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ABSTRACT 
Flight software development must evolve as the operational characteristics of spacecraft evolve.  Flight development 
typically makes use of a monolithic architecture comprised of custom-built, tightly coupled software. This dense 
coupling precludes the development agility desired by small spacecraft software efforts.  Specifically, mission 
requirements are becoming aligned with re-use centered, highly decoupled, distributed architectures otherwise 
popular in desktop and web development. To meet the engineering challenge of matching the needs of these 
missions, the software environment must be modernized and the software architecture decoupled.   

The use of Linux in a flight environment promises to fill this need while significantly lowering the barrier of entry 
for new developers, especially in the university setting.  To assess this promise, a team of flight software researchers 
at The Johns Hopkins University Applied Physics Laboratory (JHU/APL) have completed a study of the impact of 
real-time Linux in a real-world embedded environment.  This study assessed the impacts of Linux on the spacecraft 
software development environment and explored the new types of software architectures enabled by that 
environment.  At the end of the study, the team reached conclusions regarding the value of pursuing Linux in a flight 
environment. 

INTRODUCTION 
The Johns Hopkins University Applied Physics 
Laboratory (JHU/APL) has developed and flown 
dozens of spacecraft since the dawn of the space age 
including the currently operational Thermosphere, 
Ionosphere, Mesosphere, Energetics and Dynamics 
(TIMED), MErcury Surface Space ENvironment 
GEochemistry and Ranging (MESSENGER), New 
Horizons, and most recently Solar TErrestrial RElations 
Observatory (STEREO) missions.  JHU/APL is 
responsible for the end-to-end development of these 
spacecraft including mission design, spacecraft 
development, and mission operations.  Included in this 
development is spacecraft flight software. 

To build upon this experience, each year the JHU/APL 
Space Department requests ideas and concepts for 
funding via the internal research and development 
(IRAD) program.  IRADs are requested for both of the 
Space Department’s primary business areas:  1) 
Civilian Space and 2) National Security Space.  The 
intent of this program is to provide seed money for 
concepts that cannot typically be funded directly by a 
mission and to explore ideas that can influence future 
spacecraft development. 

Our work within the Space Department’s Embedded 
Software Systems Group involves identifying and 

researching ways to improve the quality and efficiency 
of mission critical flight software.  The IRAD program 
provided an excellent opportunity, away from a 
particular set of mission constraints, to follow the in-
roads Linux was making in the world of embedded 
software.12 We were impressed by the value proposition 
of a decoupled system and were curious if Linux could 
be a key technology to reducing costs for small 
spacecraft for both Civilian Space and National 
Security Space missions.  As such, we submitted a 
response to the IRAD call and were awarded funding 
for FY07 with the goal of determining the applicability 
of Linux to our flight software architectures and its 
potential to reduce costs and risks.   

Typical JHU/APL Architectures 
To understand where Linux fits into our systems, it is 
necessary to understand a typical JHU/APL 
architecture, as shown in Figure 1.  The main spacecraft 
computer resides in an integrated electronics module 
(IEM) with multiple wires extended from the IEM for 
communication with instruments, guidance and control 
elements, solar arrays, and other subsystems.  Examples 
of these communication lines include MIL-STD-1553B, 
serial lines, and Spacewire.   

The flight computer consists of one or more 
microprocessors performing various operations for 
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commanding and controlling the spacecraft along with 
a device for storing mission data.  Examples of such 
systems are shown in Table 1, which provides an 
overview of past JHU/APL command & data handling 
(C&DH) subsystems and the amount of storage 
available on their solid state recorders (SSRs).   These 
SSRs consist of static random access memory (SRAM) 
or other types of volatile or nonvolatile memory to store 
science and spacecraft housekeeping data.  

Table 1: Command and Data Handling Computers 
for JHU/APL Missions 

Mission Year CPU Speed 
(MHz) 

SSR 
(Gbits) 

NEAR 1996 RTX2010 6 1 & .5 

TIMED 2001 Mongoose 12 5 

CONTOUR 2002 Mongoose 12 8 

MESSENGER*  2004 RAD6000 25 8 

New Horizons  2006 Mongoose 12 64 

STEREO 2006 RAD6000 25 8 

*Processor performs both C&DH and G&C 

For these missions we developed the flight software 
over commercial real-time operating systems.  TIMED, 
CONTOUR, and New Horizons used the Nucleus 
operating system from Mentor Graphics and 
MESSENGER and STEREO used VxWorks from 
Wind River Systems.  Software for these computers is 
loaded as a monolithic block of code with multiple 
processes running within the operating system.   

