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Abstract. The mere number of various apparently different statistical
attacks on block ciphers has raised the question about their relation-
ships which would allow to classify them and determine those that give
essentially complementary information about the security of block ci-
phers. While mathematical links between some statistical attacks have
been derived in the last couple of years, the important link between gen-
eral truncated differential and multidimensional linear attacks has been
missing. In this work we close this gap. The new link is then exploited to
relate the complexities of chosen-plaintext and known-plaintext distin-
guishing attacks of differential and linear types, and further, to explore
the relations between the key-recovery attacks. Our analysis shows that
a statistical saturation attack is the same as a truncated differential
attack, which allows us, for the first time, to provide a justifiable analy-
sis of the complexity of the statistical saturation attack and discuss its
validity on 24 rounds of the PRESENT block cipher. By studying the
data, time and memory complexities of a multidimensional linear key-
recovery attack and its relation with a truncated differential one, we also
show that in most cases a known-plaintext attack can be transformed
into a less costly chosen-plaintext attack. In particular, we show that
there is a differential attack in the chosen-plaintext model on 26 rounds
of PRESENT with less memory complexity than the best previous at-
tack, which assumes known plaintext. The links between the statistical
attacks discussed in this paper give further examples of attacks where
the method used to sample the data required by the statistical test is
more differentiating than the method used for finding the distinguishing
property.
Keywords: statistical cryptanalysis, block cipher, chosen plaintext, known
plaintext, differential cryptanalysis, truncated differential cryptanaly-
sis, linear cryptanalysis, multidimensional linear cryptanalysis, statistical
saturation, integral, zero-correlation, impossible differential.

1 Introduction

After the invention of the differential and linear cryptanalysis several extensions
and related statistical cryptanalysis methods for block ciphers have been pre-
sented. The need for a common framework for statistical attacks that would



facilitate their comparison has been raised in the literature at least by Vau-
denay [1] and Wagner [2], who also put forward such frameworks. While the
former aims at providing provable security against all statistical attacks, the
latter takes a high level view on the iterated Markov ciphers. In this paper, we
propose a more pragmatic approach to show that, no matter whether we use a
linear or differential characteristic to identify some non-random behavior, it can
be exploited for a known-plaintext (KP) and a chosen-plaintext attack (CP).

Previously, many mathematical relationships between statistical cryptanaly-
sis methods have been established. They concern the computation of the main
statistic of the cryptanalysis method under consideration. In [3], Leander studied
relations between the statistical saturation (SS) attack [4] and the multidimen-
sional linear (ML) cryptanalysis using the χ2 statistical test [5]. In the former
the strength of the distinguishing property is measured by the non-uniformity of
the distribution of partial ciphertext values when part of the plaintext is fixed. In
the latter, the non-uniformity of the joint distribution of plaintext parts and ci-
phertext parts is under consideration. Leander showed that the non-uniformities
computed in the SS attack are on average equal to the non-uniformity of the
distribution considered in the ML attack.

Later more links were established in [6] and also applied in practice. For
example, an efficient zero-correlation (ZC) property was found on a variant of
Skipjack. Using the mathematical link it was then transformed to an integral
property to launch an efficient CP attack on 31 rounds of this cipher. The ques-
tion arises, whether it would have been possible to use the ZC property directly.
Or would it have consumed essentially more data, time, or memory to exploit
the ZC property directly in this attack? The purpose of this paper is to give
an exhaustive answer to such questions in the more general setting of truncated
differential (TD) [7] and ML attacks.

Building on the link proposed by Chabaud and Vaudenay [8] and applied by
Blondeau and Nyberg [9], we establish now a more general mathematical link
between differential and linear statistical properties of block ciphers. This link
provides a unified view on statistical distinguishers of block ciphers that measure
the uniformity of a distribution of pairs of partial plaintext and ciphertext values
and covers any TD and ML distinguishers. It allows for examination and com-
parison of the corresponding KP and CP distinguishing attacks and the related
statistical models. In this paper, we will make a detailed comparison between the
data, time and memory complexities of the CP TD and KP ML distinguishing
attacks. Also the SS distinguisher will be considered and shown to be essentially
identical to a TD distinguisher.

One of the main results given in this paper is that for any KP ML distinguish-
ing attack there is a stronger CP TD distinguishing attack, where the strength
is measured in terms of the data, time and memory complexities of the distin-
guishers. We will see that the main advantage of the CP TD distinguishers over
the KP ML distinguishers is due to the better organisation of the chosen data
and allows some data, time and memory savings. Overall, the results obtained
in this paper show that the method used for finding the distinguishing property,



differential or linear, may be quite irrelevant when performing the attack. We
show cases where, for the same distinguisher, the data, time and memory com-
plexities of the attack are essentially different depending on what kind of data
sampling methods are used for the statistical test.

The knowledge of the relationships between the different distinguishers and
their complexities will then be applied to the outstanding key-recovery attacks.
In particular, we will compare the KP and CP scenarios and their effects on the
complexities of the key-recovery attacks based on different but mathematically
equivalent distinguishing properties of the cipher. The cost difference of using
KP instead of CP can be quite small. When such a case occurs in practice,
the cryptanalyst can choose whether to use KP data with small additional cost
instead of CP data to perform the key-recovery attack.

