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1. Introduction

A divide is the image of a generic immersion of a finite number of copies
of the unit interval or the unit circle into the unit disk. Let( 1 2) be a point on
and ( 1 2)( ) the set of the tangent vectors to at (1 2). We define the link of the
divide by the set

{( 1 2 1 2) ∈ R4 | ( 1 2) ∈ ( 1 2) ∈ ( 1 2)( ) 2
1 + 2

2 + 2
1 + 2

2 = 1} ⊂ 3

In the 1970’s, the divide appeared as immersed curves on the real 2-plane, for the pur-
pose of studying real morsifications of complex plane curve singularities, in the works
of N. A’Campo [1], [2] and S.M. Gusein-Zade [11], [12], [13]. Recently A’Campo in-
troduced the divide on the unit disk, defined the links of suchdivides, and showed that
if a divide has the same configuration as the real morsification of an isolated plane
curve singularity then the link of the divide is ambient isotopic to the link of the sin-
gularity [3]. Also, he proved in [4] that if the divide is connected then the link exterior
has a fibration over 1, and visualized the core curves of the right Dehn twists of the
geometrical monodromy of the fibration on the figure of the divide.

In the present paper we mainly discuss the following oriented divide.

DEFINITION 1.1. An oriented divideis the image of a generic immersion of a fi-
nite number of copies of the oriented unit circle into the unit disk.

Consequently, the link of the oriented divide is given by theset

( ) := {( 1 2 1 2) ∈ R4 | ( 1 2) ∈ ( 1 2) ∈
→

( 1 2)( ) 2
1 + 2

2 + 2
1 + 2

2 = 1}

where
→

( 1 2)( ) is the set of the vectors tangent to at (1 2) which are in the
same direction as the assigned orientation. The construction of the link of an oriented
divide is a natural extension of the link construction of a divide. From any divide we

2000 Mathematics Subject Classification: 57M25.
1Supported by a Japanese Govt. (Monbusho) Scholarship



682 W. GIBSON AND M. ISHIKAWA

can obtain an equivalent oriented divide by using a simple “doubling” method. This
will be described in Section 4.

Let be a regular link projection of an oriented link into the unit disk.
So is also oriented. Let ( ) be the number of double points of , and 0( )
the number of embedded circle components of . Here, by the definition, an embed-
ded circle component is a simple closed curve in the unit disk, and hence it corre-
sponds to a trivial, unlinked component of .

Theorem 1.2. For any regular link projection of an oriented link , there
is an oriented divide , which can be obtained from by attaching a finite number
of small loops(seeFig. 1), such that the link ( ) is ambient isotopic to . Moreover,
the number of necessary small loops is at most3 ( ) + 0( ).

The existence of oriented divides corresponding to any linkis already known
in the context of Legendrian knots [8] (see Remark 2.6).

It is known by J. Alexander that every closed, orientable 3-manifold has a fibred
link [6]. For every link exterior in 3 we can prove the existence of a fibred link with
stronger properties by combining the fibration theorem of connected divides with The-
orem 1.2.

Theorem 1.3. Let ( ) be the exterior of an oriented link in3. Then there
is a knot in ( ), which is trivial in 3, and aπ-rotation map π : 3→ 3 around

such that
• π( ) is contained in ( ), and
• the complement of π( ) in ( ) is fibred, its monodromy is the product of right

Dehn twists, and the number of right Dehn twists is equal to the first Betti number
of the fibre.

In the proof, the fibration will be realized as that of a connected divide obtained from
a regular link projection by attaching small loops. Therefore the geometry of the fibra-
tion is determined by the immersed curves of such a divide.

By Theorem 1.2, for any regular link projection , a corresponding oriented di-
vide can be constructed by attaching appropriate small loops to . For each we
define the integer ( ) to be the minimal number of small loops, over all possible
choices, required to induce the link . The genus of the fibre ofthe corresponding fi-
bration in Theorem 1.3 can be calculated from the immersed curves of with small
loops, and is given by ( )+ ( )− ( )+1. Here ( ) is the number of link com-
ponents of , which is equal to the number of immersed circles of the corresponding
oriented divide. So now denote bymin( ) the minimal value of ( )+ ( )− ( )+1
over all possible regular link projections. The integermin( ) is clearly a link invari-
ant and, from the inequality ( )≤ 3 ( ) + 0( ) in Theorem 1.2, it is bounded
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above by 4 ( ) + 0( )− ( ) + 1.
Now we state the fact that there are infinitely many fibrationssatisfying the prop-

erties in Theorem 1.3.

Theorem 1.4. Let ( ) be the exterior of a link in 3 and min( ) the invari-
ant described above. Then for any integer≥ min( ) there is a fibred link ′ of the
3-manifold ( ) which possesses the properties outlined inTheorem 1.3and whose
fibre is a genus surface.

In this paper, we will present methods for constructing oriented divides from link
diagrams and vice-versa. A construction of a link diagram ofthe link of a non-oriented
divide was presented by M. Hirasawa [14] independently of ourwork. He also showed
in [14] an algorithm for drawing a Seifert fibre surface of thelink. A construction of
the link of a special class of divide, theslalom curves of rooted planar trees, was pre-
sented by C.V. Quach Hongler and C. Weber [16], [17].

This paper is organised as follows: In Section 2 we outline the geometric prelim-
inaries, prove Theorem 1.2 and present an example which shows the method for con-
structing an oriented divide from a link diagram. In Section3 we will prove Theo-
rems 1.3 and 1.4. In Section 4 we introduce methods for drawing the link diagram of
an oriented divide by using an inverse algorithm of the proofof Theorem 1.2. This
method can also be applied to a non-oriented divide by doubling it.

