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1 Introduction

The AdS/CFT correspondence [1] has been the most powerful tool to understand quantum

nature of gravity. Nevertheless, we still do not understand its basic mechanism nor how

spacetime in gravity emerges from conformal field theories (CFTs). Recently, possible

candidates which might explain the basic mechanism of the AdS/CFT correspondence have

begun to be actively investigated. Among them, a very attractive candidate is the idea

of emergent spacetimes from tensor networks, as first conjectured by Swingle [2], for the

description of CFT states in terms of MERA (multi-scale entanglement renormalization

ansatz) [3, 4].1 One strong evidence for this correspondence between holography and

tensor networks, apart from the symmetry considerations, is the fact that the holographic

entanglement entropy formula [15, 16] can naturally be explained in this approach by

counting the number of entangling links in the networks.

However, up to now, most arguments in these directions have been limited to studies

of discretized lattice models so that we can apply the idea of tensor networks directly.

Therefore, they at most serve as toy models of AdS/CFT as they do not describe the genuine

CFTs which are dual to the AdS gravity (though they provide us with deep insights of

holographic principle such as quantum error corrections [10, 17, 18]). Clearly, it is then very

important to develop a continuous analogue of tensor networks related to AdS/CFT. There

already exists a formulation called cMERA (continuous MERA) [5], whose connection to

1For recent developments we would like to ask readers to refer to e.g. [5–14].
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AdS/CFT has been explored in [7–9, 12, 14, 19]. Nevertheless, explicit formulations of

cMERA are so far only available for free field theories [5] (see [7, 8, 20, 21] for various

studies) which is the opposite regime from the strongly interacting CFTs which possess

gravity duals, the so-called holographic CFTs. A formal construction of cMERA for general

CFTs can be found in [14, 19].

The main aim of this work is to introduce and explore a new approach which realizes

a continuous limit of tensor networks and allows for field theoretic computations. In our

preceding letter version [22], we gave a short summary of our idea and its application to

two dimensional (2D) CFTs. Essentially, we reformulate the conjectured relation between

tensor networks and AdS/CFT from the viewpoint of Euclidean path-integrals. Indeed,

the method called tensor network renormalization (TNR) [23, 24] shows that an Euclidean

path-integral computation of a ground state wave function can be regarded as a tensor

network description of MERA. In this argument, one first discretizes the path-integral into

a lattice version and rewrites it as a tensor network. Then, an optimization by contracting

tensors and removing unnecessary lattice sites, finally yields the MERA network. The

‘optimization’ here refers to some efficient numerical algorithm.

In our approach we will reformulate this idea, but in such a way that we remain working

with the Euclidean path-integral. More precisely, we perform the optimization by changing

the structure (or geometry) of lattice regularization. The first attempt in this direction

was made in [14] by introducing a position dependent UV cut off. In this work, we present

a systematic formulation of optimization by introducing a metric on which we perform the

path-integral. The scaling down of this metric corresponds to the optimization assuming

that there is a lattice site on a unit area cell.

To evaluate the amount of optimization we made, we consider a functional IΨ of the

metric for each quantum state |Ψ〉. This functional, which might appropriately be called

“Path-integral Complexity”, describes the size of our path-integration and corresponds to

the computational complexity in the equivalent tensor network description.2 In 2D CFTs,

we can identify this functional IΨ with the Liouville action. The optimization procedure

is then completed by minimizing this complexity functional IΨ, and we argue that the

minimum value of IΨ is a candidate for complexity of a quantum state in CFTs. Below,

we will perform a systematic analysis of our complexity functional for various states in 2D

CFTs, lower dimensional example of NAdS2/CFT1 (SYK) as well as in higher dimensions,

where we will find an interesting connection to the gravity action proposal [32, 33].

Our new path-integral approach has a number of advantages. Firstly, we can directly

deal with any CFTs, including holographic ones, as opposed to tensor network approaches

which rely on lattice models of quantum spins. Secondly, in the tensor network description

there is a subtle issue that the MERA network can also be interpreted as a de Sitter space [6,

11], while the refined tensor networks given in [10, 13] are argued to describe Euclidean

2The relevance of computational complexity in holography was recently pointed out and holographic com-

plexity was conjectured to be the volume of maximal time slice in gravity duals [25, 26] (for recent progresses

see e.g. [27–31]) and the gravity action inWheeler-DeWitt patch in [32, 33] (for recent progresses see e.g. [34–

42]). We would also like to mention that for CFTs, the behavior of the complexity is very similar to the quan-

tum information metric under marginal deformations as pointed out in [43] (refer to [27, 31, 44] for recent de-

velopments), where the metric is argued to be well approximated by the volume of maximal time slice in AdS.
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hyperbolic spaces. In our Euclidean approach we can avoid this issue and explicitly verify

that the emergent space coincides with a hyperbolic space, i.e. the time slice of AdS.

This paper is organized as follows: in section 2, we present our formulation of an opti-

mization of Euclidean path-integrals in CFTs and relate to the analysis of computational

complexity and tensor network renormalization. We will also start with an explicit example

for a vacuum of a 2D CFT. In section 3, we will investigate the optimization procedure

in 2D CFTs for more general states such as finite temperature states and primary states.

In section 4, we apply our optimization procedure to reduced density matrices. We show

that the holographic entanglement entropy and entanglement wedge naturally arise from

this computation. In section 5, we will study the energy stress tensor of our 2D CFTs in

the optimization analysis. In section 6, we explicitly evaluate the Liouville action for the

optimized solutions and point out that, due to the conformal anomaly, we need to consider

a difference of Liouville action, which corresponds to a relative complexity. In section 7,

we apply our optimization to one dimensional nearly conformal quantum mechanics like

SYK models. In section 8, propose and provide various support for generalization of our

optimization to higher dimensional CFTs. We also compare our results with existing liter-

ature of holographic complexity. In section 9, we discuss the time evolution of thermo-field

dynamics in 2D CFTs as an example of time-dependent states. Finally, in section 10 we

summarize our findings and conclude. In appendix A, we comment on the connection

of our approach to an earlier work on the relation between the Liouville theory and 3D

gravity. In appendix B, we give a brief summary of the results on holographic complexity

in literature, focusing on CFT vacuum states. In appendix C, we study the properties of

complexity functional in the presence of higher derivatives and in appendix D, we discuss

connections between entanglement entropy and Liouville field.

2 Formulation of the path-integral optimization

Here we introduce our idea of optimization of Euclidean path-integrals, which was first

presented in our short letter [22]. We consider a discretized version of Euclidean path-

integral which produces a quantum wave functional in QFTs, having in mind a numerical

computation of path-integrals. The UV cut off (lattice constant) is written as ǫ throughout

this paper. The optimization here means the most efficient procedure to perform the path-

integral in its discretized form.3 In other words, it is the most efficient algorithm to

numerically perform the path-integrals which leads to the correct wave functional.

2.1 General formulation

We can express the ground state wave functional in a d dimensional QFT on Rd in terms

of a Euclidean path-integral as follows:

Ψ0[ϕ̃(x)] =

∫





∏

x

∏

ǫ≤z<∞
Dϕ(z, x)



 e−SQFT (ϕ) ×
∏

x

δ(ϕ(ǫ, x)− ϕ̃(x)). (2.1)

3Please distinguish our optimization from other totally different procedures such as the optimization

of parameter of tensors in tensor networks. Instead, as we will see later in this section, our optimization

changes the tensor network structures as in tensor network renormalization [23, 24].
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Figure 1. Computation of a ground state wave function from Euclidean path-integral (left) and its

optimization (middle), which is described by a hyperbolic geometry. The right figure schematically

shows its tensor network expression.

Here we write the coordinate of Rd as (z, x), where −z(≡ τ) is the Euclidean time and x

is the d− 1 dimensional space coordinate of Rd−1. We set z = ǫ at the final time when the

path-integral is completed for our convenience. However, we can shift this value as we like

without changing our results as is clear from the time translational invariance. Now we

perform our discretization of path-integral in terms of the lattice constant ǫ. We start with

the square lattice discretization as depicted in the left picture of figure 1. To optimize the

path-integral we can omit any unnecessary lattice sites from our evaluation. Since only the

low energy mode k ≪ 1/τ survives after the path-integral for the period τ , we can estimate

that we can combine O(τ/ǫ) lattice sites into one site without losing so much accuracy. It

is then clear that the optimization via this coarse-graining procedure leads to the middle

picture in figure 1, which coincides with the hyperbolic plane.

