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ABSTRACT

Linnorm is a novel normalization and transformation

method for the analysis of single cell RNA sequenc-

ing (scRNA-seq) data. Linnorm is developed to re-

move technical noises and simultaneously preserve

biological variations in scRNA-seq data, such that

existing statistical methods can be improved. Us-

ing real scRNA-seq data, we compared Linnorm with

existing normalization methods, including NODES,

SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm

shows advantages in speed, technical noise removal

and preservation of cell heterogeneity, which can im-

prove existing methods in the discovery of novel

subtypes, pseudo-temporal ordering of cells, cluster-

ing analysis, etc. Linnorm also performs better than

existing DEG analysis methods, including BASiCS,

NODES, SAMstrt, Seurat and DESeq2, in false posi-

tive rate control and accuracy.

INTRODUCTION

RNA sequencing (RNA-seq) (1) is a popular method for
quantifying expression levels. RNA-seq produces datasets
in the form of reads of RNA fragments generated by high-
throughput sequencing technologies. For humans, each
RNA-seq sample can often consist of more than 20 mil-
lion reads. Gene expression levels can be deduced from
these datasets by counting the number of reads originating
from each gene. Single cell RNA-seq (scRNA-seq) technol-
ogy (2,3) applies RNA-seq on individual cells, allowing the
transcriptome of a given cell to be investigated. Since the
amount of RNA from a single cell is very limited, scRNA-
seq relies heavily on ampli�cation. Such heavy RNA ampli-

�cation can cause random dropout events, which induce a
large number of zero counts in the expressionmatrix. There-
fore, more specialized normalization methods are needed
for scRNA-seq data analysis.
Normalization is an important procedure in statistical

analysis. Raw data contain both biological variations and
technical noises. Ideally, normalization should eliminate all
technical noises from the dataset, while ensuring that all
biological variations are detected in the downstream anal-
yses. Hence, an ideal normalization method would allow
downstream analyses to achieve �nely controlled false pos-
itive rates (FPRs) and false negative rates (FNRs), and si-
multaneously attain high accuracy. Therefore, existing soft-
ware packages such as SAMstrt (4), scran (5), edgeR (6),
DESeq2 (7), and limma (8) are paired with normalization
methods such as TMM (9), DESeq-sc (10) and voom (11).
Current scRNA-seq analysis methods, such as SAMstrt,
scran and SCnorm (12), have used the normalization step
similar to existing RNA-seq analysis methods. They per-
form normalization by utilizing the scaling factor, which is
amultiplier for each cell’s expression. Seurat (13) utilizes the
conventional relative expression normalization, but it has a
data imputation step to replace zeroes in the dataset. BA-
SiCS (14) utilizes a post hoc correction strategy instead of
normalization. While most existing methods are paramet-
ric, NODES (BioRxiv: https://doi.org/10.1101/049734) has
a non-parametric approach. It converts the expression data
into psedo-counts, with goals to eliminate variance across
the dataset, such that the stable genes would show zero
variance. This removes heterogeneity in the dataset and de-
creases false positive rates in downstream DEG analysis.
In addition to normalization, data transformation is also

needed in statistical analysis. Some downstream analysis
methods, such as limma and principal component anal-
ysis, are based on the linear model or assume normality
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in the dataset. Other methods, such as scran and Seurat,
utilize the logarithmic transformation, which is often as-
sumed to transform a count dataset toward homoscedas-
ticity and normality. However, this assumption may not be
well satis�ed in most cases. To solve this issue, RNA-seq
analysis methods were developed to model or transform
the datasets, such that these assumptions can be ful�lled.
For example, voom employs precision weights to model
the mean–variance relationship for limma, and the DE-
Seq2 package includes a variance-stabilizing transforma-
tion method (DESeq-vst) that transforms bulk RNA-seq
data toward homoscedasticity. However, no dedicated data
transformation strategy has been developed for scRNA-seq
data.
We present Linnorm, a linear model and normality based

normalizing transformation method for more precise sta-
tistical analysis of scRNA-seq data. By utilizing a critically
selected list of homogenously expressed genes as reference,
Linnorm calculates a set of parameters for normalization.
Linnorm’s normalization algorithm is similar to the scal-
ing factor (9,10). With the scaling factor, normalization is
done with raw expression data, where a factor can be in-
terpreted as a linear model that goes through the origin,
which is the point (0, 0). In comparison, Linnorm performs
a prior logarithmic transformation on the expression data,
and the dataset is �tted to a linear model that does not
need to go through the origin. This allows expression levels
to be adjusted both linearly and exponentially. The addi-
tional exponential scaling in Linnorm allows a better �t of
each cell’s expression to the expression mean than the scal-
ing factor, which provides a stronger noise removal effect.
Lastly, Linnorm’s transformation method focuses on em-
ploying the linear model on mean, SD and skewness, which
thrives to ensure homoscedasticity and normality in the ho-
mogenously expressed genes.
We compared Linnorm with existing scRNA-seq

normalization and transformation methods, including
NODES(BioRxiv: https://doi.org/10.1101/049734), SC-
norm (12), scran (5), Seurat (13) and DESeq-sc (10).
We further tested the effects of Linnorm’s normalizing
transformation on the quality of DEG analysis; and
compared it with existing methods that provide P value
output, including BASiCS (14), SAMstrt (4), NODES
and Seurat. Additionally, we compared Linnorm with two
popular RNA-seq analysis methods, DESeq2 and TMM.
Our results show that Linnorm has key advantages in both
technical noise removal and preservation of cell-to-cell
differences. This improves performances in multiple distinct
statistical analyses in our study. Particularly, Linnorm’s
good preservation of cell heterogeneity suggests that it
can improve common scRNA-seq analyses such as the
discovery of novel cell subpopulation, pseudo-temporal
ordering of cells (15), clustering analysis, etc.