The authors would like to thank Prof. Norbert A’Campo for hismotivation
and encouragement, and also for many helpful suggestions. They are also grate-
ful to Dr. Alexander Schumakovitch for pointing out the connection between Theo-
rem 1.2 and the previously known result concerning regular Legendrian representatives
of knots. Finally, they would like to express their appreciation to the referee for useful
comments and suggestions concerning many parts of the paper.

2. Geometric preliminaries and the proof of Theorem 1.2

In this paper all our discussions take place in the smooth category. Hence any
mention of isotopy will implicitly refer to ambient isotopy.

It is more convenient for us to consider the following half plane model of a (ori-
ented) divide. A half plane model for a divide is the image of ageneric immersion of
a finite number of copies of the unit interval [0 1] and the unitcircle into the closure
¯ of the half plane ={( 1 2) ∈ R2 | 1 > 0}. By generic we mean
• the image has neither self-tangent points nor triple points;
• the immersion of each interval is relative to the boundary∂ ¯;
• the image of each interval intersects∂ ¯ transversely;
• the image of each circle does not intersect∂ ¯.

We call it the half plane divideand each image of the unit interval or the unit circle
a componentof the divide.
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For a parametrized curve :={( 1( ) 2( )) | 0 ≤ ≤ 1} in , we define its
embeddingφ into R3 by

(2.1) φ( ) =

{(√
1 ( ) ′

1 ( )

( )

√
1 ( ) ′

2 ( )

( ) 2 ( )

)}
⊂ R3

where
( ′

1( ) ′
2( )
)

are the derivatives of
(

1( ) 2( )
)

by , and ( ) =|
( ′

1 ( ) ′
2 ( )

)
|.

Note thatφ( ) depends on the parametrization assigned to .
Now let be a half plane divide, and denote its interval components by

1 . . . and its circle components by1 . . . . We give a parametrization+ :=
{
(

1 ( ) 2 ( )
)
| 0 ≤ ≤ 1} to each interval component such that the points at

= 0 and 1 correspond to the endpoints of , and also define the reverse parametriza-
tion −( ) by − := {

(
1 (1− ) 2 (1− )

)
| 0≤ ≤ 1}. Then we define the link of

the (non-oriented) interval component by the unionφ( +)∪ φ( −), and denote it by
φ( ).

The link of each circle component is defined using the same method as fol-
lows: first give a parametrization + := {

(
1 ( ) 2 ( )

)
| 0 ≤ ≤ 1} to such that

the points at 0 and 1 correspond to the same point in , and also define the reverse
parametrization − := {

(
1 (1− ) 2 (1− )

)
| 0≤ ≤ 1}. Then we define the link

of the (non-oriented) circle component by the disjoint union φ( +) ⊔ φ( −), and
denote it byφ( ).

The link of the half plane divide is then defined as the disjoint union of these
links, i.e. ⊔ φ( ) ⊔ φ( ). We call it the link of the half plane divide and denote
it by φ( ).

The preceding definition for the link of a half-plane divide can be derived
from A’Campo’s original definition using an appropriate orientation-preserving com-
plex transformation from the unit disk to the half-plane (see [I]). Note that the link
of a half plane divide is isotopic, after the compactification 3 = R3 ∪ {∞}, to that
of the unit disk model. Sometimes we regard the link of the half plane model, lying
in R3, as the link in 3 = R3 ∪ {∞} induced by the compactification.

Now we assume each component of the half plane divide is an immersed
circle, and construct ahalf-plane oriented divide by assigning an orientation
to each component. Let 1 . . . be the circle components of . For each ,
choose a parametrization + or − according to the assigned orientation, and de-
note the parametrized circle component also by . Then we callthe image⊔ φ( )
the link of the half-plane oriented divide and denote it byφ( ). Note thatφ(∗) rep-
resents the link of a half-plane divide or oriented divide depending on∗. We call the
vector

(√
1 ( ) ′

1 ( )

( )

√
2 ( ) ′

2 ( )

( )

)

a speed vectorof at
(

1 ( ) 2 ( )
)
.
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−1

−1 +1

−1

−1+1

+1

left loop right loop

Fig. 1. An oriented divide obtained from by attaching the divisor.

For brevity we will usually drop the adjectivehalf-plane, and thus talk oforiented
dividesand links of oriented divideswithout any risk of confusion.

Let be an oriented link in ×R (⊂ R3) and := ( ) a regular link projec-
tion of , where : × R→ is the canonical projection map.

DEFINITION 2.1. A divisor on a regular link projection is a finite set of points
on \ {double points}, each equipped with a +1 or−1.

For each point with +1 or−1 we apply a small left or right “loop” relative to
the orientation as shown in Fig. 1. Then the regular link projection with loops at-
tached according to the divisor satisfies the conditions of the oriented divide. We call
this theoriented divide obtained from by attaching the divisor.

We will now rewrite Theorem 1.2 in terms of divisors, and thenpresent a proof.

Theorem 2.2 (cf. Theorem 1.2). For any oriented link and its regular projec-
tion , there is a divisor on such that the(oriented) link of the oriented di-
vide obtained from by attaching the divisor is isotopic to . Moreover, the divi-
sor can be selected in such a way that the number of points in the divisor is at most
3 ( ) + 0( ), where ( ) is the number of double points and0( ) the number
of embedded circle components of .
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Before proving the theorem we will prepare some terms and notations which we
will need in the proof, and also in the rest of the paper.