The resistance of PRESENT [6] against TD attacks has been a longstanding
open problem. Since the strong differentials of the Sbox diffuse faster than the
strong linear approximations as the number of rounds increases, it has been
very difficult to achieve accurate estimates of differential probabilities directly.
In [9], linear approximations were used to evaluate some differential probabilities.
While the obtained estimates were accurate, no differentials were found that
would essentially improve the best known differential attack, which can break
19 rounds of PRESENT [9]. Using the results obtained in this paper, we convert
the 24-round ML distinguisher of [10] to a TD distinguisher and use it to present
a TD key-recovery attack on a 26-round reduced version of PRESENT. This
attack which reach the same number of rounds than the KP ML attack of [10]
illustrates than one can make used of linear properties to conduct a differential
attack.

The rest of the paper is organized as follows. In Sect. 2, we present a general
link between the TD and ML properties. In Sect. 3, we study the data, time
and memory complexities of the CP TD, CP SS and KP ML distinguishing
attacks, which depending on the parameters of the underlying properties suggest
different time-memory tradeoffs. By showing that the SS attacks correspond to
TD attacks, in Sect. 4, we provide improved complexity estimates of the SS
attacks. Sect. 5 is dedicated to the link between the TD and ML key-recovery
attack. We show how to convert a CP attack to a KP attack and analyze the
cost of this conversion. On the other hand, we show the existence of a TD attack
on 26 rounds of PRESENT, which requires less memory than the best known
ML attack on PRESENT. In Sect. 6, we analyze other known statistical attacks
on block cipher and discuss their relations. Sect. 7 summarizes the results on
these different links.

2 Preliminaries

2.1 ML and TD Setting and Notation

In differential cryptanalysis [11], the attacker is interested in finding and exploit-
ing non-uniformity in occurrences of plaintext and ciphertext differences. Given



a vectorial Boolean function F : Fn2 → Fn2 , a differential is a pair (δ,∆) where
δ ∈ Fn2 and ∆ ∈ Fn2 and its probability is defined as

P[δ
F→ ∆] = 2−n#{x ∈ Fn2 |F (x)⊕ F (x⊕ δ) = ∆}.

Linear cryptanalysis [12] uses a linear relation between bits from plaintexts,
corresponding ciphertexts and encryption key. The strength of the linear relation
is measured by its correlation. The correlation of a Boolean function f : Fn2 → F2

is defined as

cor(f) = cor(f(x)) = 2−n
[
# {x ∈ Fn2 |f(x) = 0} −# {x ∈ Fn2 |f(x) = 1}

]
,

where the quantity within brackets can be computed as the Walsh transform of
f evaluated at zero, see e.g. [13].

In block ciphers, the data is usually represented as vectors in some basis over
F2. For the purposes of our analysis, we also present the input and output data
as vectors over F2. The selection of the basis we use is determined by the linear
or differential properties of the cipher. Hence the basis we use may or may not
be the same as used for the description of the cipher. The input and output
spaces are divided into two orthogonal spaces as follows

F : Fs2×Ft2 → Fq2×Fr2 : (xs, xt) 7→ (yq, yr) = F (xs, xt),where s+ t = q + r = n.

In this study, we focus on ML approximations composed of 2s input masks
(as, 0) ∈ Fs2×{0}, and 2q output masks (bq, 0) ∈ Fq2×{0}, which makes in total
2s+q linear approximations over F . The correlation of a linear approximation
determined by a mask pair (as, 0), (bq, 0) is then cor (as · xs + bq · yq), where
x = (xs, xt) ∈ Fs2 × Ft2 and F (xs, xt) = (yq, yr) ∈ Fq2 × Fr2.

The strength of the ML approximation [(as, 0), (bq, 0)]as∈Fs
2, bq∈F

q
2

is measured
by its capacity C defined as follows

C =
∑

(as,bq)6=(0,0)

cor2 (as · xs ⊕ bq · yq) . (1)

The capacity can also be computed as an L2-distance between the probability
distribution of the pairs (xs, yq) of partial plaintext and ciphertext values and
the uniform distribution over Fs2 × Fq2. As we will show in this paper, this ML
approximation is related to a certain TD. This TD is composed of 2t input
differences (0, δt) ∈ {0} × Ft2, and 2r output differences (0, ∆r) ∈ {0} × Fr2,
which makes in total 2t+r differentials over the cipher F . The probability of a
differential determined by the input and output differences (0, δt) and (0, ∆r) is

then P[(0, δt)
F→ (0, ∆r)] = 2−n#{x ∈ Fn2 |F (x)⊕ F (x⊕ (0, δt)) = (0, ∆r)}.

Then the probability p of the TD [(0, δt), (0, ∆r)]δt∈Ft
2,∆r∈Fr

2
is defined as the

average probability that the output difference is in the set {(0, ∆r) |∆r ∈ Fr2}



taken over the input differences (0, δt), δt ∈ Ft2, which are assumed to be equally
likely. Hence

p = 2−t
∑

δt∈Ft
2,∆r∈Fr

2

P [(0, δt)
F→ (0, ∆r)]. (2)

Note that this definition of TD probability includes the zero input difference.