One useful way to systematically quantify such coarse-graining procedures is to intro-

duce a metric on the d dimensional space (z, x) (on which the path integration is performed)

such that we arrange one lattice site for a unit area. In this rule, we can write the original

flat space metric before the optimization as follows:

ds2 =
1

ǫ2
·
(

dz2 +
d−1
∑

i=1

dxidxi

)

. (2.2)

Consider now the optimization procedure in this metric formulation. The basic rule is

to require that the optimized wave functional Ψopt is proportional to the correct ground

state wave function (i.e. the one (2.1) for the metric (2.2) ) even after the optimization

i.e. Ψopt[ϕ(x)] ∝ Ψ0[ϕ(x)]. The optimization can then be realized by modifying the

background metric for the path-integration

ds2 = gzz(z, x)dz
2 + gij(z, x)dx

idxj + 2gzj(z, x)dzdx
j ,

gzz(z = ǫ, x) = ǫ−2, gij(z = ǫ, x) = δij · ǫ−2, giz(z = ǫ, x) = 0,
(2.3)

where the last constraints argue that the UV regularization agrees with the original

– 4 –
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one (2.2) at the end of the path-integration (as we need to reproduce the correct wave

functional after the optimization).

In conformal field theories, because there are no coupling RG flows, we should be able

to complete the optimization only changing the background metric as in (2.3). However,

in non-conformal field theories, actually we need to modify external fields J (such as mass

parameter or other couplings of various interactions) in a position dependent way J(z, x).

The same is true for CFT states in the presence of external fields.

To finalize the optimization procedure, we should provide a sufficient condition for the

metric to be “maximally” optimized. Thus, we assume that for each quantum state |Ψ〉,
there exists a functional IΨ[gab(z, x)] whose minimization with respect to the metric gab
gives such maximal optimization.4 In this way, once we know the functional IΨ, we can

finalize our optimization procedure. As we will see shortly, in 2D CFTs we can explicit

identify this functional IΨ[gab(z, x)].

2.2 Connection to computational complexity

At an intuitive level, the optimization corresponds to minimizing the number of path-

integral operations in the discretized description. As we will explain in subsection 2.4, we

can map this discretized Euclidean path-integration into a tensor network computation.

Tensor networks are a graphical description of wave functionals in quantum many-body

systems in terms of networks of quantum entanglement (see e.g. [45, 46]). The optimization

of tensor network was introduced in [23, 24], called tensor network renormalization. We are

now considering a path-integral counterpart of the same optimization here. In the tensor

network description, the optimization corresponds to minimizing the number of tensors.

We can naturally identify this minimized number as a computational complexity of the

quantum state we are looking at.

Let us briefly review the relevant facts about the computational complexity of a quan-

tum state (for example, see [47–50]). In quantum information theory, a quantum state

made of qubits can be constructed by a sequence of simple unitary operations acting on a

simple reference state. The sequence is called a quantum circuit and the unitary operations

are called quantum gates. As a simple choice, we use 2-qubit gates for simple unitary op-

erations and a direct product state for a simple state which has no real space entanglement

(figure 2). The quantum circuit (gate) complexity of a quantum state is then defined as a

minimal number of the quantum gates needed to create the state starting from a reference

state. Because the quantum circuit is a model of quantum computation, here we refer to

the complexity as the computational complexity.5

Based on the above considerations as well as the evidence provided in the following

section, we are naturally lead to a conjecture that a computational complexity CΨ of a

state |Ψ〉 is obtained from the functional introduced before by a minimization:

CΨ = Mingab(z,x) [IΨ[gab(z, x)]] . (2.4)

4In non-conformal field theories or in the presence of external fields in CFTs, this functional depends on

gauge fields for global currents and scalar fields etc. as I [gab(z, x), Aa(z, x), J(z, x), . . .].
5The relevance of computational complexity in AdS/CFT was recently pointed out and holographic

computations of complexity have been proposed in [25, 26, 32, 33].
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Figure 2. A quantum circuit representation for a quantum state in a qubit system. A quantum

state |Ψ〉 can be constructed by simple local (2-qubit) unitary operations from a simple reference

state, for example, a product state |0〉|0〉|0〉 · · · .

In other words, the functional IΨ[gab(z, x)] for any gab(z, x) estimates the amount of com-

plexity for that network corresponding to the (partially optimized) path-integral on the

space with the specified metric. Understanding of the properties of this complexity func-

tional IΨ, which might appropriately be called “Path-integral Complexity”, is the central

aim of this work. As we will soon see, this functional will be closely connected to the

mechanism of emergent space in the AdS/CFT.

2.3 Optimization of vacuum states in 2D CFTs

Let us first see how the optimization procedure works for vacuum states in 2D CFTs. We

will study more general states later in later sections.

In 2D CFTs, we can always make the general metric into the diagonal form via a

coordinate transformation. Thus the optimization is performed in the following ansatz:

ds2 = e2φ(z,x)(dz2 + dx2),

e2φ(z=ǫ,x) = 1/ǫ2,
(2.5)

where the second condition specifies the boundary condition so that the discretization is

fine-grained when we read off the wave function after the full path-integration. Obviously

this is a special example of the ansatz (2.3). Thus the metric is characterized by the Weyl

scaling function φ(z, x).

Remarkably, in 2D CFTs, we know how the wave function changes under such a

local Weyl transformation. Keeping the universal UV cut off ǫ, the measure of the path-

integrations of quantum fields in the CFT changes under the Weyl rescaling [51]:

[Dϕ]gab=e2φδab
= eSL[φ]−SL[0] · [Dϕ]gab=δab

, (2.6)

where SL[φ] is the Liouville action6 [52] (see also [51, 53])

SL[φ] =
c

24π

∫ ∞

−∞
dx

∫ ∞

ǫ
dz
[

(∂xφ)
2 + (∂zφ)

2 + µe2φ
]

. (2.7)

6Here we take the reference metric is flat ds2 = dz2 + dx2. Later in section (6), we will present the

Liouville action for a more general reference metric.

– 6 –
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The constant c is the central charge of the 2D CFT we consider. The kinetic term in

SL represents the conformal anomaly and the potential term arises the UV regularization

which manifestly breaks the Weyl invariance. In our treatment, we simply set µ = 1 below

by suitable shift of φ.

Therefore, the wave functional Ψgab=e2φδab
(ϕ̃(x)) obtained from the Euclidean path-

integral for the metric (2.5) is proportional to the one Ψgab=δab(ϕ̃(x)) for the flat metric (2.2)

thanks to the conformal invariance. The proportionality coefficient is given by the Liouville

action as follows7

Ψgab=e2φδab
(ϕ̃(x)) = eSL[φ]−SL[0] ·Ψgab=δab(ϕ̃(x)). (2.8)

Let us turn to the optimization procedure. As proposed in [22], we argue that the

optimization is equivalent to minimizing the normalization factor eSL[φ] of the wave func-

tional, or equally the complexity functional IΨ0 for the vacuum state |Ψ0〉 in 2D CFTs,

can be identified as follows8

IΨ0 [φ(z, x)] = SL[φ(z, x)]. (2.9)

The intuitive reason is that this factor is expected to be proportional to the number of

repetition of the same operation (i.e. the path-integral in one site). In 2D CFTs, we believe

this is only one quantity which we can come up with to measure the size of path-integration.

Indeed it is proportional to the central charge, which characterizes the degrees of freedom.

Thus the optimization can be completed by requiring the equation of motion of Liou-

ville action SL and this reads

4∂w∂w̄φ = e2φ, (2.10)

where we introduced w = z + ix and w̄ = z − ix.

With the boundary condition e2φ(z=ǫ,x) = ǫ−2, we can easily find the suitable solution

to (2.10):

e2φ =
4

(w + w̄)2
= z−2, (2.11)

which leads to the hyperbolic plane metric

ds2 =
dz2 + dx2

z2
. (2.12)

This justifies the heuristic argument to derive a hyperbolic plane H2 in figure 1.

Indeed, this hyperbolic metric is the minimum of SL with the boundary condition. To

see this, we rewrite

SL =
c

24π

∫

dxdz
[

(∂xφ)
2 + (∂zφ+ eφ)2

]

− c

12π

∫

dx[eφ]z=∞
z=ǫ ≥ cL

12πǫ
, (2.13)

7Here we compare the optimized metric gab = e2φδab with gab = δab. To be exact we need to take

the latter to be the original one (2.2) i.e. gab = ǫ−2δab. However the different is just a constant factor

multiplication and does not affect our arguments. So we simply ignore this.
8In two dimensional CFTs, as we will explain in section 6, due to the conformal anomaly we actually

need to define a relative complexity by the difference of the Liouville action between two different metrics.