Let be an oriented divide. By the definiton, the linkφ( ) of is contained
in
(
R2 \ {(0 0)}

)
× R, which is homeomorphic to the trivial circle bundle × 1.

Here we explicitly define the homeomorphism by

( 1 2 3) 7→
(

2
1 + 2

2 3 arg( 1 2)
)

and denote it by . The image
(
φ( )

)
of the link φ( ) in

(
R2 \ {(0 0)}

)
× R ⊂

R3 constitutes a smooth 1-manifold in × 1 such that
(

(φ( ))
)

coincides with
the immersed curves of the oriented divide , where :× 1 → is the canon-
ical projection map. In other words, the image

(
φ( )

)
is a smooth 1-manifold in

× 1 (here means the immersed curves of the oriented divide ). Note that the
third component of each point in

(
φ( )

)
coincides with the argument of the speed

vector of at ( ).
We remark that, by identifying × 1 with the set

(
R2\{(0 0)}

)
×R ⊂ R3 by ,

any isotopy move of a smooth 1-manifold in× 1 always induces an isotopy move
of the corresponding link inR3.

We mainly deal with the following smooth 1-manifolds in× 1 ⊂ × 1. Let ˆ

be the disjoint union of oriented unit circles and define the immersed curve of an ori-
ented divide as the image (ˆ ) of ˆ by a fixed map :ˆ → , i.e. = (ˆ ).
Then consider an embedding map˜ : ˆ → × 1 satisfying ˜ = , and set

:= ˜( ˆ ) ⊂ × 1. We call such a smooth 1-manifold alifted 1-manifold over .
Two lifted 1-manifolds 0 and 1 over are said to bevertical isotopic if there is
a continuous family , ∈ [0 1], of lifted 1-manifolds. Note that if there is a verti-
cal isotopy between0 and 1, then they are ambient isotopic in × 1 and also, by
the map −1, in

(
R2 \ {(0 0)}

)
× R ⊂ R3.

Since a lifted 1-manifold over lies in × 1, each point := ( θ) ∈
is a pair consisting of a point ∈ ⊂ and a unitary vector in theθ direction.
By the definition of , if ∈ is a regular point of the immersed curve then
there is only one point such that ( ) = , while if it is a double point of then
there are two points 1 and 2 such that (1) = ( 2) = . In the latter case, the two
points := ( θ ), = 1, 2, correspond to two strands of at the double point and
the unitary vectorsθ1 and θ2 lie in mutually different directions. This smooth assign-
ment of unitary vectors, tangential to , to the immersed curve is called avector
field on . Each vector field on corresponds to a lifted 1-manifold over. In par-
ticular, the smooth 1-manifold

(
φ( )

)
corresponds to a vector field which is every-

where in the same direction as the speed vectors of .
Finally we define a relative winding number of a vector field for each edge of .

An edge of the immersed curve is the closure of a component of the set\
{ }. Suppose has a parametrization with a parameter∈ [0 1], and
let be a vector field on . Then the parametrization of induces aparametrization
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ˆ

3 = ε

3 = −ε

projection

( )
( 1 2)

Fig. 2. The link in the thick plane.

(
( ) θ( )

)
∈ × 1 of . Let α( ) be the speed vector of at ( ). Then therela-

tive winding number of on is the rotation degree ofθ( )− arg
(
α( )

)
when runs

from 0 to 1. Note that it is a real number and that the counterclockwise rotation is
positive. In particular, if the vector field is tangential to at both endpoints of the
edge , the relative winding number of on is an integer.

Proof of Theorem 2.2. In this proof we always measure the arguments of tan-
gent vectors on in the counterclockwise direction relativeto a fixed directionθ0. We
chooseθ0 so that the arguments of the tangent vectors to the oriented link projection

:= ( ) at the crossing points are not equal toθ0. Now we deform smoothly
to ˆ in × R so that ˆ satisfies the following:
• ( ) = ( ˆ );
• ˆ ⊂ {( 1 2 3) ∈ × R | −ε ≤ 3 ≤ ε} for some sufficiently smallε > 0;
• At each double point (1 2) of ( ˆ ), ˆ passes through (1 2 −ε) and ( 1 2 ε).

These conditions are presented pictorially in Fig. 2, and wewill refer to the link ˆ as
the link in the thick plane. We define the embedding ′ of × [−ε ε] into the trivial
circle bundle × 1 by ( 1 2 3) ∈ × [−ε ε] 7→ ( 1 2 θ0 + π − 3) ∈ × 1

(here a minus sign is introduced in front of the3 term so that the embedding is ori-
ented correctly). Note that the thick plane× [−ε ε] is naturally embedded in

(
R2 \

{(0 0)}
)
×R ⊂ R3 by the composite map −1◦ ′ : × [−ε ε] →

(
R2\{(0 0)}

)
×R.

Let := ′( ˆ ) and ′ :=
(
φ( )

)
. We will construct an isotopy from0 :=

to 1, where 1 is a smooth 1-manifold in × 1 which coincides with ′ everywhere
outside a particular open set⊂ × 1.