2.2 Mathematical Link

Chabaud and Vaudenay [8] provide a link between the differential probabili-
ties and the squared correlations of linear approximations of vectorial Boolean
functions. In the context of this paper, this one can be written as

P[δ
F→ ∆] = 2−n

∑
a∈Fn

2

∑
b∈Fn

2

(−1)a·δ⊕b·∆cor2 (a · x⊕ b · F (x)) ,

where F : Fn2 → Fn2 is a vectorial Boolean function. By applying this link to the
splitted spaces defined above and summing up over all δt ∈ Ft2 and ∆r ∈ Fr2, the
following expression for the probability of a TD is given in [9].

Theorem 1 ([9]). For all δs ∈ Fs2 and ∆q ∈ Fq2 it holds that

2−t
∑

δt∈Ft
2,∆r∈Fr

2

P[(δs, δt)
F→ (∆q, ∆r)] =

2−q
∑

as∈Fs
2,bq∈F

q
2

(−1)as·δs⊕bq·∆qcor2 ((as, 0) · x⊕ (bq, 0) · F (x)) .

In [9] this result was used in the case when q = t and all the nontrivial correla-
tions and differential probabilities are equal to zero, to provide a link between
zero-correlation linear (ZC) cryptanalysis [14, 6] and impossible differential (ID)
cryptanalysis [15]. In this paper, we focus on the case where δs = 0 and ∆q = 0,
but no other assumptions are made about the correlations and differential prob-
abilities. If δs = 0 and ∆q = 0, then as · δs ⊕ bq ·∆q = 0, as ∈ Fs2 and bq ∈ Fq2.
By using the notations of (1) and (2) we get the following corollary of Th. 1.

Corollary 1. Let the TD probability p be defined as in (2) and the ML capacity
C as in (1). Then

p = 2−q(C + 1). (3)

In the ML context, we evaluate the non-uniformity of the distribution of partial
plaintext and ciphertext pairs (xs, yq) in terms of the L2-distance. By Cor. 1
this non-uniformity can be measured in terms of probability of coincidences in
the observed values (xs, yq). As a special case of Cor. 1, we get the method of
Index of Coincidence [16] over some binary alphabet by taking s = 0 and q = n.
Notice that the link given in (3) holds for a block cipher with a fixed-key as well
as on average over the keys.

Next we examine the different statistical models developed for ML and TD
types of distinguishers and derive relationships between their data, time and
memory complexities.



2.3 Complexity of an Attack

While the most powerful statistical attacks aim at recovering some information
on the secret key, they are often derived from a distinguishing attack consisting
of identifying if a cipher is drawn at random or not. Given some statistical
distribution, the data complexity of an attack corresponds to the number of
plaintexts necessary to successfully perform this distinguishing operation.

When the distinguishing attack is turned to a key-recovery attack, it is com-
mon to separate the process into a distillation phase consisting of the extraction
of some statistics for all subkey candidates from the available data, an analysis
phase consisting of the computation of the likelihood of each of the key candi-
dates and a search phase for the exhaustive search of the corresponding master
key from the list of kept candidates. In the following, we denote by K the set of
key candidates.

Throughout this paper, to facilitate the comparison of attacks, we assume
that the success probability of finding the key is fixed to 50%. For a key-recovery
attack the probability of false positives determines the time complexity of the
search phase. The notion of advantage a defined in [17] corresponds to a proba-
bility of false positives of 2−a. For simplicity, in the statistical derivations of this
paper, we denote by ϕa the quantity Φ−1(1 − 2−a) where Φ is the cumulative
function of the standard normal distribution N (0, 1).

3 Complexity of a Distinguishing Attack

Having established the link (3) between the ML and TD properties of a vector-
valued Boolean function, we now examine the distinguishers derived from these
properties for block ciphers and their complexities. We use the most commonly
accepted statistical models for the distinguishing attacks. The major difference
between the distinguishing attacks based on ML and TD is that the former is a
KP attack and the latter a CP attack. In this section we analyze this difference
in more detail and discuss how it affects the complexities of the distinguishing
attacks.

3.1 ML Distinguishing Attacks

For ML attacks both LLR and χ2 statistical tests have been used in the litera-
ture. In this paper, we restrict our analysis to the χ2 test, which first, according
to the results discussed in the following of this section seems to be in good ac-
cordance with the common statistical test for a TD distinguishing attack, and
secondly, is more applied in practice since it does not require having accurate
prediction of the distributions derived from the cipher data.

The data complexity of an ML attack has been studied in [5], and can be
computed similarly than for a classical linear attack modelled in [17].



Proposition 1. For a success probability of 50% and an advantage of a bits,
the data complexity NML of an ML distinguishing attack using 2s+q linear ap-
proximations with capacity C as defined in (1) is

NML =
2(s+q+1)/2

C
ϕa. (4)

Given a set of 2s+q linear approximations, the general algorithm presented in
Alg. 1, for an ML distinguisher using the χ2 statistical test requiring N plaintexts
can be performed using 2q+s simple operations1.

