
SSC07-XII-10

Linux and the Spacecraft Flight Software Environment

Edward J. Birrane, Kathryn E. Bechtold, Christopher J. Krupiarz, Andrew J. Harris, Alan M. Mick,
Stephen P. Williams

The Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road Laurel, MD 20723; 443 778-7432

Edward.Birrane@jhuapl.edu

ABSTRACT
Flight software development must evolve as the operational characteristics of spacecraft evolve. Flight development
typically makes use of a monolithic architecture comprised of custom-built, tightly coupled software. This dense
coupling precludes the development agility desired by small spacecraft software efforts. Specifically, mission
requirements are becoming aligned with re-use centered, highly decoupled, distributed architectures otherwise
popular in desktop and web development. To meet the engineering challenge of matching the needs of these
missions, the software environment must be modernized and the software architecture decoupled.

The use of Linux in a flight environment promises to fill this need while significantly lowering the barrier of entry
for new developers, especially in the university setting. To assess this promise, a team of flight software researchers
at The Johns Hopkins University Applied Physics Laboratory (JHU/APL) have completed a study of the impact of
real-time Linux in a real-world embedded environment. This study assessed the impacts of Linux on the spacecraft
software development environment and explored the new types of software architectures enabled by that
environment. At the end of the study, the team reached conclusions regarding the value of pursuing Linux in a flight
environment.

INTRODUCTION
The Johns Hopkins University Applied Physics
Laboratory (JHU/APL) has developed and flown
dozens of spacecraft since the dawn of the space age
including the currently operational Thermosphere,
Ionosphere, Mesosphere, Energetics and Dynamics
(TIMED), MErcury Surface Space ENvironment
GEochemistry and Ranging (MESSENGER), New
Horizons, and most recently Solar TErrestrial RElations
Observatory (STEREO) missions. JHU/APL is
responsible for the end-to-end development of these
spacecraft including mission design, spacecraft
development, and mission operations. Included in this
development is spacecraft flight software.

To build upon this experience, each year the JHU/APL
Space Department requests ideas and concepts for
funding via the internal research and development
(IRAD) program. IRADs are requested for both of the
Space Department’s primary business areas: 1)
Civilian Space and 2) National Security Space. The
intent of this program is to provide seed money for
concepts that cannot typically be funded directly by a
mission and to explore ideas that can influence future
spacecraft development.

Our work within the Space Department’s Embedded
Software Systems Group involves identifying and

researching ways to improve the quality and efficiency
of mission critical flight software. The IRAD program
provided an excellent opportunity, away from a
particular set of mission constraints, to follow the in-
roads Linux was making in the world of embedded
software.12 We were impressed by the value proposition
of a decoupled system and were curious if Linux could
be a key technology to reducing costs for small
spacecraft for both Civilian Space and National
Security Space missions. As such, we submitted a
response to the IRAD call and were awarded funding
for FY07 with the goal of determining the applicability
of Linux to our flight software architectures and its
potential to reduce costs and risks.

Typical JHU/APL Architectures
To understand where Linux fits into our systems, it is
necessary to understand a typical JHU/APL
architecture, as shown in Figure 1. The main spacecraft
computer resides in an integrated electronics module
(IEM) with multiple wires extended from the IEM for
communication with instruments, guidance and control
elements, solar arrays, and other subsystems. Examples
of these communication lines include MIL-STD-1553B,
serial lines, and Spacewire.

The flight computer consists of one or more
microprocessors performing various operations for

Birrane 1 21st Annual AIAA/USU
 Conference on Small Satellites

commanding and controlling the spacecraft along with
a device for storing mission data. Examples of such
systems are shown in Table 1, which provides an
overview of past JHU/APL command & data handling
(C&DH) subsystems and the amount of storage
available on their solid state recorders (SSRs). These
SSRs consist of static random access memory (SRAM)
or other types of volatile or nonvolatile memory to store
science and spacecraft housekeeping data.

