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Abstract

Despite the potential for better understanding functional neuroanatomy, the complex relationship between neuroimaging 

measures of brain structure and function has confounded integrative, multimodal analyses of brain connectivity. This is 

particularly true for task-related effective connectivity, which describes the causal influences between neuronal populations. 

Here, we assess whether measures of structural connectivity may usefully inform estimates of effective connectivity in larger 

scale brain networks. To this end, we introduce an integrative approach, capitalising on two recent statistical advances: 

Parametric Empirical Bayes, which provides group-level estimates of effective connectivity, and Bayesian model reduction, 

which enables rapid comparison of competing models. Crucially, we show that structural priors derived from high angular 

resolution diffusion imaging on a dynamic causal model of a 12-region network—based on functional MRI data from the 

same subjects—substantially improve model evidence (posterior probability 1.00). This provides definitive evidence that 

structural and effective connectivity depend upon each other in mediating distributed, large-scale interactions in the brain. 

Furthermore, this work offers novel perspectives for understanding normal brain architecture and its disintegration in clini-

cal conditions.

Keywords Effective connectivity · Dynamic causal modelling (DCM) · Structural connectivity · Functional MRI

Introduction

Brain connectivity can be measured or inferred at multi-

ple levels, but integrating these levels poses a significant 

challenge. Effective connectivity is the causal influence that 

neural populations exert over each other, and can be inferred 

from functional imaging data (e.g., functional MRI—fMRI, 

electroencephalography—EEG, or magnetoencephalog-

raphy—MEG) via the inversion of forward or generative 

models (e.g., Dynamic Causal Modelling, DCM). Func-

tional connectivity refers to the consequences of these causal 

interactions; for example, correlations between region- or 

source-specific time series. Between-region communica-

tion is mediated by direct axonal connections and, there-

fore, depends on the white-matter architecture of the brain. 

In neuroimaging, white matter or structural connectivity is 

typically characterised using diffusion MRI (dMRI; Jones 

et al. 1999; Mori and Zhang 2006; Jbabdi et al. 2015) and 

probabilistic tractography (Behrens et al. 2003). Given that 

brain function arises from the underlying network structure, 

a meaningful description of effective and functional con-

nectivity should benefit from taking structure into account 

(Sporns et al. 2000; Park and Friston 2013; Sporns 2014). 

Indeed, studies comparing fMRI and dMRI measures for 

circumscribed connections or networks suggest that func-

tional and effective connectivity generally reflect underlying 

anatomy (Upadhyay et al. 2008; Greicius et al. 2009; Saur 
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et al. 2010; Ethofer et al. 2011; Sokolov et al. 2012, 2014). 

However, despite the potential benefits of integrative analy-

ses, methodological challenges have limited the uptake of 

multimodal approaches, in particular with respect to larger 

scale brain networks.

The mapping between brain structure and function is 

not straightforward. Two regions may lack direct struc-

tural (axonal) connections, but, nonetheless, communicate 

through polysynaptic white-matter pathways (Koch et al. 

2002). Furthermore, specific task demands modulate the 

extent to which particular brain regions are engaged. In 

other words, some contexts may silence effective connec-

tivity despite the presence of structural connectivity (e.g., 

silent synapses; Isaac et al. 1995). Differences in spatial and 

temporal resolution between MRI, EEG, and MEG represent 

another significant challenge. It is, therefore, unsurprising 

that there are inconsistent findings across studies seeking to 

bridge structural and functional brain connectivity. Straight-

forward associations have been reported between structural 

connectivity and fMRI- or MEG-based resting-state func-

tional connectivity (rsFC; Garces et al. 2016), as well as 

between white-matter fibre pathway characteristics and func-

tional connection strength (Hermundstad et al. 2013), while 

other work has indicated a rather complex relationship, with 

existence of rsFC in the absence of detectable direct struc-

tural connections (Honey et al. 2009).

To accommodate this complex relationship between 

white-matter structure and brain communication, probabilis-

tic approaches appear useful. For example, one might predict 

stronger functional or effective connectivity between regions 

with stronger structural connections. Recent studies have 

assessed the utility of probabilistic tractography as proba-

bilistic priors for fMRI rsFC in Bayesian frameworks (Xue 

et al. 2015; Kang et al. 2017), and to form a prior precision 

(inverse variance) matrix used for MEG rsFC (Pineda-Pardo 

et al. 2014). However, without a model of neuronal coupling, 

these functional connectivity analyses cannot characterise 

the causal influences between brain regions; namely, their 

effective connectivity.

The added value of structural connectivity constraints on 

effective connectivity was previously demonstrated in the 

context of a four-node neural network (Stephan et al. 2009). 

The authors used circuitry models (DCMs), where the 

strength of every between-region connection is controlled 

by a parameter. These parameters have a prior (multivari-

ate normal) distribution, with an expectation of zero and a 

certain positive variance. The larger the prior variance, the 

further the extrinsic effective connectivity is allowed to devi-

ate from zero (Fig. 1). The authors specified a set of models 

which differed in the mapping from structural connectiv-

ity to prior variance, and they found that the model with 

the strongest evidence had a positive monotonic mapping 

from structural connectivity to the prior variance of extrinsic 

effective connectivity. While conceptually promising, the 

computational cost of estimating every DCM of effective 

connectivity with different structure–function mappings may 

have limited the uptake of this approach, particularly with 

regard to networks with larger numbers of nodes.

In the present study, we use a computationally efficient 

approach to ask whether structural information—afforded by 

probabilistic tractography on high angular resolution diffu-

sion imaging (HARDI)—can be used to improve analyses of 

group-level extrinsic effective connectivity [i.e., the param-

eters that constitute the DCM A-matrix, see Eq. (2)]. In our 

approach, a single DCM is estimated for each subject in the 

usual way. Subsequently, a group-level Parametric Empirical 

Bayes (PEB) model is estimated, which takes the form of a 

Bayesian General Linear Model (GLM) of the subjects’ con-

nection strengths and includes (parametric) random effects 

on connectivity (Friston et al. 2016). Using Bayesian model 

reduction (BMR), this ‘full’ PEB model is then analytically 

compared against hundreds of alternative models, which dif-

fer in the form of the mapping from structural connectivity 

to the prior variance of effective connectivity (Friston et al. 

2016).

Formally, this procedure adds an extra hierarchical level 

to the model of observed functional time series. At the first 

level, the data are explained in terms of haemodynamics 

playing out on a network parameterised in terms of effective 

connectivity. At the second level, the connectivity param-

eters are generated by a group mean plus some random 

Fig. 1  Illustration of shrinkage priors in DCM and their reduction. 

The horizontal axis  is the value of the connectivity parameter (i.e., 

the strength of the connection) and the vertical axis is the prior prob-

ability for effective connectivity. The blue line ( Σ
y max

 = 0.5) is the 

maximum prior variance used in this study for extrinsic (between-

region) DCM connections. Reducing the prior variance, illustrated by 

the green line ( Σ
y
 = 0.3) and the red line ( Σ

y
 = 0.1), limits the extent 

to which a posterior connection parameter can deviate from its prior 

expectation of zero
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fluctuations (i.e., effects). At the final level, group means are 

generated under structural constraints; namely, departures of 

effective connectivity from their prior mean of zero depend 

upon the probability of a structural connection (Fig. 1). This 

dependency is itself parameterised. The use of Bayesian 

model reduction (BMR) to identify the parameters of the 

mapping between structural and effective connectivity is the 

key advance here. BMR is sufficiently fast and efficient to 

explore all plausible mappings, thereby avoiding the local 

minima associated with simpler optimisation schemes.

