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Inflammatory bowel disease (IBD) and chronic obstructive pulmonary disease (COPD) are

chronic inflammatory diseases of the gastrointestinal and respiratory tracts, respectively.

These mucosal tissues bear commonalities in embryology, structure and physiology.

Inherent similarities in immune responses at the two sites, as well as overlapping

environmental risk factors, help to explain the increase in prevalence of IBD amongst

COPD patients. Over the past decade, a tremendous amount of research has been

conducted to define the microbiological makeup of the intestine, known as the

intestinal microbiota, and determine its contribution to health and disease. Intestinal

microbial dysbiosis is now known to be associated with IBD where it impacts upon

intestinal epithelial barrier integrity and leads to augmented immune responses and

the perpetuation of chronic inflammation. While much less is known about the lung

microbiota, like the intestine, it has its own distinct, diverse microflora, with dysbiosis

being reported in respiratory disease settings such as COPD. Recent research has begun

to delineate the interaction or crosstalk between the lung and the intestine and how

this may influence, or be influenced by, the microbiota. It is now known that microbial

products and metabolites can be transferred from the intestine to the lung via the

bloodstream, providing a mechanism for communication. While recent studies indicate

that intestinal microbiota can influence respiratory health, intestinal dysbiosis in COPD

has not yet been described although it is anticipated since factors that lead to dysbiosis

are similarly associated with COPD. This review will focus on the gut-lung axis in the

context of IBD and COPD, highlighting the role of environmental and genetic factors and

the impact of microbial dysbiosis on chronic inflammation in the intestinal tract and lung.

Keywords: inflammatory bowel disease, Crohn’s disease metabolites, chronic obstructive pulmonary disease,

microbial dysbiosis, gut-lung axis

INTRODUCTION

Inflammatory bowel disease (IBD) and chronic obstructive pulmonary disease (COPD) are chronic
inflammatory diseases that affect the gastrointestinal tract and respiratory system, respectively, with
both being characterized by recurrent disease cycles that result in tissue damage and worsening
of disease symptoms. As mucosal epithelial sites, the gastrointestinal and respiratory tracts share
structural similarities which may result in part from common embryonic origin in the primitive
foregut (1). Its hypothesized that these structural similarities may account for inherent parallels in
the immune responses at these two sites and contribute to the dynamic involvement of the gut-lung
axis in inflammation.
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CHRONIC INFLAMMATORY DISEASES

Inflammatory Bowel Disease
IBD is an umbrella term that describes chronic relapsing
inflammation of the gastrointestinal tract; the major types being
Crohn’s disease metabolites (CDM) and ulcerative colitis (UC).
CD is characterized by transmural, non-continuous, and non-
caseating granulomatous inflammation that can occur at any
point along the entirety of the gastrointestinal tract, however,
inflammation most commonly manifests in the terminal ileum
(2, 3). UC is characterized by continuous inflammation that
originates in the rectum and progresses proximally. Unlike CD,
the inflammation in UC only affects the mucosa and submucosa
and solely manifests in the colon (4, 5). The etiology of IBD has
not been fully elucidated, however, a complex interplay of genetic
susceptibility, environmental risk factors, inappropriate immune
responses directed against the microbiota, intestinal barrier

FIGURE 1 | Gut-lung axis. Communication between the intestines and the lungs occurs in both healthy situations and disease settings. In healthy individuals, both the

intestines and the lungs harbor diverse microbial communities that have evolved to complement the host and predominately comprise bacteria of the Bacteroidetes

and Firmicutes phyla. The gut microbiota performs key functions such as the generation of SCFA from the host’s diet, which play an important role in homeostatic

maintenance. Microbial dysbiosis occurs in association with chronic inflammatory diseases such as IBD and COPD and leads to loss of epithelial barrier integrity and

inappropriate immune responses directed against the microbiota. Dysbiosis is characterized by reduced diversity of Firmicutes spp. in IBD and the expansion of

Proteobacteria spp. in COPD. Genetic variations as well as environmental stimuli such as cigarette smoke or a Western diet have been linked to intestinal and lung

microbial dysbiosis. A healthy, fiber-rich diet promotes intestinal, and respiratory health.

hyperpermeability, and dysbiosis of commensal microbiota of
the intestines are thought to contribute to pathogenesis (6)
(Figure 1).

Presently there are no curative treatments for IBD. With
current management strategies, 10–35% of CD patients will
require surgery within the first year of diagnosis, and up to 60%
will require surgery within a decade of initial diagnosis (7). For
UC, 30% of patients will require a colectomy within 10 years
of diagnosis (8). Further research into the mechanisms driving
IBD is needed to identify novel therapeutic targets, and a fuller
understanding of the role of intestinal microbiota in IBD could
provide some valuable insights in pursuit of this.

Chronic Obstructive Pulmonary Disease
COPD is a progressive and largely irreversible disease that is
characterized by prolonged inflammation, tissue destruction, and
airflow obstruction leading to the reduced functional capacity
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of the lungs. The disease is driven by chronic exaggerated
inflammatory responses in the airways and parenchyma of
the lungs in response to a noxious insult such as cigarette
smoke or environmental pollutants or genetic factors such as
alpha-1 antitrypsin deficiency (Figure 1). Airway inflammation
drives airway remodeling leading to mucus metaplasia and
airway obstruction as well as tissue destruction that results
in the enlargement of the alveoli, also known as emphysema.
Smoking is a major risk factor for the development of COPD,
however, other factors such as chronic asthma, low birth weight,
childhood respiratory tract infections, pulmonary tuberculosis,
and occupational exposures to dusts have also been associated
with COPD (9). The prevalence of COPD has been reported
to be as high as 20% in never-smokers suggesting that other
risk factors for COPD have been overlooked due to the focus
on cigarette smoke (10). COPD is one of the leading causes of
mortality worldwide accounting for 3 million deaths annually
(11), and much like IBD, there is no curative treatment beyond
lung transplantation although this is still up for debate (12).