Table 1: Command and Data Handling Computers
for JHU/APL Missions

Mission Year CPU Speed
(MHz)

SSR
(Gbits)

NEAR 1996 RTX2010 6 1 & .5

TIMED 2001 Mongoose 12 5

CONTOUR 2002 Mongoose 12 8

MESSENGER* 2004 RAD6000 25 8

New Horizons 2006 Mongoose 12 64

STEREO 2006 RAD6000 25 8

*Processor performs both C&DH and G&C

For these missions we developed the flight software
over commercial real-time operating systems. TIMED,
CONTOUR, and New Horizons used the Nucleus
operating system from Mentor Graphics and
MESSENGER and STEREO used VxWorks from
Wind River Systems. Software for these computers is
loaded as a monolithic block of code with multiple
processes running within the operating system.

Development and Run-Time Environments
Given this legacy architecture, we identified two
fundamental needs to support an extremely low-cost

flight software environment: a rapid development
environment and a modular run-time environment.

Figure 1: Typical JHU/APL Spacecraft Hardware

Development environments are comprised of software
tools (compilers, debuggers, profilers), development
hardware (breadboards, testbeds, and emulators), and
commercial off-the shelf packages (network
communications, file systems, compression, and other
services). A rapid development environment allows for
the meaningful creation and preliminary testing of code
before hardware is available and provides the ability to
incorporate the widest array of existing, third-party
utilities. Incorporating these utilities with little or no
code modification (with a goal of plug-and-play flight
software) requires a run-time environment that provides
software modularity – the ability to permute logically
separate software functions with minimal design,
implementation, testing, and run-time impacts. The
benefits of such a software environment are
summarized in Table 2.

Paradoxically, it is the software operating system (OS),
and not the flight software architecture, that is
responsible for creating the software environment. As
such, Linux has the potential to fill that role for several
reasons. Its process model is well known and its
adherence to open standards significantly reduces
hardware and software training, support, and integration
costs. As flight hardware continues to decrease in cost
and increase in capability, the processing overhead of
running a generalized operating system becomes
negligible. It is now possible to run real-time Linux
variants on flight development systems and,
subsequently, to extrapolate its ability to run on flight
production systems.

Birrane 2 21st Annual AIAA/USU
 Conference on Small Satellites

As an operating system with a broad user base, several
tools and utilities are freely available in Linux that are
otherwise expensive or dated on other traditional flight
operating systems. The kernel process model allows
for distributed, independently upgradeable software
components. Core utilities, such as the GNU suite, are
both well known to the software development
community and have been user tested for decades in
several different application domains. The ability to
build upon this existing, open body of work removes
the need to design, implement, and test important
capabilities of a flight-ready architecture, such as
persistent storage and compression. This type of re-use
allows a smaller flight software team to dedicate their
efforts towards that which makes their flight application
unique.

Table 2: Advantages of Linux Based Development
in a Flight Software Environment

Features Benefits

Decoupled
Software

The software environment is robust.
Processes may be restored without CPU reset.
Loss of one data collecting process will not
interrupt other, functioning data collecting
process.
Memory protection vastly reduces chance that
one process may negatively affect another.
Software updates are smaller, targeting
individual processes.
Critical updates might not interrupt critical,
on-going data collection.
Radiation Damage Adaptation
A single upset event will probably affect a
single process.
Robust environment will absorb this without
CPU reset.

Reduced Software
Development
Time

Coding to interfaces speeds development
Decoupled software provides for multiple
programming languages (C, C++, perl) suited
for each task.
Unit testing to interfaces, done concurrently
for each task, greatly reduces system
integration time.
Development distributed across hardware
platforms and across development sites
possible with decouple software architectures.
Plug and Play Software
Decoupled architecture eases COTS insertion
Programming language variety eases existing
domain software integration.

The ability to simulate the desktop software
environment on flight hardware also enables the
converse: existing desktop and laptop computers
become accurate simulations of flight resources. This
allows earlier development on faster, less expensive
machines for advanced prototyping and non-realtime

testing and integration. This not only allows fewer
flight development hardware purchases but also allows
significant progress in the event of hardware delays or
the need to deliver testbed systems. Further benefits for
Linux are listed in Table 3.

Table 3: Advantages of Linux Operating System in
a Flight Software Environment

Features Benefits

Standard
Development
Toolchain

A larger developer community makes it easier
to find/train expert users.
A larger user-base provides more stable and
feature-rich implementations.

Standard
Applications

Linux provides hundreds of available tools
whose implementation has been verified over
decades of use in dozens of industries.
Data compression (gzip, tar, compress)
Flash File Systems (JFFS, JFFS2)
Scheduling algorithms (cron)
Data manipulation (sed/awk/perl/python)
Scripting (sh, csh, bash, tcsh, etc…)
The modular nature of these tools enables a
modular (and responsive) architecture for the
flight code that uses them.