By the construction of the linkˆ in the thick plane, for every point (1 2)
on the unitary vector (1 2) at ( 1 2) satisfiesθ0 + π − ε ≤ arg

(
( 1 2)

)
≤

θ0 +π + ε, and for each double point of the unitary vectors satisfy arg
(

( 1 2)
)

=
θ0 + π ± ε. By the definition of the embedding ′ : × [−ε ε] → × 1, on each
double point of the overstrand of̂ corresponds to the argumentθ0 + π − ε and
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θ0

orientation

Fig. 3. The embedded link0
(
= ′( ˆ )

)
.

the understrand of̂ corresponds to the argumentθ0 + π + ε (see Fig. 3).
Let { } be the set of double points of , and 1 0, 2 0 the two unitary vec-

tors on each double point , i.e. so that ( 1 0), ( 2 0) are the points in .
We assume that ( 1 0) corresponds to the overstrand, and ( 2 0) corresponds
to the understrand, of̂ at the double point. Let ⊂ be a small neighbourhood
of the double point .

We construct the vertical isotopy in two parts, first from0 to 1/2, then from

1/2 to 1. Let 1 and 2 be the two unitary vectors based at the double point ,
for ∈ [0 1], which correspond to the points in . In the first stage of vertical isotopy,

is the identity in ( \⊔ )× 1, while within each we assume the following.
(1) At = 1/2, the unitary vector 1 (resp. 2 ) must lie tangential to the branch
corresponding to the overstrand (resp. understrand) ofˆ and in the same direction as
the orientation assigned to ;
(2) The two unitary vectors 1 , 2 at the double point must not pass through
each other, as progresses from 0 to 1/2;
(3) One of 1 and 2 does not pass through the argumentθ0. The other may pass
through it at most once.
That such a vertical isotopy0 ∼ 1/2 exists is clear.

On each open edge
◦

select a disjoint unionı of | | open intervals, where
is the relative winding number of1/2 on the edge . Define := (⊔ ı ) × 1. Then
there exists a vertical isotopy1/2 ∼ 1 such that 1 coincides with ′ outside , and
the relative winding number of1 on each component ofı is equal to sign( ). The
existence is clear by definition of the relative winding number.

Now for the edge , select a point on each component ofı , and assign each of
these points with the value sign( ). The set of these signed points constitutes a divi-
sor, and we let be the oriented divide obtained from by attaching this divisor.
Then it is clear that

(
φ( )

)
is isotopic to in × 1. After the natural embedding

−1 : × 1 →
(
R2 \ {(0 0)}

)
× R ⊂ R3, we can conclude that they are ambient

isotopic in R3.
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pinched region

Fig. 4. An example of a pinched region (the dashed circle highlights the position of
the ‘pinch’).

It remains to show that the divisor can be selected so that thenumber of points
in the divisor is at most 3 ( ) +0( ). The oriented projection consists of
a finite number of connected components. If a connected component consists of
a single embedded circle then the number of necessary pointsin the divisor for this
component is 1, since the relative winding number for this component will always be
±1. This coincides with the desired upperbound 3 ( ) +0( ) since ( ) = 0 and

0( ) = 1. Therefore the proof is completed by establishing the fact that the num-
ber of necessary points of the divisor for each connected, non-trivial component is
at most 3 ( ).

We first prove the aforementioned assertion for a connected,non-trivial component
which does not have pinched regions. Apinched regionis defined to be a component
of \ such that the complement of its closure is not connected (seeFig. 4).

Let be a connected, non-trivial, oriented link projection without pinched regions,
and let ( ) be the number of points at which the argument of the speed vector isθ0.
Since we can assume thatθ0 is in general position with respect to the speed vectors,
it follows that ( ) is finite. We then consider a triangulationon with respect to
which we now describe.

Since there are no pinched regions, any region bounded by is an -gon with
≥ 2. For each -gon with ≥ 3, we place a point in its interior and connect this

point with each vertex of the -gon by a simple edge. For each 2-gon we connect
the two vertices by a simple edge in the 2-gon. Let′ be the subset of obtained
from it by deleting the interiors of the edges of all 2-gons. Actually, to ensure that we
really do get a triangulation, we must make the additional assumption that none of the
2-gons of share a common edge, since this would give a 2-gon inour supposed ‘tri-
angulation’. This pathological case occurs if and only if one of the components of
is an embedded circle intersecting exactly twice with one edge of another component.
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We ignore such embedded circles and make appropriate adjustments later. With this
extra assumption, the union of′ and the simple edges described above constitutes
a triangulation in . Now each vertex of is connected by at least three edges,
so by using Fary’s theorem [9] we can modify the triangulation so that every edge is
straight. Then, by rotation if necessary, we can assume thatno edge of the triangula-
tion lies in theθ0 direction.

Now the regular link projection can be drawn as a polygon on the graph of ,
except for the edges of 2-gons of . Each 2-gon also can be drawnalong the sim-
ple edge , which connects the two vertices1, 2 of , so that the edges of are
parallel and close to in \ ( 1 ∪ 2), where is a small neighbourhood of .
Then we obtain a regular link projectioñ from the above polygon along by round-
ing the corners (note that this can be done without introducing any inflexion points).
The strands of˜ are straight except possibly in small neighbourhoods̃ of double
points ˜ of ˜ . In each ˜ we may have at most two points at which the arguments
of the speed vectors areθ0 or θ0 +π. So if (˜ ) > ( ˜ ), then aπ-rotation of ˜ yields
a new position in which (̃) ≤ ( ˜ ) holds.

If we relax the additional assumption concerning an embedded circle intersecting
a single edge at exactly two points, the result (˜ ) ≤ ( ˜ ) also follows from the fact
that any such embedded circle can be drawn with only one tangent in the θ0 direction
(though we must ensure that the circle is sufficiently far away from any double points).