Linking IBD and COPD
Population based studies have identified an increased prevalence
of IBD in patients with COPD, and an increased risk of mortality
in patients with both COPD and CD (13–15). Furthermore,
the risk of COPD patients developing either CD or UC is
increased by 2.72 and 1.83, respectively, compared to healthy
controls (13), results that have been confirmed in additional
populations (16). Reciprocally, a retrospective study found that
CD patients were at increased risk of dying from COPD (17).
Additionally, a study in Quebec residents found that asthmatic
and COPD patients had increased incidences of CD of 27 and
55%, respectively, compared to the general population in that
province (18). There is also evidence that up to 60% of IBD
patients have some degree of subclinical lung disease (19). COPD
andCD share environmental risks, with cigarette smoke exposure
being a major risk factor for both (20). However, this does not
explain the increased prevalence of UC amongst COPD patients
as cigarette smoke has been proposed to be protective against the
development of UC in the general population (21). CD patients
without chronic lung disease have reduced pulmonary function
that correlates with the presence of sputum lymphocytosis and
eosinophilia and inversely with CD activity index (22). This
suggests that shared environmental risk factors alone are not
sufficient to induce these comorbidities and that alternative
mechanisms that link the intestine and lung are responsible.

The epithelium of the respiratory and gastrointestinal systems
are derived embryonically from the primitive foregut (1).
This shared origin likely underlies the ability of these two
mucosal surfaces to act similarly as selective barriers, allowing
for the translocation of gases or nutrients, whilst maintaining
mutualistic relationships with the microbiota and keeping
pathogens at bay. These similarities in function suggest that
these tissues may also respond to disease-causing stimuli in the
same way, which could account for the increased risk of CD
development in COPD patients. Indeed, parallels exist in the
immune systems at both mucosal sites and this is mirrored
in the immunopathology of IBD and COPD. Both disease

settings are characterized by increases in myeloid cells such
as neutrophils, eosinophils and macrophages, as well as innate
lymphoid cells (ILCs) and unconventional T cells such as γδ

T cells, all of which are important in microbial interactions
and maintenance of epithelial barriers. While this is beyond
the scope of this review, the reader is directed to the following
reviews for more information on the pathophysiology and
immunopathology of these diseases (23–26). It is well-known that
the intestinal epithelium is readily damaged in IBD (27), and
increased intestinal permeability has now also been reported in
COPD (28, 29). Whilst the association between IBD and COPD
has been largely investigated at an epidemiological level, further
research is required to elucidate the inflammatory mechanisms
that link the intestine and the lung. This review will focus
on the mechanisms linking IBD and COPD that pertain to
mucosal microbial communities and dysbiosis in disease settings
(Figure 1).

MUCOSAL MICROBIAL COMMUNITIES
AND DYSBIOSIS IN DISEASE SETTINGS

Healthy Intestinal Microbiota
The gastrointestinal tract is one of the largest surfaces of the
body that is constantly in contact with environmental factors.
At mucosal sites, such as the intestine, the immune system is
primed by interactions with the microbiota and environmental
antigens, and a fine homeostatic balance needs to be maintained
to ensure quiescence toward harmless microbes whilst being
able to promote a proinflammatory response against invading
pathogens. The intestine is the most densely colonized surface of
the human body with Bacteroidetes and Firmicutes representing
the two most abundant bacterial phyla making up approximately
90% of all microorganisms of the gastrointestinal tract (30, 31). A
mutualistic relationship exists between the intestinal microbiota
and the human host. The intestine provides a nutrient-rich niche
for the microbiota to inhabit, whilst the host benefits from the
increased digestive capacity that themicrobiota provides, from its
ability to prime the immune system, and from a reduction in the
available niche for potentially pathogenic micro-organisms (32).
In addition, the intestinal microbiome contains more than 3.3
million non-redundant genes, 150-fold greater than the human
gene complement, and these provide both metabolic and health
benefits to the host (33).

The microbiota is not stagnant, and its composition can
be altered by a variety of factors including diet, infection,
inflammation, or antibiotics; and this shift in microbial
communities is referred to as dysbiosis. Dysbiosis is often
associated with IBD (34, 35) but is also observed in a
variety of chronic inflammatory and autoimmune diseases
including rheumatoid arthritis, psoriasis, neurodegenerative
diseases, diabetes, allergic diseases, and asthma (36–42). At
present, essentially nothing is known about the gut microbiota
in COPD.

Healthy Lung Microbiota
Historically, due to a reliance on culture-dependent techniques,
the lungs were thought to be sterile. With the emergence
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of culture-independent techniques utilizing genetic sequencing,
pulmonary microbial communities have been found in the
healthy lung and characterization of the lung microbiota in
the context of respiratory diseases has become possible (43).
However, progress in our understanding of the lung microbiota
is still limited by factors such as low microbial loads in the
lower airways, contamination of samples from the upper airways
and oral cavity, and sampling methods that over-represent the
upper airways over the lower airways. This is important since the
upper and lower airways harbor distinct microbial communities
(44). A study comparing the microbial communities of both
the oral cavity and the lower airways in healthy non-smokers
and smokers identified bacteria that comprised the healthy lung
microbiota and showed that lung bacterial communities were
not significantly altered by smoking, although differences were
apparent in the oralmicrobiota. Similar to the intestines, themost
abundant bacterial phyla present in the lungs were Bacteroidetes
and Firmicutes and they did not derive entirely from the mouth
as the microbiota of the oral cavity was dominated by Firmicutes,
Proteobacteria, and Bacteroidetes (44).