Alg. 1 Multidimensional linear distinguisher

Set a counter D to 0
Create a table T of size 2q+s

for N plaintexts do
(yq, yr) = E((xs, xt))
T [(xs, yq)]+ = 1

for all (xs, yq) do
D+ = (T [(xs, yq)]−N/2q+s)2

ML distinguishing attacks typically require 2s+q counters, either for evalu-
ating the correlations of the 2s+q linear approximations or evaluating the dis-
tributions over the 2s+q values. We observe that in the general ML setting it
is possible that 2s+q is larger than the data complexity NML, in which case
the memory requirement can be reduced to NML. Then it is enough for such
an algorithm to deal with a sorted list of maximum size NML. Using a binary
search the time complexity of this KP ML distinguisher is NML log(NML).

3.2 TD and SS Distinguishing Attacks

The probability of a TD as given in (2) is computed as an average probability over
the input differences. By ordering the plaintexts into structures we can efficiently
handle an evaluation of the TD probability for multiple input differences.

In the following, let us assume that all structures are of equal size, and let
us denote by S the size of the structures and by M the number of structures
used in the attack. Then the total amount of data NTD used for the TD attack
is equal to M · S. For a further comparison with the complexity derived for
the ML attack, we express the relation between the data complexity and the
advantage of the TD attack using the framework of [17]. In the context where
p = 2−q + 2−qC is close to the uniform probability 2−q (C � 1) this model is in
accordance with the more general model presented in [18].

Proposition 2. For a success probability of 50% and an advantage of a bits,
the data complexity of a TD distinguishing attack using 2t input differences and

1 In some cases this complexity can be reduced using a FFT.



2r output differences with probability p as defined in (2) is

NTD =
2−q+1

S · (p− 2−q)2
· ϕ2

a, where S ≤ 2t. (5)

Proof. According to the framework of [17], the number of pairs NS required

for such a TD distinguisher is NS = 2−q

(p−2−q)2ϕ
2
a. By using M structures of S

plaintexts, we can generate NS = M · (S − 1)S/2 pairs, which we obtain if the
amount of available CP data is NTD = M · S ≈ 2NS/S.

Alg. 2 TD and SS distinguishers

Set a counter D to 0
for M values of xs ∈ Fs

2 do
Create a table T of size S
for S values of xt ∈ Ft

2 do
(yq, yr) = E((xs, xt))
T [xt] = yq

for all pairs (xt, x
′
t) do

if T [xt] = T [x′t] then
D+ = 1

(2a) Generic TD distinguisher

Set a counter D (D′) to 0
for M values of xs ∈ Fs

2 do
Initialize to 0 a table T of size 2q

for S values of xt ∈ Ft
2 do

(yq, yr) = E((xs, xt))
T [yq]+ = 1

for all yq ∈ Fq
2 do

D+ = T [yq] · (T [yq]− 1)/2
(D′+ = T [yq]2)

(2b) Improved TD distinguisher (SS distinguisher)

When in the context of TD cryptanalysis, the number of considered input dif-
ferences t is relatively small, the cryptanalyst usually runs a distinguisher of
the type given in Alg. 2a. Each structure is handled separately. To minimize
the number of encryptions, the partial ciphertexts yq are stored. The time com-
plexity of the CP TD distinguisher represented in Alg. 2a corresponds to NTD

encryptions and M · S2/2 simple operations. The time taken by the comparison
between all ciphertext pairs is then often considered as the limiting factor for
the attack. We observe that by using the memory differently meaning that in-
stead of storing all partial ciphertexts yq, soring only their distribution, we can
also reduce the time complexity. Indeed, if ` partial ciphertexts yq are equal,
then `(` − 1)/2 ciphertext pairs have difference zero in these q bits. The TD
distinguishing algorithm modified in this manner is presented in Alg. 2b. At a
memory cost of 2q counters, its time complexity is M · 2q simple operations and
NTD encryptions.

The SS attack has been proposed by Collard and Standaert [4] and applied
on the cipher PRESENT [19]. It exploits the non-uniformity of the distribution
of the partial ciphertexts yq ∈ Fq2 obtained by encryption of plaintexts (xs, xt) by
keeping xs fixed. The non-uniformity is measured using the L2-distance. This is
exactly what Alg. 2b computes using the scoreD′. By noticing that the scoreD of
the TD distinguisher satisfies D =

∑
M

∑
yqFq

2
T [yq]·(T [yq]−1)/2 = D′−M ·S/2,

we conclude that the CP TD distinguisher as described in Alg. 2b is identical to
the CP SS distinguisher of [4].

In 2011, Leander [3] observed a mathematical relation between the expected
values of the SS score D′ computed in Alg. 2b and the ML score D in Alg 1 .



But this link has not been used for developing a statistical model for SS attacks.
The statistical model developed in this paper, allows for the first time to derive
accurate estimates of the data complexities for the last-rounds SS key-recovery
attack on PRESENT proposed in [4]. This key recovery attack will be explained
and analyzed in Sect. 4.

3.3 Comparison Between ML and TD Distinguishers

Recalling Cor. 1 we can summarize the results from (4) and (5) and get the
following relationship between the data complexities NML and NTD of the ML
distinguisher and the TD distinguisher.

Corollary 2. Consider an ML distinguisher and a TD distinguisher based on
the ML and TD properties defined in Sect. 2.1. Then

NTD =
(NML)2

S · 2s
=

2q+1

S · C2
· ϕ2

a.

In Table 1, we summarize the complexities of the KP ML and CP TD distin-
guishers presented in this section. Given the splitted input and output spaces,

Table 1: Complexities of the ML and TD distinguishing algorithms.