Development and Run-Time Environments 
Given this legacy architecture, we identified two 
fundamental needs to support an extremely low-cost 

flight software environment: a rapid development 
environment and a modular run-time environment.   

Figure 1: Typical JHU/APL Spacecraft Hardware 

Development environments are comprised of software 
tools (compilers, debuggers, profilers), development 
hardware (breadboards, testbeds, and emulators),  and 
commercial off-the shelf packages (network 
communications, file systems, compression, and other 
services).  A rapid development environment allows for 
the meaningful creation and preliminary testing of code 
before hardware is available and provides the ability to 
incorporate the widest array of existing, third-party 
utilities. Incorporating these utilities with little or no 
code modification (with a goal of plug-and-play flight 
software) requires a run-time environment that provides 
software modularity – the ability to permute logically 
separate software functions with minimal design, 
implementation, testing, and run-time impacts. The 
benefits of such a software environment are 
summarized in Table 2. 

Paradoxically, it is the software operating system (OS), 
and not the flight software architecture, that is 
responsible for creating the software environment. As 
such, Linux has the potential to fill that role for several 
reasons. Its process model is well known and its 
adherence to open standards significantly reduces 
hardware and software training, support, and integration 
costs.  As flight hardware continues to decrease in cost 
and increase in capability, the processing overhead of 
running a generalized operating system becomes 
negligible.  It is now possible to run real-time Linux 
variants on flight development systems and, 
subsequently, to extrapolate its ability to run on flight 
production systems. 
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As an operating system with a broad user base, several 
tools and utilities are freely available in Linux that are 
otherwise expensive or dated on other traditional flight 
operating systems.  The kernel process model allows 
for distributed, independently upgradeable software 
components. Core utilities, such as the GNU suite, are 
both well known to the software development 
community and have been user tested for decades in 
several different application domains.  The ability to 
build upon this existing, open body of work removes 
the need to design, implement, and test important 
capabilities of a flight-ready architecture, such as 
persistent storage and compression.  This type of re-use 
allows a smaller flight software team to dedicate their 
efforts towards that which makes their flight application 
unique.  

Table 2: Advantages of Linux Based Development 
in a Flight Software Environment 

Features Benefits 

Decoupled 
Software 

The software environment is robust.   
Processes may be restored without CPU reset. 
Loss of one data collecting process will not 
interrupt other, functioning data collecting 
process. 
Memory protection vastly reduces chance that 
one process may negatively affect another. 
Software updates are smaller, targeting 
individual processes. 
Critical updates might not interrupt critical, 
on-going data collection. 
Radiation Damage Adaptation 
A single upset event will probably affect a 
single process. 
Robust environment will absorb this without 
CPU reset. 

Reduced Software 
Development 
Time 

Coding to interfaces speeds development 
Decoupled software provides for multiple 
programming languages (C, C++, perl) suited 
for each task. 
Unit testing to interfaces, done concurrently 
for each task, greatly reduces system 
integration time. 
Development distributed across hardware 
platforms and across development sites 
possible with decouple software architectures. 
Plug and Play Software 
Decoupled architecture eases COTS insertion 
Programming language variety eases existing 
domain software integration. 

 

The ability to simulate the desktop software 
environment on flight hardware also enables the 
converse: existing desktop and laptop computers 
become accurate simulations of flight resources.  This 
allows earlier development on faster, less expensive 
machines for advanced prototyping and non-realtime 

testing and integration.  This not only allows fewer 
flight development hardware purchases but also allows 
significant progress in the event of hardware delays or 
the need to deliver testbed systems. Further benefits for 
Linux are listed in Table 3. 

Table 3: Advantages of Linux Operating System in 
a Flight Software Environment 

Features Benefits 

Standard 
Development 
Toolchain 

A larger developer community makes it easier 
to find/train expert users.   
A larger user-base provides more stable and 
feature-rich implementations. 