In what follows, we illustrate assessment of structural 

constraints derived from HARDI data for DCMs of effective 

connectivity based on task-related fMRI in the same sub-

jects. The code for performing these analyses is available in 

the freely available Statistical Parametric Mapping (SPM12; 

http://www.fil.ion.ucl.ac.uk/spm) software package imple-

mented in Matlab (MathWorks, Inc., Sherbon, MA, USA).

Methods

Participants

fMRI and HARDI data of 12 right-handed male volunteers 

with a mean age of 26.0 years were included in this study. 

The participant group overlapped with that in previous stud-

ies (Sokolov et al. 2012, 2014). All participants had normal 

visual acuity and no history of neurological or psychiatric 

conditions or medication. Informed written consent was 

obtained and subjects were financially compensated for their 

participation. Study approval was obtained from the Ethics 

Committee of the University of Tübingen Medical School, 

Germany.

Experimental setup

While undergoing fMRI, subjects viewed visual biological 

motion stimuli. These consisted of 11 bright dots on the 

head and main articulations of a person walking to the right 

without displacement against a dark background, and were 

masked by 33 additional bright dots moving in the same 

fashion (for more details, see Pavlova et al. 2007). Arrays 

of 44 bright dots that did not contain the point-light walker 

constituted control stimuli. Stimulus duration was 1000 ms 

and a fixation cross was shown between presentation of stim-

uli and during baseline. The animations were created with 

Cutting’s algorithm (Cutting 1978), and displayed using 

the software Presentation (Neurobehavioral Systems Inc., 

Albany, CA, USA) through projection on a screen outside 

the MRI scanner (3 T TimTrio, Siemens Medical Solutions, 

Erlangen, Germany; 12 channel head coil). Participants 

viewed the screen through a tilted mirror on the head coil. 

In a two-alternative forced choice paradigm, the participants 

had to decide whether a walker was present or not by press-

ing a button with their right index finger (button order coun-

terbalanced between participants).

MRI recording

Over two fMRI sessions (echo-planar imaging (EPI); 114 

volumes, 56 axial slices, TR = 4000 ms, TE = 35 ms, in-

plane resolution 2 × 2  mm2, slice thickness = 2 mm, 1 mm 

gap), 120 trials (60 trials per stimulus type) were presented 

to the participants. Each session lasted 456 s and contained 

an initial baseline epoch of 24 s and three event-related 

epochs of 120 s (20 trials each, the same number of walker-

present and absent stimuli), followed by a baseline epoch 

of 24 s each. Stimulus onset intervals were jittered between 

4000 and 8000 ms in steps of 500 ms and stimulus order was 

pseudo-randomised.

A three-dimensional T1-weighted magnetisation-pre-

pared rapid gradient echo (MPRAGE) imaging data set (176 

sagittal slices, TR = 2300 ms, TE = 2.92 ms, TI = 1100 ms, 

and voxel size = 1 × 1 × 1  mm3) was acquired as anatomical 

reference and a field map for later correction of magnetic 

field inhomogeneity. For HARDI, we employed a diffusion-

sensitised spin EPI with isotropic resolution (54 axial slices, 

TR = 7800  ms, TE = 108  ms, slice thickness = 2.5  mm, 

matrix size = 88 × 88, and field of view = 216 mm) and 64 

diffusion gradient directions (b value = 2600s/mm2). Per 

subject, two HARDI sessions were performed to improve 

consistency and sensitivity of diffusion parameter estima-

tion. Per session, one volume without diffusion sensitisation 

(b value = 0 s/mm2) was recorded.

fMRI analysis

After standard pre-processing using SPM12, including slice 

timing and realignment, unwarping, image co-registration, 

normalisation based on segmentation and spatial smooth-

ing, a GLM was specified for fMRI analysis. The timing of 

all stimulus onsets (across both stimulus types) was concat-

enated over sessions and modelled with a single regressor. A 

parametric regressor modelled the presented stimulus type 

(positive for walker-present and negative for walker-absent 

displays). Regressors of no interest included six head motion 

parameters, white matter, and cerebrospinal fluid time series. 

Subsequently, event-related regressors were convolved with 

a hemodynamic response function. A high-pass filter with 

1/256 Hz was applied and the error term was modelled as a 

mixture of a first-order autoregressive process with a coef-

ficient of 0.2 and white noise.

Individual whole-brain images were created for the 

contrasts: task (activation vs. baseline), positive paramet-

ric regressor (walker-present vs. walker-absent trials), 

and the reverse (walker-absent vs. walker-present trials). 

http://www.fil.ion.ucl.ac.uk/spm
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Second-level random effects analysis was conducted on the 

individual contrast images, and regional activations were 

localised using the automated anatomical labelling in SPM 

(Tzourio-Mazoyer et  al. 2002) and the NeuroSynth.org 

database (Yarkoni et al. 2011; http://neuro synth .org). Con-

trast images were thresholded at p < 0.05, family-wise error 

(FWE) corrected for multiple comparisons using random 

field theory.

HARDI pre‑processing and probabilistic 
tractography

Based on the fMRI analysis above, we identified eight 

regions differentially activated by the presence and absence 

of the point-light walker within the array of moving dots 

(seven regions exhibiting higher activation for walker-pre-

sent vs. walker-absent stimuli and one region for the inverse 

contrast) and four regions activated, on average, across all 

conditions as compared to baseline. The coordinates of these 

regions are presented in Table 1. Spherical images with 

centre coordinates identical to the fMRI individual maxima 

for these 12 regions and an 8 mm radius (corresponding to 

the DCM node specifications, see below) were created for 

probabilistic tractography.

For HARDI pre-processing, we used the FMRIB’s Dif-

fusion Toolbox (FDT) within the FMRIB Software Library 

(FSL5, Oxford Centre for Functional MRI of the Brain, 

UK, http://www.fmrib .ox.ac.uk/fsl). After brain extraction 

(Smith 2002), motion and eddy current correction, and co-

registration with the anatomical reference image, the data 

were aligned to normalised Montreal Neurological Institute 

(MNI) space. For the latter two steps, the transformation 

parameters provided by the FMRIB Linear Image Registra-

tion Tool (FLIRT; Jenkinson et al. 2002) were employed to 

adjust gradient directions accordingly. Bayesian Estimation 

of Diffusion Parameters Obtained using Sampling Tech-

niques with modelling of Crossing Fibres (BEDPOSTX; 

Behrens et al. 2007) on individual normalised data yielded 

diffusion parameters for each voxel.