However this does not change out argument in this section.
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where L ≡
∫

dx is the length of space direction and we assume the IR behavior e2φ(z=∞,x) =

0. The final inequality in (2.13) is saturated if and only if

∂xφ = ∂zφ+ eφ = 0, (2.14)

and this leads to the solution (2.11).

In this way, we observe that the time slice of AdS3 dual to the 2D CFT vacuum

emerges after the optimization. We will see more evidences throughout this paper that

geometries obtained from our optimization coincides with the time slice in AdS/CFT.

This is consistent with the idea of tensor network description of AdS/CFT and can be

regarded as its continuous version. We would like to emphasize that the above argument

only depends on the central charge c of the 2D CFT we consider. Therefore this should be

applied to both free and interacting CFTs including holographic ones.

It is also interesting to note that the optimized value of SL, i.e. our complexity CΨ0 ,

scales linearly with respect to the momentum cut off ǫ−1 and the central charge c as

CΨ0 = Minφ[SL[φ]] =
cL

12πǫ
, (2.15)

and this qualitatively agrees with the behavior of the computational complexity [25, 26]

of a CFT ground state and the quantum information metric [43] for the same state, both

of which are given by the volume of time slice of AdS. In this relation, our minimization

of SL nicely corresponds to the optimization of the quantum circuits which is needed to

define the complexity.

2.4 Tensor network renormalization and optimization

As argued in our preceding letter [22] (see also [14]), our identification of the Liouville action

with a complexity i.e. (2.9) is partly motivated by an interesting connection between the

tensor network renormalization (TNR) [23, 24] and our optimization procedure of Euclidean

path-integral. This is because the number of tensors in TNR is an estimation of complexity

and the Liouville action has a desired property in this sense, e.g. it is obvious that the

Liouville potential term
∫

e2φ (i.e. the volume) measures the number of unitary tensors in

TNR. Soon later this argument was sharpened in the quite recent paper [56] where the

number of isometries is argued to explain the kinetic term
∫

(∂φ)2 in Liouville theory.

An Euclidean path-integral on a semi-infinite plane (or cylinder) with a boundary

condition on the edge gives us a ground state wave functional in a quantum system. The

path-integral can be approximately described by a tensor network which is a collection of

tensors contracted with each other. Using the Suzuki-Torotter decomposition [54, 55] and

the singular value decomposition of the tensors, we can rewrite the Euclidean path-integral

into a tensor network on a square lattice (figure 3). Tensor network renormalization (TNR)

is a procedure to reorganize the tensors to ones on a coarser lattice by inserting projectors

(isometries) and unitaries (disentanglers) with removing short-range entanglement.9 This

is a step of TNR (figure 4). Repeating this procedure, we can generate a RG flow properly

9Note that by adding a dummy or ancilla state |0〉 we can equivalently regard an isometry as a unitary.
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Figure 3. The Euclidean path integral for the ground state wave functional Ψ[ϕ̃(x)] can be

approximately described by a tensor network on a square lattice.

UV bdy 1 step of TNR Repeat the steps 

MERA  (+IR tensors)

Figure 4. The tensor network renormalization (TNR) gradually makes the coarse-grained tensor

network with removing short-range entanglement. From the UV boundary, isometries (coarse-

graining) and unitaries (disentanglers) accumulate and the MERA network grows with the TNR

steps.

and end up with a tensor network at the IR fixed point. For the ground state wave

functional in a CFT, it ends up with a MERA (Multi-scale Entanglement Renormalization

Ansatz) network made of isometries and disentanglers. The MERA network clearly contains

smaller numbers of the tensors than ones in the tensor network on the original square lattice

before the coarse-graing. In this sense, this MERA network is an optimal tensor network

to approximately describe the Euclidean path-integral.

Our optimization procedure is motivated by TNR. In our procedure (figure 1), the

tensor network on the square lattice corresponds to the Euclidean path-integral on flat

space with a UV cutoff ǫ. Changing the tensor network with inserting isometries and

entanglers corresponds to deforming the back-ground metric for the path-integral. And

the MERA network, which is the tensor network after the TNR procedure, approximately

corresponds to the optimized path-integral.

Actually, it is not difficult to estimate the amount of complexity for each tensor network

during the TNR optimization procedure, by identifying the complexity with the number

of tensors, both isometries (coarse-graining) and unitaries (disentanglers). For simplicity,

consider an Euclidean path-integral for the ground state wave function in a 2d CFT, which

is performed on the upper half plane (ǫ < z < ∞,−∞ < x < +∞). First we consider
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s-th layer

(s+1)-th layer

MERA layer

Figure 5. The tensor network produced when we have a shift of φ at a specific layer. This also

represents the one step (s-th) contribution in the process of tensor network renormalization, which

finally reaches the MERA network. This corresponds to s−th terms
∫

2
s

ǫ

2s−1ǫ
dz(· · ·) in (2.17).

the original square lattice. Since we suppose that each tensor have unit area, the uniform

metric is given by e2φ(z) = ǫ−2 as in (2.2). Therefore, the total number of tensors, which

are only unitaries, is estimated from the total volume:
∫ ∞

−∞
dx

∫ ∞

ǫ
dz

1

ǫ2
=

∫ ∞

−∞
dx

∫ ∞

ǫ
dze2φ. (2.16)

Then, performing the TNR procedure, the number of the tensors or the square lattice

sites is reduced by the factor (1/2)2 per step. On the other hand, the isometries and

disentanglers accumulate from the UV boundary [23, 24]. Refer to figure 4.

At the k-th step of TNR, the total area changes into

∫ ∞

−∞
dx

∫ ∞

2kǫ
dz

1

(2kǫ)2
+

k
∑

s=1

∫ ∞

−∞
dx

∫ 2sǫ

2s−1ǫ
dz

(

1

(2s−1ǫ) · (2sǫ) +
1

(2sǫ)2

)

. (2.17)

The first term is the contribution from the tensors on the coarser lattice. The second term

is the contribution from the MERA network. For the s-th layer of the MERA network, we

have dxdz/((2s−1ǫ) · (2sǫ)) isometries and dxdz/(2sǫ)2 per unit cell. This contribution is

depicted in figure 5.

This network corresponds to the metric

e2φ =
{ (2kǫ)−2 (z ≥ 2kǫ).

z−2 (z < 2kǫ).
(2.18)

Obviously, the first and third term in (2.17) are approximated by the Liouville potential

integral
∫

e2φ [22]. The second term arises because of the non-zero gradient of φ and is

estimated by the kinetic term
∫

(∂φ)2 [56].

3 Optimizing various states in 2D CFTs

Here we would like to explore optimizations in 2D CFTs for more general quantum states.

First it is useful to remember that the general solutions to the Liouville equation (2.10) is
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well-known (see e.g. [51, 57]):

e2φ =
4A′(w)B′(w̄)

(1−A(w)B(w̄))2
. (3.1)

Note that functions A(w) and B(w̄) describe the degrees of freedom of conformal mappings.

For example, if we choose

A(w) = w, B(w̄) = −1/w̄, (3.2)

then we reproduce the solution for vacuums states (2.11).

3.1 Finite temperature states

Consider a 2D CFT state at a finite temperature T = 1/β. In the thermofield double

description [58], the wave functional is expressed by an Euclidean path-integral on a strip

defined by −β
4 (≡ z1) < z < β

4 (≡ z2) in the Euclidean time direction, more explicitly

Ψ[ϕ̃1(x), ϕ̃2(x)] =

∫







∏

x

∏

−β
4
<z<β

4

Dϕ(z, x)






e−SCFT(ϕ)

×
∏

−∞<x<∞
δ
(

ϕ (z1, x)−ϕ̃1(x)
)

δ
(

ϕ (z2, x)−ϕ̃2(x)
)

.

(3.3)

where ϕ̃1(x) and ϕ̃2(x) are the boundary values for the fields of the CFT (i.e. ϕ̃(x)) at

z = ∓β
4 respectively.

Minimizing the Liouville action SL leads to the solution in (3.2) given by:

A(w) = e
2πiw
β , B(w̄) = −e

2πiw̄
β . (3.4)

This leads to

e2φ =
16π2

β2
e

2πi
β

(w+w̄)

(

1 + e
2πi
β

(w+w̄)
)2 =

4π2

β2
sec2

(

2πz

β

)

. (3.5)

If we perform the following coordinate transformation

tan

(

πz

β

)

= tanh
(ρ

2

)

, (3.6)

then we obtain the metric

ds2 = dρ2 +
4π2

β2
cosh2 ρ dx2, (3.7)

which coincides with the time slice of eternal BTZ black hole (i.e. the Einstein-Rosen

bridge) [58].