Alg. Data Time Memory Condition

ML, Alg. 1 NML NML 2s+q 2s+q < NML

TD, Alg. 2a NTD NTD + NTDS S(≤ 2t) NTDS < 2n

TD, Alg. 2b NTD NTD + M · 2q min(S, 2q) -

Fn2 = Fs2 × Ft2 = Fq2 × Fr2, a TD distinguisher as presented in Alg. 2b is less
memory demanding than a ML distinguisher as presented in Alg. 1. According
to a commonly adopted practice in differential cryptanalysis, the structure size
is maximized to minimize the time complexity. If S = 2t we obtain by Cor. 2
that

NTD = 2−n(NML)2.

This means that also the data and the time complexities of the TD distinguisher
is smaller than the ones of the corresponding ML distinguisher.

In the remaining sections of this paper, we focus on the TD and ML key-
recovery attacks. In particular, we investigate whether a CP attack is always less
costly than a KP attack, and extract links with other statistical key-recovery
attacks on block ciphers.

4 TD and SS Key-recovery Attacks

4.1 Last-rounds TD and SS Key-recovery Attack

For the results described in this section, we use the notation of Alg. 3. The
s bits of the TD distinguisher on which the input difference is fixed to 0 is



called a fixation. As suggested by [4], if the size of the fixation is small, we
can increase the number of rounds of the distinguisher. Given the fixation on
s bits, we denote by Ws the larger fixation after adding some rounds at the
beginning of the distinguisher. By choosing structures such that the part ws
of the plaintext w = (ws, wt) ∈ Ws ×Wt is fixed we remain certain that the
s-bits part xs of x = (xs, xt) is fixed and ensures zero difference in these bits
between two plaintexts in a same structure. The space Zq, described in Alg. 3
corresponds to the minimal space needed for checking the distribution of the q
bits yq after partial decryption of the ciphertexts z = (zq, zr). The resulting CP
TD last-rounds key-recovery attack is depicted in Alg. 3.

Alg. 3 Last-rounds CP TD and SS key-recovery attack

@
@

�
�

Ws Wt

000· · · · · · 000
︷ ︸︸ ︷ ︷ ︸︸ ︷
00· · · 00 **· · · · · · · · · **︸ ︷︷ ︸ ︸ ︷︷ ︸
s bits t bits

q bits r bits︷ ︸︸ ︷ ︷ ︸︸ ︷
00· · · · · · 00 **· · · · · · **

︸ ︷︷ ︸
Zq

distinguisher

larger
fixation

Key-recovery

w = (ws, wt)

x = (xs, xt)

y = (yq, yr)

z = (zq, zr)

For all |K| key candidates k, set a counter Dk to 0
for M values of ws ∈Ws do

Initialize a vector V of size |Zq| to 0
for S values of wt ∈Wt do

(zq, zr) = E((ws, wt))
V [zq]+ = 1

for all key candidates k do
Initialize a vector T of size 2q to 0
for all zq ∈ Zq do

Partially decrypt to obtain yq from zq
T [yq]+ = V [zq]

for all yq ∈ Fq
2 do

Dk+ = T [yq] · (T [yq]− 1)/2

Sort the counters Dk to obtain the most likely keys.

Implementing Alg. 3 requires storing |K| + |Zq| counters. This algorithm
which runs in a time corresponding to M · S encryptions and M · |K| · |Zq|
partial inversions requires M · S chosen plaintexts. Note that by increasing the
size of the fixation, the size S of a structure is limited to S ≤ |Wt| ≤ 2t. Then
according to (5) the increasing data complexity constitutes a major limiting
factor to this process which consists of adding rounds at the beginning of the
distinguisher without guessing any key-bits on these rounds.

4.2 Using the Link Between TD and SS Attacks to Analyze the SS
Attack on 24 Rounds of PRESENT

From the complexity of the last-rounds TD key-recovery attack given in Alg. 3
and the relation between TD and SS described in Sect. 3.2 , we analyze in this
section the SS key-recovery attack of [4] on 24 rounds of PRESENT.

When linking the statistic computed in the SS attack with the capacity of
a ML approximation, Leander [3] also confirms that the capacity of the ML
distinguisher can be estimated as suggested in [4] by multiplying by a factor
close to 2−3 when adding a round to the distinguisher (see Fig. 1). In ML attacks
the data complexity is inversely proportional to the capacity, and the same was
assumed to hold for the SS distinguisher used in [4]. While the experiments of [20]



confirm this hypothesis when the attack is limited to one structure, a gap was
observed in [20] starting from rounds 18 (or 19). Next we present an explanation
of this behavior based on the statistical model of the SS distinguisher we derived
using the TD model.