Dysbiosis of Intestinal Microbiota in IBD
Dysbiosis has been associated with the development of IBD,
although whether this is cause or effect is yet to be elucidated
since most research to date has been correlative. Cross-sectional
studies are the most common for assessing the microbiota of
IBD patients but these only provide a snapshot in time (45).
Instituting longitudinal studies could assist in establishing when
dysbiosis occurs relative to the onset of intestinal inflammation
and how this may change with the course of disease but this
would require early and frequent sampling. Furthermore, the
microbiome tends to be sequenced from fecal samples and
while this is non-invasive for the IBD patient, this method
could provide inaccurate measures, especially for CD patients
where inflammation is often localized to the ileum or other
portions of the gastrointestinal tract. This sampling method can
also overlook mucosa-associated microbiota, and due to the
variations in microbial composition that are apparent across
the gastrointestinal tract, sampling methods need to be carefully
considered when formulating studies (46). Nonetheless, the
research that has been conducted to date has provided a solid
foundation upon which future studies can expand to improve our
understanding of dysbiosis in IBD.

Broadly, dysbiosis in IBD patients is associated with shifts
promoting an increase in potentially proinflammatory bacteria
and a decrease in protective bacteria. In CD patients, intestinal
dysbiosis has been characterized by a reduction in diversity
of species belonging to the Firmicutes phyla, a change that
has been suggested to occur prior to disease onset (34, 47,
48). Furthermore, a specific reduction in relative abundance
in Dialister invisus and Faecalibacterium prausnitzii species
of the Firmicutes phylum and Bifidobacterium adolescentis
of the Actinobacteria phylum, together with an increase in
the mucolytic species Ruminococcus gnavus and Ruminococcus
torques of the Firmicutes phylum is observed in CD patients
compared to healthy controls (34, 49). The importance of
intestinal microbiota in development of IBD is supported

by common experimental mouse models, such as nucleotide-
binding oligomerization domain-containing protein 2 (NOD2)-
deficiency and IL-10-deficiency which ordinarily develop ileitis
when maintained under standard housing conditions but
display reduced disease penetrance in specific pathogen-free
environments (50–53).

Adherent-invasive Escherichia coli (AIEC) is an organism that
is commonly associated with CD. This bacterium is able to take
advantage of gaps in host defense such as impaired bacterial
recognition and defective intracellular killing, allowing AIEC
to expand (54). AIEC have been found to induce granuloma
formation in the inflamed ilea (55), a hallmark pathological
feature of CD. These granulomas consist of multinucleated
giant cells and epithelioid cells, both phagocytic cells of
the macrophage lineage that activate T cells in an antigen-
specific manner, that are surrounded by a B cell corona
(56). Furthermore, it has been found that AIEC are able to
survive and replicate within macrophages without inducing
cell death, a process that also promotes increased secretion of
proinflammatory tumor necrosis factor-α (TNF-α) (57), which is
involved in the pathogenesis of CD.

A study that examined dysbiosis in an inducible model
of ileitis using Toxoplasma gondii together with high dose
indomethacin, found that severe ileitis was associated with a
shift in microbial communities from populations dominated
by species belonging to the Firmicutes phyla to those largely
represented by species belonging to the Proteobacteria phyla
(58). This dysbiosis was accompanied by translocation of AIEC
and was similar to that observed in CD patients. While these
data suggest that inflammation is sufficient to induce dysbiosis,
it is also clear that genetic susceptibility plays a role since
T. gondii induced heightened dysbiosis and AIEC invasion in
mice lacking the ileitis susceptibility gene NOD2, while disease
was significantly muted in mice lacking the proinflammatory C-
C chemokine receptor 2 (CCR2), which are a model of ileitis
resistance (58). Furthermore, it has been demonstrated in an
alternative genetic knock out model of ileitis susceptibility that
dysbiosis precedes the onset of ileitis (59).

Similar to CD, dysbiosis in UC is characterized by a reduction
in species belonging to Firmicutes and Bacteroidetes phyla, and
a concomitant increase in species belonging to Proteobacteria
and Actinobacteria phyla (60). However, at the species level,
the dysbiotic signature of UC is distinct from CD. UC patients
exhibit a reduction in relative abundance of Roseburia hominis
and Faecalibacterium prausnitzii (35), both butyrate-producing
bacteria of the Firmicutes phylum whose abundance is inversely
correlated with disease severity (35). A similar mechanism
involving the interaction of genetic susceptibility, inflammation
and microbial dysbiosis contributes to UC.

Genetics of IBD and Its Role in Intestinal
Dysbiosis
To date, more than 150 susceptibility genes have been identified
for IBD, most of which are involved in the detection and
clearance of microbial compounds (61). Three common variants
of NOD2 are associated with an increased risk of developing
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CD, with a 2–4-fold increase for heterozygous mutations and a
20–40-fold increase for homozygous mutations (62, 63). NOD2
variants are the most common mutations in CD patients of
Caucasian descent, being identified in 30% of patients (64).
Furthermore, certain variants in NOD2 have been associated
with more severe disease phenotypes including early-onset
disease, ileitis, and strictures caused by fibrosis (65–67). NOD2
is a cytoplasmic molecule that senses the pattern-associated
molecular pattern muramyl dipeptide (MDP) of gram positive
and negative bacteria, stimulating the immune response via
activation of the transcription factor NF-κB or induction of
apoptosis (68). The three common variants found in CD patients
all affect NOD2 binding toMDP resulting in loss of function (62).
This is thought to cause diminished secretion of antimicrobial
peptides, which can lead to dysbiosis and promote a mucosal
immune response (69). Functional loss of NOD2 in macrophages
may also induce IL-12 and IL-1β expression which leads to
the promotion of type 1 immune responses and inflammation
(51). Interestingly, not everyone harboring homozygous or
compound heterozygous NOD2 variants develop CD (70).
Furthermore, NOD2-deficient mice do not spontaneously
develop CD-like intestinal inflammation but require a second
genetic mutation and specific microbiota (71). This suggests
that additional factors, be those microbial, genetic or other
environmental factors, are required to promote disease onset in
susceptible individuals.

