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1. Introduction

A divide P is the image of a generic immersion of a finite humbércopies
of the unit interval or the unit circle into the unit disk. Lét;, x;) be a point onP
and T, ., (P) the set of the tangent vectors ai,(x2). We define the link of the
divide P by the set

{(x1, x2,u1,u)) € RrR* | (x1,x2) € P, (u1, u2) € Ty, x)(P), x% +x§ + u% + u% =1} C s3.

In the 1970’s, the divide appeared as immersed curves oretiie2fplane, for the pur-
pose of studying real morsifications of complex plane cutngdarities, in the works
of N. ACampo [1], [2] and S.M. Gusein-Zade [11], [12], [13].eBently ACampo in-
troduced the divide on the unit disk, defined the links of sditlides, and showed that
if a divide has the same configuration as the real morsifioatib an isolated plane
curve singularity then the link of the divide is ambient tgut to the link of the sin-
gularity [3]. Also, he proved in [4] that if the divide is coected then the link exterior
has a fibration oves?, and visualized the core curves of the right Dehn twists ef th
geometrical monodromy of the fibration on the figure of theidiv
In the present paper we mainly discuss the following origrdride.

Derinimion 1.1, An oriented divideis the image of a generic immersion of a fi-
nite number of copies of the oriented unit circle into thetudisk.

Consequently, the link of the oriented divide is given by g
L(C) := {(x1, x2, ug, u2) € R* | (x1,x2) € C, (ur, u2) € T (xy.10)(C), x5+ x5 +uf +u3 =1}
where ?(,vl‘xZ)(C) is the set of the vectors tangent @  at,(x») which are in the

same direction as the assigned orientation. The congirudi the link of an oriented
divide is a natural extension of the link construction of &idi. From any divide we
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682 W. GBSON AND M. ISHIKAWA

can obtain an equivalent oriented divide by using a simpleulding” method. This
will be described in Section 4.

Let D; be a regular link projection of an oriented link into thaitudisk.
So D, is also oriented. Let I, ) be the number of double pointdef nd a(D.)
the number of embedded circle componentsDgf . Here, by theitiefi, an embed-
ded circle component is a simple closed curve in the unit,désid hence it corre-
sponds to a trivial, unlinked component bf

Theorem 1.2. For any regular link projectionD; of an oriented link, there
is an oriented divideC, which can be obtained fronb, by attaching a finite humber
of small loops(seeFig. 1), such that the linkL.(C) is ambient isotopic td. . Moreover
the number of necessary small loops is at ngiD;,) +ro(Dy).

The existence of oriented divides corresponding to any links already known
in the context of Legendrian knots [8] (see Remark 2.6).

It is known by J. Alexander that every closed, orientable @sifold has a fibred
link [6]. For every link exterior inS® we can prove the existence of a fibred link with
stronger properties by combining the fibration theorem ofnexted divides with The-
orem 1.2.

Theorem 1.3. Let E(L) be the exterior of an oriented link  i8%. Then there
is a knotA inE(L), which is trivial in $%, and ar-rotation mapR,: S — $° around
A such that

e R.(L) is contained inE(L), and

e the complement ok, (L) in E(L) is fibred its monodromy is the product of right
Dehn twists and the number of right Dehn twists is equal to the first Bettmber
of the fibre.

In the proof, the fibration will be realized as that of a conedcdivide obtained from
a regular link projection by attaching small loops. Therefthe geometry of the fibra-
tion is determined by the immersed curves of such a divide.

By Theorem 1.2, for any regular link projectiaB; , a corresiing oriented di-
vide can be constructed by attaching appropriate smallsldopD; . For eachD; we
define the integed 1§, ) to be the minimal number of small loopgrall possible
choices, required to induce the link . The genus of the fibréhefcorresponding fi-
bration in Theorem 1.3 can be calculated from the immersedesuof D; with small
loops, and is given by I§; )d I§; Yyr(L)+1. Herer () is the number of link com-
ponents ofL , which is equal to the number of immersed circlethe corresponding
oriented divide. So now denote (L) the minimal value ok D, )# D. }r(L)+1
over all possible regular link projections. The integgtin(L) is clearly a link invari-
ant and, from the inequality I¥; ¥ 3c(Dp) +ro(D.) in Theorem 1.2, it is bounded
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above by 4 D, ) #o(D) —r(L) + 1.
Now we state the fact that there are infinitely many fibratisaisfying the prop-
erties in Theorem 1.3.

Theorem 1.4. Let E(L) be the exterior of a link. ins® and gmin(L) the invari-
ant described above. Then for any integer gmin(L) there is a fibred linkZL’ of the
3-manifold E(L) which possesses the properties outlinedTimeorem 1.3and whose
fibre is a genus surface.

In this paper, we will present methods for constructing ritee divides from link
diagrams and vice-versa. A construction of a link diagrantheflink of a non-oriented
divide was presented by M. Hirasawa [14] independently ofwark. He also showed
in [14] an algorithm for drawing a Seifert fibre surface of diek. A construction of
the link of a special class of divide, trtalom curves of rooted planar treewas pre-
sented by C.V. Quach Hongler and C. Weber [16], [17].