From Cor. 2 we know that the number of samples of a TD attack so also
of a SS attack is a multiple of 2q

C2 . As long as only one structure is used, with
N plaintexts we can generate N2/2 plaintext pairs and the data complexity is

N = 2(q+1)/2

C ϕa. But when more than one structure is used the data complexity

is proportional to the square of the inverse of the capacity: N = 2q+1

|Wt|·C2ϕ
2
a. This

phenomenon is illustrated in Fig. 1. Given a distinguisher on r rounds, the data
complexity computed from Cor. 2 of the SS attack on r+3 rounds, meaning with
a fixation of log(|Ws|) = 16 bits, and on r + 4 rounds, meaning with a fixation
of log(|Ws|) = 32 bits, is given in Fig. 1. In particular, the computed values on
the right figure are, for the first time, in accordance with the experiments done
in [20]. From Fig. 1, one can see that by fixing 32 bits only 21 rounds can be
attacked. By fixing 16 bits, one can compute that an attack on 24 rounds will
require more than the full codebook. From these observations, we conclude that
the SS attack described in [4] only works for 23 rounds of PRESENT instead of
24 rounds as originally claimed.

0

10

20

30

40

50

60

5 10 15 20

−
lo
g
(C

),
lo
g
(N

)

Round r of the distinguisher

Attack on 22 or 23 rounds

with N = 261.04

Attack on 23 or 24 rounds

with N = 266.31

−log(C)
log(N)

(a) |Ws| = 216: Attack on r + 3 rounds

5 10 15 20

Round r of the distinguisher

Attack on 14 or 15 rounds

with N = 230.54

Attack on 16 or 17 rounds

with N = 240.52

Attack on 18 or 19 rounds

with N = 250.96

−log(C)
log(N)

Estimate of the DC [4]

(b) |Ws| = 232: Attack onr + 4 rounds

Fig. 1: Capacity C of the r-round ML of [4] as computed in [3] and data complexity N
(computed using Cor. 2) of the underlined attacks on r + r′-rounds for a = 8.

5 Comparison of TD and ML Key-recovery Attacks

5.1 Partial Key-recovery Attack on the First Rounds

In the previous section, we discussed the limitation of adding rounds at the
beginning of the distinguisher without guessing any key-bits on these rounds. In
this section, we develop a TD key-recovery attack which allow to find the key
of the first rounds. For more generality and to illustrate some data, time and
memory trade-offs, we assume that the aim is to guess only part of the possible



key bits in the first rounds. In Alg. 4, we describe this TD key-recovery attack.
From the fixation of s bits, we want to keep a fixation on s0 bits, and we define
a space Ws0 such that given a fixation on Ws0 after partial encryption we have a
fixation on these s0 bits. We then take advantage of the non-fixed s1 + t bits to
find some information on the first rounds subkey. In Alg. 4, the space Ws1 ×Wt

corresponds to the non-fixed bits of w = (ws0 , ws1 , wt).

Alg. 4 First-rounds and last-rounds TD key-recovery attack
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partial
key-recovery

key-recovery

w = (ws0 , ws1 , wt)

x = (xs0 , xs1 , xt)

y = (yq, yr)

z = (zq, zr)

For all |K| key candidates k, set a counter Dk to 0
for M values of ws0 ∈Ws0 do

Initialize a vector V of size |Ws1 | · |Zq| to 0
for S values of (ws1 , wt) ∈Ws1 ∪Wt do

(zq, zr) = E((ws0 , ws1 , wt))
V [(ws1 , zq)]+ = 1

for all key candidates k do
Initialize a vector T of size 2s1+q to 0
for all (ws1 , zq) do

Partially decrypt to obtain yq from zq
Partially encrypt to obtain xs1 from ws1

T [(xs1 , yq)]+ = V [(ws1 , zq)]

for all (xs1 , yq) ∈ 2s1+q do
Dk+ = T [(xs1 , yq)] · (T [(xs1 , zq)]− 1)/2

Sort the counters Dk to obtain the most likely keys.

The partial first rounds TD key-recovery attack of Alg. 4 can be done in a
time corresponding to N encryptions and |M |·|K|·|Ws1 |·|Zq| partial encryptions
using |Ws1 | · |Zq|+ |K| counters. The data complexity of the attack can be com-
puted as follows. Here, as we need to check if the difference in the s1 input bits of
the distinguishers are equal to 0, the probability of the TD is p = 2−(s1+q)(C+1)
and need to be compared to the uniform probability 2−(s1+q). In this case the

number of required samples is NS = 2q+s1

C2 ϕ2
a. As with M · S plaintexts we can

generate M · S2/2 pairs, the data complexity is N = 2q+s1+1

S·C2 ϕ2
a, where the size

S of a structure can be up to |Ws1 ∪Wt|.

5.2 Chosen-Plaintext Versus Known-Plaintext Attack

When setting s1 = s and s0 = 0 in Alg. 4, we transform a CP TD attack
to a known KP TD attack. In this case with N plaintexts we can generate
N(N−1)/2 ≈ N2/2 pairs. As in the TD setting the uniform probability is equal

to 2−q−s, the number of required samples is NS = 2q+s

C2 ·ϕ2
a. The data complexity

of a CP TD attack is then equal to the one of a KP ML key-recovery attack:

NTD = NML = 2(s+q+1)/2

C ϕa. The time and memory complexities are then also
similar. While all KP attacks can be converted to a CP attack, by this result
we show, that in some cases, we can also, with small data, time and memory
complexity overhead, convert a CP key-recovery attack to a KP one.



5.3 A Differential Attack on 26 Rounds of PRESENT

In [10], Cho proposed a KP ML attack on 26 rounds of PRESENT. This attack
which is based on a combination of 9 ML approximations can be converted
to a TD attack in the KP model as presented in the previous section. In this

particular case the data complexity is NTD = NML =
√
9·28+1

C ϕa. The time and
memory complexities of the TD key-recovery attack are similar to the ones of
the ML key-recovery attack.