– 11 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
7

3.2 CFT on a cylinder and primary states

Now consider 2D CFTs on a cylinder (with the circumference 2π), where the wave func-

tional is defined on a circle |w| = 1 at a fixed Euclidean time. After the optimization

procedure, we obtain the geometry A(w) = w and B(w̄) = w̄ given by

e2φ(w,w̄) =
4

(1− |w|2)2 , (3.8)

which is precisely the Poincare disk and is the solution to (2.10).

Then we consider an excited state given by a primary state |α〉. This is created by

acting a primary operator Oα(w, w̄) with the conformal dimension hα = h̄α at the center

w = w̄ = 0. Its behavior under the Weyl re-scaling is expressed as

O(w, w̄) ∝ e−2hαφ. (3.9)

Thus the dependence of the wave function on φ looks like

Ψgab=e2φδab
(ϕ̃) ≃ eSL · e−2hαφ(0) ·Ψgab=δab(ϕ̃). (3.10)

This shows that the complexity function should be taken to be

Iα[φ(w, w̄)] = SL[φ(w, w̄)]− 2hαφ(0). (3.11)

The equation of motion of Iα leads to

4∂w∂w̄φ− e2φ + 2π(1− a)δ2(w) = 0, (3.12)

where we set

a = 1− 12hα
c

. (3.13)

The solution can be found as

A(w) = wa, B(w̄) = w̄a, (3.14)

which leads to the expression:

e2φ =
4a2

|w|2(1−a)(1− |w|2a)2 . (3.15)

Since the angle of w coordinate is 2π periodic, this geometry has the deficit angle 2π(1−a).
Now we compare this geometry with the time slice of the gravity dual predicted from

AdS3/CFT2. It is given by the conical deficit angle geometry (3.15) with the identification

a =

√

1− 24hα
c

. (3.16)

Thus, the geometry from our optimization (3.13) agrees with the gravity dual (3.16) up to

the first order correction when hα ≪ c, i.e. the case where the back-reaction due to the

point particle is very small.
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It is intriguing to note that if we consider the quantum Liouville theory rather than the

classical one, we find the perfect matching. In the quantum Liouville theory, we introduce

a parameter γ such that c = 1 + 3Q2 and Q ≡ 2
γ + γ. The chiral conformal dimension of

the primary operator e
2β
γ
φ
is given by β(Q−β)

2 . If the central charge is very large so that

the 2D CFT has a classical gravity dual, we find

a ≃ 1− βγ ≃
√

1− 24hα
c

, (3.17)

which indeed agrees with the gravity dual (3.16) even when hα/c is finite.

This agreement may suggest that the actual optimized wave functional is given by a

‘quantum’ optimization defined as follows:

Ψopt[ϕ̃] =

[∫

Dφ(x, z)e−SL[φ] (Ψgab=δab [ϕ̃])
−1

]−1

. (3.18)

If we take the semi-classical approximation when c is large, we reproduce our classical

optimization. It is an important future problem to understand the exact for of the proposal

at the quantum level.

3.3 Liouville equation and 3D AdS gravity

In the above we have seen that the minimizations of Liouville action, which corresponds

to the optimization of Euclidean path-integrals in CFTs, lead to hyperbolic metrics which

fit nicely with canonical time slices of bulk AdS in various setups of AdS3/CFT2. If this

derivation of time slice metric in AdS3 really explains the mechanism of emergence of

AdS in AdS/CFT, it should fit nicely with the dynamics of AdS gravity for the whole 3D

space-time. One natural coordinate system in 3D gravity for our argument is as follows

ds2 = R2
AdS

(

dρ2 + cosh2 ρ · e2φdydȳ
)

. (3.19)

Indeed the Einstein equation Rµν +
2

R2
AdS

gµν = 0 is equivalent to the equation of motion in

the Liouville theory: 4∂y∂ȳφ = e2φ.

It is also useful to remember that connections between Liouville theory and 3D AdS

gravity were discussed in earlier papers [59–66] (refer to [67] for a review). Especially the

direct connection between the equation of motion in the SL(2, R) Chern-Simons gauge

theory description of AdS gravity [68] and that of Liouville theory was found in [61] (see

also closely related arguments [62–65]).

Indeed, we can find a coordinate transformation which maps the metric (3.19) into

the one from [61], where the map gets trivial only in the near boundary limit ρ → ∞.

This shows that we can identify these two appearances of Liouville theory from 3D AdS

gravity by a non-trivial bulk coordinate transformation. We presented the details of this

transformation in the appendix A.

Notice also that we did not fix the overall normalization of the optimized metric

or equally the AdS radius RAdS because in our formulation it depends on the precise

definition of UV cut off. However, we can apply the argument of [14] for the symmetric
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A+
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A
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=
A

Figure 6. The optimization of path-integral for a reduced density matrix. The upper left picture

is the definition of ρA in terms of the path-integral in flat space. This is conformally mapped

into a sphere with a open cut depicted in the lower left picture. The upper right one is the one

after the optimization and is equivalent to a geometry which is obtained by pasting two identical

entanglement wedges along the geodesic (=the half circle) as shown in the lower right picture.

orbifold CFTs and can heuristically argue that RAdS is proportional to the central charge

c. This is deeply connected to the fact that we find the sub AdS scale locality in gravity

duals of holographic CFTs.

4 Reduced density matrices and EE

Consider an optimization of path-integral representation of reduced density matrix ρA in

a two dimensional CFT defined on a plane R2. We simply choose the subsystem A to be

an interval −l ≤ x ≤ l at z(= −τ) = ǫ. ρA is defined from the CFT vacuum by tracing out

the complement of A (the upper left picture in figure 6).

4.1 Optimizing reduced density matrices

The optimization procedure is performed by changing the background metric as in (2.5),

where the boundary condition of φ is imposed around the upper and lower edge of the slit

A. Refer to figure 6 for a sketch of this procedure. The plane R2 is conformally mapped

into a sphere S2. Therefore the optimization is done by shrinking the sphere with an open

cut down to a much smaller one so that the Liouville action is minimized.

To make the analysis clear, let us divide the final manifold into two halves by cutting

along the horizontal line z = 0, denoted by Σ+ and Σ−. The boundary of Σ± consist of

two parts:

∂Σ± = A± ∪ ΓA, (4.1)

where ΓA in both ∂Σ+ and ∂Σ− are identified so that the topology of the final optimized

manifold Σ+ ∪ Σ− is a disk with the boundary A+ ∪ A−. On the boundary A+ ∪ A− we

have e2φ = 1/ǫ2.
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The optimization of each of Σ± is done by minimizing the Liouville action with bound-

ary contributions. The boundary action in the Liouville theory [69] reads

SLb =
c

12π

∫

∂Σ±

ds[K0φ+ µBe
φ], (4.2)

where K0 is the (trace of) extrinsic curvature of the boundary ∂Σ± in the flat space. If

we describe the boundary by x = f(z), then the extrinsic curvature in the flat metric

ds2 = dz2 + dx2, is given by K0 = − f ′′

(1+(f ′)2)3/2
. On the other hand, the final term is the

boundary Liouville potential. Since Σ+ and Σ− are pasted along the boundary smoothly,

we set µB = 0 for our ρA optimization.10

Now, to satisfy the equation of motion at the boundary ΓA, we impose the Neumann

boundary condition11 of φ. This condition (when µB = 0) is explicitly written as

(nx∂x + nz∂z)φ+K0 = 0. (4.3)

where nx,z is the unit vector normal to the boundary in the flat space. Actually this is

simply expressed as K = 0, where K is the extrinsic curvature in the curved metric (2.5).

This fact can be shown as follows. Consider a boundary x = f(z) in the two dimensional

space defined by the metric ds2 = e2φ(z,x)(dz2 + dx2). The out-going normal unit vector

Na is given by

N z = e−φ(z,x)nz =
−f ′(z)e−φ(z,x)

√

1 + f ′(z)2
, Nx = e−φ(z,x)nx =

e−φ(z,x)

√

1 + f ′(z)2
, (4.4)

where na is the normal unit vector in the flat space ds2 = dz2+dx2. The extrinsic curvature

(=its trace part) at the boundary is defined by K = hab∇aNb, where all components are

projected to the boundary whose induced metric is written as hab. Explicitly we can

calculate K as follows:

K =
e−φ(z,x)

√

1 + f ′(z)2

[

∂xφ− f ′∂zφ− f ′′

1 + (f ′)2

]

= e−φ(z,x) [na∂aφ+K0] . (4.5)

In this way, the Neumann boundary condition requires that the curve ΓA is geodesic.