This paper is organised as follows: In Section 2 we outliree geometric prelim-
inaries, prove Theorem 1.2 and present an example whichsskiosvmethod for con-
structing an oriented divide from a link diagram. In Secti®nwve will prove Theo-
rems 1.3 and 1.4. In Section 4 we introduce methods for digahie link diagram of
an oriented divide by using an inverse algorithm of the probfTheorem 1.2. This
method can also be applied to a non-oriented divide by doghti

The authors would like to thank Prof. Norbert ACampo for hisotivation
and encouragement, and also for many helpful suggestiohsy Bre also grate-
ful to Dr. Alexander Schumakovitch for pointing out the cention between Theo-
rem 1.2 and the previously known result concerning regukgelndrian representatives
of knots. Finally, they would like to express their appréoia to the referee for useful
comments and suggestions concerning many parts of the.paper

2. Geometric preliminaries and the proof of Theorem 1.2

In this paper all our discussions take place in the smootkgoay. Hence any
mention of isotopy will implicitly refer to ambient isotopy
It is more convenient for us to consider the following halampé model of a (ori-
ented) divide. A half plane model for a divide is the image ajemeric immersion of
a finite number of copies of the unit interval,[0 1] and the wiitle into the closure
H of the half planed = (x1, x2) € R? | x; > 0}. By generic we mean
e the image has neither self-tangent points nor triple ppints
e the immersion of each interval is relative to the boundfaf};
o the image of each interval intersed$/ transversely;
o the image of each circle does not intersééf.
We call it the half plane divideand each image of the unit interval or the unit circle
a componenbf the divide.
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For a parametrized curve  F{x1(z), x2(¢)) | 0 < ¢t < 1} in H, we define its
embeddinge into R® by

- S = { (xﬁxl.‘,-(r) SHORVEVOLYONNS m) } R

() ’ ()

where (x1(¢), x5(1)) are the derivatives ofx1(t), x2(r)) by 7, andl () =|(x1 (1), x5, (t))].
Note that¢(a) depends on the parametrization assigned to

Now let P be a half plane divide, and denote its interval congmi® by
I,...,I; and its circle components b§, ..., C,. We give a parametrizatiod” :=
{(xl,i(r),xz,,-(t)) | 0 <t < 1} to each interval componert  such that the points at
t =0 and 1 correspond to the endpoints/of , and also define tlerseparametriza-
tion 1,7 (t) by I, = {(x1;(1 — 1), x2;,(1— 1)) | 0< ¢ < 1}. Then we define the link of
the (non-oriented) interval componeht by the unigfi;”) U ¢(Z;”), and denote it by
o(1;).

The link of each circle componer@; is defined using the sameadets fol-
lows: first give a parametrizatioﬁjf = {(xl,j(t), xg,j(t)) |0 <r <1} to C; such that
the points atry and# correspond to the same point @; , and also define the reverse
parametrizationC ;" := {(x1,;(1—1),x2;(1—1)) | 0< ¢ < 1}. Then we define the link
of the (non-oriented) circle componeat, by the disjoint mntﬁ(C}') U qS(Cj‘), and
denote it by¢(C;).

The link of the half plane divideP? is then defined as the digjainion of these
links, i.e. L;¢(1;) U; ¢(C;). We call it thelink of the half plane divideP and denote
it by ¢(P).

The preceding definition for the link of a half-plane dividenc be derived
from ACampo’s original definition using an appropriate esiation-preserving com-
plex transformation from the unit disk to the half-planeg(d#]). Note that the link
of a half plane divide is isotopic, after the compactificati&® = R® U {co}, to that
of the unit disk model. Sometimes we regard the link of thef pne model, lying
in R3, as the link inS® =R3U {co} induced by the compactification.

Now we assume each component of the half plane divide is anemed
circle, and construct &half-plane oriented divideC by assigning an orientation
to each component. Lef,,...,C, be the circle components of . For each ,
choose a parametrizatio@; or C;” according to the assigned orientation, and de-
note the parametrized circle component alsohy . Then wetballimagell; »(C;)
the link of the half-plane oriented divid€' and denote it by)(C). Note thato(x) rep-
resents the link of a half-plane divide or oriented divid@eleding on«. We call the
vector

VxLi(e) xq (1) /x2i(t) x5, (1)
1(t) ’ 1(z)

a speed vectoof C at (x1,;(t), x2()).
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o

left loop right loop
Fig. 1. An oriented divide obtained fror»; by attaching theistv.

For brevity we will usually drop the adjectiviealf-plane and thus talk oforiented
dividesand links of oriented dividesvithout any risk of confusion.

Let L be an oriented link ind x R (C R%) and D; :=p (L) a regular link projec-
tion of L, wherep :H x R — H is the canonical projection map.

Derinimion 2.1, A divisor on a regular link projectiorD; is a finite set of points
on D, \ {double point$, each equipped with a +1 orl.

For each point with +1 o—1 we apply a small left or right “loop” relative to
the orientation as shown in Fig. 1. Then the regular link gcpn D; with loops at-
tached according to the divisor satisfies the conditionshefdriented divide. We call
this the oriented divide obtained fron; by attaching the divisor

We will now rewrite Theorem 1.2 in terms of divisors, and th@esent a proof.

Theorem 2.2 (cf. Theorem 1.2). For any oriented linkL and its regular projec-
tion D;, there is a divisor onD; such that th@riented link of the oriented di-
vide obtained fromD; by attaching the divisor is isotopic ko orbver the divi-
sor can be selected in such a way that the number of pointseéndifisor is at most
3c(Dy) +ro(Dy), wherec(D;) is the number of double points amg(D;) the number
of embedded circle components Bf
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Before proving the theorem we will prepare some terms anatioos which we
will need in the proof, and also in the rest of the paper.