Optional Real-
Time

Real-time tasks execute in real-time
1553 bus drivers exist for real-time Linux.
Non-real-time tasks may also be implemented
There are many non-real-time tasks in a given
flight software application (data manipulation,
flash activity)
The ability to run some tasks outside of the
real-time system allows for use of advanced
tools/languages.

Advanced
Development and
Testing

Software development can be started without
flight hardware
Linux can be installed on a desktop or laptop
PC and provide the same tool support as that
which will run on the flight hardware.
Significant debugging and unit testing can be
accomplished on development machines.
Testbeds can be constructed immediately for
non-real-time testing
A majority of code validation is algorithm
correctness which can be tested independent of
real-time capabilities.
Peripheral hardware emulation easier using
Linux’s modular interface architecture.

Technology
Infusion

Algorithms from other industries are more
easily incorporated into a modern software
development environment.
Protocol security projects
Modern (C++, Java, Perl, etc…)
implementations of domain algorithms can be
more easily ported.
Incorporation of feature-similar hardware
Linux device-driver model provides for
hardware upgrades (even across
manufacturers) with little or no core code
changes.

Birrane 3 21st Annual AIAA/USU
 Conference on Small Satellites

These benefits both reduce development schedule and
development cost. Standardized, free development tools
reduce training and support costs. Standardized, free
utilities remove the need to design, implement, and test
important capabilities in the software system (persistent
storage, compression). The ability to develop and test
non-real-time software on very fast and inexpensive
Linux desktop and laptop computers will save money
when developing testbeds. Even real-time software can
be validated up to but excluding its real-time
constraints. Finally, the ability to selectively upgrade
heavily modularized system components greatly
reduces regression testing efforts. Operating system
selection (and the utilities provided by that operating
system) is an extremely significant driver of any
software effort.

PROJECT CONFIGURATION

Project Team
The IRAD project team consists of a range of personnel
with varying amounts of Linux and flight software
experience. All of the participants have experience on
at least one JHU/APL mission with some having
developed software for several spacecraft.
Additionally, the project team has varying ranges of
Linux experience from none to extensive. This wide
range of backgrounds enables a wide range of insight.
Extensive flight software experience helps to anchor
ideas in the reality of flight software while more Linux
experience provides insight into innovative methods for

flight software operation.

Hardware Platform
As seen in Table 1, the latest JHU/APL spacecraft use
Mongoose and RAD6000 processors with future
missions in considering the use the RAD750 processor.
These processors, even as a non-rad hardened
commercial single board computer (SBC), are too
costly to be purchased on small IRAD funds. Hence,
we needed an equivalent, but less expensive, board for
our software development research. We selected the
MCP750 SBC for this purpose as it has been used for
other software prototyping at both JHU/APL, the
NASA Jet Propulsion Laboratory, and the NASA
Goddard Spaceflight Center. To continue minimizing
costs we made our first foray into on-line auctions and
acquired additional boards via eBay. Ultimately, the
department procured six networked boards for general
development.

The MCP750 SBC contains the MPC750 chip, which
has a PowerPC architecture similar to the RAD750
developed. As such, it provides a reasonable facsimile
of flight-ready hardware, albeit with a higher clock
speed. The MCP750 has serial and Ethernet
connections, on-board flash memory, and a PMC slot.
MCP750 hardware features are shown in Figure 2.
Developers can configure the MCP750 boards to boot
using multiple methods, including booting directly to an
onboard debugger and booting over an Ethernet
network.

Figure 2: MCP750 block diagram3

Birrane 4 21st Annual AIAA/USU
 Conference on Small Satellites

Software Development
Throughout early development, code images for the
MCP750 were loaded over an Ethernet network. We
found it necessary to initially boot the MCP750 into its
debugging configuration in order to set various network
variables. Once an initial test was performed to ensure
connectivity to a Linux workstation, the board was
reconfigured to perform a network boot via the tftp
protocol. This differs from our past flight software
development where either the operating system kernel
was compiled directly into the software image or was
available in EEPROM. Loading the kernel in this
fashion is an improvement over our past methods,
although it is not unique to the Linux platform.