Subsequently, each of the 12 brain regions was used as a 

seed in probabilistic tracking with crossing fibres (PROB-

TRACKX; Behrens et al. 2007; step length = 0.5 mm, num-

ber of steps = 2000, number of pathways = 5000, curvature 

threshold = 0.2, modified Euler integration) with the other 

nodes specified as classification targets (according to neu-

roanatomical evidence, no structural connections were 

assessed between the left cerebellar lobule VI and the 5 

occipital regions: bilateral V1 and V3, and left V6; Buck-

ner et al. 2011).

Structural connection strength

For every pair of seed and target regions, averaging the 

values contained in every seed voxel (representing the 

number of streamlines from this voxel to the target region) 

provided a streamline average count from the seed to the 

target region. The anatomical plausibility of the resulting 

structural pathways was confirmed by inspection for each 

subject. As dMRI does not provide information about 

directionality—and probabilistic tractography is known to 

vary depending on which region is defined as seed and tar-

get—for any pair of regions, the streamline counts for each 

tractography direction were averaged and stored in a sym-

metric between-region structural connectivity matrix. The 

Table 1  MNI coordinates, z 

values and cluster sizes (in 

 mm3) of the regions included 

in the DCM based on group-

level SPM analysis (p < 0.05, 

FWE-corrected for multiple 

comparisons) for walker-present 

as compared to walker-absent 

stimuli, walker-absent vs. 

walker-present trials and the 

active condition (all stimulus 

presentation as compared to 

baseline)

All 12 regions were included in the subsequent DCM analysis

Anatomical label MNI coordinates z value Cluster size

x y z

Walker-present vs. walker-absent

 L middle temporal cortex

 R middle temporal cortex 46 − 68 0 5.95 624

 R insula 36 24 2 5.86 432

 L cerebellar lobule Crus I − 36 − 54 − 28 5.78 296

 R superior temporal sulcus (STS) 50 − 40 10 5.62 736

 R fusiform gyrus (FFG) 42 − 56 − 14 5.48 384

 R inferior frontal gyrus (IFG) 46 10 32 5.41 704

Walker-absent vs. walker-present

 L V6 − 6 − 72 − 34 5.61 896

Active (stimulation vs. baseline)

 L V3 − 32 − 84 12 5.98 552

 R V1 18 − 94 0 5.95 472

 L V1 − 12 − 96 0 5.91 632

 R V3 30 − 84 22 5.80 272

http://neurosynth.org
http://www.fmrib.ox.ac.uk/fsl
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individual structural connectivity matrices were averaged 

at the group level to create a second-level matrix. Given 

the computational efficiency of PEB (see below) and the 

empirical optimisation of how structural measures constrain 

effective connectivity priors, no thresholding was applied 

to the structural connectivity matrix. The group-average 

connection strengths were scaled relative to the maximum 

group-average connection strength.

Dynamic causal modelling (DCM)

For each subject, based on the fMRI data, a DCM was spec-

ified (with options: one-state, bilinear, deterministic, and 

mean-centred inputs). DCM is a framework for Bayesian 

modelling of brain dynamics, divided into two parts—a neu-

ronal model and an observation model (Friston et al. 2003). 

The neuronal model captures the change in brain activity due 

to recurrent neuronal connections and experimental inputs:

 where the vector z ∈ ℝ
n represents the mass neural activity 

of each of n brain regions and ż is the derivative of z with 

respect to time. Time series u are the experimental inputs 

and �n are neuronal coupling parameters that determine the 

(effective) strength of connections within and between brain 

regions. Group coordinates for the 12 regions (Table 1) iden-

tified according to fMRI activation and included in proba-

bilistic tractography (described above) were used to inform 

extraction of individual time series for DCM. They were 

extracted by computing the first eigenvariate of all activated 

voxels (p < 0.05, uncorrected) within a sphere of 8 mm 

radius centred on each individual maximum, found in every 

subject within 6 mm of the group activation coordinate.

The approximation of Eq. (1) used for a particular experi-

ment depends on the available data, and the question the 

experimenter wishes to address. Here, we used the basic 

neuronal model in DCM for fMRI, which approximates ż 

using a simple function (a Taylor approximation):

The parameter matrix A ∈ ℝ
N×N represents the effec-

tive connectivity within and between each of the N regions. 

Our model included bidirectional connections between all 

12 network nodes, except between the left cerebellar lobule 

VI and the occipital regions (bilateral V1 and V3, left V6), 

in correspondence with the structural connectivity matrix. 

Parameters B(j) ∈ ℝ
N×N are the modulatory effects of experi-

mental manipulation j on each connection (only modelled 

for self-connections of the regions here, which control the 

intrinsic excitability of each region) and C ∈ ℝ
N×J is the 

direct driving influence of each of the J experimental inputs 

(1)ż = f (z, u, �
n),

(2)ż =

(

A +
∑

j

ujB
(j)

)

z + Cu.

on each region. In this network, the driving input (all stimuli 

vs. baseline) was modelled to enter bilateral V1.

The second part of the model describes the observations 

we would expect to measure in the fMRI scanner, given the 

response of the neuronal model:

 where �h are the parameters of the observation model and 

observation noise � is modelled as zero mean additive noise. 

DCM for fMRI approximates this function using a hemody-

namic model that incorporates the ‘Balloon’ model of neu-

rovascular coupling, including changes in blood flow and 

subsequent blood oxygen-level-dependent (BOLD) response 

(Stephan et al. 2007).

In summary, putting together the neuronal and obser-

vational models within DCM, we have parameters 

� = (A, B, C, �
h) , all of which are estimated from the data. In 

what follows, for simplicity, we concentrate on the extrinsic 

connectivity parameters A, although the described statistical 

framework and procedures can be applied to all parameters.

Prior variance

In a probabilistic (Bayesian) model m , every parameter 

has a prior probability p(�|m) , on which DCM estimation 

depends. We set the prior on parameter Aq,r which represents 

the connection strength from region r to region q as follows:

 where the prior variance was Σ
y
 = 0.5. This prior variance 

is central to our methodology for multimodal integration, so 

we briefly reprise its interpretation. The prior variance limits 

the extent to which the posterior estimate of a connection’s 

strength can deviate from its prior expectation of 0 Hz. The 

priors for connections in DCM form a multivariate normal 

distribution and are usually set to the same value across all 

extrinsic (i.e., between region) connections (Friston et al. 

2003). If we set the prior variance to a small positive num-

ber (e.g., 0.1 or 0.3, as shown by the red and green lines in 

Fig. 1), we express the belief that the effective connection 

is likely to be small or absent. If the prior variance is set 

to a larger value (such as 0.5, blue line in Fig. 1), then we 

are willing to entertain connection strengths further from 

zero, if this is sufficiently supported by the observed data. 

By setting this prior variance to be a function of structural 

connectivity, the model evidence can be improved (Stephan 

et al. 2009). The influence of priors on model evidence will 

be illustrated further below.