Let C be an oriented divide. By the definiton, the ligkC) of C is contained
in (R?\ {(0, 0)}) x R, which is homeomorphic to the trivial circle bundig x S*.
Here we explicitly define the homeomorphism by

(1. y2, ¥3) — (v + 3. ya, argvra, y2))

and denote it byl . The imag# (¢(C)) of the link ¢(C) in (R?\ {(0, 0)}) x R C

R* constitutes a smooth 1-manifold if x S* such thatg (W (¢(C))) coincides with
the immersed curves of the oriented divide , whereH x S* — H is the canon-
ical projection map. In other words, the image(qS(C)) is a smooth 1-manifold in
C x S (hereC means the immersed curves of the oriented digide )e Muit the
third component of each poiat i (qS(C)) coincides with the argument of the speed
vector of C atq & ).

We remark that, by identifying? x S* with the set(R?\{(0, 0)}) xR C R® by ¥,
any isotopy move of a smooth 1-manifold # x S* always induces an isotopy move
of the corresponding link ifR3.

We mainly deal with the following smooth 1-manifolds @ix S ¢ H x S1. Let C
be the disjoint union of oriented unit circles and define tmenersed curve of an ori-
ented divideC as the image CI of C by a fixed maph C — H, ie. C —h(C)
Then consider an embedding map C — Hx$t satisfying gh = h, and set
s = h(C) C H x S'. We call such a smooth 1-manifold ldted 1-manifold overC.
Two lifted 1-manifoldssg and s; over C are said to bevertical isotopicif there is
a continuous familys, ¢ € [0, 1], of lifted 1-manifolds. Note that if there is a verti-
cal isotopy between, and sy, then they are ambient isotopic iH x S and also, by
the mapw—1, in (R?\ {(0, 0)}) x R C R3,

Since a lifted 1-manifolds oveC lies it x S, each pointa := £,6) € s
is a pair consisting of a point € C C H and a unitary vector in thé direction.
By the definition ofs , ifx € C is a regular point of the immersed cure@  then
there is only one point  such thata ( )= , while if it is a doubleimioof C then
there are two pointg; anda, such thatg §1) = g(a2) = x. In the latter case, the two
pointsa; =, #6;), i =1, 2, correspond to two strands 6f at the double psint and
the unitary vector®); and 6, lie in mutually different directions. This smooth assign-
ment of unitary vectors, tangential t§ , to the immersed ewvis called avector
field on C. Each vector field orC corresponds to a lifted 1-manifold ogerin par-
ticular, the smooth 1-manifold (¢>(C)) corresponds to a vector field which is every-
where in the same direction as the speed vector§ of

Finally we define a relative winding number of a vector field éach edge olC .
An edgee of the immersed curv& is the closure of a component of theCsgt
{double points}. Supposee has a parametrization with a parameter[0, 1], and
let V be a vector field ore . Then the parametrizationeof inducgmmmetrization
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///.‘\\ i X3:€

/\,/L

X3 = —¢

l projection p

p(L)
(c1,¢2)

Fig. 2. The link in the thick plane.

(x(1), 6(r)) € H x S* of V. Let a(r) be the speed vector af ats (). Then thea-
tive winding number oV om is the rotation degree dof(r) — arg(a(t)) whent runs
from O to 1. Note that it is a real number and that the courtekslise rotation is
positive. In particular, if the vector field# is tangential ¢ at both endpoints of the
edgee , the relative winding number & en is an integer.

Proof of Theorem 2.2. In this proof we always measure the raemis of tan-
gent vectors o4 in the counterclockwise direction relatve fixed directiorfy. We
choosedy so that the arguments of the tangent vectors to the oriem&dplojection
D; = p(L) at the crossing points are not equal @ Now we deformL smoothly
to L in H x R so thatL satisfies the following:

* p(L) = p(L);

o L C {(x1,x2,x3 € HxR|—e <x3<c¢e} for some sufficiently smalt > 0;

e At each double pointcg, c5) of p(L), L passes throught{, c», —) and €1, ¢z, €).
These conditions are presented pictorially in Fig. 2, andwilerefer to the link L as
the link in the thick plane We define the embedding’ of H x [—¢, €] into the trivial
circle bundleH x S* by (x1,x2,x3) € H x [—¢,¢] — (x1,x2, 00+ 7 — x3) € H x St
(here a minus sign is introduced in front of the term so that the embedding is ori-
ented correctly). Note that the thick plade x [—e, <] is naturally embedded iffR? \
{(0, 0)}) xR C R® by the composite mag ~*oW’: H x[—¢, e] — (R?\ {(0, 0)}) xR.

Let s := W/(L) ands’ := W(¢(D.)). We will construct an isotopy, ~fromg := s
to s1, Wheres; is a smooth 1-manifold if x S* which coincides withs’ everywhere
outside a particular open sé& C H x S*.

By the construction of the linkL in the thick plane, for every pointx(, x)
on D, the unitary vecton xf, xz) at (x1,x) satisfiesfy + 7 — e < arg(v(x1, x2)) <
0o+ +e, and for each double point P, the unitary vectors satisfy(ﬁ(tgl, xz)) =
o + 7 + €. By the definition of the embedding’: H x [—¢,¢] — H x S', on each
double point of D, the overstrand df corresponds to the argumef§ + = — ¢ and
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0o

».f orientation

Fig. 3. The embedded linky (= W/(L)).

the understrand of. corresponds to the argumefiy + 7 +¢ (see Fig. 3).