To boot, the SBC retrieves the Linux kernel from a
server, stores the kernel in RAM, and jumps to the
initial command to boot. During the startup process,
the SBC mounts two directories from the server:

• The root directory used in the Linux
distribution.

• A directory containing development code and
executables.

This type of directory mounting is unacceptable in a
deployed environment, but for a development
configuration it simplifies code creation. In this
situation, we deviated from our “test as we fly”
approach to software development. Our development
turnaround time was greatly decreased by this more
efficient development boot process.

Developers login directly to the SBCs as if they were
standard Linux workstations -- there is no discernible
lag in executing code in this fashion. This is in contrast
to significantly longer image load times typically seen
in a flight software development environment.

As stated previously, our spacecraft computers operate
at very slow clock speeds. The MCP750 boards operate
much faster (233 MHz to 367 MHz). Unlike the
commercial flight boards, we cannot clock down the
MCP750 to replicate a realistic speed. As a result,
timings and other metrics that we observe with the
board need to be scaled mathematically to the rates seen
on typical flight software. This is a disadvantage as our
past flight experience has shown these results can have
a margin of error significant enough that it can impact
successful deployment of software developed on an
alternate platform.

COTS Software
A board support package (BSP) is a set of software
customized for a particular hardware board and a

particular operating system. It contains functionality
used to operate critical board devices required by the
operating system to boot the computer. Running Linux
on an MCP750 requires a customized BSP. The BSP
must provide driver support for all utilized devices on
the MCP750. Constructing a BSP for Linux on the
MCP750 is outside the scope of our project. As such,
we use a commercial BSP.

The core operating system used by both the runtime and
development environments of this project is the
RTLinux Pro (RTL). RTL was puschased from Finite
State Machine Laboratories (FSM) which has since sold
its product to Wind River Systems. RTL is a realtime
scheduling kernel which hosts a non-realtime operating
system (either a Linux or BSD variant) as the lowest
priority thread in the system. We use RTL to host a
Fedora Core 4 distribution for development and an
FSM Carrier-Grade Linux for the MCP750 target. We
installed RTL on two separate machines already
running Fedora Core 4: One containing an i386 tool
chain and one containing a PowerPC tool chain.

Environment Familiarity
One of the goals of the project was to demonstrate
distributed development with the Linux environment.
To that end, we use several heterogeneous development
environments when developing code for this project:

• A Linux (Ubuntu) development desktop in an
office physically separate from the project
laboratory, but behind the JHU/APL firewall.

• A Linux laptop connecting to the JHU/APL
network over a VPN connection.

• A Windows machine using a GUI-based IDE
for code generation and directory mounting to
a Linux development workstation in the
project lab.

• Directly compiling using Linux development
workstations within the project lab.

In all cases, the development team uses a variety of
familiar development tools in familiar development
environments with their native office operating systems
to generate code in whichever manner is most efficient
for them. Different members of the development team
preferred different methods of code development. For
instance, we continue to trade opinions on the benefit of
command line based code development versus
integrated development environment (IDE)
development and whether it is better to remotely log in
to a system or to have everyone running their own
version of Linux locally. We established a development

Birrane 5 21st Annual AIAA/USU
 Conference on Small Satellites

system which allowed everyone to work using the tools
and methods of their preference, which was an
improvement over past development environments.
The transfer of this code to a configuration-controlled
cross-compilation machine poses no undue burden on
development efforts and has been received as a
welcome solution to preserving individual compiler and
IDE preferences. This experience simulates the
distributed development model illustrated in Figure 3.

Cross-Compilation
To perform an initial test of cross-compilation, we
ported a suite of space network protocols primarily
developed by the NASA Jet Propulsion Laboratory with
additional code developed by JHU/APL. This port was
only for the non-realtime aspect of RTL. Cross-
compiling this code involved using the PowerPC tool
chain for compilation instead of the i386 tool chain.
Once compiled, the software was loaded to the
MCP750 target and executed without issue. We have
also cross-compiled other applications which either also
had no issues or only required minor configuration
tweaks. While not a comprehensive experiment, the
strength of being able to cross compile with little or no
effort cannot be emphasized enough. One of the major
costs in flight software development is to ensure that
the software can operate correctly on its delivered
platform. While we have previously developed some
code on high-powered development platforms, we still
had to port it to more resource-contrained runtime
target platforms. These porting efforts invariable lead
to issues such as operating system compatibility or the

need to reconfigure the code to fit within a monolithic
code image. With Linux on both the development
platform and the target, these issues are diminished to
those rooted in hardware differences (such as
differences in CPU speed, available RAM, and
available peripherals).