By taking the bulk solution given by the hyperbolic space φ = − log z+const., the geodesic

ΓA is given by the half circle z2 + x2 = l2. Thus, this geometry obtained from the opti-

mization of ρA, coincides with (two copies of) the entanglement wedge [15, 16, 70–72].

Note that if we act a local operator inside the entanglement wedge in the original flat

space, then this excitation survives after the optimization procedure. However, if we act

the operator outside, then the excitation is washed out under the optimization procedure

and does not reflect the reduced density matrix ρA as long as we neglect its back-reaction.

10Non-zero µB leads to a jump of the extrinsic curvature which will be used later.
11On the cuts A± we imposed the Dirichlet boundary condition. The reason why we imposed the Neumann

one on ΓA is simply because the manifold is smoothly connected to the other side on ΓA.
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Figure 7. The computation of entanglement entropy using the optimized reduced density matrix.

Following the replica method shown in the upper pictures, we consider the evaluation of ρn
A
. We

assume the analytical continuation such that n is very close to 1 such that δ ≡ π(1−n) ≪ 1. Thus

this describes an infinitesimally small (negative) deficit angle deformation. After the optimization,

we obtain the conical geometry in the lower right picture with δ = π(1− n).

4.2 Entanglement entropy

Next we evaluate the entanglement entropy by the replica method. Consider an optimiza-

tion of the matrix product ρnA. We assume an analytical continuation of n with |n−1| ≪ 1.

The standard replica method leads to a conical deficit angle 2π(1 − n) ≡ 2δ at the two

end points of the interval A. Thus, after the optimization, we get a geometry with the

corner angle π/2+ π(n− 1) instead of π/2 (the lower right picture in figure 7). This mod-

ification of the boundary ΓA is equivalent to shifting the extrinsic curvature from K = 0

to K = π(n − 1). Indeed, if we consider the boundary given by x2 + (z − z0)
2 = l2, we

get K = z0/l. When z0 is infinitesimally small, we get x ≃ l + (z0/l) · z + O(z2) near the

boundary point (z, x) = (0, l). Therefore the corner angle is shifted to be π/2 − δ with

δ ≃ −z0/l (for the definition of δ, refer also to lower pictures in figure 7). Therefore we

find the relation K ≃ −δ. If we set the boundary Liouville term in (4.2) non-zero µB 6= 0,

the boundary condition is modified from (4.3) i.e. K = 0 into K + µB = 0. Thus the

desired angle shift (or negative deficit angle) is realized by setting µB = π(1 − n). In

the presence of infinitesimally small µB we can evaluate the Liouville action by a probe

approximation neglecting all back reactions. By taking a derivative with respect to n, we

obtain the entanglement entropy12 SA:

SA = −∂n
[

2× cµB
12π

∫

ΓA

ds eφ
]

n=1

=
c

6

∫

∂Σ+

ds eφ =
c

3
log

l

ǫ
, (4.6)

reproducing the well-known result [73]. The lower left expression (4.6) c
6

∫

∂Σ+
eφ precisely

agrees with the holographic entanglement entropy formula [15, 16] as ΓA has to be the

geodesic due to the boundary condition.

12The abuse of notation for the entanglement entropy and the Liouville aciton should be clear form the

context.
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4.3 Subregion complexity

Finally we would like to evaluate the value of Liouville action SL[φ] in the reduced sub-

region. It is natural to argue that this provides a definition of complexity for the reduced

density matrix ρA. For various earlier proposals for holographic subregion complexity refer

to [27, 30].

As in the previous section we take A to be the interval −l ≤ x ≤ l. By computing the

action for two copies of the half disk x2 + z2 ≤ l2 with the solution φ = − log z, we find

SL =
c

12π

∫

dxdz
[

(∂zφ)
2 + e2φ

]

+
c

6π

∫

dsK0φ

=
c

6π

∫ l

ǫ
dz

2
√
l2 − z2

z2
+

c

6π

∫ π/2

−π/2
[− log(l cos θ)]

=
c

6π

[

2l

ǫ
− π − π log

(

l

2

)]

.

(4.7)

It will be interesting to compute and explore it further for more general states and we leave

it as an open future problem.

5 Energy momentum tensor in 2D CFTs

One of the most fundamental objects in two dimensional CFTs is the energy momentum

tensor and in this section we show how to extract it from our optimization. Since we

already know how to compute entanglement entropy, our derivation will be based on the

first-law of entanglement that relates changes in entanglement entropy of an interval to the

energy momentum tensor. More precisely, as shown in [74], under small perturbations of

a quantum state, the change of entanglement entropy of a small interval A = [−l/2, l/2] is
proportional to Ttt

∆SA ≃ πl2

3
Ttt. (5.1)

On the other hand, in our approach, the change in entanglement entropy under a small

variation of a quantum state is captured by the variation in the Liouville field φ(z) →
φ0(z) + δφ(z). Moreover, for small perturbations we can write

δφ(z) =
z2

2
∂2zδφ(z) +O(z4), (5.2)

such that the change in entanglement entropy in perturbed state becomes

∆SA ≃ c

6

∫

δφ · eφds ≃ c

6
∂2zδφ

∫ l/2

0

z dz
√

1− 4z2/l2
=
cl2

24
∂2zδφ. (5.3)

Comparing with the first law, we can now match the energy momentum tensor

Ttt =
c

8π
∂2zδφ. (5.4)
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Let us now compare this with our explicit examples. The vacuum solution is given by

φ0(z) = − log (z). Then, after a simple shift, the thermofield double solution (3.5) can be

written as

φ(z) = − log

(

β

2π
sin

(

2πz

β

))

≃ φ0(z) +
2π2

3β2
z2 +O(z4) (5.5)

and we obtain the well known result

Ttt =
πc

6β2
. (5.6)

Similarly, writing our conical singularity solution (3.15) in coordinates w = exp(z + ix)

and w̄ = exp(z − ix), we get

φ(z) = − log

(

1

a
sinh (az)

)

≃ φ0(z)−
a2z2

6
+O(z4), (5.7)

and the known energy momentum tensor

Ttt = − a2c

24π
, (5.8)

that for a = 1 reproduces the Casimir energy.

Let us also point the interesting consistency of the above result with the Liouville

energy momentum tensor. Namely, it is well known that by varying the action with respect

to the background “reference” metric one can derive the Liouville energy momentum tensor.

The corresponding holomorphic and anti-holomorphic classical energy momentum tensors

are

T (w) =
c

12π

(

∂2wφ− (∂wφ)
2
)

, (5.9)

T̄ (w̄) =
c

12π

(

∂2w̄φ− (∂w̄φ)
2
)

. (5.10)

One can check that, for our solutions, these energy momentum tensors match the ones

computed form the first law. In general we can use the first law for entanglement entropy

in states conformally mapped to the vacuum (see e.g. [75, 76]) and show that the increase

in the entropy is proportional to the (constant) Liouville energy momentum tensor.

6 Evaluation of SL in 2D CFTs

Here we first explain the properties of Liouville action SL in general setups with boundaries.

We will find that it depends on the reference metric and it does not seem to be possible to

define its absolute value, which is due to the conformal anomaly in 2D CFTs. Rather we

are lead to introduce an functional defined by a difference of Liouville action denoted by

IL[g2, g1], where g1 is the reference metric and g2 is the final metric after the optimization.

IL[g2, g1] is expected to measure of the complexity between the two path-integrals in g1 and

g2. Having them in mind, we proceed to explicit evaluations of IL[g1, g2] in various cases.
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6.1 General properties of the Liouville action

We start with a two dimensional space M described by the metric ds2 = gabdx
adxb (a, b =

1, 2), which is called the reference metric. We now perform the Weyl transformation and

define the rescaled metric:

ds2 = e2φgabdx
adxb. (6.1)

The Liouville action corresponding to this Weyl rescaling is given by

SL[φ, gab] =
c

24π

∫

M
d2x

√
g

[

gab∂aφ∂bφ+ e2φ +Rgφ

]

+
c

12π

∫

∂M
ds
√
hKgφ, (6.2)

where

M = The 2-dim manifold with co-ordinates {x, y}
∂M = The boundary of M with the coordinate s

f(x, y) = The equation for the boundary ∂M
Rg = Ricci scalar for the metric gab

na = ± ∂af
√

gbc∂bf∂cf
= The unit normal to the boundary ∂M

hab = gab − nanb = Induced metric on ∂M, such that habnb = 0,

Kg = gab∇anb = Trace of the extrinsic curvature of ∂M

Now let us consider the following transformation parameterized by the function A(x, y)

φ(x, y) → φ̃(x, y) = φ(x, y)−A(x, y)

gab(x, y) → g̃ab(x, y) = e2A(x,y)gab(x, y)
(6.3)

such that the final metric in (6.1) is invariant.