MATERIALS AND METHODS

Linnorm algorithm

Overview. Linnorm assumes that a set of genes are homo-
geneously (stably) expressed across different cells/samples.
The Linnorm algorithm calculates normalization and

transformation parameters by utilizing these stably ex-
pressed genes. After normalization and transformation,
these genes will have: (i) stable expression values and (ii) ap-
proach homoscedasticity and normality. Hence, Linnorm’s
�rst step is to identify the stable genes by �ltering. After cal-
culating the parameters with the stable genes, the parame-
ters are applied to the entire dataset. All zeroes in each gene
are ignored in the following steps.

Initial normalization and transformation. To accurately
identify a set of stable genes, an initial normalization and
transformation step is applied. In this step, Linnorm utilizes
conventional methods to prepare the dataset for modeling.
First, we normalize the dataset by converting it into a

relative scale. Let Ei j be the expression level of the feature
(gene, etc.) i and library (sample) j; let m be the total num-
ber of features and n be the total number of samples. We
convert each sample into the relative scale by:

Ri j =
Ei j

∑m
i=1 Ei j

(1 ≤ i ≤ m, 1 ≤ j ≤ n) (1)

Filtering. While RNA-seq data have biological replicates,
scRNA-seq dataset do not. Hence, we �lter the dataset to
ensure that the genes being used for modeling are largely
homogeneous. Linnorm’s �ltering algorithm has two steps:
(i) low count genes with high amount of zero are �ltered
and (ii) highly variable genes with high amount of techni-
cal noise are �ltered based on standard deviation (SD) and
skewness. We transform the dataset with logarithm in this
step.

Filtering low count genes with high technical noise. Genes
with high amount of zero counts are �ltered using the min-
imum non-zero cell portion (MZP) threshold of z, and 0 <

z ≤ 1, where only geneswith at least z portion of the cells be-
ing non-zero would be retained. By default, z is set to 0.75,
which ensures at least three non-zero cells even when the
sample size is down to 3 or 4, because skewness requires at
least three non-zero values to be calculated.
In a dataset that contain very low level of technical noise,

the mean versus SD plot will show a negative slope (7,11).
However, since the lowest expressing genes would contain
multiple raw counts of near 1, they would also have low SD.
Therefore, these genes will connect the origin (0, 0) with the
highest point in the negatively sloped mean versus SD plot,
which forms a hill-shaped plot (Figure 1). To identify the
threshold for �ltering low count genes, Linnorm gradually
increases the �ltering threshold until one third of the lowest
expressing genes show a negative slope.

Filtering highly variable genes based on SD and Skewness.
Linnorm then �lters highly variable genes based on their
SD and skewness. To identify highly variable genes, a lo-
cally weighted scatterplot smoothing (LOWESS) curve is
�tted onto the mean versus SD plot. The log-fold change
of each gene’s SD from its expected value is calculated from
the LOWESS results. Since the magnitude of fold change of
each gene’s SD may not be distributed evenly across differ-
ent means, the log-fold change of each gene’s SD is scaled
based on the residuals from a linear regression line between
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Figure 1. Linnorm’s selection of homogeneously expressed genes from scRNA-seq dataset. Mean versus SD plots after log-plus-one CPM transformation,
where zeroes are ignored. (A) Replicates of the SEQC dataset’s Sample A, where genes with any zero counts are �ltered. It is a model of a low noise dataset.
(B) Yan dataset human embryonic stem cell data, where all genes are retained and Linnorm’s selected stable genes are highlighted in red. Figure B shows
that Linnorm’s �ltering procedure is capable of selecting a set of low noise stable genes that show a negative slope similar to the low noise model in A.

the mean and the log-fold changes. This scaling method
is similar to Seurat. Seurat scaled SD by assigning each
features into bins based on their mean, whereas Linnorm
utilized linear regression. Compared to Seurat, Linnorm’s
scalingmethod is continuous across themean. After remov-
ing outliers using the boxplot function in R, genes with sig-
ni�cant SD are identi�ed from the population of log-fold
changes by using a two-sided Student’s t-test.

Next, Linnorm identi�es genes with signi�cant skewness
in the dataset. A LOWESS curve is �tted betweenmean and
skewness. The residual skewness of each gene is calculated.
After removing outlying residuals using the boxplot func-
tion inR, genes with signi�cant skewness are identi�ed from
the residuals by using a two-sided Student’s t-test.
Finally, P values of the SD and skewness are combined

by using the Empirical Brown’s method (16). Genes with
signi�cantly low P values are �ltered. If spike-in genes are
provided, the mean and SD used in the above Student’s t-
tests will be calculated using the spike-in genes instead of
the whole population.

Calculating the data transformation parameter, λ. Lin-
norm transforms the dataset using a modi�ed log-plus-one
transformation. Let Ti j be the transformed dataset and λ be
a transformation parameter.

Ti j = ln(λRi j + 1) (2)

To �nd λ that best transforms the dataset, we consider the
homoscedasticity and normality. To measure the deviation
of Ti j from the homoscedasticity and normality assump-
tions, we calculate the deviation coef�cient F(λ)

F(λ) = V(λ)2 + S(λ)2

λ = argmin(V(λ)2 + S(λ)2)
(3)

Here, we use V(λ) to represent the homoscedasticity and
S(λ) to represent the skewness of the dataset. V(λ) and S(λ)
are combined using theEuclidian distance, where the square
root is omitted because it is a monotonic function.

Calculation of V(λ). V(λ) represents the deviation of Ti j
from homoscedasticity. Let Mi be the mean of each feature
(or gene expression) in Ti j and Di be the SD of each feature
in Ti j . Homoscedasticity suggests that Di and Mi should
have a relationship for all Mi where c is a constant, denoted
by the formula:

D
optimal
i = c (4)

Given λ and Ri j , we �nd the relationship between Di and
Mi in Ti j by linear regression and obtain the formula:

D
expected
i = adMi + bd (5)

From Equation (5), we can see that Equation (4) is satis�ed
when ad = 0. Since V(λ) needs to be combined with S(λ)
in a later step, we normalize the data to a logarithmic form
and add 1 to ensure they are in a similar scale.