Standard 
Applications 

Linux provides hundreds of available tools 
whose implementation has been verified over 
decades of use in dozens of industries. 
Data compression (gzip, tar, compress) 
Flash File Systems (JFFS, JFFS2) 
Scheduling algorithms (cron) 
Data manipulation (sed/awk/perl/python) 
Scripting (sh, csh, bash, tcsh, etc…) 
The modular nature of these tools enables a 
modular (and responsive) architecture for the 
flight code that uses them. 

Optional Real-
Time 

Real-time tasks execute in real-time   
1553 bus drivers exist for real-time Linux. 
Non-real-time tasks may also be implemented 
There are many non-real-time tasks in a given 
flight software application (data manipulation, 
flash activity) 
The ability to run some tasks outside of the 
real-time system allows for use of advanced 
tools/languages. 

Advanced 
Development and 
Testing 

Software development can be started without 
flight hardware 
Linux can be installed on a desktop or laptop 
PC and provide the same tool support as that 
which will run on the flight hardware. 
Significant debugging and unit testing can be 
accomplished on development machines. 
Testbeds can be constructed immediately for 
non-real-time testing 
A majority of code validation is algorithm 
correctness which can be tested independent of 
real-time capabilities. 
Peripheral hardware emulation easier using 
Linux’s modular interface architecture. 

Technology 
Infusion 

Algorithms from other industries are more 
easily incorporated into a modern software 
development environment. 
Protocol security projects  
Modern (C++, Java, Perl, etc…) 
implementations of domain algorithms can be 
more easily ported. 
Incorporation of feature-similar hardware 
Linux device-driver model provides for 
hardware upgrades (even across 
manufacturers) with little or no core code 
changes. 
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These benefits both reduce development schedule and 
development cost. Standardized, free development tools 
reduce training and support costs.  Standardized, free 
utilities remove the need to design, implement, and test 
important capabilities in the software system (persistent 
storage, compression).  The ability to develop and test 
non-real-time software on very fast and inexpensive 
Linux desktop and laptop computers will save money 
when developing testbeds. Even real-time software can 
be validated up to but excluding its real-time 
constraints.  Finally, the ability to selectively upgrade 
heavily modularized system components greatly 
reduces regression testing efforts. Operating system 
selection (and the utilities provided by that operating 
system) is an extremely significant driver of any 
software effort.  

PROJECT CONFIGURATION 

Project Team 
The IRAD project team consists of a range of personnel 
with varying amounts of Linux and flight software 
experience.  All of the participants have experience on 
at least one JHU/APL mission with some having 
developed software for several spacecraft.  
Additionally, the project team has varying ranges of 
Linux experience from none to extensive.  This wide 
range of backgrounds enables a wide range of insight.   
Extensive flight software experience helps to anchor 
ideas in the reality of flight software while more Linux 
experience provides insight into innovative methods for 

flight software operation. 

Hardware Platform 
As seen in Table 1, the latest JHU/APL spacecraft use 
Mongoose and RAD6000 processors with future 
missions in considering the use the RAD750 processor.  
These processors, even as a non-rad hardened 
commercial single board computer (SBC), are too 
costly to be purchased on small IRAD funds.  Hence, 
we needed an equivalent, but less expensive, board for 
our software development research.  We selected the 
MCP750 SBC for this purpose as it has been used for 
other software prototyping at both JHU/APL, the 
NASA Jet Propulsion Laboratory, and the NASA 
Goddard Spaceflight Center.  To continue minimizing 
costs we made our first foray into on-line auctions and 
acquired additional boards via eBay.  Ultimately, the 
department procured six networked boards for general 
development. 

The MCP750 SBC contains the MPC750 chip, which 
has a PowerPC architecture similar to the RAD750 
developed. As such, it provides a reasonable facsimile 
of flight-ready hardware, albeit with a higher clock 
speed.  The MCP750 has serial and Ethernet 
connections, on-board flash memory, and a PMC slot.    
MCP750 hardware features are shown in Figure 2.  
Developers can configure the MCP750 boards to boot 
using multiple methods, including booting directly to an 
onboard debugger and booting over an Ethernet 
network.  