(3)y = g
(

z, �
h
)

+ �,

(4)p
(

Aq,r|m
)

= N
(

Aq,r; 0, Σy

)

,
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Structurally informed Parametric Empirical Bayes 
(si‑PEB)

In contrast to Stephan et al. (2009), we modulated the prior 

variance on extrinsic connections at the group level, using 

the PEB framework. This creates a hierarchical model, in 

which the average group connectivity acts as an empirical 

prior on the connectivity parameters of individual subjects 

(Friston et al. 2016). PEB can increase the robustness of the 

DCM to random effects, because the contribution of each 

individual connection to the group level is weighted by its 

estimated precision, meaning that subjects with inefficient 

estimators will contribute less to the group result than sub-

jects, whose data enable precise estimates. Furthermore, 

using empirical (group level) priors on DCM parameters 

finesses local minima problems (Friston et al. 2016). The 

PEB model for extrinsic effective connectivity has the fol-

lowing form:

Here, the observed fMRI data yi for subject i are gener-

ated by function Γ
(1)

i
—the subject’s DCM with parameters 

A
(1)

i
—and observation noise �

(1)

i
 . The DCM parameters 

A
(1)

i
 are themselves represented by a group or second-level 

model, written on the second line of the equation. The sec-

ond-level function Γ(2) (a GLM) has parameters (e.g., group-

average connection strengths) A(2) , plus between-subject ran-

dom effects �(2) (see Supplementary Methods). In the si-PEB 

approach presented here, we modulate the prior variance Σ
y
 

of the second-level parameters A(2) , in analogy to Eq. (4):

Based on the previous findings (Koch et al. 2002; Honey 

et al. 2009; Stephan et al. 2009), we assumed a positive 

monotonic relationship between structure and function; 

i.e., greater group structural connection strength φ induces 

a higher second-level prior variance Σ
y
 for the corresponding 

extrinsic effective connectivity, using a logistic (sigmoid) 

function:

 where the hyperparameter Σ
y max

 is the maximal prior vari-

ance on second-level effective connectivity, δ determines 

the slope, and α is the point of inflection of the sigmoid. To 

find the optimal hyperparameter combination, we varied α in 

steps of 0.5 in the range between − 2 and 2, δ in steps of 2 in 

the range between 0 and 16, and Σ
y max

 between 0.1 and 0.5 

in steps of 0.1, resulting in 405 different transformations, and 

(5)
yi = Γ

(1)

i

(

A
(1)

i

)

+ �
(1)

i
,

A
(1)

i
= Γ(2)

(

A(2)
)

+ �
(2).

(6)p
(

A(2)|m
)

= N
(

A(2); 0, Σy

)

.

(7)Σ
y
=

Σ
y max

1 + exp (� − � × �)
,

thus second-level models of effective connectivity. Impor-

tantly, this range of hyperparameters included mappings 

which were flat (δ = 0)—these formed control (i.e., null) 

models, where the effective connectivity was not informed 

by the structural connectivity. These 405 structure–function 

mappings constituted competing structural constraints that 

entered as priors on mean effective connectivity. By treating 

each mapping as a model, we evaluated their evidence to 

search for the best mapping, as follows.

Our focus was on using structurally informed priors to 

identify group-level functional architectures. However, in 

principle, the same procedures can be applied to single sub-

ject data. Equation (7) was also used to assess the utility 

of structural information at the individual level. Although 

one could optimize the mapping on a per subject basis, we 

took the slightly more conservative approach of using the 

same mapping for all subjects based on the outcome of the 

si-PEB group analysis. This allowed us to create structurally 

informed DCMs for every subject and evaluate their evi-

dence in relation with a full, structurally naive DCM. This 

analysis assessed the consistency of structural constraints, 

in terms of the reproducibility of model comparison over 

subjects.

DCM and PEB estimation

We estimated a DCM for each subject, which identified the 

parameters � = (A, B, C, �
h) from Eqs. (1) and (3) that maxi-

mized the quality of the model, as quantified by the model 

evidence. The model evidence is defined as the probability 

of observing the measured data y given the model m , p(y|m) . 

DCM performs model estimation using variational Bayes 

under the Laplace approximation (variational Laplace). For 

all DCM parameters θ  (we focus on the extrinsic connectiv-

ity parameters A in this study), this procedure replaces the 

complicated distribution of posterior parameters p(A|y, m) 

with the simpler distribution q(A|y, m) and approximates the 

model evidence by the negative variational free energy F , 

which is a lower bound on the log model evidence log p(y|m) . 

This is given by

 where av(p(y|A, m), q(A)) = p(q(A)|p(y|A, m)) is referred to 

as the accuracy (fit of the model to the data) and the second 

term is the complexity of the model—the distance or KL-

divergence between the approximate posterior q(A|y, m) and 

the priors p(A|m) . This divergence may be reduced by adap-

tation of priors such as in si-PEB, leading to improvement of 

(8)

F(m) =� q(A) ln
p(y, A|m)

q(A)
dA,

=av(p(y|A, m), q(A))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

accuracy

−KL(q(A), p(A|m))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

complexity

,
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model quality as assessed by the free energy. The parameters 

which maximize the free energy are those that provide the 

most accurate and simplest explanation for the data.

Having estimated a DCM for each subject, we then speci-

fied and estimated the group-level PEB model. This uses 

the same estimation procedure as described above for each 

subject’s DCMs, except the procedure optimizes the param-

eters with respect to a group-level free energy (i.e., it finds 

explanations for the data from all subjects while allowing 

for parametric random effects at the between-subject level). 

This provided estimates of the average connection strengths 

and free energy at the group level.

Bayesian model reduction (BMR) and model 
comparison

Having estimated a ‘full’ model, including all free param-

eters of interest, BMR can be used to rapidly compute the 

evidence and parameters of ‘reduced’ (alternative) models. 

Depending on the hypotheses, these reduced models may 

have different prior constraints on the connectivity param-

eters (e.g., informed by structural connectivity) or certain 

connections may be switched off entirely (by fixing them 

at their prior expectation). Whereas the variational Laplace 

procedure described above can be computationally expen-

sive (on the scale of minutes to hours), BMR is analytic 

and computed in seconds using typical computer hardware. 

This procedure is particularly useful for larger DCMs with 

more regions and parameters. Crucially, the outcomes of 

this analytical procedure are stable and generally consistent 

with conventional DCM estimation (Rosa et al. 2012; Litvak 

et al. 2015).

Based on Bayes rule, using a generalisation of the Sav-

age–Dickey ratio (Dickey 1971; Rosa et al. 2012), we can 

derive the posterior distribution of the parameters of the 

reduced model p
(

A|y, mR

)

 , as well as the relative evidence 

for the reduced with respect to the full model 
p(y|mR)
p(y|mF)

:

Under the Laplace approximation, this equation gives 

rise to simple analytic functions of the posterior parameter 

means and precisions from the full model and the priors 

of the reduced model [see Eqs. (9) and (10) of Friston and 

Penny 2011; Supplementary Methods].

As described above, we specified 405 reduced si-PEB 

models which only differed in their structurally informed 

prior covariance matrices, but otherwise shared the same 

(9)

p
(
A|y, mR

)
= p

(
A|y, mF

)p
(
y|mF

)
p
(
A|mR

)

p
(
y|mR

)
p
(
A|mF

) ,

p
(
y|mR

)

p(y|mF)
= ∫ p

(
A|y, mF

)p(A|mR)

p(A|mF)
dA.

generative model (and thus likelihood) p(y|A, m) . BMR 

afforded comparison of the models with respect to their 

free energy, as an approximation to their log model evidence 

(Friston et al. 2007, 2016). Furthermore, we used BMR to 

compare structurally informed with the full, uninformed 

DCMs at the individual level.