V(λ) = log(|ad | + 1) + 1 (6)

Calculation of S(λ). A normally distributed dataset has
zero skewness, thus S(λ) represents the deviation of Ti j from
zero skewness. Let si be the Pearson’s moment coef�cient of
skewness of the feature i in Ti j . Then, optimally, si and Mi

should have a relationship denoted by the equation:

s
optimal
i = 0 (7)

To �nd the relationship between mean Mi and skewness si
given λ in Ti j , we perform a linear regression and obtain the
formula:

s
expected
i = asM+ bs (8)

Next, we measure the deviation of Equation (8) from Equa-
tion (7) by performing an integral on the absolute value of
Equation (8) to obtain:

Sraw(λ) =

∫ Mm

M1

|asM+ bs |dM

/

(Mm − M1), (9)
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where Mm and M1 are the maximum and minimum mean,
respectively. Similar to V(λ), we normalize it for combina-
tion in F(λ) , such that S(λ) = log(Sraw(λ) + 1) + 1

Optimization of λ. We �nd the optimized normalization
parameter λoptimized for which F(λ) from Equation (3) is
minimized.
To de�ne an initial range of λ, we make an observation

on ad from Equation (6). Let’s assume that the input data is
in the raw count format. Let u be the maximum total count
of the libraries in Ei j . We know that

ad

{

> 0,
< 0,

i f
i f

λ = 1
λ = u

(10)

from previous studies (7,11). Since a
optimal
d = 0, we obtain

Equation (11) by combining it with Equation (10).

1 < λ < u (11)

If the input Ei j is in raw count units, then the upper
bound of λ should be the total count of the largest sample.
Since some machine learning-based expression quanti�ca-
tion software tools do not output raw counts, we estimate λ

by lettingmmin be the mean of the non-zero values of 5% of
the genes with the smallest expression mean, and set

u =
1

mmin
(12)

In case there is more than one local minimum, Linnorm
searches for an optimal λ in this range using an iterated lo-
cal search algorithm, rather than using an expectationmaxi-
mization algorithm. Nevertheless, the user-inputted dataset
may have been �ltered or modi�ed, and we cannot guar-
antee that u must be larger than the original maximum to-
tal count. In this case, Linnorm will enlarge u and continue
searching for a global minimum of λ, if it �nds λ ≈ u. Fi-
nally, we show that a global minimum exists in the Supple-
mentary methods section and Supplementary Figure S1.

Normalization. First, G i j = ln(λRi j ) is obtained, which
contains all genes from the dataset. Then, it is �ltered with
the above method for the following steps. Each gene’s mean
expression value across all cell is calculated. The expres-
sion mean and each sample’s expression are �tted to lin-
ear models, such that n models with the equation yi =
m jxi j + c j are calculated, where y represents the expression
means and x represents a sample’s expression values. Each
of the model is shifted toward the identity line based on
the normalization strength coef�cient, µ, where 0 ≤ µ ≤
1. m and c in the models can be updated with the equa-
tions mupdated = µ(m− 1) + 1 and cupdated = c × µ. When
µ is zero, Linnorm’s normalization would be equivalent
to the conventional relative expression normalization. Al-
ternatively, the µ = 1 would signal the software to max-
imize its technical noise removal effects. By default, µ is
set to the middle point of 0.5, which provides a moder-
ate level of normalization strength for a general dataset.
However, we encourage users to optimize this parameter
using Linnorm’s clustering visualization functions, because
each dataset contains a different amount of noise that needs
to be removed accurately. Next, the parameters m and c

will be applied to all genes in the dataset; and we obtain

Bi j = exp(m
updated
j G i j + c

updated
j ), which completes the nor-

malization step and the logarithmic transformation is re-
versed. Finally, to complete Linnorm’s normalizing trans-
formation, we obtain Ti j = ln(Bi j + 1).
In the �rst step, G i j = ln(λRi j ), λ from the transforma-

tion section is required. In the case where only data normal-
ization, but not transformation, is needed. The calculation
of λ from the transformation step would be skipped. If the
user requests CPM output, λ would be replaced by a mil-
lion. If output is requested to be in the estimated raw count
unit, λ would be replaced by the median of total counts.

Even though Linnorm calculates the normalization and
transformation parameters with the stable genes only, these
parameters are applied to all genes from the original input.
Therefore, by default, Linnorm’s output expression matrix
has the same size as the input expression matrix.

Datasets

scRNA-seq data. The �ve scRNA-seq datasets used in this
study have distinct characteristics. They are summarized in
Supplementary Table S1.

Yan dataset. This is a human preimplantation embryo and
embryonic stem cell dataset. The average total read count
in the expression matrix is 25,228,939 reads. Cell types
with more than 10 samples, labeled 4-cell, 8-cell, Moru-
lae, Late blastocyst and hESC were downloaded fromGene
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/
geo) under accession no. GSE36552 (17).

Deng dataset. This is a mouse preimplantation embryo
and embryonic stem cell dataset. The average total read
count in the expression matrix is 15,540,102 reads. Cell
types with more than 10 samples, labeled 16cell, 4cell,
8cell, C57twocell, early2cell, earlyblast, late2cell, lateblast,
mid2cell and midblast were downloaded from GEO under
accession no. GSE45719 (18).

Islam dataset. This dataset consists of 92 samples of
scRNA-seq raw count data, 48 of which are embryonic stem
cells and 44 are embryonic �broblasts. The negative controls
were not used in our study. The average total read count in
the expression matrix is 578,467.6 reads. Raw count expres-
sionmatrix was downloaded fromGEOunder accession no.
GSE29087 (2).

Patel dataset. This is a glioblastoma dataset from tumors
from �ve individual patients with IDs MGH26, MGH28,
MGH29, MGH30 and MGH31. The average total read
count in the expression matrix is 1,137,872 reads. Samples
labeled MGH26, MGH26-2, MGH28, MGH29, MGH30
and MGH31 were downloaded from GEO under accession
no. GSE57872 (19).

