, the 95% c.l. width of these contours is negligible.
The convention adopted for these lines is also described in the figure. In particular, we use
solid, dashed, or dot-dashed line for miν , m1D, m3D, ϕ1, and ϕ2 corresponding to the cases
B, D, or F of table 3 respectively. Since increasing λµ, the resulting Trh is expected to
get larger than that shown in table 3 — see eqs. (5.3b) and (5.5) — we select for the plot
in figure 3 one case from every low-energy mass scheme of miν ’s with M1Nc large enough,
such that eq. (5.13a) is comfortably satisfied for every λµ within the range of eq. (4.3) with
kSH = 1.5. This equation sets, actually, the limits on the contours depicted in figure 3. For
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Figure 3. Contours in the λµ −m2D plane yielding the central YB in eq. (5.15) consistently with the
inflationary requirements for kSH = 1.5, y = 0.5 and the values of miν , m1D, m3D, ϕ1, and ϕ2 which
correspond to the cases B (solid line), D (dashed line), and F (dot-dashed line) of table 3.

λµ & 6 · 10−7 we get Γ̂δφ→H > Γ̂δφ→XY Z and so, increasing λµ the branching fraction in
eq. (5.6b) drops and larger m2D’s are required to obtain YB compatible with eq. (5.15). On
the other hand, for λµ . 6 · 10−7, Γ̂δφ→XY Z gets larger than Γ̂δφ→H and so, the branching
fraction in eq. (5.6b) remains almost constant and no sizable variation of m2D is required. At
the upper termination points of the contours, we obtain Trh ≃ 5 ·109 GeV or Y

G̃
≃ 9.4 ·10−13.

The constraint of eq. (5.16), therefore, will cut any possible extension of the curves would be
available for possible larger λµ’s. Along the depicted contours, the resulting M2Nc ’s vary in
the range (1.4–4) · 1012 GeV whereas M1Nc and M3Nc remain close to their values presented
in the corresponding cases of table 3.

In conclusion, nTL is a realistic possibility within our model, thanks to the sponta-
neously arising couplings in SUGRA, even without direct couplings of the inflaton to N c

i ’s
in W .

6 Conclusions

We investigated a variant of the Starobinsky inflation, which can be embedded in a moderate
extension of MSSM supplemented by three N c

i ’s and two more superfields, the inflaton and
an accompanied field. Key role in our proposal plays a continuous R symmetry, which
is reduced to the well-known R-parity of MSSM, a Z2 discrete symmetry and a no-scale-
type symmetry imposed on the Kähler manifold. The adopted symmetries have a number
of ensuing consequences: (i) The inflaton appears quadratically in the super- and Kähler
potentials; (ii) it couples to N c

i via SUGRA-induced interactions ensuring low Trh and no
important contributions to the one-loop radiative corrections; (iii) the µ problem of MSSM
can be elegantly resolved provided that a related parameter in superpotential is somehow
suppressed. The last issue can be naturally incorporated in various schemes of SSB with
relatively large — of the order (104–106) GeV — m3/2’s which facilitate the explanation of

the recently observed mass of the electroweak Higgs and the satisfaction of the G̃ constraint.

The next important modification of our set-up compared to other incarnations — cf.
refs. [7–9] — of the Starobinsky inflation in SUGRA is the introduction of a variable scale
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(M) — besides the existing one in refs. [7–9] — in the superpotential and a parameter (cT )
in the Kähler potential which was ultimately confined in the range 76 ≤ cT ≤ 4500. One of
these parameters (M and cT ) can be eliminated demanding that the gravitational strength
takes its conventional value at the SUSY vacuum of the theory. Actually our inflationary
model interpolates between the Starobinsky [3–5] and the induced-gravity [48–54] inflation.
Variation of the free model parameters (λ and cT ) gives us the necessary flexibility in order to
obtain inflation for subplanckian values of the inflaton. Consequently, our proposal is stable
against possible corrections from higher order terms in the super- and/or Kähler potentials.
Moreover, we showed that the one-loop radiative corrections remain subdominant during
inflation and the corresponding effective theory is trustable up to mP.

Despite the addition of the extra parameters, our scheme remains very predictive since
all the possible sets (λ, cT ) which are compatible with the two inflationary requirements, con-
cerning the number of the e-foldings and the normalization of the curvature perturbation,
yield almost constant values of r and ns and a unique inflaton mass, m̂δφ. In particular,
we find ns ≃ 0.963, as ≃ −0.00068 and r ≃ 0.0038, which are in excellent agreement with
the current data, and m̂δφ = 3 · 1013 GeV. Moreover, the post-inflationary evolution within
our model remains intact from the variation of the inflationary parameters (λ and cT ). Im-
plementing the (type I) seesaw mechanism for the generation of the light neutrino masses,
we restricted their Dirac masses, miD, and the masses of N c

i ’s, MiNc , fulfilling a number of

requirements, which originate from the BAU, the (unstable) G̃ abundance and the neutrino
oscillation parameters. Namely, we found m1D ≥ 0.5 GeV and m2D ≃ 10 GeV resulting
mostly to M1Nc ≃ 1011 GeV and M2Nc ≃ 1012 GeV.

As a bottom line, we would like to emphasize that the Starobinsky-type inflation in
no-scale SUGRA can be linked to the phenomenology of MSSM, even if it is not realized
by a matter-like inflaton as in refs. [24, 25]. In our framework, this type of inflation, driven
by a modulus-like field, suggests a resolution of the µ problem of MSSM, compatible with
large values of m3/2 and it is followed by a robust cosmological scenario — already applied
in many inflationary settings [39, 40, 43, 45, 46, 80–83, 113] — ensuring spontaneous nTL
reconcilable with the G̃ constraint and the neutrino oscillation parameters.
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