The log Bayes factor for each model, relative to the 

worst, was calculated by subtracting its (i.e., the smallest) 

free energy from each model’s free energy. A difference in 

free energy of approximately three corresponds to a 95% 

probability that one model better explains the observed data, 

and we used this as our threshold for concluding there was 

‘strong evidence’ for one model over another (Penny et al. 

2004). The log Bayes factors were converted to posterior 

probabilities in the usual way using a softmax function.

Results

Comparison of 405 group-level models, with different map-

pings from group structural connection strength to second-

level prior variance on effective connectivity, indicated that 

including structural connectivity significantly improved the 

model evidence. The highest log model evidence relative to 

the full, uninformed model equalled 15.52 (considered ‘very 

strong evidence’; Penny et al. 2004), corresponding to a pos-

terior probability of almost 1.00 that the structural priors 

improved model evidence. This si-PEB model was obtained 

with a mapping governed by the hyperparameter combina-

tion α = 0.5, δ = 8, Σ
y max

 = 0.5 (Fig. 2). The computation 

time for PEB estimation and comparing all 405 models using 

BMR on a PC workstation was 15.5 s. Given around 3460s 

(58 min) for individual DCM estimation, use of conven-

tional DCM without BMR would have taken approximately 

1,401,300 s (389 h) per subject (i.e., 4668 h for the entire 

group) to invert the 405 different mappings from structural 

connection strength to effective connectivity priors.

As illustrated in Fig. 3, the log-evidence increased as 

δ-values (i.e., slope of the sigmoid transform from struc-

tural connectivity to prior covariance) progressed from 0 

(no influence of structural connectivity) to 10. The model 

probability then diminished towards the upper limit of this 

hyperparameter range (δ = 16). Therefore, PEB with struc-

turally informed priors (δ > 0) outperformed models without 

any influence of structural connectivity (δ = 0). The opti-

mal range for α was between − 0.5 and 0.5, and for �
y max

 

between 0.3 and 0.5.

Inclusion of structural connectivity may not only be use-

ful at the group-level, but also for individual analyses of 

effective connectivity. To illustrate this, the optimal map-

ping—from structural connectivity to prior variance on 

effective connectivity—afforded by the si-PEB approach was 

applied to single subject DCMs. Bayesian model comparison 
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Fig. 2  Model space spanned by the hyperparameters α and δ, shown 

at Σ
y
 = 0.5 for illustrative purposes. The mapping from structural 

connection strength (x-axis in each plot) to prior covariance for effec-

tive connectivity (y-axis in each plot) is governed by the hyperparam-

eters α (range from − 2 to 2) and δ (range from 0 to 16). The optimal 

mapping (α = 0.5, δ = 8 and Σ
y
 = 0.5) yielding the highest posterior 

probability (see Fig. 3) is highlighted with a red plot
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indicated very strong evidence for the structurally informed 

models as compared with the uninformed, baseline model 

in every subject (Fig. 4).

Discussion

In this work, we introduced an efficient method (si-PEB) 

for integrating structural and effective connectivity at the 

group level. This overcomes the high computational cost 

of identifying the optimal mapping between structure and 

function in DCM, which was particularly acute for large 

brain networks. Furthermore, by operating at the group 

level, high-quality diffusion data can be introduced into 

effective connectivity models—either from the same sub-

jects or from an atlas, such as the dense structural con-

nectivity matrix due to be released by the Human Con-

nectome Project (Van Essen et al. 2013)—minimizing the 

potential for local minima caused by noisy individual data. 

Our procedure, implemented in a simple software function 

(spm_dcm_peb_si.m), uses BMR to score a large number 

of group-level models which differ in their structural con-

straints on effective connectivity. Bayesian model compar-

ison enables selection of the optimal mapping that yields 

maximal group-level model evidence. We demonstrated 

this approach for a 12-node network involved in visual 

Fig. 3  Illustration of posterior probabilities of PEB models with dif-

ferent prior variance of extrinsic effective  connections defined by 

the  corresponding structural connection strength, depending on the 

hyperparameters α (y-axis) and δ (x-axis) at the three most prob-

able levels of full prior covariance (a Σ
y
 = 0.3; b Σ

y
 = 0.4; and c Σ

y
 

= 0.5). The other two levels ( Σ
y
 = 0.1 and Σ

y
 = 0.2) are omitted for 

illustrative purposes, as the corresponding posterior probabilities 

are all close to zero. At each level of Σ
y
 , the optimal range of α is 

from − 0.5 to 0.5, and posterior probability increases from δ = 0 (no 

structural information transmitted to prior PEB covariance) to peak at 

δ-values of 8–10. As can be seen, structurally informed PEB (si-PEB; 

δ > 0) priors outperformed models with structurally uninformed priors 

(δ = 0)

Fig. 4  Individual increases in log-evidence for the optimal struc-

turally informed model as compared to the full, uninformed model. 

These results show strong evidence for structural priors in every 

subject. Structural constraints were implemented using the opti-

mal group-level mapping (with hyperparameters α = 0.5, δ = 8 and 

Σ
y
 = 0.5) from structural connectivity to prior variance on indi-

vidual extrinsic  effective connectivity. The relative log-evidence 

(y-axis) represents the difference in evidence between the structurally 

informed and uninformed (full) baseline model in individual subjects 

(x-axis). The red dashed line indicates a threshold of three that consti-

tutes very strong evidence for one model over another
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body motion processing, finding the optimal structurally 

informed group-level model of effective connectivity had 

substantially more evidence than uninformed models. 

Furthermore, the consistently higher model evidence for 

structurally informed DCMs in every subject suggests 

inclusion of structural connectivity in analyses of effective 

connectivity may also be beneficial at the individual level.

The si-PEB procedure not only confirms, but substan-

tially extends the previous work showing that effective con-

nectivity modelled in DCM is usefully shaped by structural 

connectivity priors (Stephan et al. 2009). Use of the recent 

methodological advances BMR and PEB (Friston et al. 

2016) allows the si-PEB analysis to run within a few sec-

onds, whereas the previous approach for conventional DCM 

could take several hours or days (Stephan et al. 2009). Com-

parative studies demonstrated that BMR provides stable out-

comes consistent with conventional DCM (Rosa et al. 2012; 

Litvak et al. 2015). This makes it tractable for experimenters 

to include information on structural connectivity as priors in 

DCM analyses of networks with a large number of regions 

and connections as a matter of routine. Notably, the use of 

this approach is not restricted to task-related data but could 

also be implemented with DCM for resting-state fMRI (Fris-

ton et al. 2014; Razi et al. 2015). Importantly, the si-PEB 

procedure can be used to shape models of effective connec-

tivity based on information other than the direct structural 

connectivity presented here, such as intra- or extracranial 

electrophysiological data.