Autophagy-related 16-like protein 1 (ATG16L1) is crucial
for normal autophagy function in cells, which is a standard
cellular recycling process for protein and organelle turnover
that is upregulated during nutrient deprivation or cellular stress
signals such as microbial infection. It has been reported that
33.2% of Caucasian CD patients are homozygous for the CD-
associated polymorphism rs2241880 (T300A) increasing their
risk of developing CD by 2.38-fold (72, 73). This single nucleotide
polymorphism is a missense mutation near a caspase cleavage
site, making ATG16L1 more sensitive to degradation resulting
in diminished autophagy, impaired ability of monocytes to
clear invading pathogens and increased production of IL-
1β in response to MDP (74). Normal ATG16L1 activity in
intestinal epithelial cells (IEC) is important for maintaining the
intestinal barrier. The rs2241880 variant in CD patients has
been associated with Paneth cell abnormalities, specifically an
impaired secretory granule pathway and increased production
of proinflammatory mediators (75). Atg16l1-deficiency in IEC
has been associated with increased susceptibility to colitis in
mice, with increased CD4+ T cells and increased secretion of
proinflammatory cytokines such as TNF-α, interferon-γ (IFN-γ)
and IL-1β. Thus, diminished autophagymay induce susceptibility
through alterations to both immune cell activity and intestinal
barrier function.

Changes in NOD2 and ATG16L1, as well as other genes
involved in the intestinal epithelial barrier, microbial sensing, and
antimicrobial activity in IBD, demonstrate the impact of genetics
on the intestinal microbiota. Deficiencies in such genes are a
mechanism by which dysbiosis can precede development of IBD
and drive intestinal inflammation.

Dysbiosis in COPD
Lung Dysbiosis Is Observed in COPD
Chronic inflammatory lung diseases such as COPD and asthma
have been associated with dysbiosis of the lung microbiota with
the outgrowth of pathogenic bacteria. Mucus hypersecretion
and lower respiratory tract infections in COPD have been
associated with accelerated decline in lung function, indicating
that the lung microbiota plays an important role in COPD
pathogenesis (76, 77). The microbiota of the bronchial secretions
from COPD patients predominately comprises members of
the Proteobacteria, Firmicutes, and Actinobacteria phyla (78).
Specifically, studies that have assessed the lung microbiota
of COPD patients suggest that their bacterial communities
differ from those of healthy individuals, with an expansion of
Hemophilus spp. Afipia, Brevundimonas, Curvibacter,Moraxella,
Neisseria and Undibacterium spp. of the Proteobacteria
phylum, Corynebacterium spp. of the Actinobacteria phylum,
Capnocytophaga spp. of the Bacteroidetes phylum, and
Leptolyngbya spp. of the Cyanobacteria phylum, as well as
a reduction in microbial community diversity compared
to healthy individuals (79–82). Patients with more severe
COPD have a less diverse lung microbiota but expansion of
more pathogenic microbes (78). Furthermore, during acute
exacerbations of COPD, the lung microbiota are more unstable;
these exacerbations tend to be associated with reduced species
diversity, an increased relative abundance of Proteobacteria
mainly due to increased Moraxella spp. and a decreased relative
abundance of species belonging to the Firmicutes phyla (82, 83).
Changes in the core microbiota during acute exacerbations
of COPD allow for an expansion of respiratory pathogens
including Acinetobacter spp. and Klebsiella spp. highlighting the
important role of the commensal lung microbiota in protecting
against the colonization of pathogenic microbes (83). It is
worth highlighting that the exact nature of dysbiosis within
the lung microbiota that occurs during acute exacerbations
of COPD is dependent on the cause of the exacerbation, with
specific differences noted between bacterial and eosinophilic
exacerbations (characterized by bacterial dysbiosis and elevated
sputum eosinophils respectively). The characteristic decrease in
species diversity and relative abundance of species belonging to
the Firmicutes phyla, alongside an increase in species belonging
to the Proteobacteria phyla is more pronounced in bacterial
exacerbations (82). Bacterial exacerbations also have a significant
decrease in Streptococcus spp. and an increase in Hemophilus
spp. whilst eosinophilic exacerbations exhibit a decrease
in the Proteobacteria:Firmicutes ratio (82). Changes in the
composition of the lung microbiota are associated with changes
in local inflammatory responses, the most significant being
the negative correlation between species diversity and CXCL8,
which indicates reduced species diversity is associated with an
influx in neutrophils (82). Interestingly, in lung transplants, the
microbiota influences the immune response with Firmicutes-
dominated and Proteobacteria-dominated dysbiosis being
proinflammatory, Bacteroidetes-dominated dysbiosis being
associated with tissue remodeling, and a balanced microbial
community being associated with homeostasis (84). Collectively,
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these studies show that respiratory microbial communities can
regulate inflammation in the lungs.

Intestinal Dysbiosis Influences Lung Health
Recent research has shown that the intestinal microbiota
is important in reducing the risk of lung inflammation
by supporting mucosal immunity. Studies have shown that
depletion of intestinal bacteria through antibiotic treatment,
renders mice more susceptible to Pneumonia infection and
respiratory inflammation (85, 86). Reciprocally, viral and
bacterial respiratory infections are able to drive dysbiosis
of the intestinal microbiota demonstrating that respiratory
inflammation can influence the intestine (87, 88). In mice
lacking an intestinal microbiota, their alveolar macrophages
have an altered transcriptome which results in decreased
phagocytic activity and bacterial killing (85, 86). Dysbiosis
of the intestinal microbiota has been shown to influence the
composition of the respiratory microbiota through changes
in circulating inflammatory cytokines and translocation of
intestinal microbiota to the airways Figure 1, although this
has only been demonstrated in severe sepsis models and has
not yet been established in COPD. It has been shown that
segmented filamentous bacteria (SFB) in the intestines induced
Th17 responses and IL-22 production in the lungs and protected
against respiratory infection with S. pneumoniae with reduced
bacterial burden and lung inflammation (89). In a murine
model of sepsis, an increased abundance of gut-specific bacteria
in the lungs has been observed, with there being greater
similarities between the communities found in the intestines
and lungs than in sham mice (90). A meta-analysis of sixteen
studies found that infection with H. pylori, which colonizes the
human gastric mucosa, was associated with an increased risk
of COPD (91). During acute exacerbations of COPD there is
a significant decrease in categories of bacteria as defined by
operational taxonomic units (OTUs) in the intestinal microbiota
(83). Beyond assessing H. pylori infection in COPD patients,
and a recent study examining the intestinal microbiota in acute
exacerbations of COPD in a small group of patients (83), the
intestinal microbiota has not been investigated in COPD. This
would be of particular interest since cigarette smoking, which is
strongly associated with COPD, has been linked with dysbiosis of
fecal microbiota in CD patients, characterized by an increase in
the relative abundance of Bacteroides and Prevotella (92).