Let {p;} be the set of double points db;, , and o, vj20 the two unitary vec-
tors on each double point; , i.e. so that;(v;10), (pj,vj20) are the points ins .
We assume thatp(;, v; 1) corresponds to the overstrand, ang,(v;.0) corresponds
to the understrand, of at the double point. Let/,,, C H be a small neighbourhood
of the double pointp; .

We construct the vertical isotopy  in two parts, first frogito 51,5, then from
s1/2 t0 s1. Letwv; g, andv;», be the two unitary vectors based at the double ppint
for ¢ € [0, 1], which correspond to the points in . In the first stage eiftical isotopy,

s; is the identity in @ \U;U,,) x S, while within eachyU,, we assume the following.

(1) Atr=1/2, the unitary vectow;,, (resp.v;»,) must lie tangential to the branch

corresponding to the overstrand (resp. understrand) ahd in the same direction as

the orientation assigned tb; ;

(2) The two unitary vectors;,,, v;2, at the double poinp; must not pass through
each other, as progresses from 0 #2;1

(3) One ofv; 1, andv;, does not pass through the argumént The other may pass

through it at most once.

That such a vertical isotopy ~ s1/, exists is clear.

On each open edg?e( select a disjoint union, of |w,| open intervals, wherev,
is the relative winding number of; , on the edger;, . Defin& =) x S Then
there exists a vertical isotopy ,, ~ s1 such thats; coincides withs’ outside E , and
the relative winding number aof; on each component af, is equal to sign{, ). The
existence is clear by definition of the relative winding nemb

Now for the edgee; , select a point on each component, ofnd assign each of
these points with the value sign{ ). The set of these signéatgpaonstitutes a divi-
sor, and we letC be the oriented divide obtained frém by aiteclthis divisor.
Then it is clear thatl (¢(C)) is isotopic tos inH x S*. After the natural embedding
v H x ST — (R?\ {(0,0)}) x R C R3 we can conclude that they are ambient
isotopic inR3.
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pinched regior

Fig. 4. An example of a pinched region (the dashed circle llggts the position of
the ‘pinch’).

It remains to show that the divisor can be selected so thantimsber of points
in the divisor is at most 8; ) +o(D.). The oriented projectionD; consists of
a finite number of connected components. If a connected coemid”; consists of
a single embedded circle then the number of necessary poirtse divisor for this
component is 1, since the relative winding number for thimponent will always be
+1. This coincides with the desired upperboundI3 ( ;) sincec ;) = 0 and
ro(l';) = 1. Therefore the proof is completed by establishing thet that the num-
ber of necessary points of the divisor for each connected;tricial componentl”; is
at most 3 7} ).

We first prove the aforementioned assertion for a connectedktrivial component
which does not have pinched regions.piched regionis defined to be a component
of H\ D; such that the complement of its closure is not connected Kige4).

Let I' be a connected, non-trivial, oriented link projectioithout pinched regions,
and letv (" ) be the number of points at which the argument of geed vector ig,.
Since we can assume thés is in general position with respect to the speed vectors,
it follows thatv (") is finite. We then consider a triangulation H with respect td”
which we now describe.

Since there are no pinched regions, any region bounded by n is-gon with
n > 2. For eachn -gon witlh > 3, we place a point in its interior and connect this
point with each vertex of thes -gon by a simple edge. For eagor2-we connect
the two vertices by a simple edge in the 2-gon. [¥tbe the subset of' obtained
from it by deleting the interiors of the edges of all 2-gonstually, to ensure that we
really do get a triangulation, we must make the additionalagtion that none of the
2-gons ofI" share a common edge, since this would give a 2-gomirirsupposed ‘tri-
angulation’. This pathological case occurs if and only ieaof the components df
is an embedded circle intersecting exactly twice with ongeedf another component.
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We ignore such embedded circles and make appropriate adjnt later. With this
extra assumption, the union df’ and the simple edges described above constitutes
a triangulationT inH . Now each vertex af is connected by attl¢hsee edges,
so by using Fary’s theorem [9] we can modify the triangulatém that every edge is
straight. Then, by rotation if necessary, we can assumenbatdge of the triangula-
tion lies in thedy direction.

Now the regular link projectioi” can be drawn as a polygon anghaph ofT ,
except for the edges of 2-gons Bf . Each 2-gon  also can be datomy the sim-
ple edgee , which connects the two vertides b, of A, so that the edges oA are
parallel and close te im \ (W, UW,,), where W,, is a small neighbourhood bf
Then we obtain a regular link projectidn from the above polygon alon§ by round-
ing the corners (note that this can be done without intrattwany inflexion points).
The strands of" are straight except possibly in small neighbourhodids of double
points p; of r.In eachW;, we may have at most two points at which the arguments
of the speed vectors af or 6y + . So if v(") > ¢(I"), then ar-rotation of I" yields
a new position in whichy I{) < ¢(I") holds.

If we relax the additional assumption concerning an embedidele intersecting
a single edge at exactly two points, the resull) € ¢(I") also follows from the fact
that any such embedded circle can be drawn with only one tdrigehe 6, direction
(though we must ensure that the circle is sufficiently faryafvam any double points).