Let us note the following relations13

√
g = e2A

√

g̃, ña = eAna,
√
h = eA

√

h̃,

R̃g̃ = e−2A[Rg − 2∇2A], K̃g̃ = e−A[Kg + na∂aA]
(6.6)

Therefore the transformed Liouville action becomes

SL[φ̃, g̃ab] =
c

24π

∫

M
d2x
√

g̃

[

g̃ab ∂aφ̃ ∂bφ̃+ e2φ̃ + R̃g̃ φ̃

]

+
c

12π

∫

∂M
ds
√

h̃ K̃g̃ φ̃

(6.7)

13For deriving the last relation in (6.6) we used

ña = ± ∂af
√

g̃bc∂bf∂cf
= ±e−A ∂af

√

gbc∂bf∂cf
= e−Ana, (6.4)

and also

K̃g̃ = g̃ab∇̃añb =
1√
g̃
∂a(

√

g̃ ña) =
e2A√
g
∂a(e

A√g na) = e−A[Kg + na∂aA] . (6.5)
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Using the relations in (6.6) it can be checked that

∫

M
d2x
√

g̃

[

g̃ab ∂aφ̃ ∂bφ̃+ e2φ̃ + R̃g̃ φ̃

]

=

∫

M
d2x

√
g

[

gab ∂aφ ∂bφ+ e2φ +Rg φ

]

−
∫

M
d2x

√
ggab∂aA ∂bA

−
∫

M
d2x

√
gRgA− 2

∫

M
d2x∂a[

√
ggab(φ−A)∂bA]

(6.8)

and note that the last term on the r.h.s. above is a total derivative, and contribute to the

boundary term. Also, it can be further checked that

2

∫

∂M
ds
√

h̃ K̃g̃ φ̃ = 2

∫

∂M
ds
√
h Kg φ− 2

∫

∂M
ds
√
h Kg A

+ 2

∫

∂M
ds
√
h(φ−A)na∂aA

(6.9)

The last term on the r.h.s. of (6.9) and the last term, i.e. the boundary term, on the r.h.s.

of (6.8) will cancel each other. Therefore, we can combine (6.8) and (6.9) to obtain

SL[φ̃, g̃ab] = SL[φ, gab]−
c

24π

∫

M
d2x

√
g

[

gab∂aA∂bA+RgA

]

− c

12π

∫

∂M
ds
√
hKgA.

(6.10)

Note that the extra terms involving A, the second third term, on the r.h.s. of (6.10) looks

similar to Liouville action for the field A except for the missing potential e2A term. This

motivates us to add an extra term: −
∫

M d2x
√
g in the Liouville action SL in (6.2), such

that we now define an “improved Liouville action” IL[g1, g2] (g1 is the final metric and g2
is the reference metric) as follows

IL[e
2φg, g] =

c

24π

∫

M
d2x

√
g

[

gab∂aφ∂bφ+ (e2φ − 1) +Rgφ

]

+
c

12π

∫

∂M
ds
√
hKgφ.

(6.11)

For this action, we can find the following relation:

IL[e
2φ̃g̃, g̃] = IL[e

2φg, g]− IL[g̃, g]. (6.12)

This expression is naturally interpreted that the action IL[e
2φ̃g̃, g̃] measures the difference

between the final metric e2φ̃g̃ = e2φg and the reference metric g̃ = e2Ag. In other words,

this relation shows the chain rule:

IL[g1, g2] + IL[g2, g3] = IL[g1, g3], (6.13)

which includes the identity IL[g2, g1] = −IL[g1, g2]. The different between SL and IL does

not depend on the Liouville field φ and thus the equations of motion from the variations
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of φ in both actions are the same. It is useful to note that if g1 is the flat metric and the

transformation from g1 and g2 is holomorphic, then we have IL[g2, g1] = 0, in other words

the second plus third term in (6.10) is vanishing.

In summary, SL[φ, g] does not provide us with an absolute quantity which measures

the complexity of the optimized state because it depends not only on the final metric e2φg

but also on the reference metric g. Rather, we find it is convenient to look at the relative

quantity IL[g2, g1] which is expected to measure the difference of complexity between the

path-integral in g2 and g1.

Before we move onto explicit evaluations of IL[g2, g1], we would like to mention that

another potential source of ambiguity. We need to be careful with the fact that a constant

shift of φ can change the action SL when the Euler number is non-zero due to the Gauss-

Bonnet term
∫

Rgφ+2
∫

Kgφ in SL. This is removed by placing the background charge as

in the standard computation of correlation in Liouville CFTs [77] and we will follow this

prescription.

6.2 Vacuum states

Let us start with vacuum states in 2D CFTs on a circle with the circumference 2π. In

AdS3/CFT2, they are dual to the global AdS3. As we explained in section 3.2, we obtained

the Poincare disk metric (3.8) after the optimization. This metric can be written in the

following two ways:

ds2 = e2φ(dr2 + r2dθ2), e2φ =
4

(1− r2)2
, (6.14)

ds2 = e2φ̃(dz2 + dθ2), e2φ̃ =
1

sinh2 z
, (6.15)

where θ has a periodicity 2π. We introduce the cut off z = ǫ and r = r0 such that 2r0
1−r20

= 1
ǫ

or equally r0 ≃ 1− ǫ+ ǫ2

2 + . . .. We express the flat metric for the polar coordinate (r, θ)

and the Cartesian one (z, θ) by g(r,θ) and g(z,θ), respectively. Also the Poincare disk metric

e2φg(r,θ) = e2φ̃g(z,θ) is represented by gAdS.

The Liouville action for (6.14) is evaluated as

SL[φ, g(r,θ)] =
c

24π

∫ r0

0
rdr

∫ 2π

0
dθ
[

(∂rφ)
2 + e2φ

]

+
c

12π

∫

dsK0φ

=
c

12

∫ r0

0
dr

(

4(r3 + r)

(1− r2)2

)

+
c

6
(φ(r = r0)− φ(r = 0))

=
c

12

(

2

ǫ
+ 2 log ǫ− 2 + 2 log 2

)

+
c

6
(− log ǫ− log 2)

=
c

6

(

1

ǫ
− 1

)

.

(6.16)

In the above, the contribution ∝ −φ(r = 0) = − log 2 comes from the background charge,

while another one ∝ φ(r = r0) = − log ǫ is the standard boundary contribution. Finally,

as before, K0 corresponds the trace of the extrinsic curvature of the boundary evaluated

in the flat metric.
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Similarly we can evaluate the Liouville action for (6.15)

SL[φ̃, g(z,θ)] =
c

12

∫ z∞

ǫ

[

cosh2 z + 1

sinh2 z

]

=
c

6

(

1

ǫ
− 1 +

z∞
2

)

, (6.17)

where z∞(→ ∞) is the IR cut off in the z integral. Indeed this expression differs from (6.16).

We can also calculate the Liouville action for the Weyl scaling g(r,θ) = e−2zg(z,θ)

SL[−z, g(z,θ)] =
c

12
·
∫ z∞

ǫ
(1 + e−2z) =

c

24π
(π + 2πz∞) . (6.18)

In terms of the improved Liouville action, we can summarize our results as follows:

IL[gAdS, g(r,θ)] =
c

6ǫ
− 5c

24
, (6.19)

IL[gAdS, g(z,θ)] =
c

6ǫ
− c

6
, (6.20)

IL[g(r,θ), g(z,θ)] =
c

24
, (6.21)

which indeed satisfy (6.13).

6.3 Primary states

As we have seen in section (3.2), for the primary states, the optimized metric is given by

the conical geometry (denoted by gC):

ds2 = e2φ(dr2 + r2dθ2), e2φ =
4a2

r2(1−a)(1− r2a)2
, (6.22)

ds2 = e2φ̃(dz2 + dθ2), e2φ̃ =
a2

sinh2 (az)
, (6.23)

where we define r = e−z with −z∞ < z < −ǫ, δ(≡ e−z∞) < r < r0 and 0 ≤ θ < 2π. The

UV cut off r = r0 is specified as
2ara0

1− r2a0
=

1

ǫ
, (6.24)

which is solved as ra0 = −aǫ+
√

1 + (aǫ)2 ≃ 1− aǫ+ (aǫ)2/2 + · · ·.
The Liouville action for (6.23) is evaluated as follows:

SL[φ̃, g(z,θ)] =
ca2

12

∫ z∞

ǫ
dz

[

cosh2(az) + 1

sinh2(az)

]

=
c

24π

(

4π

ǫ
− 4πa+ 2πa2z∞

)

. (6.25)

On the other hand, the Liouville action for (6.22) becomes

SL[φ, g(r,θ)] =
c

12

∫ r0

δ
rdr[(∂rφ)

2 + e2φ] + 4π(φ(r0)− φ(δ))

=
c

12

∫ z∞

ǫ
dz
[

(∂zφ̃+ 1)2 + e2φ̃
]

+
c

6
log

δ

r0
+
c

6
(φ̃(ǫ)− φ̃(z∞))

= SL[φ̃, g(z,θ)]−
c

12
z∞.