Cigarette Smoke Exposure Is a Risk Factor
for Both COPD and CD
Cigarette smoke is the most important risk factor in COPD,
with approximately 80% of COPD patients being past or
current smokers. Smoking can have prolonged effects on lung
inflammation which can persist years after smoking cessation,
despite the slowed decline in lung function and better survival
(93). In addition, active smoking is also associated with higher
mortality rates in COPD patients (94). Both active and passive
smoking is the most well recognized environmental risk factor
for CD being associated with a 2-fold increased risk of disease
(95). It is linked with early onset of disease, as well as more
aggressive disease progression with an increase in the occurrence

of strictures and fistulas and the increased likelihood of a need
for surgical intervention (96–98). Smoking may also influence
the locus of inflammation, increasing occurrence in the ileum
as opposed to the colon (99). An intervention study investigated
the effect of quitting smoking on CD severity and found that
patients who stopped for at least a year were less likely to relapse
(100). The association between smoking and CD highlights the
potential crosstalk between the lungs and intestines, although,
the possibility that noxious agents from cigarettes can reach the
intestines via the oral route cannot be ignored as an additional
CD risk mechanism (101).

Smoking also alters the composition of the intestinal
microbiota not only in CD patients but also in smokers without
IBD (102). Following smoking cessation, the fecal microbiota
is altered in non-IBD individuals with an increased relative
abundance of species belonging to Firmicutes and Actinobacteria
phyla and a decreased relative abundance of species belonging
to Bacteroidetes and Proteobacteria phyla (103). CD patients
who smoke exhibit intestinal dysbiosis characterized by a
higher Bacteroides:Prevotella ratio compared to non-smokers
and healthy smokers (92). Animal studies that examined the
impact of smoke exposure on the intestinal microbiota found
that smoking increased the relative abundance of Clostridium
clostridiforme with a decreased relative abundance of Lactoccoci
spp. and Ruminococcus albus of the Firmicutes phylum and
Enterobacteriaceae spp. in the cecum compared to control mice
(3, 104). Collectively, these studies suggest that dysbiosis of the
intestinal microbiota could be another mechanism by which
cigarette smoke might increase the risk of CD development.

A study of chronic smoke exposure in mice compared the
microbiota across the ileum, cecum, and distal colon finding
changes in microbiota (105). The authors described increased
activity of Lachnospiraceae spp. in the cecum and colon,
which is of particular interest since it has been reported that
Lachnospiraceae spp. can promote macrophage recruitment to
the colon (106). This study also demonstrated that chronic
smoke exposure may impact the intestinal microbiota by altering
mucus profiles and the local immune environment. They found
that cigarette smoke increased the secretion of the two major
ileal mucins, Muc2 and Muc3, and enhanced the cell surface
expression of the anti-adhesive Muc4 (105). However, at present
it is unclear if these changes are a result of dysbiosis, or of
cigarette smoke itself.

Cigarette smoke has been found to increase intestinal barrier
permeability in the ileum, but not the colon (107). These changes
are associated with intestinal villi atrophy, bacterial translocation
and abnormal tight junction proteins, with evidence that they
were mediated through NF-κB signaling (107, 108). Cigarette
smoke has also been found to alter Paneth cell function in mice
through reduced antimicrobial peptide expression and reduced
bactericidal capacity, which leaves mice more susceptible to
bacterial infection (108). Changes in the ileum, but not the
colon, may explain why cigarette smoke increases the risk of
developing CD whilst conceivably offering protection against
UC (95). Certain susceptibility genes have been associated
with epithelial barrier defects in CD patients who smoke. A
promoter variant in the gene encoding the aryl hydrocarbon
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receptor (AHR) has been linked to increased risk of intestinal
hyperpermeability, with cigarette smoking further increasing
this risk (109). From an immunological perspective, cigarette
smoke induces an IL-17 response with increases in Th17
cells and neutrophils in the lungs and circulation (110). This
enhances intestinal Th17 cells and neutrophils, as well as IL-17-
producing type 3 innate lymphoid cells (ILC3s), in a manner
that is dependent on neutrophil recruitment via IL-17A (110).
Thus, in addition to changes in the intestinal epithelial barrier,
cigarette smoke can promote intestinal inflammation which is
already augmented in individuals who are genetically susceptible
to IBD.

Non-bacterial Microbiota in IBD and COPD
To date most studies examining the microbiota in IBD and
COPD have focused on bacteria, however, the microbiota also
encompasses fungi and viruses. Whilst this review primarily
discusses the role of bacterial dysbiosis in IBD and COPD these
other microorganisms cannot be ignored. There is evidence
to suggest that there are shifts in the intestinal viral and
fungal communities during IBD and alterations to pulmonary
communities in COPD. However, considerably more research is
needed to determine the role of viruses and fungi in the gut-lung
axis especially in the context of IBD and COPD.