Multimodal integration beyond MRI provides exciting 

opportunities to consider structural, functional and effective 

connectivity as distinct yet complementary determinants of 

functional integration in the brain. For instance, integration 

of electrophysiology with its exquisite temporal resolution 

(Bonnefond et al. 2017), data on physical network topog-

raphy (Pineda-Pardo et al. 2015) as well as analysis and 

modelling of more fine-grained features such as connectiv-

ity within grey matter or mechanisms of synaptic coupling 

(Breakspear et al. 2003; Leuze et al. 2014; Lo et al. 2015) 

may open avenues to better conceptualise brain connectivity. 

Efforts towards generative models of how function evolves 

from structural connectivity are underway (Ritter et al. 2013; 

Sanz Leon et al. 2013). DCM also provides a potentially 

useful framework for developing biophysically plausible 

forward models for multimodal integration, which would 

describe how neural circuitry gives rise to both fMRI and 

electrophysiological data (Friston et al. 2017). Using the si-

PEB approach described here, such multimodal models may 

in future fully capitalise on dMRI, fMRI, and EEG/MEG to 

jointly inform estimates of neural coupling. Furthermore, 

intracranial electrophysiology may provide probabilistic 

atlases describing physiological features of the white-mat-

ter pathways subserving effective connectivity (Catenoix 

et al. 2011; David et al. 2013; Almashaikhi et al. 2014a, b; 

Donos et al. 2016), which may be introduced as priors in 

the si-PEB framework developed here. Another interesting 

extension is assessment of axonal diameter statistics (e.g., g 

ratios: Mohammadi et al. 2015) using microscopic MRI that 

may provide structural constraints on the axonal conduction 

delays, which are an important parameter in DCMs of EEG 

and MEG data.

In terms of the broader application of the si-PEB 

approach, its utility may vary depending on specific net-

work characteristics. As brain connectivity is underwritten 

by white-matter pathways, one can expect structural connec-

tivity to shape functional and effective connectivity (Stephan 

et al. 2009; Pineda-Pardo et al. 2014; Xue et al. 2015; Kang 

et al. 2017). However, this structure–function relationship is 

not straightforward and only partially understood. Establish-

ing a probabilistic mapping between structural and effec-

tive connectivity acknowledges both this neurobiological 

perspective and the inherent limitations of the underlying 

acquisition techniques. Despite sophisticated procedures for 

imaging and analysis of white matter, and optimisations such 

as high-field dMRI recordings or diffusion kurtosis imaging 

(Tournier et al. 2004; Heidemann et al. 2012; Mohammadi 

et al. 2014), the anatomical accuracy of dMRI remains lim-

ited (Thomas et al. 2014; Jbabdi et al. 2015). In particular, 

fibre crossing or bending challenge the currently available 

techniques for tract reconstruction based on dMRI (Beh-

rens et al. 2007). This qualification also applies when using 

HARDI as in the present study. Furthermore, dMRI can-

not provide any information on directionality of signalling 

within fibres or the functional processes the fibres subserve. 

In turn, as DCM is exclusively based on functional brain 

data, it cannot be used to distinguish between monosynap-

tic or polysynaptic connections (Friston et al. 2003). In the 

absence of detectable direct structural pathways, indirect 

communication via hidden nodes may mediate apparently 

direct effective and functional connectivity between brain 

regions (Sporns et al. 2000; Koch et al. 2002; Friston et al. 

2003; Honey et al. 2009; Buckner et al. 2013). As simu-

lated neural activity has been found to correspond to struc-

tural connectivity in the macaque cortex at a timescale of 

minutes but to vary substantially in timeframes of seconds 

(Honey et al. 2007), there may be further caveats when relat-

ing ‘static’ measures of structural connectivity to dynamic 

effective and functional connectivity. These considerations 

illustrate why a general, consistent mapping from structural 

to effective connectivity is unlikely to exist—and motivate a 

study-specific probabilistic mapping, such as afforded by the 

approach introduced here. It will then be possible to evaluate 

how the advantages of structural priors generalise.

Bridging structural and functional brain connectivity 

could offer particularly valuable insights in clinical neu-

roscience. Measures of white-matter integrity have been 

associated to altered functional connectivity in patients 
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with amyotrophic lateral sclerosis (Douaud et al. 2011), 

high functioning autism (Mueller et al. 2013), schizophrenia 

(Schlösser et al. 2007; Pomarol-Clotet et al. 2010; Motzkin 

et al. 2011), bipolar disorder (Motzkin et al. 2011), ano-

rexia and bulimia nervosa (Frank et al. 2016) and temporal 

lobe epilepsy (Voets et al. 2009). Given the volume of data 

afforded by multimodal imaging, computational approaches 

towards integration of structure and function appear indis-

pensable to optimally inform diagnosis and management, as 

demonstrated by connectivity-based classification of patients 

with movement disorders (Fratello et al. 2017) and cognitive 

decline (Pineda-Pardo et al. 2014). Overall, such approaches 

may afford a more comprehensive understanding of the sub-

tle alterations underlying pathologies of brain structure and 

function in neurological and psychiatric conditions.

In summary, these considerations speak to integrative 

approaches to modelling connectivity, which necessarily will 

draw upon multiple modalities informing on brain structure 

and function in normalcy and pathology.

Acknowledgements This research was supported by fellowships from 

the Baasch-Medicus Foundation, the Leenaards Foundation, the Fund 

of the Research Committee of the Faculty for Biology and Medicine, 

University of Lausanne, Switzerland, and the International Federation 

of Clinical Neurophysiology to A.A.S, and research grants from the 

German Research Foundation (DFG PA 847/22-1), the Beitlich Foun-

dation and the BBBank Foundation to M.A.P. The Wellcome Centre 

for Human Neuroimaging is supported by the Wellcome Sponsored 

Research Grant number 539208. The authors wish to thank Thomas 

Ethofer, Saad Jbabdi and Nikolaus Weiskopf for advice concern-

ing analysis of structural connectivity, and Richard Frackowiak and 

Alexander Sokolov for valuable discussion. The authors acknowledge 

technical support by Ric Davis, Jürgen Dax, Chris Freemantle, Bernd 

Kardatzki, Rachael Maddock, Liam Reilly, as well as administrative 

support from Marcia Bennett, David Blundred, Kamlyn Ramkissoon 

and Daniela Warr.

Compliance with ethical standards 

Conflict of interest The authors do not have any conflicts of interest 

to disclose.

Ethical standards This research involving human participants was 

approved by the Ethics Committee of the University of Tübingen Medi-

cal School, Germany.

Informed consent Informed written consent was obtained from all 

participants.

Open Access This article is distributed under the terms of the Crea-

tive Commons Attribution 4.0 International License (http://creat iveco 

mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided you give appropriate 

credit to the original author(s) and the source, provide a link to the 

Creative Commons license, and indicate if changes were made.