 
Figure 2: MCP750 block diagram3
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Software Development 
Throughout early development, code images for the 
MCP750 were loaded over an Ethernet network.  We 
found it necessary to initially boot the MCP750 into its 
debugging configuration in order to set various network 
variables. Once an initial test was performed to ensure 
connectivity to a Linux workstation, the board was 
reconfigured to perform a network boot via the tftp 
protocol.  This differs from our past flight software 
development where either the operating system kernel 
was compiled directly into the software image or was 
available in EEPROM.  Loading the kernel in this 
fashion is an improvement over our past methods, 
although it is not unique to the Linux platform. 

To boot, the SBC retrieves the Linux kernel from a 
server, stores the kernel in RAM, and jumps to the 
initial command to boot.  During the startup process, 
the SBC mounts two directories from the server:   

• The root directory used in the Linux 
distribution. 

• A directory containing development code and 
executables.   

This type of directory mounting is unacceptable in a 
deployed environment, but for a development 
configuration it simplifies code creation.  In this 
situation, we deviated from our “test as we fly” 
approach to software development.  Our development 
turnaround time was greatly decreased by this more 
efficient development boot process. 

Developers login directly to the SBCs as if they were 
standard Linux workstations -- there is no discernible 
lag in executing code in this fashion.  This is in contrast 
to significantly longer image load times typically seen 
in a flight software development environment.   

As stated previously, our spacecraft computers operate 
at very slow clock speeds.  The MCP750 boards operate 
much faster (233 MHz to 367 MHz).  Unlike the 
commercial flight boards, we cannot clock down the 
MCP750 to replicate a realistic speed.  As a result, 
timings and other metrics that we observe with the 
board need to be scaled mathematically to the rates seen 
on typical flight software.  This is a disadvantage as our 
past flight experience has shown these results can have 
a margin of error significant enough that it can impact 
successful deployment of software developed on an 
alternate platform. 

COTS Software 
A board support package (BSP) is a set of software 
customized for a particular hardware board and a 

particular operating system.  It contains functionality 
used to operate critical board devices required by the 
operating system to boot the computer.  Running Linux 
on an MCP750 requires a customized BSP.  The BSP 
must provide driver support for all utilized devices on 
the MCP750.  Constructing a BSP for Linux on the 
MCP750 is outside the scope of our project.  As such, 
we use a commercial BSP. 

The core operating system used by both the runtime and 
development environments of this project is the 
RTLinux Pro (RTL).  RTL was puschased from Finite 
State Machine Laboratories (FSM) which has since sold 
its product to Wind River Systems.  RTL is a realtime 
scheduling kernel which hosts a non-realtime operating 
system (either a Linux or BSD variant) as the lowest 
priority thread in the system.  We use RTL to host a 
Fedora Core 4 distribution for development and an 
FSM Carrier-Grade Linux for the MCP750 target.  We 
installed RTL on two separate machines already 
running Fedora Core 4:  One containing an i386 tool 
chain and one containing a PowerPC tool chain.  

Environment Familiarity 
One of the goals of the project was to demonstrate 
distributed development with the Linux environment.  
To that end, we use several heterogeneous development 
environments when developing code for this project: 

• A Linux (Ubuntu) development desktop in an 
office physically separate from the project 
laboratory, but behind the JHU/APL firewall. 

• A Linux laptop connecting to the JHU/APL 
network over a VPN connection. 

• A Windows machine using a GUI-based IDE 
for code generation and directory mounting to 
a Linux development workstation in the 
project lab. 

• Directly compiling using Linux development 
workstations within the project lab. 

In all cases, the development team uses a variety of 
familiar development tools in familiar development 
environments with their native office operating systems 
to generate code in whichever manner is most efficient 
for them.  Different members of the development team 
preferred different methods of code development.  For 
instance, we continue to trade opinions on the benefit of 
command line based code development versus 
integrated development environment (IDE) 
development and whether it is better to remotely log in 
to a system or to have everyone running their own 
version of Linux locally. We established a development 
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system which allowed everyone to work using the tools 
and methods of their preference, which was an 
improvement over past development environments.  
The transfer of this code to a configuration-controlled 
cross-compilation machine poses no undue burden on 
development efforts and has been received as a 
welcome solution to preserving individual compiler and 
IDE preferences. This experience simulates the 
distributed development model illustrated in Figure 3. 