The Virome and Mycobiome May Contribute to IBD
The intestinal virome is predominately comprised of
bacteriophages (111), therefore the interactions between viruses
and bacteria during IBD could play a role in dysbiosis and
disease pathogenesis (112). The most abundant bacteriophages
of the intestine include the Caudovirales order and Microviridae
family (113–115) and perhaps not surprisingly, viral dysbiosis
in IBD patients is characterized by an increase in Caudovirales
species (115, 116). This expansion is associated with reduced
bacterial diversity and does not appear to occur secondary to
changes in bacterial populations suggesting that the virome
may contribute to bacterial dysbiosis and inflammation in IBD
(115). However, virome research in IBD is in its infancy and
more studies are required to elucidate how changes in intestinal
viruses may impact upon other intestinal microorganisms and
intestinal inflammation.

A potential role for fungi in IBD pathogenesis was
first proposed in 1988 when antibodies directed against
Saccharomyces cerevisiae were identified in the blood of CD
patients (117). Furthermore, several IBD susceptibility genes are
involved in anti-fungal immune responses such as CARD9 and
CLEC7A (61). Fungal dysbiosis in IBD has been characterized
by an increased Basidiomycota:Ascomycota ratio, decreased
proportion of Saccharomyces cerevisiae and an increased
proportion of Candida albicans (118). Similar to the virome,
further research is needed to understand how changes in the
mycobiome during IBD may impact upon other microorganisms
and inflammation.

The Virome and Mycobiome in COPD
Similar to the gastrointestinal tract the respiratory tract consists
of bacteriophages and eukaryotic viruses (119, 120). COPD

patients have a heightened viral load in their lungs with an
increased abundance of influenza, cytomegalovirus, and Epstein-
Barr virus, the latter of which has been associated with pulmonary
fibrosis, a feature of COPD (121–123). More non-targeted
approaches are required to define other viruses that may be
involved in COPD pathogenesis and dysbiosis.

The most abundant fungi in healthy lungs are of the
Davidellaceae family and the genera Cladosporium, Eurotium,
Penicillium, and Aspergillus, although many other species
including Candida spp. are present as well (124). Compared
to healthy individuals, COPD patients have an increased
relative abundance of Candida spp. in their lungs (125).
Furthermore, the enhanced abundance of Aspergillus, Candida,
Phialosimplex, Penicillium, Cladosporium, and Eutypella has
been associated with severe exacerbations of COPD (126). Of
the chronic pulmonary diseases, COPD is one of the least
studied in the context of the mycobiome and more research
is required to understand how the mycobiome is altered in
COPD patients. Furthermore, the relationship between the non-
bacterial microbes of the lung and gut and their role in the
gut-lung axis have been poorly considered and are an area for
future research.

FACTORS LINKING IBD AND COPD

Dietary-Derived Metabolites Are Protective
in IBD and COPD
Certain macro- and micro-nutrients have been inversely
associated with the development of CD (127), with dietary
fiber being the most extensively researched. Soluble-fiber from
fruits and vegetables as opposed to insoluble fiber from whole
grains and cereals has shown protection against CD (128).
Non-digestible carbohydrates are fermented by saccharolytic
bacteria in the gastrointestinal tract into metabolites known
as short-chain fatty acids (SCFA), which include acetate,
propionate, and butyrate. Acetate and propionate are produced
by Bacteroidetes and butyrate by Firmicutes and these SCFA
can be immunomodulatory by preventing the transcription of
proinflammatory mediators. Butyrate in particular is an energy
source for IEC thereby promoting intestinal barrier integrity
(129), and thus it is not surprising that a decrease in butyrate-
producing bacteria is a characteristic of intestinal dysbiosis
in IBD (35). Experimental models of IBD have shown that
dietary SCFA reduce inflammation, specifically via decreases
in proinflammatory mediators such as TNF-α and nitric
oxide synthase which correlates with increased concentrations
of butyrate and propionate in the luminal contents of the
intestines (130, 131). However, the efficacy of SCFA in IBD
patients has been brought into question due to the reduced
responsiveness of their peripheral blood mononuclear cells
to n-butyrate following toll-like receptor-2 (TLR-2) activation
(132). Furthermore, for UC patients, butyrate enemas have
shown no clinical benefit (133). This could be due to the
finding that monocarboxylate transporter 1, which is responsible
for the uptake of butyrate in the intestine, is downregulated
in response to proinflammatory cytokines and its expression
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is reduced in the inflamed mucosa of IBD patients and in a
rat model of colitis (134). Interestingly, studies examining the
fecal contents of CD patients found that disease activity or
localization was not affected by SCFA concentration, although
CD disease activity was inversely correlated to levels of the
medium-chain fatty acid hexanoate (135, 136). Contradictory
to these studies, a clinical trial examining the effects of
soluble fiber supplements showed that high fiber could reduce
disease activity index in CD patients (137). Discrepancies
in research may reflect the heterogeneity of CD as well as
differences in diets, and thus, further research is required to
elucidate the effects of the different components of diet on
intestinal inflammation.

It is now known that SCFA can have immunomodulatory
effects beyond the intestines where they are produced, promoting
anti-inflammatory responses elsewhere in the body. Dysregulated
SCFA production and absorption has been implicated in a
variety of neurological, metabolic, allergic, and autoimmune
diseases (138–141). In the context of the lungs, increased dietary
fiber intake is associated with improved lung function in the
general population and a reduced risk of developing COPD
(142, 143). Increased intake of vegetables, which are high in
soluble fiber, is associated with improved COPD symptoms
such as breathlessness, as well as reduced risk of developing
COPD (144). Similar to vegetables, high dietary fruit intake
has also been associated with improved COPD outcomes and
reduced incidence of COPD (145–148). Despite this correlation
between increased dietary fiber intake and protection against
COPD, there have been few reports on the efficacy of SCFA
specifically in COPD pathogenesis highlighting that this is an
understudied area worthy of further research. High fiber diet-
producing SCFA have been shown to be immunomodulatory
in asthma responses by enhancing the production of dendritic
cells that seed the lungs but have an impaired ability to promote
pathogenic type 2 immune responses (149). A more recent
study building on these findings has shown that high fiber
diets protect against influenza by enhancing the generation
of Ly6c− patrolling monocytes from progenitors. This led to
an increase in alternatively activated macrophages in lungs
and restrained neutrophil recruitment while simultaneously
enhancing influenza-specific CD8T cells responses (150). Similar
mechanisms may be associated with the protection created
by high fiber diets in COPD where neutrophils play a key
pathogenic role in the inflamed lungs. COPD patients exhibit
poor responses to influenza vaccination (151, 152) and thus,
diet modulation may be a mechanism to improve vaccination
outcomes for this susceptible population. In all, modulation of
intestinal microbiota with high fiber diets might be beneficial
to IBD and COPD patients (Figure 1), however, further
research is required to determine how efficacious this strategy
would be.