Klein dataset. This dataset was generated by the droplet
barcoding method with an average total read count of
20,033.40 reads in the expression matrix. Four sets of sin-
gle cell RNA-seq data, a 0 day mouse embryonic stem (ES)
cell sample (File: GSM1599494 ES d0 main.csv with 933

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
5
/2

2
/e

1
7
9
/4

1
6
0
4
0
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://www.ncbi.nlm.nih.gov/geo


PAGE 5 OF 12 Nucleic Acids Research, 2017, Vol. 45, No. 22 e179

samples) and three samples following LIF withdrawal for
2, 4 and 7 days (Files: GSM1599497 ES d2 LIFminus.csv
with 303 samples, GSM1599498 ES d4 LIFminus.csv with
683 samples, GSM1599499 ES d7 LIFminus.csv with 798
samples), were downloaded from GEO under accession no.
GSE65525 (20).

RNA-seq data.

SEQCdataset. The SEQCdataset is a set of RNA-seq raw
count data paired with a Taqman dataset, which serves as
the gold standard for the gene expression measurements. Its
RNA-seq data contains Samples A, B, C and D. The Taq-
man data contain a subset of 955 genes and 4 replicates for
each sample. This dataset was obtained through the biocon-
ductor seqc package (21).

Expression quanti�cation for scRNA-seq data

Raw reads of Yan, Deng and Patel datasets were down-
loaded from GEO. They were �rst trimmed using Trimmo-
matics (22) with default parameters, except Patel dataset
where MINLEN was set to 20 because of its shorter read
lengths. They were quanti�ed by Kallisto (23) using En-
sembl (24) hg38 or mm10 assembly using default param-
eters, except Patel dataset, where the kmer length was set to
19 because of its shorter reads. Estimated raw counts and
TPM of Yan, Deng and Patel datasets were obtained from
Kallisto.

Hardware and software used in this study

All of the analyses in this paper were run on a comput-
ing workstation with 32 Intel(R) Xeon(R) CPU E5–2650
v2 processors and 128 GB of RAM.
Supplementary Table S2 provides the versions of each

software tool used in this study.

Methods used in this study

To investigate the log2FC of housekeeping genes, the Lin-
norm.Norm function from the Linnorm package was used,
and the transformation step is skipped. For the scran soft-
ware, we cancelled its default log plus one transformation.
All tools were run with default parameters.
For t-SNE K-means clustering, Linnorm, scran, SC-

norm, TMM, DESeq-sc and DESeq-vst were used with de-
fault parameters. The DESeq-sc parameters are described
in Brennecke et al. (10); we call it DESeq-sc because this
method from the DESeq package was utilized for single cell
datasets in Brennecke et al.ForDESeq-vst, we used the vari-
anceStabilizingTransformation function from the DESeq2
package. Seurat was run with min.genes parameter set to 1
to ensure that it will not �lter any cells (for fair compari-
son with the other methods). Similarly, for fair comparison,
NODES’s pQ function is run with frac=Inf and throw sd=0
to prevent it from removing cells and genes. NODES, SC-
norm, TMM andDESeq-sc were transformed with log plus
one.
For the DEG analyses, Linnorm, SAMstrt, edgeR, DE-

Seq2 and voom were run with default parameters. Both

voom and Linnorm utilized limma. For fair comparison,
Seurat was runwithmin.genes argument set to 1 in theSetup
function and thresh.use set to 0 in theFindMarkers function,
such that all genes were assigned P values for the evaluation
and no samples were removed. Similarly, for fair compari-
son, NODES is run with frac=Inf in its normalization func-
tion, pQ, to prevent it from removing samples. BASiCS was
run with the BASiCS MCMC function’s N, Thin and Burn
parameters set to 1000, 10 and 500, respectively.
TMM, edgeR, DESeq2, DESeq-sc, DESeq-vst, SAM-

strt, BASiCS, scran, SCnorm and voom were run with raw
counts. Linnorm, NODES and Seurat were run with raw
count with the Islam and Klein datasets, but TPM other-
wise.

FPR/FNR in response to zero counts

We tested each method’s FPR and FNR under the null with
DEG analyses. We performed this test using Islam’s embry-
onic stem cell dataset, Yan’s hESC dataset, Deng’s midblast
dataset and Patel’s MGH26 dataset. DEG analyses were
performed by randomly choosing sample sets from the pool
of cells with multiple repetitions. Because the cells were se-
lected randomly, no true DEG would be expected. There-
fore, by de�nition, P value should equal to the proportion
of the genes in the dataset in the following tests. Lastly, we
repeated the previous steps multiple times to ensure reliabil-
ity of our results. The sample set size of 10 was tested 100
times for each dataset.

Evaluation of DEG analysis methods with SEQC datasets

In this test, we performed DEG analyses on Sample A ver-
sus B, A versus C, A versus D, B versus C, B versus D and
C versus D. If a gene’s Taqman expression’s log2FC was
higher than 1 or lower than –1, then it was considered to
be a true DEG in the ROC curve. Other log2FC are also
tested. A sample set size of 10 was tested 20 times by ran-
domly choosing sample sets without replacement, for a total
of 120 DEG tests.

RESULTS

Linnorm selects stably expressed genes to substitute for spike-
in genes

Existing scRNA-seq normalization tools often rely on
spike-in genes. However, their qualities are dif�cult to con-
trol (25,26). Therefore, Linnorm utilizes a novel method to
select homogeneously expressed genes for modeling. Fig-
ure 1A is a normal RNA-seq dataset where all samples are
replicates and genes that contain any zero counts are �l-
tered. Since RNA-seq dataset have a higher accuracy than
scRNA-seq data (27) and they have true replicates as op-
posed to samples of unique cells, we use this dataset as a
model of a low noise dataset. Figure 1B highlights the sta-
ble genes selected by Linnorm in the Yan dataset. In Figure
1B, there is a group of lowly expressing genes that connect
the origin to the highest point in the plot, forming a hill
shaped plot. It is because genes with multiple cells with the
raw count of near 1 would show lower SDs. These lowly
expressed genes are promptly �ltered by Linnorm; and the
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genes that are retained in the dataset (genes in red color)
show a negative slope that is similar to Figure 1A and pre-
vious studies (Figure 1B) (7,11). As shown in the Figure,
Linnorm’s algorithm is capable of selecting stable genes that
show a similar negative slope in the mean versus SD plot as
the low noise model.