References

Almashaikhi T, Rheims S, Jung J, Ostrowsky-Coste K, Montavont 

A, De Bellescize J, Arzimanoglou A, Keo Kosal P, Guenot M, 

Bertrand O, Ryvlin P (2014a) Functional connectivity of insular 

efferences. Hum Brain Mapp 35:5279–5294

Almashaikhi T, Rheims S, Ostrowsky-Coste K, Montavont A, Jung J, 

De Bellescize J, Arzimanoglou A, Keo Kosal P, Guenot M, Ber-

trand O, Ryvlin P (2014b) Intrainsular functional connectivity in 

human. Hum Brain Mapp 35:2779–2788

Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-

Kingshott CA, Boulby PA, Barker GJ, Sillery EL, Sheehan K, 

Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) 

Non-invasive mapping of connections between human thalamus 

and cortex using diffusion imaging. Nat Neurosci 6:750–757

Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW 

(2007) Probabilistic diffusion tractography with multiple fibre 

orientations: what can we gain? Neuroimage 34:144–155

Bonnefond M, Kastner S, Jensen O (2017) Communication between 

brain areas based on nested oscillations. eNeuro 10:4

Breakspear M, Terry JR, Friston KJ (2003) Modulation of excita-

tory synaptic coupling facilitates synchronization and complex 

dynamics in a biophysical model of neuronal dynamics. Net-

work 14:703–732

Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT (2011) 

The organization of the human cerebellum estimated by intrin-

sic functional connectivity. J Neurophysiol 106:2322–2345

Buckner RL, Krienen FM, Yeo BT (2013) Opportunities and limita-

tions of intrinsic functional connectivity MRI. Nat Neurosci 

16:832–837

Catenoix H, Magnin M, Mauguiere F, Ryvlin P (2011) Evoked poten-

tial study of hippocampal efferent projections in the human 

brain. Clin Neurophysiol 122:2488–2497

Cutting JE (1978) Generation of synthetic male and female walkers 

through manipulation of a biomechanical invariant. Perception 

7:393–405

David O, Job AS, De Palma L, Hoffmann D, Minotti L, Kahane P 

(2013) Probabilistic functional tractography of the human cor-

tex. Neuroimage 80:307–317

Dickey JM (1971) The weighted likelihood ratio, linear hypotheses 

on normal location parameters. Ann Math Stat 42:204–223

Donos C, Maliia MD, Mindruta I, Popa I, Ene M, Balanescu B, Ciu-

rea A, Barborica A (2016) A connectomics approach combining 

structural and effective connectivity assessed by intracranial 

electrical stimulation. Neuroimage 132:344–358

Douaud G, Filippini N, Knight S, Talbot K, Turner MR (2011) Inte-

gration of structural and functional magnetic resonance imaging 

in amyotrophic lateral sclerosis. Brain 134:3470–3479

Ethofer T, Gschwind M, Vuilleumier P (2011) Processing social 

aspects of human gaze: a combined fMRI-DTI study. Neuro-

image 55:411–419

Frank GK, Shott ME, Riederer J, Pryor TL (2016) Altered structural 

and effective connectivity in anorexia and bulimia nervosa in 

circuits that regulate energy and reward homeostasis. Transl 

Psychiatry 6:e932

Fratello M, Caiazzo G, Trojsi F, Russo A, Tedeschi G, Tagliaferri R, 

Esposito F (2017) Multi-view ensemble classification of brain 

connectivity images for neurodegeneration type discrimination. 

Neuroinformatics 15:199–213

Friston K, Penny W (2011) Post hoc Bayesian model selection. Neu-

roimage 56:2089–2099

Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. 

Neuroimage 19:1273–1302

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


216 Brain Structure and Function (2019) 224:205–217

1 3

Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W 

(2007) Variational free energy and the Laplace approximation. 

Neuroimage 34:220–234

Friston KJ, Kahan J, Biswal B, Razi A (2014) A DCM for resting 

state fMRI. Neuroimage 94:396–407

Friston KJ, Litvak V, Oswal A, Razi A, Stephan KE, van Wijk 

BC, Ziegler G, Zeidman P (2016) Bayesian model reduction 

and empirical Bayes for group (DCM) studies. Neuroimage 

128:413–431

Friston KJ, Preller KH, Mathys C, Cagnan H, Heinzle J, Razi A, Zei-

dman P (2017) Dynamic causal modelling revisited. Neuroimage

Garces P, Pereda E, Hernandez-Tamames JA, Del-Pozo F, Maestu F, 

Pineda-Pardo JA (2016) Multimodal description of whole brain 

connectivity: a comparison of resting state MEG, fMRI, and DWI. 

Hum Brain Mapp 37:20–34

Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-

state functional connectivity reflects structural connectivity in the 

default mode network. Cereb Cortex 19:72–78

Heidemann RM, Anwander A, Feiweier T, Knosche TR, Turner R 

(2012) k-space and q-space: combining ultra-high spatial and 

angular resolution in diffusion imaging using ZOOPPA at 7 T. 

Neuroimage 60:967–978

Hermundstad AM, Bassett DS, Brown KS, Aminoff EM, Clewett 

D, Freeman S, Frithsen A, Johnson A, Tipper CM, Miller MB, 

Grafton ST, Carlson JM (2013) Structural foundations of resting-

state and task-based functional connectivity in the human brain. 

Proc Natl Acad Sci USA 110:6169–6174

Honey CJ, Kotter R, Breakspear M, Sporns O (2007) Network structure 

of cerebral cortex shapes functional connectivity on multiple time 

scales. Proc Natl Acad Sci USA 104:10240–10245

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, 

Hagmann P (2009) Predicting human resting-state functional con-

nectivity from structural connectivity. Proc Natl Acad Sci USA 

106:2035–2040

Isaac JT, Nicoll RA, Malenka RC (1995) Evidence for silent synapses: 