Now we assumẽ lies in such a good position and construct a required divisor
for ˜ . Recall that ˜ is a small neighbourhood of the double point˜ of ˜ . We can
assume ˜ is sufficiently small such that it is included in ˜ , and we also assume
that in ˜ the immersed curvẽ consists of two crossed straight lines. So now˜ is
straight outside the annuli⊔ ( ˜ \ ˜ ) and, in the annuli, all points oñ at which
the speed vectors of̃ lie in the θ0 direction are included. We denote these points
by .

First perform the vertical isotopy0 ∼ 1/2. The family , ∈ [0 1/2], of vector
fields is fixed on ˜ \ (⊔ ˜ ) during the isotopy and, by assumption (3), in each̃
the vector field 1/2 does not lie in theθ0 direction on one of the crossed straight line,
while it may lie in that direction at most at two points on the other line. We denote
these two points by and′ if they exist. Let ′

˜ ⊂ ˜ be a small neighbourhood
of the boundary of ˜ such that , ′ ∈ ˜ \ ′

˜ .
Next we perform the following vertical isotopy1/2 ∼ 3/4. The family , ∈

[1/2 3/4], of vector fields is fixed oñ \(⊔ ˜ ) and all and ′ during the isotopy.
In each ˜ the isotopy is performed, without passing through theθ0 direction at any
point, and such that, in each˜ \ ′

˜ , 3/4 lies in the same direction as the orientation
of ˜ except in small neighbourhoods of and′ included in ˜ \ ′

˜ . We remark
that 3/4 does not lie in theθ0 direction in each ′

˜ and, on its inside boundary,3/4

lies in the same direction as the orientation of˜ , while on its outside boundary it lies
in the θ0 + π direction.
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Finally we perform the vertical isotopy3/4 ∼ 1 described next. Put :=̃ \(
(⊔ ( ˜ \ ′

˜ )) ∪ (⊔ )
)
. For each connected component of ,3/4 lies in the

θ0 + π direction on \ (⊔ ′
˜ ) and, in ∩ (⊔ ′

˜ ), it lies in the position remarked
above. Moreover the speed vectors of˜ on never lie in theθ0 direction. Therefore
there exists a vertical isotopy3/4 ∼ 1 that is fixed on ˜ ∩ (⊔ ˜ \ ′

˜ ) and all
during the isotopy, and such that1 lies in the same direction as the orientation of˜

except for small neighbourhoods of ,′ and .
In each of the small neighbourhoods of the ,′ and , the vector field 1 ro-

tates once. This corresponds to a twist in× 1 and hence to a necessary signed
point of the divisor. Since the pair ,′ appears in each ˜ at most once, and (˜ )
is the number of ’s, the necessary number of signed points of the divisor is at most
( ˜ ) + 2 (˜ ). Thus, because we already have the inequality (˜ ) ≤ ( ˜ ), the number

is bounded above by 3 (˜ ).
The divisor on ˜ induces a divisor on by an isotopy deformation from˜ to .

Hence the result is also true for , i.e. the necessary number of signed points on is
at most 3 ( ), which proves our assertion for link projectionswithout pinched regions.

Finally we deal with the case of a link projection with pinched regions. Let
{ } be the set of double points which represent the pinches, and let be a small
neighbourhood of for each . Then in each perform a smoothing which agrees
with the assigned orientation. This yields a disjoint union= (⊔ )⊔ (⊔ ) of con-
nected oriented link projections without pinched regions,where the are trivial com-
ponents and the are connected non-trivial components. We note that

(2.2) #{ } + #{ } = #{ } + 1

where # is the number of elements of the set . By an isotopy deformation of , we
assume that, for each , ∩ consists of two parallel straight lines with the same
orientation and they are sufficiently closed. Since none of the and have any
pinched regions, there is a vertical isotopy′0 ∼ ′

1 for such that the vector field
′
1 is in the same direction as the orientation of except for a finite number of

small neighbourhoods. In such a small neighbourhood, the vector field ′
1 has a twist

in × 1. By the conclusion arrived at in the ‘no pinched region’ case, on each
there is only one such a twist, while the number of twists on each is at most
3 ( ).

Now we perform the following vertical isotopy0 ∼ 1 for the original link projec-
tion with pinched regions. In \ (⊔ ), which coincides with \ (⊔ ), the iso-
topy is completely the same as′0 ∼ ′

1 applied to above. We remark that since
∩ consists of two straight lines, the family ,∈ [0 3/4], is fixed on the four

points of the boundary of ∩ and, during 3/4 ∼ 1, they isotope continuously and
in unison. In each there are two cases depending on the orientations of 0 and
at the double point . Let and be the two unitary vectors of0 at such that
θ0 + π − ε = θ < θ = θ0 + π + ε, where θ and θ are the arguments of and



692 W. GIBSON AND M. ISHIKAWA

(ii)(i)

α
0

0

θ0

+1

+1

−1

Fig. 5. Possible configuration for the divisor on0.

respectively. Letα and β be the crossed curves of in such that the arguments
θα and θβ of their speed vectors at satisfyθ0 < θβ < θα < θ0 + 2π. Then the two
cases are
(1) corresponds to the curveα, or
(2) corresponds to the curveα.
In case (1) the vertical isotopy0 ∼ 1/2 in can be defined so that the unitary
vectors do not pass through theθ0 direction during the isotopy. In case (2) we perform
a vertical isotopy such that passes through theθ0 direction once during the isotopy.
The subsequent isotopy1/2 ∼ 1 is defined to be same as that performed in small
neighbourhoods of the double points of which are not in{ }.