(6.26)
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In summary, we obtain the relative actions:

IL[gC , g(r,θ)] =
c

6ǫ
− ca

6
− c

24
+

c

12
(a2 − 1)z∞,

IL[gC , g(z,θ)] =
c

6ǫ
− ca

6
+

c

12
(a2 − 1)z∞,

IL[g(r,θ), g(z,θ)] =
c

24
,

(6.27)

which indeed satisfy (6.13). When a = 1, they are reduced to (6.19), (6.20), (6.21). For

a 6= 1, the actions for gC include IR divergences, which may be canceled by further adding

a background charge at the conical singularity.

6.4 Finite temperature state

Finally we turn to the thermofield double (TFD) states dual to BTZ black holes. As

discussed in section 3.1, after the optimization we obtained the metric of Einstein-Rosen

bridge (denoted by gER):

ds2 = e2φ(dz2 + dθ2), e2φ =

(

2π
β

)2

cos2
(

2πz
β

) , (6.28)

ds2 = e2φ̃(dr2 + r2dθ2), φ̃ = φ− log r, (6.29)

where r = e−z with −β/4 < z < β/4 and 0 ≤ θ < 2π.

For the metric (6.28), the action is evaluated as follows:

SL[φ, g(z,θ)] =
c

12

∫ β/4−ǫ

−β/4+ǫ
dz

[

4π2

β2
(

tan2(2πz/β) + cos−2(2πz/β)
)

]

=
c

6

(

2π

β

)2

·
∫ β/4−ǫ

0
dz

[

1 + sin2(2πz/β)

cos2(2πz/β)

]

=
c

3ǫ
− π2c

6β
.

(6.30)

On the other hand for the metric (6.29), the action is evaluated as follows:

SL[φ̃, g(r,θ)] =
c

12

∫ r2

r1

rdr
[

(∂rφ̃)
2 + e2φ̃

]

+
c

6
(φ̃(r = r2)− φ̃(r = r1))

=
c

12

∫ β/4−ǫ

−β/4+ǫ
dz((∂zφ− 1)2 + e2φ) +

c

6
(φ̃(r = r2)− φ̃(r = r1))

=
c

3ǫ
− π2c

6β
− c

24
β,

(6.31)

where r1 = e−
β
4
+ǫ and r2 = e

β
4
−ǫ.

The relative action is computed as follows

IL[gER, g(z,θ)] =
c

3ǫ
− π2c

6β
− c

24
β, (6.32)

IL[gER, g(r,θ)] =
c

3ǫ
− π2c

6β
− c

24
β − c

24
(eβ/2 − e−β/2), (6.33)

IL[g(r,θ), g(z,θ)] =
c

24
(eβ/2 − e−β/2), (6.34)

which again satisfy (6.13).
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7 Application to NAdS2/CFT1

As recently discovered, to make sense of AdS2/CFT1, we need a conformal symmetry break-

ing term [81–84], under the reparameterization of τ̃ = τ̃(τ), often called NAdS2/CFT1 du-

ality. The effective action is written as a Schwarzian derivative term Sch[τ̃ , τ ] as explicitly

realized in the Sachdev-Ye-Kitaev (SYK) model [78–80]:

Sch[τ̃ , τ ] = −3

2

(

∂2τ τ̃

∂τ τ̃

)2

+
∂3τ τ̃

∂τ τ̃
. (7.1)

For the one dimensional metric ds2 = e2φdτ2, we can identify dτ̃
dτ = eφ. Thus the

conformal symmetry breaking term (7.1) looks like N
∫

dτ(∂τφ)
2, where N is a constant

proportional to degrees of freedom. Therefore we find (we shifted φ appropriately)

Ψgττ=e2φ(ϕ̃(x)) = eS1[φ]−S1[0] ·Ψgττ=1(ϕ̃(x)),

S1[φ] = N

∫

dτ
[

(∂τφ)
2 + 2eφ

]

. (7.2)

By minimizing the action, this again leads to

ds2 = e2φdτ2 =
dτ2

τ2
. (7.3)

This is consistent with the time slice of AdS2 space-time. Note that if there is no confor-

mal symmetry breaking effect, we cannot stabilize the optimization procedure. Also notice

that in standard tensor network descriptions, it is very difficult to describe one dimensional

quantum mechanics as we normally coarse-grain space directions to build an extra dimen-

sion in the network. In our path-integral approach the extra dimension arises naturally

even in quantum mechanics.

8 Applications to higher dimensional CFTs

Higher dimensional generalizations of our optimization procedure do not seem to be

straightforward as the generic metric cannot be expressed only by the Weyl scaling as

in (2.5). Nevertheless, it is useful to see what optimization can lead to correct time slices

of gravity duals by taking into account only the Weyl scaling degrees of freedom as a first

step toward this direction. As we will see below, at least for pure AdSd+1 we can obtain

expected results even from this limited range of optimization.

8.1 Our formulation

For this we need a complexity functional I[φ] for the metric of the form:

ds2 = e2φ(x)gabdx
adxb, (8.1)

with x regarded as d dimensional vector (which includes “z” coordinate). We propose that

for a vacuum state in a d dimensional CFT, the optimization can be done by minimizing
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the following functional Ibulkd [φ, g] (N is a normalization factor proportional to the degrees

of freedom):

Ibulkd [φ, g] = N

∫

Σ
dxd

√
g

[

edφ + e(d−2)φ
(

gab∂aφ∂bφ
)

+
e(d−2)φ

(d− 1)(d− 2)
Rg

]

, (8.2)

where Rg is the Ricci scalar for the reference metric g. Reader can regard this as a

generalization of Liouville action to general dimensions, which is quadratic in derivative of

φ field.14 The computation of entanglement entropy shown later allows us to identify the

normalization factor N in (8.2) for holographic CFTs:

N =
(d− 1)Rd−1

16πGN
, (8.3)

where R is the AdS radius In particular for d = 2 and d = 4 we find

Nd=2 =
c

24π
,

Nd=4 =
3

2π2
a4, (8.4)

in terms of the central charge c in 2D CFTs and a4 in 4D CFTs.

Indeed, the minimization of Ibdyd [φ, g] leads to the hyperbolic space Hd which is the

time slice of pure AdSd+1 as we will see later. For the optimization of reduced density

matrix we need to introduce the boundary term as in section 4. We argue it is given by

Ibdyd [φ, g] = 2N

∫

∂Σ
dxd−1√γ

[

Kg

d− 1

e(d−2)φ

d− 2
+ µB

e(d−1)φ

d− 1

]

, (8.5)

where γij is the induced metric on the boundary ∂Σ. This again leads to the boundary

condition K+(d−1)µB = 0, where K = e−φ((d−1)∂nφ+K0). We defined our optimization

by minimizing the total functional Itotd [φ, g]

Itotd [φ, g] = Ibulkd [φ, g] + Ibdyd [φ, g]. (8.6)

It is important to consider the limit d → 2 in Itotd [φ, g] and explore the possibility of

recovering the standard Liouville action for d = 2 dimensions. As it is obvious from the

expression of Ibulkd [φ, g] in (8.2), a naive limit of d→ 2 is singular as the third term on the

r.h.s. of (8.2) gives a contribution proportional to 1/(d−2). However, as it was mentioned in

section 6.1 (see the discussion in the paragraphs following (6.11)), for an absolute measure of

complexity in 2-dimensions the relative or the improved Liouville action IL(g1, g2), defined

in (6.11), is more suitable compared to SL, defined in (6.2). The advantage was mentioned

to be the fact that IL(g1, g2) being a relative measure of complexity does not depend on the

reference metric. It is interesting to note that the subtlety of taking the d→ 2 limit works

14The possibility of having terms in the complexity functional with higher than quadratic derivatives

of φ is discussed in section 8.8 and in appendix C. In fact they will be important for reproducing correct

anomalies for even dimensional CFTs in higher dimensions.
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out perfectly if we subtract away the contribution of the reference metric while taking the

above mentioned limit. Therefore we notice the following identity

lim
d→2

[

Itotd [φ, g]− Itotd [φ = 0, g]

]

= IL[e
2φg, g], (8.7)

where gab is considered as the reference 2-dimensional metric and therefore following the

discussion after (6.11), IL[e
2φg, g] computes the relative complexity of the generic metric

e2φgab compared to that reference metric.