implications for the expression of LTP. Neuron 15:427–434

Jbabdi S, Sotiropoulos SN, Haber SN, Van Essen DC, Behrens TE 

(2015) Measuring macroscopic brain connections in vivo. Nat 

Neurosci 18:1546–1555

Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimi-

zation for the robust and accurate linear registration and motion 

correction of brain images. Neuroimage 17:825–841

Jones DK, Simmons A, Williams SC, Horsfield MA (1999) Non-inva-

sive assessment of axonal fiber connectivity in the human brain 

via diffusion tensor MRI. Magn Reson Med 42:37–41

Kang H, Ombao H, Fonnesbeck C, Ding Z, Morgan VL (2017) A 

Bayesian double fusion model for resting-state brain connec-

tivity using joint functional and structural data. Brain Connect 

7:219–227

Koch MA, Norris DG, Hund-Georgiadis M (2002) An investigation of 

functional and anatomical connectivity using magnetic resonance 

imaging. Neuroimage 16:241–250

Leuze CW, Anwander A, Bazin PL, Dhital B, Stuber C, Reimann K, 

Geyer S, Turner R (2014) Layer-specific intracortical connectivity 

revealed with diffusion MRI. Cereb Cortex 24:328–339

Litvak V, Garrido M, Zeidman P, Friston K (2015) Empirical Bayes 

for Group (DCM) studies: a reproducibility study. Front Hum 

Neurosci 9:670

Lo YP, O’Dea R, Crofts JJ, Han CE, Kaiser M (2015) A geometric 

network model of intrinsic grey-matter connectivity of the human 

brain. Sci Rep 5:15397

Mohammadi S, Tabelow K, Ruthotto L, Feiweier T, Polzehl J, 

Weiskopf N (2014) High-resolution diffusion kurtosis imaging at 

3 T enabled by advanced post-processing. Front Neurosci 8:427

Mohammadi S, Carey D, Dick F, Diedrichsen J, Sereno MI, Reis-

ert M, Callaghan MF, Weiskopf N (2015) Whole-brain in-vivo 

measurements of the axonal G-ratio in a group of 37 healthy vol-

unteers. Front Neurosci 9:441

Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its 

applications to basic neuroscience research. Neuron 51:527–539

Motzkin JC, Newman JP, Kiehl KA, Koenigs M (2011) Reduced pre-

frontal connectivity in psychopathy. J Neurosci 31:17348–17357

Mueller S, Keeser D, Samson AC, Kirsch V, Blautzik J, Grothe M, Erat 

O, Hegenloh M, Coates U, Reiser MF, Hennig-Fast K, Meindl T 

(2013) Convergent findings of altered functional and structural 

brain connectivity in individuals with high functioning autism: a 

multimodal MRI study. PLoS One 8:e67329

Park HJ, Friston K (2013) Structural and functional brain networks: 

from connections to cognition. Science 342:1238411

Pavlova M, Lutzenberger W, Sokolov AN, Birbaumer N, Krageloh-

Mann I (2007) Oscillatory MEG response to human locomotion is 

modulated by periventricular lesions. Neuroimage 35:1256–1263

Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing 

dynamic causal models. Neuroimage 22:1157–1172

Pineda-Pardo JA, Bruna R, Woolrich M, Marcos A, Nobre AC, 

Maestu F, Vidaurre D (2014) Guiding functional connectivity 

estimation by structural connectivity in MEG: an application 

to discrimination of conditions of mild cognitive impairment. 

Neuroimage 101:765–777

Pineda-Pardo JA, Martinez K, Solana AB, Hernandez-Tamames JA, 

Colom R, del Pozo F (2015) Disparate connectivity for struc-

tural and functional networks is revealed when physical location 

of the connected nodes is considered. Brain Topogr 28:187–196

Pomarol-Clotet E, Canales-Rodriguez EJ, Salvador R, Sarro S, 

Gomar JJ, Vila F, Ortiz-Gil J, Iturria-Medina Y, Capdevila 

A, McKenna PJ (2010) Medial prefrontal cortex pathology in 

schizophrenia as revealed by convergent findings from multi-

modal imaging. Mol Psychiatry 15:823–830

Razi A, Kahan J, Rees G, Friston KJ (2015) Construct validation of 

a DCM for resting state fMRI. Neuroimage 106:1–14

Ritter P, Schirner M, McIntosh AR, Jirsa VK (2013) The virtual 

brain integrates computational modeling and multimodal neu-

roimaging. Brain Connect 3:121–145

Rosa MJ, Friston K, Penny W (2012) Post-hoc selection of dynamic 

causal models. J Neurosci Methods 208:66–78

Sanz Leon P, Knock SA, Woodman MM, Domide L, Mersmann J, 

McIntosh AR, Jirsa V (2013) The virtual brain: a simulator of 

primate brain network dynamics. Front Neuroinform 7:10

Saur D, Schelter B, Schnell S, Kratochvil D, Kupper H, Kellmeyer 

P, Kummerer D, Kloppel S, Glauche V, Lange R, Mader W, 

Feess D, Timmer J, Weiller C (2010) Combining functional 

and anatomical connectivity reveals brain networks for auditory 

language comprehension. Neuroimage 49:3187–3197

Schlösser RG, Nenadic I, Wagner G, Gullmar D, von Consbruch 

K, Kohler S, Schultz CC, Koch K, Fitzek C, Matthews PM, 

Reichenbach JR, Sauer H (2007) White matter abnormalities 

and brain activation in schizophrenia: a combined DTI and 

fMRI study. Schizophr Res 89:1–11

Smith SM (2002) Fast robust automated brain extraction. Hum Brain 

Mapp 17:143–155

Sokolov AA, Erb M, Gharabaghi A, Grodd W, Tatagiba MS, Pavlova 

MA (2012) Biological motion processing: the left cerebellum 

communicates with the right superior temporal sulcus. Neuro-

image 59:2824–2830

Sokolov AA, Erb M, Grodd W, Pavlova MA (2014) Structural loop 

between the cerebellum and the superior temporal sulcus: evi-

dence from diffusion tensor imaging. Cereb Cortex 24:626–632

Sporns O (2014) Contributions and challenges for network models 

in cognitive neuroscience. Nat Neurosci 17:652–660

Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanat-

omy: relating anatomical and functional connectivity in graphs 

and cortical connection matrices. Cereb Cortex 10:127–141



217Brain Structure and Function (2019) 224:205–217 

1 3

Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ 

(2007) Comparing hemodynamic models with DCM. Neuroim-

age 38:387–401

Stephan KE, Tittgemeyer M, Knosche TR, Moran RJ, Friston KJ 

(2009) Tractography-based priors for dynamic causal models. 

Neuroimage 47:1628–1638

Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, 

Pierpaoli C (2014) Anatomical accuracy of brain connections 

derived from diffusion MRI tractography is inherently limited. 

Proc Natl Acad Sci USA 111:16574–16579

Tournier JD, Calamante F, Gadian DG, Connelly A (2004) Direct 

estimation of the fiber orientation density function from diffu-

sion-weighted MRI data using spherical deconvolution. Neuro-

image 23:1176–1185

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard 

O, Delcroix N, Mazoyer B, Joliot M (2002) Automated ana-

tomical labeling of activations in SPM using a macroscopic 

anatomical parcellation of the MNI MRI single-subject brain. 

Neuroimage 15:273–289

Upadhyay J, Silver A, Knaus TA, Lindgren KA, Ducros M, Kim DS, 

Tager-Flusberg H (2008) Effective and structural connectivity in 

the human auditory cortex. J Neurosci 28:3341–3349

Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil 

K, Consortium WU-MH (2013) The WU-Minn human connec-

tome project: an overview. Neuroimage 80:62–79

Voets NL, Adcock JE, Stacey R, Hart Y, Carpenter K, Matthews PM, 

Beckmann CF (2009) Functional and structural changes in the 

memory network associated with left temporal lobe epilepsy. Hum 

Brain Mapp 30:4070–4081

Xue W, Bowman FD, Pileggi AV, Mayer AR (2015) A multimodal 

approach for determining brain networks by jointly modeling 

functional and structural connectivity. Front Comput Neurosci 

9:22

Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) 

Large-scale automated synthesis of human functional neuroimag-

ing data. Nat Methods 8:665–670


	Linking structural and effective brain connectivity: structurally informed Parametric Empirical Bayes (si-PEB)
	Abstract
	Introduction
	Methods
	Participants
	Experimental setup
	MRI recording
	fMRI analysis
	HARDI pre-processing and probabilistic tractography
	Structural connection strength
	Dynamic causal modelling (DCM)
	Prior variance
	Structurally informed Parametric Empirical Bayes (si-PEB)
	DCM and PEB estimation
	Bayesian model reduction (BMR) and model comparison

	Results
	Discussion
	Acknowledgements 
	References