Now we assumd” lies in such a good position and construct a required divisor
for I'. Recall thatUp, is a small neighbourhood of the double pojit of I'. We can
assumeUj, is sufficiently small such that it is included i}, and we also assume
that in U, the immersed curvé® consists of two crossed straight lines. So nbws
straight outside the annuli;(Wj, \ Up,) and, in the annuli, all points o at which
the speed vectors of lie in the 6, direction are included. We denote these points
by V.

First perform the vertical isotopyo ~ s1/o. The familys; ,z € [0, 1/2], of vector
fields is fixed onI" \ (U;U3,) during the isotopy and, by assumption (3), in edg})
the vector fields;,, does not lie in thely direction on one of the crossed straight line,
while it may lie in that direction at most at two points on théher line. We denote
these two points by;; anqi; if they exist. LetUIl,j C Ujp; be a small neighbourhood
of the boundary ofU;; such thatg; 4} € Uy, \ Uj, .

Next we perform the following vertical isotopyy/» ~ s3/4. The family s, , ¢ €
[1/2, 3/4], of vector fields is fixed o™ \(U,;U;,) and allg; andg during the isotopy.
In eachUj;, the isotopy is performed, without passing through thedirection at any
poigt, and such that, in ead]di;,j\Ull,j, s3/4 lies in the same direction as the orientation
of I except in small neighbourhoods gf  agg included inUj, \ Uli}j. We remark
that s3/, does not lie in thejy direction in eaghUli,j and, on its inside boundarys,4
lies in the same direction as the orientationIgfwhile on its outside boundary it lies
in the Ap + 7 direction.
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Finally we perform the vertical isotopys/, ~ s1 described next. Pug ::f‘\
((l_lj(U;,j. \Ull,j_)) U (Wv)). For each connected componeft  of s34 lies in the
0o+ direction onZ, \ (U;U} ) and, inZ; N(U,;U;,), it lies in the position remarked
above. Moreover the speed vectorsiofon Z; never lie in thedy direction. Therefore
there exists a vertical isotopys 4 ~ s1 that is fixed onl' N (L;Up; \ Up,) and all vi
during the isotopy, and such thgt lies in the same direction as the orientationIof
except for small neighbourhoods ¢f ¢} andv; .

In each of the small neighbourhoods of the ¢}, and v; , the vector field; ro-
tates once. This corresponds to a twist ihx S and hence to a necessary signed
point of the divisor. Since the paif; ¢; appears in eaclVs, at most once, and )
is the number ofy; ’s, the necessary number of signed pointhefdivisor is at most
v(I') + 2¢("). Thus, because we already have the inequality) < ¢(I"), the number
is bounded above byc3l}.

The divisor onI" induces a divisor ofi® by an isotopy deformation frditto I'.
Hence the result is also true for , i.e. the necessary numibsigned points ol is
at most 3 [ ), which proves our assertion for link projectievithout pinched regions.

Finally we deal with the case of a link projectidn  with pindhesgions. Let
{r:} be the set of double points which represent the pinches, ein@;| be a small
neighbourhood of, for eack . Then in eaéh perform a smoothihiglwagrees
with the assigned orientation. This yields a disjoint uniorF (L; 7;) LI (U; N;) of con-
nected oriented link projections without pinched regionkere theZ; are trivial com-
ponents and thev; are connected non-trivial components. W that

(22) HT ) +#{N) = #{r) + 1

where # is the number of elements of the Set . By an isotopyrehafiion of I' , we
assume that, for eacR; A N R, consists of two parallel straight lines with the same
orientation and they are sufficiently closed. Since nonehef & andXN; have any
pinched regions, there is a vertical isotogly ~ s; for A such that the vector field
s is in the same direction as the orientation af  except for atefimumber of
small neighbourhoods. In such a small neighbourhood, tltordield s; has a twist

in H x S1. By the conclusion arrived at in the ‘no pinched region’ case eachT;
there is only one such a twist, while the number of twists oohed; is at most
3C(Nj).

Now we perform the following vertical isotopyy ~ s, for the original link projec-
tion I' with pinched regions. 11"\ (U Rx), which coincides withA \ (U Ry), the iso-
topy is completely the same ag§ ~ s; applied toA above. We remark that since
AN R, consists of two straight lines, the family ¢, [0, 3/4], is fixed on the four
points of the boundary ofA N R; and, duringsz 4 ~ s1, they isotope continuously and
in unison. In eachr, there are two cases depending on the atimm ofsg and I’
at the double point, . Let and be the two unitary vectorssofat r, such that
Optm—c =0, <0, =6+ +¢e, wheref, and 9, are the arguments af ankl
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(ii)

o

Fig. 5. Possible configuration for the divisor @y,.

respectively. Leto and 8 be the crossed curves &f iR,  such that the arguments
6. and 6z of their speed vectors af  satisfly < 03 < 6, < 6o+ 2r. Then the two
cases are

(1) a corresponds to the curve, or

(2) b corresponds to the curve.

In case (1) the vertical isotopyo ~ s1/» in R, can be defined so that the unitary
vectors do not pass through thg direction during the isotopy. In case (2) we perform
a vertical isotopy such that passes through @pelirection once during the isotopy.
The subsequent isotopyt» ~ s1 is defined to be same as that performed in small
neighbourhoods of the double points Bf  which are nofip}.

Now we count the number of twists af in H x S1. We have seen that on each
T; there is only one such a twist while the number of twists orhellg are at most
3c(N;). In eachR; , in case (1) there is no twist, while in case (Ryeahare two twists.
Therefore there are in total{#} +_; 3c(N;) + 2 twists, where7 is the number of
case (2) double points ifir;}.