Dietary Fat Can Alter the Gut Microbiota
and Influence Disease
Foods high in saturated fat or “Western” diets have been
associated with a variety of autoimmune and chronic

inflammatory disease including IBD and COPD (142, 153, 154).
A “Western” diet can influence the composition of the intestinal
microbiota, promote intestinal barrier permeability, and enhance
inflammation (155–157). Generally, fat intake is able to induce
proinflammatory responses through the increase in cytokines,
including TNF-α and IL-6, and neutrophils in circulation, all
of which play a pathogenic role in IBD and COPD (155, 158).
Intestinal dysbiosis induced by fat intake is characterized by an
increased Firmicutes:Bacteroidetes ratio and the promotion of
endotoxemia, which induces intestinal barrier hyperpermeability
(156, 157, 159). In CD patients, the changes induced by a high
fat diet that contribute to dysbiosis include increased intestinal
barrier permeability, reduced mucus layer thickness and
increased NOD2, TLR5, and carcinoembryonic antigen-related
cell adhesion molecule 6 (CEABAC6) expression, all of which
allow for AIEC colonization (49, 160). Generally, a high fat diet
tends to be associated with a low fiber diet, and thus, a “Western”
diet may contribute to IBD and COPD pathogenesis not only
through direct proinflammatory mechanisms but also indirectly
through a reduction in the anti-inflammatory benefits of SCFA
Figure 1.

Vitamin D Alters the Microbiota and May
Have Therapeutic Benefits in CD and
COPD
Vitamin D deficiency commonly occurs in IBD patients and
has been associated with diagnosis and the need for surgical
intervention (161). In keeping with this, colitis-prone IL-10-
deficient mice exhibit a decline in vitamin D receptor (VDR)
expression that correlates with colitis symptoms (162). In
addition, mouse models unable to produce the active form
of vitamin D, 1,25-dihydroxycholecalciferol [1,25(OH)2D3], or
lacking the VDR are more susceptible to DSS-induced colitis and
this is associated with intestinal dysbiosis characterized by an
increase in species of the Proteobacteria phylum and a decrease
in species of the Firmicutes phylum (163, 164). VDR signaling
regulates numerous antimicrobial processes including the
expression of β-defensins, cathelicidin antimicrobial peptides,
and ATG16L1 (162). In IBD patients, reduced ATG16L1
expression due to deficiency in VDR signaling promotes an
overrepresentation of intestinal Bacteroides and a decrease in
butyrate-producing bacteria (162). Interestingly, treating human
IEC with butyrate upregulates VDR expression, a phenomenon
that also translated to IL-10-deficient mice that were given
butyrate, suggesting a close link between the microbiota and
vitamin D signaling (162). Vitamin D supplementation in CD
patients results in an increase in Firmicutes species correcting
some of the dysbiosis that occurs in CD (165). In COPD
patients, increased vitamin D intake is positively associated with
improved lung function, and like IBD, vitamin D deficiency
is associated with COPD (166, 167). This could relate to the
effect of vitamin D on the intestinal microbiota. Additionally,
vitamin D plays a role in macrophage activation and shaping
the lung microbiota promoting reduced bacterial richness (168,
169). VDR-deficient mice exhibit increased inflammation in the
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lungs with up-regulation of matrix metalloproteinase-2 (MMP-
2), MMP-9, and MMP-12, the development of emphysema and
a decline in lung function mimicking COPD in humans (170).
Studies where mice are fed vitamin D have shown that vitamin
D reduces the abundance of respiratory pathobionts, such as
Pseudomonas, and increases the secretion of murine β-defensin-2
in the lungs (171). To date, very little has been done examining
the impact of vitaminD supplementation on the lungmicrobiota.
One study in cystic fibrosis patients found that the sputum of
vitamin D insufficient patients was enriched for Bacteroides and
there was a significant difference between the lung microbiota of
these patients and those who were vitamin D sufficient (172). It
is clear that the immunomodulatory and microbiota-regulating
effects of vitamin D can strongly influence inflammation in both
the intestine and the lungs. Given that vitamin D deficiency is
associated with both IBD and COPD, vitamin D supplementation
should be trialed more extensively in these patient cohorts,
specifically in patients with comorbid IBD and COPD.

THERAPEUTIC TARGETING OF THE
INTESTINAL MICROBIOTA

Antibiotics for IBD: the Yin and Yang
Early-life antibiotic treatment has been associated with early
onset CD via enhanced pathogenicity of helper T cells (173).
This link is particularly strong in children who have received
multiple doses of antibiotics or antibiotics during their first
year of life (174, 175). Antibiotics cause dysbiosis of intestinal
microbiota and a reduction in bacterial diversity, and this may
be a potential mechanism by which antibiotic therapy in early life
could result in the development of CD in genetically susceptible
individuals (176). Furthermore, short-term antibiotic treatment
may have prolonged effects, up to at least 2 years post-therapy
(177). In infancy, the intestinal microbiota between individuals
can be highly variable, before converging to more similar phyla
in adulthood (178). This may in part explain the profound impact
of antibiotic treatment on the microbiota in early childhood.