S13 S9 S5

S7 S6 S5 S4

cccc cccc cccc cccc

cccc cccc cccc

cccc

c c c
Fig. 2: Partial key recovery on the first round of PRESENT

More importantly, inspired by the KP attack of Cho [10] on PRESENT,
we illustrate that, in many cases, when changing from the KP model to the
CP model with only a partial key recovery on the first rounds data, time and
memory complexity can be reduced.

In the KP ML attack of Cho, 16 bits of keys corresponding to the ones
at the input of S4, S5, S6, S7 (see Fig. 2) are guessed for partial encryption on
the first round. If we are in the CP model and we want to only guess part
of these 16 key bits, we can specify that the input differences of some Sboxes
are equal to 0. We assume that out of the 4 Sboxes S4, S5, S6, S7, the input
of b of them are fixed (see Fig. 2). In this case, |Ws0 | = 24b and we can use
structure of size |Ws1 | · |Wt| = 264−4b. The data complexity of the attack is then

N = 9·24+(4−b)+1

264−4bC2 ϕ2
a. In Fig. 3, we illustrate that depending of the size |Ws0 | of

the fixation, the data complexity of the key-recovery attack in the CP model
can be smaller than in the KP model.
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Fig. 3: Evolution of the data complexity of a CP key-recovery attack depending of the
size of the fixation and comparison with a KP attack for different number of rounds of
PRESENT.



Given the same advantage, if the data complexity of the KP model is smaller
than the one in the CP model, it is the same for the time complexity of the
distillation phase. By storing only a vector of size |Zq|·|Ws1 | instead of |Zq|·|Ws|,
the memory complexity of the CP attack is always smaller than the one of the
KP attack. Assuming a fixation of 4b bits and independent keys in the first and
last rounds the time complexity of the distillation phase (Time1 in Table 2)
corresponds to N ·2−4b partial encryptions and N encryptions. In the CP model
233−4b counters are necessary for the attack. The time complexity to recover the
80 bit master key (Time2 in Table 2) is 280−a. For illustration, we compare in
Table 2 the complexities of some KP attacks and CP attacks with b = 1 on
PRESENT.

Out of the proposed attack on 24 rounds of PRESENT, with complexities
summarized in Table 2a we illustrate a case where data, time and memory com-
plexity of the CP are smaller than the ones of the KP attack. Out of the 26-round
attack summarized in Table 2b, we show that even when close to the full code-
book, the proposed CP attack required less memory than the KP attack.

Table 2: Complexity of attacks on PRESENT for a success probability of 50%. Time1:
Complexity of the distillation phase. Time2: Complexity of the search phase.

(a) Attacks on 24 rounds of PRESENT,
with different complexities

Model a Data Memory Time1 Time2

CP 10 254.75 229 254.75 270

KP 5 257.14 233 257.14 275

(b) Attacks on 26 rounds of PRESENT,
with same advantage

Model a Data Memory Time1 Time2

CP 4 263.16 229 263.16 276

KP 4 262.08 233 262.08 276

While it has always been assumed that the security of PRESENT in regards
to differential cryptanalysis was always better than the one in regards to linear
cryptanalysis, these examples illustrate the fact that we can build a CP TD
attack on 26 rounds of PRESENT with less memory complexity than the best
KP ML attack of [10] done with 264 KP and in time 272.

6 Links Between Other Statistical Attacks

6.1 Integral, Zero-Correlation and Uniform TD Attacks

Integral cryptanalysis was introduced in [21], and has been used in the literature
under the names square, integral or saturation attack. Integral distinguishers
mainly make use of the observation that it is possible to fix some parts of the
plaintext such that specific parts of the ciphertext are balanced, i.e. each possible
partial value occurs the exact same number of times in the output. In practice,
the condition of balancedness is typically verified by summing up all partial
ciphertexts. In [6], however, in the attack called as zero-correlation integral at-
tack, the authors suggest to store the partial ciphertexts and to verify the proper
balancedness condition.

ZC distinguishers [14, 6] are built out of linear approximations with zero bias.
In that case the expected capacity of the ML approximation is C = 0, and it has



been shown in [6] that distinguishing from random can be successful only if no
repetition of the plaintexts is allowed. In [6], the authors present a mathematical
link between integral and ZC distinguishers. Using this link, the authors of [6]
convert a ZC distinguisher on 30 rounds of Skipjack-BABABABA to an integral
attack on 31 rounds.

By observing that the output distribution is balanced exactly when the coun-
ters T [yq] of Alg. 3 are all equal, we show that the integral attack is a TD attack
where the TD probability of having zero difference in the q bits corresponds to
the uniform probability p = 2−q. If q 6= t = n − s, a ZC distinguisher gives a
uniform truncated differential distinguisher where the attacker takes advantage
of differences which occur uniformly for the cipher.

While the CP integral attack of [6] requires 248 plaintexts and a memory of
232 counters, the same attack on 31 rounds of Skipjack-BABABABA in the KP
(without repetition) ZC model would have required roughly the same data and
time complexities but a memory of 248 counters. Indeed, the use of structures
as in the TD case allows to reduce the memory complexity of the attack as
described in Sect. 4.