Linnorm transforms the stably expressed genes toward ho-
moscedasticity and normality

Homoscedasticity and normality are often assumed upon
logarithmic transformation of a count dataset. Existing
methods, such as scran and Seurat, utilize the log-plus-
one transformation conventionally to transform scRNA-
seq data. Nevertheless, homoscedasticity and normality can
be better achieved with Linnorm. Figure 2 compares the
homoscedasticity and normality assumptions between the
log-plus-one CPM transformation and Linnorm’s transfor-
mation, using the Klein dataset. Log-plus-one CPM in Fig-
ure 2A shows apparent heteroscedasticity with the stable
genes and a negative slope similar to Figure 1. While this
slope is naturally occurring (7,11) and is utilized by Lin-
norm to �lter low count genes, it violates the homoscedas-
ticity assumption. Hence, similar to DESeq-vst, the goal
of Linnorm’s transformation step is to minimize this slope.
After Linnorm transformation, homoscedasticity is better
achieved, where the stable genes have attained homoge-
neous SDs across the mean (Figure 2B).

Next, the normality assumption is investigated by using
skewness (Figures 2C and D). Figure 2C shows that all sta-
ble genes are negatively skewed with the log-plus-one CPM
transformation. Linnorm’s improvement in normality over
log-plus-one CPM is observed in Figure 2D, where the sta-
ble genes are now relatively closer to the x-axis. In Figures
2C and D, lowly expressing genes are also shown to have in-
�ated skewness. This is because they often contain multiple
counts of near 1, which can skew the distribution. Hence,
Linnorm’s algorithm is only focused on ensuring normal-
ity and homoscedasticity in the suf�ciently and stably ex-
pressed genes.

Linnorm accurately removes technical variations from house-
keeping genes

Housekeeping genes are known stable genes. However, vari-
ations can be observed in housekeeping genes for tech-
nical reasons. Previous studies noted that the upregula-
tion of the MYC gene can increase cell size and the total
amount of RNA, which can cause a global shift of expres-
sion levels when relative expression estimates are utilized
(25,26,28,29). We examine this effect by utilizing the Yan
dataset’s human embryonic stem cell (hESC) samples. Fig-
ure 3A shows the expression levels of the MYC gene across
the 32 hESCs, which shows hundreds of fold of expres-
sion differences between the lowest and the highest express-
ing cells. To examine the performance of the normalization
methods, we obtain hESC samples with the lowest and high-
est MYC expression levels, respectively. We examined the
log2 fold change (log2FC) of the housekeeping genes (30)
between the two groups after normalization. Since house-
keeping genes are known stable genes, their log2FC should

be close to zero. Figure 3B shows the absolute log2FC of
the 258 housekeeping genes after normalization, where each
dot is the log2FC of a gene. Linnorm, NODES, SCnorm,
scran, DESeq-sc and TMM’s mean absolute log2FC across
the sample set sizes were 0.60, 0.36, 0.80, 0.82, 0.93 and 0.88,
respectively. Linnorm’s lower average log2FC than most of
the othermethods (exceptNODES) suggests that it has nor-
malized a larger amount of variations from the housekeep-
ing genes.

Linnorm preserves cell heterogeneity

The previous section revealed that Linnorm would elimi-
nate a larger amount of technical variations in the house-
keeping genes than most of the other existing methods,
which raises a concern of whether Linnorm could pre-
serve cell heterogeneity in the dataset. Next, to investigate
whether Linnorm’s normalizing transformation preserves
cell-to-cell differences in the data, we simulated hidden cell
subpopulation analyses with the �ve scRNA-seq datasets.
We performed t-distributed stochastic neighbor embedding
(t-SNE) dimensionality reduction with K-means cluster-
ing, where cell type information were blind to each nor-
malization method. Then, we investigated clustering pu-
rity with the known cell type information (Supplemen-
tary Figure S2), where the clustering purity of 1 indicates
that all cells are correctly clustered. In this section, Lin-
norm’s normalization and transformation is tested against
the other normalization and transformation methods, in-
cluding NODES, SCnorm, scran, Seurat, TMM, DESeq-sc
and DESeq-vst.
Figure 4 shows Linnorm’s clustering purities plotted

against the clustering purities of the other methods in �ve
independent datasets. Linnorm outperforms other methods
in terms of clustering purity, with most of its data points
located on the upper-left side of the black diagonal line.
Linnorm’s average purity, with or without normalization,
is also higher than the other methods (Supplementary Fig-
ure S3 and Supplementary Table S3). One-sided Wilcoxon
signed rank test is utilized to test whether Linnorm’s clus-
tering purities are greater than the other methods. Against
NODES, SCnorm, scran, Seurat, TMM, DESeq-sc and
DESeq-vst, theP values are 4e-04, 4.7e-05, 4.5e-05, 1.2e-02,
2.8e-03, 2.7e-04 and 4.4e-04, respectively. Hence, Linnorm’s
clustering purity is signi�cantly higher than all other meth-
ods. Linnorm shows good preservation of cell heterogeneity
in scRNA-seq data, which implies that it can improve other
similar analyses, such as the pseudo-temporal ordering of
cells.