If {N;} is not empty then, by (2.2), we havd#} < #{r}, and so the number
of twists is bounded above by{# }+>_, 3c(N;)+2Z < >, 3c(N;)+3#r} < 3c(I") as
required. If{N;} is empty and at least one of thg  is a case (1) double point, then
#{T;} = #{r }+1 andr < #{r}. So, in this case, the number of twists is also bounded
above by #7;} + 27 < 3#{r,} = 3c("). If {N;} is empty and every, is a case (2)
double point then #7;} = #{r,} + 1 andr = #{r;}, so the number of twists becomes
#{T;}+2r =3#{r, }+1 =3 ([ )+1. The unwanted 1 can be eliminated from this bound
as follows. First observe that in such a case there existgast lone innermost cir-
cle T;, in L;T;, and there exists only one double poifj whose neighbourhoo®,,
connectsT;, to another component aft . Since evety is a case (2) doublet,poin
'y, 1S @s shown in Fig. 5 (i). Hence the signed points of the divismresponding to
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h\f orientation

Fig. 6. A link diagram of the (2 3) torus knot and the embeddedl In the trivial
circle bundle.

the twists are +1 and-1 as shown in Fig. 5 (ii). However there is also a signed point
on the circleT;, corresponding to the point at which the speed vector is indthdi-
rection, and this sign is +1. This +1 and theél in Ry, can be cancelled by a vertical
isotopy. Thus we can eliminate the extra 1 from the upperboun Ul

RemARK 2.3. The inequalityy €) < ¢(C) in the above proof can also be shown
using a result of Andreev [7], which states that there ex#stsnique circle packing
which is dual to the above triangulation. The circle packaigorithm, used to com-
plete this method of proof, was constructed for regular lmgjections by K. Stephen-
son, and is used for drawing knots in Knotscape. See “HelpKriotscape [19].

We now present an example of the construction of an orientgdedfrom a link
diagram. LetL be the (2 3) torus knot as shown on the left sidBigf6. The link L
in the thick plane is realized in the trivial circle bundie x S* as shown on the right.

Next we assign an orientation to the regular link projectiop of L and apply
smooth rotations of the unitary vectors at each double psonthat the unitary vectors
coincide with the speed vectors &f;, . Then for each ard®ef\ {double points} we
count the relative winding number and place this number adiatn the arc (Fig. 7).

The set consisting of two points, each with the sign +1, isvésdi of the regular
knot projectionD, of the (2 3) torus knot. By attaching a pesitioop to each point
we obtain an oriented divid€ whose link(C) is the (2 3) torus knot. This final
step is shown in Fig. 8.

Before continuing the example we will briefly discuss an imaot fact concern-
ing points of a divisor which are attached to “outside” arésao oriented divide.
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£\ . .
V orientation

Fig. 7. Rotations of the unitary vectors and the relativedivig numbers.

Q- @

Fig. 8. A divisor and the corresponding oriented divide.

Derinmion 2.4, Let C be an oriented divide and I¢t;} be the set of arcs of
C \ {double points}. If we can connect the arg; and the bounda@# by a path
in H\ C, we saya; is amutside arc ofC. Otherwise it is annside arc

Lemma 2.5. Let C be an oriented divideand construct from it a new oriented
divide C’ by adding a loop to one of the outside arcs. Then the (&) is isotopic
to the link ¢(C’).

This means that we can ignore any element of a divisor whigleays on an out-
side arc of a regular link projectio®, of a link

Proof. The loop on an outside arc 6f constitutes a twist ink —(H x $1) ¢ R3
around the axis{(0, 0)} x R, and the corresponding strand ¢{C’) does not wind
around any other strand. So we can remove the twist and isdfop link to ¢(C).

O

Now we continue the example. L&l  be the oriented divide wité divisor as
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A) (B)
(© (D)

Fig. 9. An isotopic deformation of the oriented divide of tt 3) torus knot.
shown in Fig. 9 (A). By Lemma 2.5 the link of the oriented d&id@ with this divisor
is also the (2 3) torus knot. By attaching a left-handed lobtha point with the sign
+1, the figure is deformed to (B) in the figure. This is just thiemted divide derived
from the doubled curve of the divide of the,(2 3) torus knote(&ection 4 below).
Since the orientations of the loop and the outside arc drtdl the loop are oppo-
site, the loop can be passed through the outside arc. Alsddbble point of the loop
passes through the outside arc since they do not interseitieitrivial circle bundle.

This allows our next deformation from (B) to (C). By Lemma 2t&e loop on the out-
side arc of (C) can be ignored and is hence equivalent to (D).

RemarRk 2.6. Instead of the link of an oriented dividé , we can corstan-
other link by using the co-orientation ofi , that is, the set

{(x1, X2, u1, u2) € R* | (x1,x2) € C, (u1, u2) € T (y)(C), x7 + x5 +ui +u3 =1} C 3

is a link in 3, where T'(,, ,,»(C) is the set of normal vectors in the left direction
with respect to the orientation o@ . This is same as the oact&n of Legendrian
knots via fronts of generically immersed curves. In the ernhiof Legendrian knots
it is already known that any oriented knot has such a corredipg immersed circle
(see [8]).
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3. Proofs of Theorems 1.3 and 1.4

In this section we will prove Theorems 1.3 and 1.4. We firstraefihe rotation
map Ry: H x S* — H x St of the trivial circle bundleH x S* by (x, ) — (x, ¢ +6),
for # € R. Then Ry extends to a rotation mag,: R® — R3 by the embedding
UYH x §Y) c R3. If two links L and L’ in R3 satisfy R.(L) = L’ we say they
lie in mutually symmetric positions.