Now we count the number of twists of1 in × 1. We have seen that on each
there is only one such a twist while the number of twists on each are at most

3 ( ). In each , in case (1) there is no twist, while in case (2) there are two twists.
Therefore there are in total #{ } +

∑
3 ( ) + 2ˆ twists, whereˆ is the number of

case (2) double points in{ }.
If { } is not empty then, by (2.2), we have #{ } ≤ #{ }, and so the number

of twists is bounded above by #{ }+∑ 3 ( )+2ˆ ≤∑ 3 ( )+3#{ } ≤ 3 ( ) as
required. If { } is empty and at least one of the is a case (1) double point, then
#{ } = #{ }+1 andˆ < #{ }. So, in this case, the number of twists is also bounded
above by #{ } + 2ˆ ≤ 3#{ } = 3 ( ). If { } is empty and every is a case (2)
double point then #{ } = #{ } + 1 and ˆ = #{ }, so the number of twists becomes
#{ }+2ˆ = 3#{ }+1 = 3 ( )+1. The unwanted 1 can be eliminated from this bound
as follows. First observe that in such a case there exists at least one innermost cir-
cle 0 in ⊔ , and there exists only one double point0 whose neighbourhood 0

connects 0 to another component of . Since every is a case (2) double point,

0 is as shown in Fig. 5 (i). Hence the signed points of the divisor corresponding to
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orientation

Fig. 6. A link diagram of the (2 3) torus knot and the embedded link in the trivial
circle bundle.

the twists are +1 and−1 as shown in Fig. 5 (ii). However there is also a signed point
on the circle 0 corresponding to the point at which the speed vector is in theθ0 di-
rection, and this sign is +1. This +1 and the−1 in 0 can be cancelled by a vertical
isotopy. Thus we can eliminate the extra 1 from the upperbound.

REMARK 2.3. The inequality (̃ ) ≤ ( ˜ ) in the above proof can also be shown
using a result of Andreev [7], which states that there existsa unique circle packing
which is dual to the above triangulation. The circle packingalgorithm, used to com-
plete this method of proof, was constructed for regular linkprojections by K. Stephen-
son, and is used for drawing knots in Knotscape. See “Help” inKnotscape [19].

We now present an example of the construction of an oriented divide from a link
diagram. Let be the (2 3) torus knot as shown on the left side ofFig. 6. The link ˆ

in the thick plane is realized in the trivial circle bundle× 1 as shown on the right.
Next we assign an orientation to the regular link projection of and apply

smooth rotations of the unitary vectors at each double pointso that the unitary vectors
coincide with the speed vectors of . Then for each arc of\{ } we
count the relative winding number and place this number at a point on the arc (Fig. 7).

The set consisting of two points, each with the sign +1, is a divisor of the regular
knot projection of the (2 3) torus knot. By attaching a positive loop to each point
we obtain an oriented divide whose linkφ( ) is the (2 3) torus knot. This final
step is shown in Fig. 8.

Before continuing the example we will briefly discuss an important fact concern-
ing points of a divisor which are attached to “outside” arcs of an oriented divide.
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orientation


0

0

0

0

+1

+1

Fig. 7. Rotations of the unitary vectors and the relative winding numbers.

+1
+1

Fig. 8. A divisor and the corresponding oriented divide.

DEFINITION 2.4. Let be an oriented divide and let{ } be the set of arcs of
\ { }. If we can connect the arc and the boundary∂ ¯ by a path

in \ , we say is anoutside arc of . Otherwise it is aninside arc.

Lemma 2.5. Let be an oriented divide, and construct from it a new oriented
divide ′ by adding a loop to one of the outside arcs. Then the linkφ( ) is isotopic
to the linkφ( ′).

This means that we can ignore any element of a divisor which appears on an out-
side arc of a regular link projection of a link .

Proof. The loop on an outside arc of′ constitutes a twist in −1( × 1) ⊂ R3

around the axis{(0 0)} × R, and the corresponding strand ofφ( ′) does not wind
around any other strand. So we can remove the twist and isotope the link toφ( ).

Now we continue the example. Let be the oriented divide with the divisor as
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(A)
 (B)


(D)
(C)


+1

Fig. 9. An isotopic deformation of the oriented divide of the(2 3) torus knot.

shown in Fig. 9 (A). By Lemma 2.5 the link of the oriented divide with this divisor
is also the (2 3) torus knot. By attaching a left-handed loop at the point with the sign
+1, the figure is deformed to (B) in the figure. This is just the oriented divide derived
from the doubled curve of the divide of the (2 3) torus knot (see Section 4 below).
Since the orientations of the loop and the outside arc parallel to the loop are oppo-
site, the loop can be passed through the outside arc. Also thedouble point of the loop
passes through the outside arc since they do not intersect inthe trivial circle bundle.
This allows our next deformation from (B) to (C). By Lemma 2.5the loop on the out-
side arc of (C) can be ignored and is hence equivalent to (D).