Computational speed

Computational speed is an important consideration in the
development and implementation of Linnorm’s algorithm,
because scRNA-seq data can have more than hundreds of
samples. Figure 5 summaries the computational time of dif-
ferent methods utilizing the Yan dataset. The speed of nor-
malization, transformation and DEG analysis methods are
tested separately. To be classi�ed as a dedicated normaliza-
tion or a dedicated transformation method, a method must
include some algorithm that is more complicated than a
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Figure 2. Comparing the homoscedasticity and normality assumptions between the conventional log-plus-one CPM transformation and Linnorm’s trans-
formation. The Klein dataset is utilized. (A, B)Mean versus SD plots for the investigation of homoscedasticity, where SD should be stable across the mean.
(C, D) Mean versus skewness plots for the examination of normality, where the normal distribution has the skewness of 0. All zeroes are ignored in this
�gure.

Figure 3. Investigating technical variation removal with log2FC of housekeeping genes. Technical variations are induced by differentiatingMYC expression
levels, where it is known to induce a global shift of expression. (A) CPM expression level of the MYC gene in the Yan dataset’s hESC. (B) Average log2FC
of the housekeeping genes between the samples with the lowest MYC expressions and the samples with the highest MYC expressions. Sample set size
of three indicates a three samples versus three samples comparison. There is a total of 258 housekeeping genes. A well performing method should have
housekeeping genes’ log2FC closer to zero.
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Figure 4. Simulated hidden cell subpopulation analysis using t-SNE K-
means clustering. Plot of Linnorm’s clustering purity versus the other
methods’ purity. Purity of 1 indicates that all cells with the same cell type
are correctly clustered together. A point on the left side of the black identity
line would indicate Linnorm’s improved performance over one of the exist-
ingmethods in one of the analyses. The othermethods and the �ve datasets
are highlighted in the legend for references. Each dataset was tested with
the number of principal components from 2 to 6, giving a total of 25 tests.

CPM/TPM normalization or a simple log or log-plus-one
transformation.
For normalization at the sample size of 110, Linnorm

took 1.98 s on average and was 6.5, 97, 2.0, 1.1 and 75 times
faster than NODES, SCnorm, scran, DESeq-sc and TMM,
respectively. For data transformation at the sample size of
110, Linnorm took 7.7 s on average and was 3.2 and 65
times faster than Seurat and DESeq-vst, respectively. For
DEG analysis at the sample set size of 55, Linnorm took
11.6 s and was 129, 1.4, 46, 217, 242, 39 and 1.1 times faster
than BASiCS, NODES, SAMstrt, Seurat, DESeq2, edgeR
and voom, respectively.
Linnorm is more than a hundred percent faster than the

tested methods at a larger sample size, because Linnorm is
implemented with a time complexity of O(n log n); and its
extensive usage of the linear model, mean, SD and skewness
can be simultaneously computed in one pass of the expres-
sion matrix under a single loop in C++.

Linnorm controls FPR/FNR well in response to zero counts

In the absence of true differential expression,P value equals
to the proportion of genes in the dataset. In other words,
5% of the genes would have P values of less than 0.05 un-
der the null. This concept is often used to examine FPR
in DEG analysis (11,31). (BioRxiv: https://doi.org/10.1101/
018739) To utilize this concept to examine each method’s
FPR across varying amounts of non-zero cells, we utilize
the ratio of the number of genes with P value less than 0.05
and the number of expected genes given the proportion. We
took the logarithm of this ratio, abbreviated as Log Signif-
icant to Expected Ratio (LogSTER). By de�nition, a Log-

STER close to zero indicates �ne control of FPR and FNR.
Since scRNA-seq data contain an abundance of zeroes, we
inspect each method’s FPR and FNR in response to zero
counts. We plot LogSTER against the minimum non-zero
cell portion (MZP) threshold in Figure 6. TheMZP thresh-
old of 0.2 means that genes without at least 20% of the cells
being non-zero would be �ltered.
Linnorm shows LogSTERs that are close to zero above

the MZP threshold of 0.2, indicating �ne control of both
FPR and FNR (Figure 6). At the MZP threshold of 0.5,
Linnorm, BASiCS, NODES, SAMstrt and Seurat have
LogSTERs of 0.01, 2.47, –4.76, 1.17 and 2.36, respectively.
NODES has a negative LogSTER, which indicates high
FNR and con�rms the concern from Figure 3. On the
other hand, the other methods show high LogSTER val-
ues, which indicate high FPR. Interestingly, RNA-seqDEG
analysis methods show better control of FPR and FNR
with scRNA-seq data than the existing scRNA-seq meth-
ods (Supplementary Figures S4 and S5).
Below theMZP threshold of 0.2, Linnorm calls less genes

as signi�cant and attain negative LogSTER values. In this
analysis, since each of the two conditions in theDEG analy-
ses contain 10 cells, MZP threshold of 0.2 indicates an aver-
age of 2 non-zero values in each condition. Linnorm’s lower
LogSTER below theMZP threshold of 0.2 is reasonable be-
cause SD requires at least two numbers to be calculated, and
a goodmethod should not declare genes as signi�cant when
there is an insuf�cient amount of evidence. In Supplemen-
tary Figures S4 and S5, we also show that Linnorm can con-
trol FPR and FNR well across other datasets and smaller
sample sizes.

Linnorm improves accuracy in DEG analysis

Although a method that has �nely controlled FPR and
FNR would robustly call the correct number of signi�cant
genes, it would not necessarily mean that the genes being
called were accurate. While the balance of FPR and FNR
depend on the amount of noise being normalized from the
dataset, accuracy depends on whether technical noises, in-
stead of biological variations, are being accurately normal-
ized. To investigate Linnorm’s accuracy, its receiver oper-
ating characteristic (ROC) curve performance was exam-
ined using the SEQC dataset from the MAQC-III project
(21). This RNA-seq dataset is utilized because it is comple-
mented by a gold standard Taqman dataset for the calcu-
lation of accuracy. Since RNA-seq datasets are similar to
scRNA-seq dataset, but with higher accuracy and less zero
counts (27), and scRNA-seq datasets also have genes that
contain no zero-counts, a good scRNA-seq method should
be compatible with RNA-seq data.
In Figure 7, we de�ne a gene as differentially expressed