Now let C be an oriented divide, defined by immersed circlesheaith a cho-
sen orientation, and lef ! be the oriented divide defined by the same immersion but
with opposite orientations assigned to each component.

Proposition 3.1. Let C be an oriented divide and let—! be the oppositely ori-
ented divide ofC . Then the links(C) and #(C~1) lie in mutually symmetric posi-
tions. In particular they are isotopic.

Proof.  Since¢(C~1) = R, (4(C)), ¢(C) and ¢(C ) are isotopic and lie in mu-
tually symmetric positions. ]

Proof of Theorem 1.3. LeC be an oriented divide obtained framoriented,
connected, regular link projectioP; , of the link , with a dier such that the link
¢(C) is isotopic toL . The existence of such a divisor is guareatby Theorem 1.2.
Let P be the non-oriented half plane divide defined by the sammmdrsed circles
as the oriented divideC . Since the union of the immersed esri$ connected, the
link ¢(P) of P is a fibred link in the compactified manifols® = R® U {oo} due to
ACampo’s theorem [4], and furthermore, its monodromy is firoduct of right Dehn
twists and the number of these right Dehn twists is equal ¢ofittst Betti number of
the fibre. Then the assertion follows from these facts anghdxition 3.1. O

RemARk 3.2. The monodromy of the fibration in Theorem 1.3 can be dmsdr
using a Dynkin diagram [1], [2], [11], [12], [13]. For this ason we emphasize that
the monodromy has more explicit properties than stated entthieorem.

The oriented divide can be deformed while preserving theomotype of its link,
as shown, for example, in Fig. 9. However, the fibred linksha tink exteriorE ()
depend on the deformed oriented divides. So we can constriigitely many distinct
fibrations by deforming the oriented divide. This is the padsh Theorem 1.4.

Proof of Theorem 1.4. By the definition @f.n(L) there is an oriented divid€
obtained from a regular link projectio®; by attaching a divisuch that the link
¢(C) is isotopic toL andc D, )H B } r(L)+1 =gmin(L). Now we regard the im-
mersed circles ofC inH as the divide  with both orientationsehafter the com-
pactification $° = R® U {cc}, the genus of the fibre of the fibration i§? \ ¢(P) is
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N\
/ l

oriented divide link diagram
Fig. 10. “Over and under” rule.

(D) +d(Dr) — r(L) + 1 = gmin(L). Since 5%\ ¢(P) = §°\ (4(C) U H(C7Y) =
E(L)\ #(C1), the link L' = ¢(C~1) is a fibred link in E ¢ ) whose fibre is a genus
gmin(L) surface. Next we attach  loops on an outside arc of the wdedivideC and
denote the new oriented divide iy, . The ligkC,) of C, and the link¢(C) of C
are isotopic inR3, by Lemma 2.5, and also i3 = R*U {oo}. Hence the link exterior
$3\ ¢(C,) of the link ¢(C,) is homeomorphic taE I{ ). We regard the immersed cir-
cles of C, in H as the divideP, with both orientations. Then the genfithe fibre

of the fibration inS3\ ¢(P,) is gmin(L) +n. SinceS3\ ¢(P,) = $3\ (#(C,)Lp(C, 1)) =
E(L)\ #(C; 1), the link L! = ¢(C; 1) is a fibred link in E ¢ ) whose fibre is a genus
gmin(L) + n surface. U

4. A link diagram of an oriented divide

Let C be an oriented divide on the half plar#é and ¢¢C) be the link of C
in R3. In this section we construct a method for obtaining a linkgdam of ¢(C)
from the oriented divideC . As seen in Section 2, the li{C) is naturally embed-
ded in the trivial circle bundle? x S on H.

Now we regard the trivial circle bundle as the direct prodofcpoints in the half
plane H with the unitary vectors based at each poinHin . Wegassicoordinate to
the unitary vectors inS* which measures argument in the counterclockwise direction
For a technical reason we fix an argumégton S such that the oriented divid€
satisfies the following:

e At each double point o the arguments of the unitary tangewtors of the two
branches are neithék nor 0y + 7;

e Every point onC whose argument of the unitary tangent veddk ior 6 + 7 is
not an inflexion point ofC .

DerinimioN 4.1 (“Over and under” rule). Let b be the branches of a double
point of C and letd,, 6, € (6o, o + 27) be the arguments of their speed vectors re-
spectively. If6, < 6, we define the branch as “over” arid as “under”. Otherwise
we define the branch as “under” ahd as “over” (see Fig. 10).
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C . .
positive twist negative twist

Fig. 11. Winding rule.

Derinimion 4.2 (Winding rule). Letr :H x S* — S? be the canonical projection
and letp be a point on an inside arc 6f at which the argument efuthitary speed
vector of C isfp. Then, as shown in Fig. 11 (whedg is the half-plane),

o if the orientation ofr(qb(C)) at p is positive, replace the small segment of the arc
on which p lies by a positive twist;

o if the orientation Ofr(([)(C)) at p is negative, replace the small segment of the
arc on whichp lies by a negative twist.