REMARK 2.6. Instead of the link of an oriented divide , we can construct an-
other link by using the co-orientation on , that is, the set

{( 1 2 1 2) ∈ R4 | ( 1 2) ∈ ( 1 2) ∈
→
′
( 1 2)( ) 2

1 + 2
2 + 2

1 + 2
2 = 1} ⊂ 3

is a link in 3, where
→
′
( 1 2)( ) is the set of normal vectors in the left direction

with respect to the orientation on . This is same as the construction of Legendrian
knots via fronts of generically immersed curves. In the context of Legendrian knots
it is already known that any oriented knot has such a corresponding immersed circle
(see [8]).
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3. Proofs of Theorems 1.3 and 1.4

In this section we will prove Theorems 1.3 and 1.4. We first define the rotation
map θ : × 1→ × 1 of the trivial circle bundle × 1 by ( ϕ) 7→ ( ϕ + θ),
for θ ∈ R. Then θ extends to a rotation map̃ θ : R3 → R3 by the embedding

−1( × 1) ⊂ R3. If two links and ′ in R3 satisfy ˜
π( ) = ′ we say they

lie in mutually symmetric positions.
Now let be an oriented divide, defined by immersed circles each with a cho-

sen orientation, and let −1 be the oriented divide defined by the same immersion but
with opposite orientations assigned to each component.

Proposition 3.1. Let be an oriented divide and let−1 be the oppositely ori-
ented divide of . Then the linksφ( ) and φ( −1) lie in mutually symmetric posi-
tions. In particular, they are isotopic.

Proof. Sinceφ( −1) = ˜
π

(
φ( )

)
, φ( ) and φ( −1) are isotopic and lie in mu-

tually symmetric positions.

Proof of Theorem 1.3. Let be an oriented divide obtained froman oriented,
connected, regular link projection , of the link , with a divisor such that the link
φ( ) is isotopic to . The existence of such a divisor is guaranteed by Theorem 1.2.
Let be the non-oriented half plane divide defined by the same immersed circles
as the oriented divide . Since the union of the immersed circles is connected, the
link φ( ) of is a fibred link in the compactified manifold3 = R3 ∪ {∞} due to
A’Campo’s theorem [4], and furthermore, its monodromy is the product of right Dehn
twists and the number of these right Dehn twists is equal to the first Betti number of
the fibre. Then the assertion follows from these facts and Proposition 3.1.

REMARK 3.2. The monodromy of the fibration in Theorem 1.3 can be described
using a Dynkin diagram [1], [2], [11], [12], [13]. For this reason we emphasize that
the monodromy has more explicit properties than stated in the theorem.

The oriented divide can be deformed while preserving the isotopy type of its link,
as shown, for example, in Fig. 9. However, the fibred links in the link exterior ( )
depend on the deformed oriented divides. So we can constructinfinitely many distinct
fibrations by deforming the oriented divide. This is the point of Theorem 1.4.

Proof of Theorem 1.4. By the definition ofmin( ) there is an oriented divide
obtained from a regular link projection by attaching a divisor such that the link
φ( ) is isotopic to and ( ) + ( )− ( ) + 1 = min( ). Now we regard the im-
mersed circles of in as the divide with both orientations. Then, after the com-
pactification 3 = R3 ∪ {∞}, the genus of the fibre of the fibration in3 \ φ( ) is
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oriented divide
 link diagram

θ0

Fig. 10. “Over and under” rule.

( ) + ( ) − ( ) + 1 = min( ). Since 3 \ φ( ) = 3 \
(
φ( ) ⊔ φ( −1)

)
=

( ) \ φ( −1), the link ′ = φ( −1) is a fibred link in ( ) whose fibre is a genus

min( ) surface. Next we attach loops on an outside arc of the oriented divide and
denote the new oriented divide by . The linkφ( ) of and the linkφ( ) of
are isotopic inR3, by Lemma 2.5, and also in3 = R3∪{∞}. Hence the link exterior

3 \ φ( ) of the link φ( ) is homeomorphic to ( ). We regard the immersed cir-
cles of in as the divide with both orientations. Then the genus of the fibre
of the fibration in 3 \φ( ) is min( ) + . Since 3 \φ( ) = 3 \

(
φ( )⊔φ( −1)

)
=

( ) \ φ( −1), the link ′ = φ( −1) is a fibred link in ( ) whose fibre is a genus

min( ) + surface.

4. A link diagram of an oriented divide

Let be an oriented divide on the half plane and letφ( ) be the link of
in R3. In this section we construct a method for obtaining a link diagram ofφ( )
from the oriented divide . As seen in Section 2, the linkφ( ) is naturally embed-
ded in the trivial circle bundle × 1 on .

Now we regard the trivial circle bundle as the direct productof points in the half
plane with the unitary vectors based at each point in . We assign a coordinate to
the unitary vectors in 1 which measures argument in the counterclockwise direction.
For a technical reason we fix an argumentθ0 on 1 such that the oriented divide
satisfies the following:
• At each double point of the arguments of the unitary tangent vectors of the two

branches are neitherθ0 nor θ0 + π;
• Every point on whose argument of the unitary tangent vector is θ0 or θ0 + π is

not an inflexion point of .

DEFINITION 4.1 (“Over and under” rule). Let , be the branches of a double
point of and letθ , θ ∈ (θ0 θ0 + 2π) be the arguments of their speed vectors re-
spectively. If θ < θ we define the branch as “over” and as “under”. Otherwise
we define the branch as “under” and as “over” (see Fig. 10).
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θ0

negative twistpositive twist

Fig. 11. Winding rule.

DEFINITION 4.2 (Winding rule). Let : × 1 → 1 be the canonical projection
and let be a point on an inside arc of at which the argument of the unitary speed
vector of isθ0. Then, as shown in Fig. 11 (where is the half-plane),
• if the orientation of

(
φ( )

)
at is positive, replace the small segment of the arc

on which lies by a positive twist;
• if the orientation of

(
φ( )

)
at is negative, replace the small segment of the

arc on which lies by a negative twist.