Cross-Compilation 
To perform an initial test of cross-compilation, we 
ported a suite of space network protocols primarily 
developed by the NASA Jet Propulsion Laboratory with 
additional code developed by JHU/APL.  This port was 
only for the non-realtime aspect of RTL.  Cross-
compiling this code involved using the PowerPC tool 
chain for compilation instead of the i386 tool chain.  
Once compiled, the software was loaded to the 
MCP750 target and executed without issue.  We have 
also cross-compiled other applications which either also 
had no issues or only required minor configuration 
tweaks.  While not a comprehensive experiment, the 
strength of being able to cross compile with little or no 
effort cannot be emphasized enough.  One of the major 
costs in flight software development is to ensure that 
the software can operate correctly on its delivered 
platform.  While we have previously developed some 
code on high-powered development platforms, we still 
had to port it to more resource-contrained runtime 
target platforms.  These porting efforts invariable lead 
to issues such as operating system compatibility or the 

need to reconfigure the code to fit within a monolithic 
code image.  With Linux on both the development 
platform and the target, these issues are diminished to 
those rooted in hardware differences (such as 
differences in CPU speed, available RAM, and 
available peripherals).   

 
Figure 3: A heterogeneous development environment 

Runtime Target 
The MCP750 SBCs were configured to boot over a 
network interface.  The initial boot configuration 
required one-time modifications such as ensuring that 
the realtime clock was running and that the system 
could boot using PREP files.  

Connectivity 
There have been no difficulties communicating between 
the target and development platforms using Ethernet, 
serial cabling, and NFS mounts.   

LINUX PERFORMANCE 
There are three performance areas identified as 
important to the proper technical assessment of Linux: 
image loading, software jitter/drift, and interface 
performance. 

Image Loads 
Loading new software to the target, including receiving 
the operating system kernel over a network file system  
mount, remains significantly faster than loading similar 
kernel/software bundles in our other realtime operating 
systems.  The ability to load new software executables 
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to an already running system without requiring reboot 
has sped development times significantly.  

Once images have been loaded to the target, the boot 
time is approximately 60 seconds, with 40 seconds 
devoted to hardware verification and network loading.  
The actual Linux boot time is 20 seconds. A 20 second 
Linux boot time is considered very slow if not 
unacceptable for a flight system reset.  However, we 
have not yet customized the Linux distribution to 
remove unneeded processes (such as the web server).  
Once unnecessary processes are removed from the 
distribution, we will readdress the issue of boot time. 

Software Jitter and Drift 
Jitter measurements are measurements of time 
representing variations in execution intervals for an 
otherwise strictly periodic task.  For example, a task 
may execute every 10 milliseconds, +/- 1ms, where 
1ms is the jitter measurement of the runtime 
environment.  Jitter is expected in any system and has 
no consequence when it exists within tolerances 
specified by the applications running on the system. 

Drift measurements are measurements of time over 
time that represents an accumulating delay in the 
execution of an otherwise periodic task.  For example, a 
task that nominally should execute at 5ms, 10ms, 15ms, 
20ms, etc… but actually executes at 5ms, 11ms, 17ms, 
23ms could be considered to have a drift of 1ms per 
5ms.  Due to the cumulative nature of drift, no 
discernable measurement is acceptable in a real-time 
system. 

All software that has been cross compiled has run with 
approximately similar timing between the development 
and target environments.  There has been no 
observation of jitter greater than a few milliseconds., 
which we feel is satisfactory for an untuned 
demonstration system There has been no measured drift 
on the MCP750. 

This is a significant topic and an area of focused future 
research as more flight-appropriate hardware resources 
are available. 

Interface Performance 
This effort successfully uses Ethernet, serial, and PCI 
interfaces. Traffic over these interfaces has not 
introduced any measured delay in realtime scheduling. 

Framework 
A defined software framework is recommended for the 
rapid adoption of a realtime Linux solution for flight 
software.  Beyond technical feasibility, programming 

realtime applications using RTL requires experience to 
use effectively.  The structure of programs in an RTL 
development environment is significantly different than 
the structure of programs in traditional flight operating 
systems such as VxWorks.   