While antibiotics given in early life may promote CD, they
have been used to treat CD with varying levels of success, and
this appears to be dependent on disease location and severity as
well as the type of antibiotic (179). Differences in populations
of commensal bacteria between the ileum and colon most likely
contribute to the lack of response of ileitis patients to a variety of
antibiotics (179, 180). Patients who had undergone ileal resection
and were treated with metronidazole, an antibiotic that is usually
ineffective in patients with ileitis (180), exhibited a delay in
symptomatic recurrence (181). A systematic review of antibiotic
therapy in CD patients found that antibiotics likely have amodest
effect that may not be clinically relevant (182). Furthermore, to
maintain antibiotic treatment efficacy and prevent relapse, long-
term treatment is required, as with all therapies for CD (183, 184).
All in all, antibiotics in early life may increase the risk of CD
development in susceptible individuals but may be beneficial as
a therapeutic in established disease.

Unlike CD, antibiotic exposure is not associated with an
increased risk of developing UC (173) and indeed antibiotics are

effective as an adjunctive to conventional therapies, including
corticosteroids and 5-aminosalycilic acid (185). This emphasizes
the pathogenic role that bacterial dysbiosis plays in UC and
suggests that more therapeutics targeting both inflammation and
dysbiosis could benefit a large proportion of UC patients.

Antibiotics for COPD Are Used to Manage
Disease Exacerbations
Persistent and recurrent infections contribute to the progression
of COPD through the induction of further chronic inflammation.
Antibiotics are commonly used to treat acute exacerbations of
COPD, however, the efficacy of antibiotic treatment in mild to
moderate exacerbations is still in debate (186, 187). Treatment of
COPD patients with antibiotics enhances respiratory microbiota
diversity, decreases the relative abundance of Proteobacteria
species and increases the relative abundance of Firmicutes
species. These changes somewhat correct the dysbiosis associated
with COPD, an effect that is maintained post-therapy (80, 82).
Contrary to antibiotic therapy, corticosteroids are associated with
a decrease in species diversity and an increase of Proteobacteria
over Firmicutes corresponding to an increase in Hemophilus
spp. and Moraxella spp. and a decrease in Streptococcus spp.
changes that are associated with COPD pathogenesis (82).
The differing effects of antibiotics and corticosteroids on the
lung microbiota suggest that antibiotics are able to partially
restore lung microbial communities whilst corticosteroids may
further promote dysbiosis. Macrolides are the most commonly
prescribed antibiotics for COPD due to both anti-inflammatory
and immunomodulatory effects, however, the mechanisms by
which macrolides exert these effects have not been elucidated
(188). Relatively few COPD patients are treated with antibiotics
long-term (189), however, the few studies that have been
conducted suggest that prophylactic antibiotic treatment can
reduce exacerbations in COPD patients (190). Nonetheless,
further studies are required to understand whether long-term
antibiotics are efficacious and the impact they have on the lung
and intestinal microbiota.

Fecal Microbiota Transplants, a Possible
Treatment Strategy
Fecal microbial transplants are effective in the treatment of
Clostridium difficile infection, an intestinal disease that is linked
to intestinal bacterial dysbiosis (191). Success is associated
with an expansion in bacterial diversity including increases in
Bacteroidetes, Firmicutes and other butyrate-producing bacteria
and a decrease in Proteobacteria (192). In patients with UC,
fecal microbial transplants have some initial benefit by promoting
a change in colonic microbiota at the phylum level with a
decrease in the relative abundance of Proteobacteria species and
an increase in Bacteroidetes species. While this partially corrects
the dysbiotic changes that are associated with UC, these changes
were not prolonged and did not translate to a vast clinical
improvement (193). Another study where patients were treated
with antibiotics prior to fecal microbial transplant had better
clinical outcomes resulting in remission (194). Patients who
respond to fecal microbial transplants have been characterized
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by distinct microbial profiles compared to non-responders.
Alterations in microbiota in responders is characterized by an
increase in bacterial diversity as well as a shift in composition
toward that of the donor feces (195, 196). Lack of response
is associated with the presence of Fusobacterium spp. and
Sutterella spp. suggesting that patients should be screened prior
to treatment (196). Studies examining the efficacy of fecal
microbial transplants for UC have yielded variable results, which
could be due to a lack of consistency in methodology as well as
the heterogeneous nature of UC and more work is required to
establish if this could be an efficacious treatment strategy.

In the context of CD, there has been far less research into
the efficacy of fecal microbial transplants and at present it is not
clear if this could be a management strategy for CD patients (197,
198). With respect to COPD, no fecal or respiratory microbiota
transplant studies have been conducted and thus it is not yet
known if these strategies could be a viable option for this disease.

CONCLUSION

Microbial dysbiosis has a pivotal role in the development of
IBD and COPD impacting on the intestinal and respiratory
epithelial barriers and promoting damaging immune responses.
Circulating microbial products and their metabolites are altered
during dysbiosis and likely represent a significant component
of the gut-lung axis. Shifts in these factors, where they may be
produced at one site and act at another, provides a mechanism
for organ crosstalk in disease and the comorbid presentation of
IBD and COPD. Currently there are no curative treatments for
either disease. However, elucidating the mechanisms by which
the intestinal and respiratory microbiota drive inflammation
and promote changes in mucosal epithelial barriers could
provide new insights into disease pathogenesis and help

to improve current treatment strategies and identify novel
therapeutic targets. These may include approaches that target
the microbiota such as diet, antibiotics or fecal microbiota
transplants which may be able to modulate inflammation in the
intestines and lungs. Most microbiota studies have focused on
either IBD or COPD and have largely ignored patients with both
diseases. Additionally, there are no reports of gut microbiota
alterations in COPD, with published studies focused solely on
the lung metagenome. Future studies into patients that harbor
COPD, as well as patients with both mucosal inflammatory
diseases will provide a more complete understanding of
the microbiota in the gut-lung axis in health and disease.
Furthermore, increasing awareness and understanding of
the links between IBD and COPD will improve clinical
management and more timely detection of comorbid disease in
affected patients.
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