Note that the orientation of the circle of the trivial circlebundle is in the direc-
tion from the “over” position to the “under” position of the plane of the regular link
projection by the definition of the embedding of the thick plane into the trivial circle
bundle.

Theorem 4.3. Let be an oriented divide. Then a link diagram ofφ( ) is ob-
tained by modifying according to the“over and under” rule and the winding rule.

Proof. Let be a point on an arc of \ { } at which the argu-
ment of the unitary speed vector of isθ0. We deform the arc smoothly as shown
in Fig. 12.

It will be noted that the deformed arc does not have a point at which the argu-
ment of the speed vector isθ0 except for a single point on the small left or right loop.
This loop corresponds to a positive or negative twist aroundthe circle of the trivial cir-
cle bundle. Let ′ be the deformed oriented divide with a divisor consisting ofthese
small loops. The argument of the speed vector at all points onthe oriented divide ′

is contained in the interval [θ0 + θ0 + 2π− ] for some 0< < π except for small
neighborhoods of the loops. Now we deform the arguments of the speed vectors corre-
sponding to the linkφ( ′) by the map : [θ0+ θ0+2π− ] → [θ0+π−ε θ0+π+ε],
defined by :θ 7→

(
ε/(π − )

)(
θ− (θ0 +π)

)
+ (θ0 + π), while preserving the twists of

the loops. Then we obtain a deformed link in the thick plane which has several loops.
By temporarily ignoring the loops, it is clear that the “overand under” rule cor-
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θ0

left loop

right loop

Fig. 12. Deformations of an arc whose speed vectors passing through the argument
θ0.


 
half plane divide oriented divide

Fig. 13. Doubling of a divide.

rectly decodes the crossing information at each double point of the projection. The re-
quired link diagram materializes by noting that, since eachof the small loops of
the deformed oriented divide represents a twist around the circle of the trivial circle
bundle, the information represented by these loops is correctly decoded by the wind-
ing rule.

For any link φ( ) of a half plane divide we can obtain an oriented divide
whose linkφ( ) is isotopic toφ( ) by using the “doubling” method shown in Fig. 13.

From now on we fix the orientation of the oriented divide induced by doubling
a half plane divide by always following the left hand side of the doubled curve.
We assume that for any double point of the divide the arguments of the tangents to
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θ0

Fig. 14. “Over and under” rule for divides.

θ0

Fig. 15. A link diagram constructed from an oriented divide representation of the
(2,3) torus knot.

the two branches areθ0 + π/4 andθ0 + (3/4)π for a fixed argumentθ0 in 1.

DEFINITION 4.4 (“Over and under” rule for divides). For each “#” crossing of the
oriented divide obtained by doubling a half plane divide , wedefine the over and
under crossings of the strands as shown in Fig. 14.

Since the “over and under” rule for divides is equivalent to four applications
of the “over and under” rule for oriented divides, we can easily draw a link diagram
of the link of a divide using Theorem 4.3:

Corollary 4.5. Let be a half plane divide and let be the oriented divide
obtained by doubling . Then a link diagram of the linkφ( ) is constructed by mod-
ifying by the “over and under” rule for divides and the winding rule.

Now we show a few examples of link diagrams of the links of oriented and non-
oriented divides. Let be the oriented divide shown on the left in Fig. 15. The “over
and under” rule applied to produces the knot shown on the right. Note that the
divide does not contain an arc which requires application ofthe winding rule.
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θ0

Fig. 16. Two divide representations of the 10139 knot and their link diagrams.

The result is clearly the (2 3) torus knot. We have already seen this fact in Section 2
(cf. Fig. 9 (D))

The knot 10139 in the knot table in [18] has two different divide representations,
which were found by A’Campo. Link diagrams of the divides areas shown in Fig. 16.
The two links are isotopic, but the divides are distinct, i.e. they are not transversely
isotopic as divides. Recently all divides up to 4 crossings have been listed by the au-
thors in [10]. In this list only two divide knots were found tohave more than one
divide representation (up to divide equivalence).

To conclude the present paper we consider the class of dividecalled theslalom
curves of rooted planar trees. A rooted planar tree is an embedded tree in the half
plane ¯ such that ∩∂ ¯ consists of one point, which is a terminal vertex of . For
a rooted planar tree there exists a divide⊂ ¯ with the following properties:
• The double points of lie in the interior of the edges of , such that the local

branches are transversal to the edge of .
• Each connected component bounded by contains exactly one vertex of .
• The only intersection points of with are the double points of.

The original slalom curve was defined not on̄ but on the unit disk (see [5]). The
link φ( ) of is a knot because consists of just one immersed interval.

Theorem 4.6. Let be a slalom curve of a rooted planar tree . By an iso-
topic deformation of we assume that the tree grows in the positive direction of
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θ0

Fig. 17. A doubled curve of a slalom divide.

the 1 coordinate of . Then we can obtain a link diagram of the knot ofby ap-
plying only the“over and under” rule for divides to the oriented divide obtained by
doubling .

Proof. We assume the fixed argumentθ0 on 1 is pointing down, i.e. in the neg-
ative direction of the 2 coordinate of . Then we can deform the slalom curve
into a good position, as shown in Fig. 17, so that all arcs which would be modi-
fied by the winding rule are outside arcs, and hence their windings can be ignored
by Lemma 2.5.
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