An example of such a difference is RTL’s use of 
variable-length messaging FIFOs verses fixed-sized 
messaging queues provided by VxWorks.  Variable 
length messages conserve bandwidth but require 
additional protocols to detect message boundaries.   
This additional software is not complex but does impact 
software architecture. Throughout the technical 
assessment we discovered several such differences 
between RTL and the more familiar VxWorks 
operating system.   This led us to observe an interesting 
paradox.  In coming into the project, we felt one of the 
primary strengths of using Linux was that developers 
would have the opportunity to use an operating system 
with which they were intimately familiar.  We felt this 
was particularly true of recent graduates.  However, in 
the cases were we have developers from several past 
spacecraft, they were instead intimately familiar with 
the operating systems of those spacecraft such as 
VxWorks and Nucleus and not as much with a desktop 
operating system such as Linux. 

OUTSTANDING AND UNRESOLVED ISSUES 
Although the internally funded project is complete, we 
received additional funding from the Naval Research 
Laboratory to further study the application of Linux and 
to develop a flight architecture that plays to the 
strengths of Linux.  Upon completion of that project we 
intend to publish further results and to also resolve 
some of the issues we found during our internally 
funded project.  This includes, but is not limited to, the 
following list. 

Real-time Versus Non-Realtime 
One of the first requirements we had for this project 
was that we definitely needed a hard real-time operating 
system.  The software we write is critical software and 
we have quite a large number of timing constraints in a 
command and data handling platform.  However, as we 
began to further analyze our architecture, it became 
apparent that there weren’t as many hard real-time 
constraints as we first believed and, perhaps, there 
aren’t really any that required a hard real-time system.  
Most of timing constraints are imposed by commanding 
and telemetry hardware interrupts and interfaces such 
as the MIL-STD-1553B.  That brought us the question 
of whether we achieve a solid system that would react 
to these interfaces without a hard real-time system.  
Without this requirement more options are available for 
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Linux distributions and reduce the need for customized 
solutions such as the RTL.   

Packages 
Among the first advantages we saw in using Linux was 
the plentiful supply of open source solutions to 
problems in our flight architectures.  Our thought was 
that it would be straightforward to take those solutions 
and apply them quickly and easily to our architecture.  
The JPL networking protocol software mentioned 
earlier is an excellent example.  This is a set of software 
that provides a complete suite of software for 
interplanetary networking and easily cross compiled for 
the MCP750s.  With this start, we were optimistic that 
we would be able to do the same for other software 
packages and began the process of downloading 
software for our boards.  Unfortunately, we didn’t fully 
grasp the extent of code of some these software 
packages.  Rightly, many open source packages are 
designed for many platforms, contain an array of 
features, and are dependent upon already loaded 
software.  This is a good solution for a workstation, but 
applying this architecture to an embedded application 
with very limited memory and a slow processor many 
times is not feasible.  While we were able to run some 
applications, we were disappointed that we were not 
able to achieve success with the large number we had 
hoped. An initial effort to provide leaner 
implementations of common utilities would be a benefit 
to any flight-based Linux community. 

Reduction of Distribution 
In the future, perhaps, spacecraft will have interfaces, 
web servers, and other workstation applications, but no 
need for these features has been identified to date.  
Support of such unused features is a major contributor 
to code bloat..  Spacecraft have limited resources for 
both storage of an application (and operating system), 
memory, and processor speed.  When we run our Linux 
systems on a workstation in our lab, we have some non-
critical processes using system resources, but the 
performance impact is negligible. This is not the case 
on a spacecraft which must use any spare CPU cycles 
for data processing (such as large image compression).  
Hence, either a distribution must be pared down or a 
distribution must only be built from the ground up.  We 
hope the address which avenue is best in our current 
NRL project. 

Flight Readiness 
All new flight software eventually reaches the point of 
asking about its flight readiness.  Of course, Linux is no 
different and while it has flown on spacecraft, we are 
still evaluating its use for future JHU/APL missions.  

CONCLUSION 
Our experience with the software and hardware 
resources allocated to this project has been very 
positive.  Hardware integration into the project lab, and 
its subsequent configuration to Linux, occurred with 
minimal difficulty.  The homogenization of the run-
time and development environment has been a 
complete success.  The development environment is 
easy to use and transitions seamlessly to the runtime 
target platform.  This has enabled rapid development of 
test software for this project.  A BSP and software 
architecture are necessary to use RTL on new target 
platforms.  With these tools, follow-on efforts will see 
similar increases in software productivity, adaptability, 
and re-use. 
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