when its log 2 fold change (log2FC) is larger than 1 or less
than –1 asmeasured by TaqMan qPCR. Linnorm’s area un-
der the ROC curve (AUC) above chance level was 131%,
60%, 52%, 7.0% and 13% higher than BASiCS, NODES,
SAMstrt, Seurat and DESeq2, respectively. Improvements
are also observed across different log2FC thresholds (Fig-
ure 7B). The same test is applied to edgeR and voom in the
Supplementary Figure S6. edgeR, DESeq2 and voom’s per-
formances are in concordance with a previous study (32).
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Figure 5. Computational speed across sample sizes with the Yan dataset. Linnorm is colored red. (A) Normalization methods. While all other methods are
single threaded, SCnorm’s algorithm would utilize all available threads in the computing cluster. Hence, its speed would deviate according to the amount
of available resources in the system. (B) Transformation methods. While Seurat is not a dedicated transformation method, we place it here because its data
imputation algorithm outputs data in the transformed format. (C) DEG analysis methods.

Figure 6. FPR and FNR across zero �ltering thresholds in the absence
of true differential expression. Without true DEGs, P value equals to the
proportion of genes in a DEG analysis. In other words, 5% of the genes
in the dataset should have a P value of <0.05 under the null. Hence, un-
der a P value threshold, the number of signi�cant genes should equal
to the expected proportion of the genes. We plot the Log Signi�cant To
Expected Ratio (LogSTER) against the Minimum non-Zero cell Portion
(MZP) threshold. MZP threshold of 0.25 means that genes with at least
25% non-zero values will be retained in the results. LogSTER of zero in-
dicates �nely controlled FPR and FNR, where the number of signi�cant
genes equals to the number of expected genes. High LogSTER, which in-
dicates more signi�cant genes than expected, would indicate high FPR;
where low LogSTER would indicate high FNR. The sample set size of 10
and the P value threshold of 0.05 were utilized.

While Linnorm shows higher AUC performance than ex-
isting methods, it has a high amount of overlaps with exist-
ing methods (Supplementary Figure S5). These results indi-
cate that Linnorm performs well in comparison with other
scRNA-seq DEG analysis methods.

DISCUSSION

Stably expressed gene selection is an especially important
process in scRNA-seq data modeling. Existing methods of-
ten assume that some genes in the dataset show stable ex-

pression and thrive to extract them. This is because hetero-
geneous expression levels can cause contradictions to the as-
sumptions behind the data modeling method. In Linnorm’s
case, it thrives to transform the dataset toward homoscedas-
ticity and normality. However, even after ignoring zeroes,
we show that lowly expressing genes can cause lower SDs
and signi�cant skewness in the dataset (Figures 1 and 2).
Together with naturally occurring heterogeneous genes that
can induce more skewness in the dataset, this can cause vio-
lations to Linnorm’s assumptions. Since existing scRNA-
seq methods also have various assumptions that need to
be satis�ed, �ltering steps are often included in scRNA-seq
analysis methods to select a set of stable genes for datamod-
eling.
Compared to RNA-seq data, where biological replicates

often exist, each cell in a scRNA-seq dataset is expected to
be unique. Because of the high amount of technical noises in
scRNA-seq, these issues increase the dif�cultly of selecting
stably expressed genes from a scRNA-seq dataset. Some ex-
isting methods avoid this issue by the utilization of spike-in
genes or unique molecular identi�ers (UMI), which are as-
sumed to have gold standard quality by various algorithms.
However, when spike-ins or UMIs are not available, exist-
ing methods would often rely on �ltering thresholds and
utilize the entire remaining dataset for modeling. Never-
theless, some of these �ltering thresholds are rudimentary,
such as the minimum average expression threshold (MAE)
and the minimum non-zero cell threshold (MNZ). In com-
parison, Linnorm �ltering algorithm has more considera-
tions regarding different scenarios. First, Linnorm utilizes
the relationship between mean and SD to �lter low count
genes, instead of theMAE threshold.Regardless of the sam-
ple size, we notice that lowly expressed genes near the raw
count of near one would connect the origin to the global
maximum in the mean versus SD plot (Figure 1). Com-
pared to theMAE threshold, where raw count, CPM, TPM,
etc. of one can hold drastically different meanings, Lin-
norm’s method provides a reliable indicator of lowly ex-
pressed genes acrossmore scenarios. Additionally, Linnorm
�lters gene with a high amount of zeroes by utilizing the
MZP threshold, instead of the MNZ threshold. Some ex-
isting scRNA-seq methods have utilized the MNZ thresh-
old of∼2–10. However, in single cell datasets with hundreds
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Figure 7. DEG analysis performance with the SEQC dataset. (A) Receiver operating characteristic (ROC) curve of SEQC DEG analysis using a sample
set size of 10. True DEG are de�ned as genes with absolute log2-fold change (log2FC) higher than 1 in the gold standard Taqman dataset. (B) Area under
the ROC curve across Taqman log2FCs from 0.5 to 2.

of samples, genes with only 2–10 non-zero cells are often
overwhelmed by the raw count of near one. This results in
unreliable SD and skewness (Figures 1 and 2). Linnorm’s
utilization of a proportion as the threshold increases its re-
liability across sample sizes. These improvements in data �l-
tering have enhanced Linnorm’s robustness across a wider
range of situations.
Compared to existing methods, Linnorm is especially

meticulous in the selection of stable genes for modeling. In
statistical modeling, datasets with insuf�cient observations
can only be subjected to limited �ltering. However, scRNA-
seq data often contain thousands, if not tens of thousands,
of detected genes or transcripts. This allows the develop-
ment of Linnorm’s unsparing �ltering strategy, which often
�lters >50% of the genes that show at least one express-
ing cell. Nonetheless, since Linnorm’s �ltering thresholds
are often based on P values and proportions, it ensures that
hundreds or thousands of genes would often remain in the
dataset. Our results show that this is suf�cient for scRNA-
seq data modeling, which allows improved performances in
multiple aspects. In this study, we �nd that choosing fewer
but more accurate observations for modeling is more ben-
e�cial than choosing more but less accurate observations,
because the number of observation in scRNA-seq data is
large.
Traditional normalization methods often employ the use