Figure 3: A heterogeneous development environment

Runtime Target
The MCP750 SBCs were configured to boot over a
network interface. The initial boot configuration
required one-time modifications such as ensuring that
the realtime clock was running and that the system
could boot using PREP files.

Connectivity
There have been no difficulties communicating between
the target and development platforms using Ethernet,
serial cabling, and NFS mounts.

LINUX PERFORMANCE
There are three performance areas identified as
important to the proper technical assessment of Linux:
image loading, software jitter/drift, and interface
performance.

Image Loads
Loading new software to the target, including receiving
the operating system kernel over a network file system
mount, remains significantly faster than loading similar
kernel/software bundles in our other realtime operating
systems. The ability to load new software executables

Birrane 6 21st Annual AIAA/USU
 Conference on Small Satellites

to an already running system without requiring reboot
has sped development times significantly.

Once images have been loaded to the target, the boot
time is approximately 60 seconds, with 40 seconds
devoted to hardware verification and network loading.
The actual Linux boot time is 20 seconds. A 20 second
Linux boot time is considered very slow if not
unacceptable for a flight system reset. However, we
have not yet customized the Linux distribution to
remove unneeded processes (such as the web server).
Once unnecessary processes are removed from the
distribution, we will readdress the issue of boot time.

Software Jitter and Drift
Jitter measurements are measurements of time
representing variations in execution intervals for an
otherwise strictly periodic task. For example, a task
may execute every 10 milliseconds, +/- 1ms, where
1ms is the jitter measurement of the runtime
environment. Jitter is expected in any system and has
no consequence when it exists within tolerances
specified by the applications running on the system.

Drift measurements are measurements of time over
time that represents an accumulating delay in the
execution of an otherwise periodic task. For example, a
task that nominally should execute at 5ms, 10ms, 15ms,
20ms, etc… but actually executes at 5ms, 11ms, 17ms,
23ms could be considered to have a drift of 1ms per
5ms. Due to the cumulative nature of drift, no
discernable measurement is acceptable in a real-time
system.

All software that has been cross compiled has run with
approximately similar timing between the development
and target environments. There has been no
observation of jitter greater than a few milliseconds.,
which we feel is satisfactory for an untuned
demonstration system There has been no measured drift
on the MCP750.

This is a significant topic and an area of focused future
research as more flight-appropriate hardware resources
are available.

Interface Performance
This effort successfully uses Ethernet, serial, and PCI
interfaces. Traffic over these interfaces has not
introduced any measured delay in realtime scheduling.

Framework
A defined software framework is recommended for the
rapid adoption of a realtime Linux solution for flight
software. Beyond technical feasibility, programming

realtime applications using RTL requires experience to
use effectively. The structure of programs in an RTL
development environment is significantly different than
the structure of programs in traditional flight operating
systems such as VxWorks.

An example of such a difference is RTL’s use of
variable-length messaging FIFOs verses fixed-sized
messaging queues provided by VxWorks. Variable
length messages conserve bandwidth but require
additional protocols to detect message boundaries.
This additional software is not complex but does impact
software architecture. Throughout the technical
assessment we discovered several such differences
between RTL and the more familiar VxWorks
operating system. This led us to observe an interesting
paradox. In coming into the project, we felt one of the
primary strengths of using Linux was that developers
would have the opportunity to use an operating system
with which they were intimately familiar. We felt this
was particularly true of recent graduates. However, in
the cases were we have developers from several past
spacecraft, they were instead intimately familiar with
the operating systems of those spacecraft such as
VxWorks and Nucleus and not as much with a desktop
operating system such as Linux.

OUTSTANDING AND UNRESOLVED ISSUES
Although the internally funded project is complete, we
received additional funding from the Naval Research
Laboratory to further study the application of Linux and
to develop a flight architecture that plays to the
strengths of Linux. Upon completion of that project we
intend to publish further results and to also resolve
some of the issues we found during our internally
funded project. This includes, but is not limited to, the
following list.