6.2 Impossible Differential and ML Attacks

Impossible differential cryptanalysis(ID) [15] takes advantage of differentials that
never occur. From (2), in the ID case we have p = 2−t and from the formula
p = 2−q(C + 1), we deduce that C = 2q−t − 1. This formula was used directly
in [9] to show the equivalence between the ID and the ZC distinguisher in the
case where t = q. Nevertheless, in many concrete applications [15, 22, 23], t is
small in comparison to n and q is close to n.

It is often assumed that the data complexity N ID of an ID is of order of
magnitude N ID = O(2q−t). As the corresponding KP ML distinguisher will

require a data complexity of NML = O( 2(q+s)/2

2q−t−1 ), we discuss in this section the
limitations of converting a CP ID distinguisher to a KP ML one.

In practice, ID distinguisher are defined for small r = n − q and t = n − s.
From C = 2q−t−1, one can note that the ID property occurs only if q ≥ t. In that
case an ID distinguishing attack can be performed using 2q−t plaintexts, in time
2q+t by storing 2t counters. On the other hand, a KP ML distinguishing attack
would require to analyse a distribution of size 2(n+q−t) using 2(n−q+t)/2 known
plaintexts. Nevertheless, when the size of the ML distribution is much larger than
the data requirement given be the statistical model, the data complexity needs
to be adjusted to approximately to 2(n+q−t)/2 for the χ2 test to give meaningful
results.

While it is possible to find practical ID distinguishers [24] where the data
complexity of the ML and ID distinguishers are similar, the time and memory
complexity of the ML distinguisher constitutes a limiting factor for this transfor-
mation. Nevertheless as the data complexity of a TD or an ID attack is modified
when it comes to a key-recovery on the first rounds, it remains an open question
to see if we can transform a CP ID key-recovery attack to a KP ML one.



6.3 Classical Differential and Linear Cryptanalysis

As a special case, we see that any classical KP linear distinguishing attack (s =
q = 1) can be seen as a CP TD distinguishing attack described in Alg. 2b. As
summarized in Table 1, both distinguishing attacks have similar complexities.
While a last-rounds key-recovery attack remain similar for the CP TD and the
KP ML attacks, due to the small fixation s = 1, a CP TD key-recovery attack on
the first rounds will be equivalent to a KP one. This link has been used previously,
although in an implicit manner, for the attack on Salsa and ChaCha [25], where
a TD distinguisher with probability 1/2 + ε was extracted.

A transformation from the CP classical differential (s = q = n− 1) to a KP
ML is does not work in a similar way. While the classical differential distinguisher
is memoryless, the ML one required huge memory as shown in Table 1. As in
practical security considerations the data complexity typically is close to the
full codebook, this KP ML distinguisher has also too high time complexity. A
far comparison of the data complexity between these attacks will require more
investigation since in that case this one can not be computed from (5).

7 Conclusion

In this paper, we have been investigating many statistical single-key key-recovery
attacks on block ciphers both in the KP and CP models. We have shown that
many of them are equivalent or that a data-time-memory tradeoffs allow for
conversion from a CP to a KP attack. While as shown in Table 3, it is always
possible to convert a last-round KP attack of linear type to a CP attack that
requires less data, time and/or memory complexity, converting a CP attack to
a KP attack is often less profitable. As illustrated by the key-recovery attacks
on PRESENT in Sect. 5 on the first rounds, it is not always straightforward to
make comparison between KP and CP key-recovery cryptanalysis methods.

The results and links presented in this paper allow to achieve a better un-
derstanding of the statistical models of a large number of statistical attacks. For
instance, by showing the equivalence between the SS and TD attack, we have
been able to compute the data requirement of the SS key-recovery attack.

The attacks are usually called after the method used to derive the distin-
guisher. For instance, the distinguishers for the differential-linear cryptanalysis
are found by combining a truncated differential and a linear approximation. Nev-
ertheless, the attack itself can be treated as a TD attack, see e.g. [26]. In this
paper we also presented a concrete example of a distinguisher originally found
as a linear property but now used to launch a CP differential attack. It has
been a common belief that PRESENT was more secure against differential than
linear cryptanalysis, since it is easy to derive linear properties, but practically
impossible to compute the probabilities of differential trails. In this paper, we
have shown how to derive from the known ML distinguisher a CP differential
key-recovery attack on 26 rounds of PRESENT that uses less memory than the
previously known KP attack.



We have focused on the most basic ML and TD attacks on block ciphers. We
do not claim to have covered them all and many variants and refinements remain
to be studied. More generally, it would interesting to analyze our approach in
more detail in the context of decorrelation theory [1] which provides a unified
framework for all statistical attacks on block ciphers in the single-key model.

Table 3: Links between last-rounds key-recovery attacks
Linear context Differential context

ML
2s+q<2n−→ TD = Statistical Saturation

ML
q>t and C=2−t+q−1−→ ID (TD with p∗ = 0)

ZC (ML with C = 0)
t>q−→ Integral (TD with p = 2−q)

ZC (ML with C = 0)
q=t−→ ID (TD with p∗ = 0)

Linear (ML with s = q = 1) −→ TD
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