of the scaling factor. This assumes that expression levels
are scaled linearly by the differences in sequencing depth
(12,25,26,28). Linnorm’s modi�ed normalization strategy
involves a linear regression analysis of the log-transformed
dataset, which is performed between each sample’s expres-
sion and the expression mean across samples. This strategy
allows expression levels not only to be scaled similar to the
other methods but also to be adjusted exponentially. This
allows a better �t to the expression mean and more noise
can be eliminated. When the optimal normalization solu-
tion is the scaling factor, Linnorm’s normalization can be-
come the scaling factor strategy, as its m parameters ap-

proach one. Another advantage of this strategy is that it
does not eliminate cell heterogeneity. On the contrary, by
aligning the expression values between the stable genes only,
the variances of some highly variable genes can increase.
While Linnorm’s stronger noise elimination than existing
methods implies its better FPR control (Figure 3), this in-
crease of variances in highly variable genes is crucial for
its FNR control and preservation of cell-to-cell differences
(Figures 4 and 6). Closer examination of Linnorm’s nor-
malization in the gene-by-gene basis has shown that this
strategy can increase the accuracy of the expression levels
in the heterogeneously expressed genes (Figure 7). Lastly,
we provide an adjustable normalization strength parame-
ter, µ, such that users can control and optimize the strength
of Linnorm’s noise removal effects.
Linnorm transforms the dataset toward homoscedastic-

ity and normality, which allows parametric tests to be ap-
plied more reliably. Conventionally, the CPM/TPM unit
is often utilized prior to the log-plus-one transformation,
where they multiply the relative expression matrix with an
arbitrary number of one million. This arbitrary number
could cause deviation from homoscedasticity after log-plus-
one transformation. To solve this issue, the main goal of
Linnorm’s transformation step is to choose a better num-
ber, than one million, to multiply to the relative expression
matrix, such that homoscedasticity and normality can be
better achieved in a wider range of situations.
Because the total count in scRNA-seq data is generally

low (Supplementary Table S1), λ from the transformation
step can be smaller than a million, which results in lower
numeric values of mean and SD than CPM (Figure 2).
This raises a concern because smaller SDs in some genes
may hinder the identi�cation of noise from true variations,
decreasing performances in clustering and DEG analyses.
However, this is addressed by Linnorm. Since Linnorm’s λ

value is multiplied to all genes in the dataset, genes with a
similar mean are affected similarly. To identify true varia-
tions in a dataset, a gene’s mean or SD is often compared
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within genes or to other genes that share a similar mean.
Therefore, in the examination of clustering purity andDEG
analysis accuracy, Linnorm is shown to be reliable. Another
example can be shownwith Seurat, where its ‘λ’ is set to be a
constant of ten thousand, which is smaller than Linnorm’s
assigned λ in all �ve scRNA-seq datasets in this study. Nev-
ertheless, Seurat’s data transformation and imputation at-
tained the second best result in preserving cell heterogeneity,
and it shows in�ated FPR in DEG analysis (Figures 4 and
6). This indicates that the smaller numeric values of mean
and SD has lesser effects on statistical analyses than the un-
derling normalization and transformation strategies.
Linnorm’s transformation can be compared to existing

methods that utilize transformation, such asDESeq-vst and
voom. DESeq-vst’s approach transforms the dataset with
a log plus n transformation, where n is the adjustable pa-
rameter. voom sets n to ∼0.5 counts prior to a logarith-
mic transformation on the CPM unit. In comparison, Lin-
norm’s transformation sets n to 1 and multiplies the dataset
by an adjustable parameter. Unlike DESeq-vst and voom,
Linnorm’s approach ensures zeroes to remain zero after
transformation. Compared to DESeq-vst, Linnorm’s most
notable improvement is computational time. Linnorm uti-
lizes linear regression on the mean, SD and skewness of the
stable genes to adjust the transformation parameter, such
that F(λ) from Equation (3) can be calculated in one pass
of the �ltered expressionmatrix. To transform 2700 samples
from the Klein dataset, Linnorm and DESeq-vst took 23 s
and 12.5 h on average, respectively. Linnorm’s transforma-
tion can also preserve a higher amount of biological varia-
tion in the dataset than DESeq-vst (Figure 4, Supplemen-
tary Figure S8 and Supplementary Table S7). Compared to
voom, Linnorm has a better control of variance when there
is a high amount of zero. voom’s addition of 0.5 counts
in the CPM unit induces negative numbers in the expres-
sion matrix. Because of the characteristic of the logarith-
mic function, these negative numbers would become expo-
nentially smaller as the total count of the dataset become
larger. This induces a larger difference between the count of
one and the count of zero. This effect is re�ected in Supple-
mentary Figure S4. voom’s LogSTER approaches zero with
higher MZP, which indicates that voom performs optimally
when there are less zeroes in a dataset.
Linnorm is shown to be robust with datasets that show

distinct properties, including sample sizes that range from 6
to 2717 and average total read count that range from 0.02
million to 25.2 million. Our evaluations demonstrated that
Linnorm is better than most normalization methods in re-
moving technical variations, performed the best in preserv-
ing cell-to-cell differences for clustering, performed better
than existing DEG analysis methods in balancing FPR and
FNR in the presence of zero-counts, and has the highest ac-
curacy inDEGanalysis.We conclude that Linnorm is a reli-
able normalization and transformationmethod for scRNA-
seq expression data.

DATA AVAILABILITY

Linnorm is open source and is written in C++ and im-
plemented into an R Package. It is freely available at
(http://www.jjwanglab.org/linnorm) and on Bioconductor

(https://www.bioconductor.org/packages/release/bioc/
html/Linnorm.html).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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