Real-time Versus Non-Realtime
One of the first requirements we had for this project
was that we definitely needed a hard real-time operating
system. The software we write is critical software and
we have quite a large number of timing constraints in a
command and data handling platform. However, as we
began to further analyze our architecture, it became
apparent that there weren’t as many hard real-time
constraints as we first believed and, perhaps, there
aren’t really any that required a hard real-time system.
Most of timing constraints are imposed by commanding
and telemetry hardware interrupts and interfaces such
as the MIL-STD-1553B. That brought us the question
of whether we achieve a solid system that would react
to these interfaces without a hard real-time system.
Without this requirement more options are available for

Birrane 7 21st Annual AIAA/USU
 Conference on Small Satellites

Linux distributions and reduce the need for customized
solutions such as the RTL.

Packages
Among the first advantages we saw in using Linux was
the plentiful supply of open source solutions to
problems in our flight architectures. Our thought was
that it would be straightforward to take those solutions
and apply them quickly and easily to our architecture.
The JPL networking protocol software mentioned
earlier is an excellent example. This is a set of software
that provides a complete suite of software for
interplanetary networking and easily cross compiled for
the MCP750s. With this start, we were optimistic that
we would be able to do the same for other software
packages and began the process of downloading
software for our boards. Unfortunately, we didn’t fully
grasp the extent of code of some these software
packages. Rightly, many open source packages are
designed for many platforms, contain an array of
features, and are dependent upon already loaded
software. This is a good solution for a workstation, but
applying this architecture to an embedded application
with very limited memory and a slow processor many
times is not feasible. While we were able to run some
applications, we were disappointed that we were not
able to achieve success with the large number we had
hoped. An initial effort to provide leaner
implementations of common utilities would be a benefit
to any flight-based Linux community.

Reduction of Distribution
In the future, perhaps, spacecraft will have interfaces,
web servers, and other workstation applications, but no
need for these features has been identified to date.
Support of such unused features is a major contributor
to code bloat.. Spacecraft have limited resources for
both storage of an application (and operating system),
memory, and processor speed. When we run our Linux
systems on a workstation in our lab, we have some non-
critical processes using system resources, but the
performance impact is negligible. This is not the case
on a spacecraft which must use any spare CPU cycles
for data processing (such as large image compression).
Hence, either a distribution must be pared down or a
distribution must only be built from the ground up. We
hope the address which avenue is best in our current
NRL project.

Flight Readiness
All new flight software eventually reaches the point of
asking about its flight readiness. Of course, Linux is no
different and while it has flown on spacecraft, we are
still evaluating its use for future JHU/APL missions.

CONCLUSION
Our experience with the software and hardware
resources allocated to this project has been very
positive. Hardware integration into the project lab, and
its subsequent configuration to Linux, occurred with
minimal difficulty. The homogenization of the run-
time and development environment has been a
complete success. The development environment is
easy to use and transitions seamlessly to the runtime
target platform. This has enabled rapid development of
test software for this project. A BSP and software
architecture are necessary to use RTL on new target
platforms. With these tools, follow-on efforts will see
similar increases in software productivity, adaptability,
and re-use.

ACKNOWLEDGMENTS
The authors wish to thank the JHU/APL Space
Department IR&D Committee for awarding this
contract as well as Mike Cravens and Adam Fluckey of
Wind River Systems for their support.

REFERENCES
1. Huffine, Christopher, “Linux on a Small

Satellite”, Linux Journal,,
http://www.linuxjournal.com/article/7767, March
2005.

2. FlightLinux Project,
http://flightlinux.gsfc.nasa.gov/

3. Datasheet: MCP750, http://www.innovative-
research.com/mcp750-spec.html

Birrane 8 21st Annual AIAA/USU
 Conference on Small Satellites

	INTRODUCTION
	Typical JHU/APL Architectures
	Development and Run-Time Environments

	PROJECT CONFIGURATION
	Project Team
	Hardware Platform
	Software Development
	COTS Software
	Environment Familiarity
	Cross-Compilation
	Runtime Target
	Connectivity

	LINUX PERFORMANCE
	Image Loads
	Software Jitter and Drift
	Interface Performance
	Framework

	OUTSTANDING AND UNRESOLVED ISSUES
	Real-time Versus Non-Realtime
	Packages
	Reduction of Distribution
	Flight Readiness

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