Note that the orientation of the circle of the trivial cirdeindle is in the direc-
tion from the “over” position to the “under” position of thdame of the regular link
projection by the definition of the embedding of the thickn@anto the trivial circle
bundle.

Theorem 4.3. Let C be an oriented divide. Then a link diagram &fC) is ob-
tained by modifyingC according to thever and undér rule and the winding rule.

Proof. Letp be a point on an awg @ \ {double points} at which the argu-
ment of the unitary speed vector 6f ds. We deform the are; smoothly as shown
in Fig. 12.

It will be noted that the deformed arc does not have a point kithvthe argu-
ment of the speed vector & except for a single point on the small left or right loop.
This loop corresponds to a positive or negative twist arotimedcircle of the trivial cir-
cle bundle. LetC’ be the deformed oriented divide with a divisor consistingtradse
small loops. The argument of the speed vector at all pointshenoriented divideC’
is contained in the intervabg + R, 6y + 2r — R] for some 0< R < 7w except for small
neighborhoods of the loops. Now we deform the arguments efstfeed vectors corre-
sponding to the linkp(C’) by the map® : §o+R, Op+21 — R] — [o+7 —¢, o+ m+¢],
defined by® :0 — (¢/(m — R)) (0 — (6o + 7)) + (6o +7), While preserving the twists of
the loops. Then we obtain a deformed link in the thick planéctvihas several loops.

By temporarily ignoring the loops, it is clear that the “ovamd under” rule cor-
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p {f left loop
p \L
to

S right loop

Fig. 12. Deformations of an arc whose speed vectors pashingigh the argument
Bo.

half plane divide oriented divide
Fig. 13. Doubling of a divide.

rectly decodes the crossing information at each doubletmdithe projection. The re-
quired link diagram materializes by noting that, since eadhthe small loops of
the deformed oriented divide represents a twist around itete cof the trivial circle
bundle, the information represented by these loops is ctyrelecoded by the wind-
ing rule. Ll

For any link ¢(P) of a half plane divideP we can obtain an oriented divide
whose link¢(C) is isotopic to¢(P) by using the “doubling” method shown in Fig. 13.

From now on we fix the orientation of the oriented divide inedidy doubling
a half plane divideP by always following the left hand side b&tdoubled curve.
We assume that for any double point of the divide the argusmehthe tangents to



700 W. GBSON AND M. ISHIKAWA
s

o

Fig. 14. “Over and under” rule for divides.

Fig. 15. A link diagram constructed from an oriented divid®presentation of the
(2,3) torus knot.

the two branches aré, + 7/4 andf, + (3/4)r for a fixed argumenty in S*.

DerinimioN 4.4 (“Over and under” rule for divides). For each “#” crogsiof the
oriented divideC obtained by doubling a half plane divile , dedine the over and
under crossings of the strands as shown in Fig. 14.

Since the “over and under” rule for divides is equivalent twrf applications
of the “over and under” rule for oriented divides, we can lgadraw a link diagram
of the link of a divideP using Theorem 4.3:

Corollary 4.5. Let P be a half plane divide and lef  be the oriented divide
obtained by doubling? . Then a link diagram of the linkP) is constructed by mod-
ifying C by the “over and under” rule for divides and the windimule.

Now we show a few examples of link diagrams of the links of otéel and non-
oriented divides. LeC be the oriented divide shown on theitefrig. 15. The “over
and under” rule applied t&¢ produces the knot shown on thet.rijote that the
divide C does not contain an arc which requires applicationth® winding rule.
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o{
B

!

fo

Fig. 16. Two divide representations of thei3fknot and their link diagrams.

The result is clearly the (2 3) torus knot. We have already gbes fact in Section 2
(cf. Fig. 9 (D))

The knot 1Qs9 in the knot table in [18] has two different divide represdiotas,
which were found by ACampo. Link diagrams of the divides aseshown in Fig. 16.
The two links are isotopic, but the divides are distinct, tleey are not transversely
isotopic as divides. Recently all divides up to 4 crossingsehbeen listed by the au-
thors in [10]. In this list only two divide knots were found ttave more than one
divide representation (up to divide equivalence).

To conclude the present paper we consider the class of doatled theslalom
curves of rooted planar treed\ rooted planar tree is an embedded tige in the half
plane H such thatB NdH consists of one point, which is a terminal vertex®f . For
a rooted planar tre® there exists a divilg C H with the following properties:

e The double points ofPg lie in the interior of the edges Bf , suaht tthe local
branches are transversal to the edgeBof

e Each connected component bounded Ry contains exactly atexwe B.

e The only intersection points oPg  witlB are the double pointsPgf
The original slalom curve was defined not @h but on the unit disk (see [5]). The
link ¢(Pg) of Pg is a knot becaus®y  consists of just one immersed interval

Theorem 4.6. Let Py be a slalom curve of a rooted planar tré& . By an iso-
topic deformation ofB  we assume that the trBe  grows in thetigesdirection of
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|

o
Fig. 17. A doubled curve of a slalom divide.

the x; coordinate of H . Then we can obtain a link diagram of the knotPgfby ap-
plying only the“over and undér rule for divides to the oriented divide obtained by
doubling Pj .

Proof. We assume the fixed argumépton S* is pointing down, i.e. in the neg-
ative direction of thex, coordinate of H . Then we can deform the slalom cuRge
into a good position, as shown in Fig. 17, so that all arcs Wwhiould be modi-
fied by the winding rule are outside arcs, and hence their wgsdcan be ignored
by Lemma 2.5. O
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