Notice that actually we can combine the functional Id+ Ibdyd into the Einstein-Hilbert

action plus a cosmological constant on the final metric (8.1) which we write g̃ = e2φg and

γ̃ = e2φγ:

Itotd = N

∫

Σ
dxd
√

g̃

[

1 +
Rg̃

(d− 1)(d− 2)

]

+2N

∫

∂Σ
dxd−1

√

γ̃

[

Kg

(d− 1)(d− 2)
+

µB
d− 1

]

. (8.8)

From this manifestly covariant expression which only depends on g̃, as opposed to the 2D

Liouville action, the invariance of the action by the change of reference metric is manifest:

Itotd [φ−A, e2Ag] = Itotd [φ, g]. (8.9)

8.2 AdSd+1 from optimization

Here we would like to confirm that the optimization leads to expected AdS geometries for

vacuums states. This is almost obvious from the expression (8.8). However notice that we

take only the Weyl mode φ dynamical.

Consider a CFTd defined on Rd or R×Sd−1. In these two cases the metrics are taken

in the following form:

Rd : ds2 = e2φ(z)

(

dz2 +
d−1
∑

i=1

dx2i

)

, (8.10)

R× Sd−1 : ds2 = e2φ(r)(dr2 + r2dΩ2
d−1). (8.11)

The values of the functional Id in these cases read

Rd : Ibulkd = N

∫

dxd
[

edφ + e(d−2)φ(∂zφ)
2
]

, (8.12)

R× Sd−1 : Ibulkd = N

∫

dΩd−1

∫

dr · rd−1
[

edφ + e(d−2)φ(∂rφ)
2
]

, (8.13)

and their equation of motions are given by

Rd : de2φ − (d− 2)e(d−2)φ(∂zφ)
2 − 2∂2zφ = 0, (8.14)

R× Sd−1 : de2φ − (d− 2)e(d−2)φ(∂rφ)
2 − 2∂2rφ− 2(d− 1)

r
∂rφ = 0. (8.15)
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We can confirm that both of them have the hyperbolic space solutions:

Rd : e2φ(z) =
1

z2
, (8.16)

R× Sd−1 : e2φ(r) =
4

(1− r2)2
. (8.17)

They coincide with the time slice of AdSd+1 as expected.

8.3 Excitations in global AdSd+1

Now let us consider excitations in a d dimensional CFT on R×Sd−1. We focus on the case

d = 3, 4 and assume that the excitations are homogeneous and static. In AdSd+1/CFTd,

such a state is dual to spherically symmetric solution given by the AdS4 Schwarzschild

black hole solution

ds2 = −h(ρ)dt2 + dρ2

h(ρ)
+ ρ2dΩ2

d−1. (8.18)

with h(ρ) = ρ2 + 1−Mρ−(d−2). Here we are interested in the leading correction when M

is very small. We focus on the time slice t = 0 and rewrite

ds2 =
dρ2

h(ρ)
+ ρ2dΩ2

d−1 = e2φ(dr2 + r2dΩ2
d−1). (8.19)

We can find an explicit relation between ρ and r and the function φ as follows (up to the

linear order of M)

r ≃ ρ

1 +
√

1 + ρ2
· (1 +Mf(ρ)),

eφ(r) ≃ (1 +
√

1 + ρ2) · (1−Mf(ρ)), (8.20)

where the function f(r) depends on the dimension d

d = 3 : f(ρ) = 1− 2ρ2 + 1

2ρ
√

ρ2 + 1
,

d = 4 : f(ρ) = −1

4

[

3ρ2 + 1

ρ2
√

ρ2 + 1
+ 3 log

[

ρ
√

ρ2 + 1 + 1

]]

. (8.21)

Finally we obtain the function φ(r) in (8.19) in the form

eφ(r) ≃ 2

(1− r2)

(

1 +M · η(r)
)

, (8.22)

where the function η(r) is explicitly given for each d:

d = 3 : η(r) =
(1− r)3

4r(1 + r)
, (8.23)

d = 4 : η(r) =
r6 + 9r4 − 9r2 − 12

(

r4 + r2
)

log(r)− 1

16r2 (r2 − 1)
. (8.24)

– 27 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
7

On the other hand, the optimization of our functional (8.2) given by the differential

equation (8.15) leads to the perturbative solution of the form:

eφ =
2

(1− r2)

(

1 + M̃ · h(r)
)

+O(M̃2), (8.25)

where we treat M̃ as an infinitesimally small parameter. We can analytically determine the

function h(r) and confirm that h(r) is equal to η(r) in (8.23) and (8.24) in each dimension

up to a constant factor.

In this way we find that the first order back-reaction to the time slice metric in AdS

gravity is correctly reproduced by our optimization procedure.

8.4 Holographic entanglement entropy

In this subsection we will show that the total action Ibulkd + Ibdyd can reproduce the correct

holographic entanglement entropy (HEE) [15] when the subsystem A is a round ball. We

will also focus on d = 3, 4 case in the AdSd+1/CFTd.

We will closely follow the method that was explicitly used in the case of 2D CFT in

section 4. We start with the holographic construction of density matrix and argue that

this accurately reproduce the entanglement wedge as expected and following that we will

compute the entanglement entropy holographically.

The metric of the manifold on which the path-integral for the density matrix is being

computed, will be denoted by

ds2 = e2φ

(

dz2 +
d−1
∑

i=1

dx2i

)

= e2φ
(

dz2 + dr2 + r2dΩ2
d−2

)

, (8.26)

where, sometimes, we will also use the notation ds2 = e2φgabdx
adxb, with the under-

standing that the reference metric gab is the flat metric gabdx
adxb = dz2 +

∑d−1
i=1 dx

2
i =

dz2 + dr2 + r2dΩ2
d−2. Also, dΩ2

d−2 is the metric for (d − 2)-dimensional unit sphere.

Therefore, we will have

d = 3 ⇒ dΩ2
1 = dθ2

d = 4 ⇒ dΩ2
2 = dθ2 + sin2 θ dφ21

(8.27)

The round ball subsystem is defined by AD = {xi|r ≤ ℓ}, r =
√

∑d−1
i=1 x

2
i , where ℓ is the

radius of the circular disk.

Following the same steps, as depicted in section 4, we should proceed with the opti-

mization that will lead us to identifying the boundaries Γ
(d)
A of the bulk regions Σ

(d)
± . The

boundary condition for φ should be imposed at the two edges of the slit composed by the

boundary of the round ball AD, i.e. at r = ℓ near z = 0. These arguments validate that

we should also consider the boundary part of the action Ibdyd

Ibdyd = 2N

∫

∂Σ
dd−1x

√
γ

[

Kg

d− 1

e(d−2)φ

d− 2
+ µB

e(d−1)φ

d− 1

]

(8.28)
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Let us describe the boundary ΓA as r = f(z) with the normal vectors (normalized with

respect to the full metric e2φgab) given by

nz = − e−φf ′(z)
√

1 + f ′(z)2
, nr =

e−φ

√

1 + f ′(z)2
, nΩd−2 = 0. (8.29)

The extrinsic curvature of the boundary is

K = γab∇anb = e−φ(K0 + (d− 1)na∂aφ). (8.30)

where K0 is the extrinsic curvature for the same boundary but in the reference metric gab
(which is flat metric in our case)

K0 = − f ′′

(1 + (f ′)2)3/2
. (8.31)

The boundary condition for the field on the edge of the slit (the round ball AD in our case)

is Dirichlet, however we need to impose Neumann boundary condition on the surface ΓA

and it leads us to the condition

K + (d− 1)µB = 0. (8.32)

For the determination of the density matrix, since the two boundaries ΓA in Σ+ and that

in Σ− are pasted smoothly, we should consider µB = 0. The optimization determines the

bulk metric to be the hyperbolic one φ = − log z.

In order to fix the shape of ΓA we should solveK = 0, which is precisely the condition of

minimal surfaces. Thus we find that ΓA is given by the half-sphere z2+r2 = ℓ2. Accordingly,

the holographic dual for the density matrix corresponds to the region z2 + r2 ≤ ℓ2 and it

agrees with the entanglement wedge.

Let us now consider the entanglement entropy and for that we need to consider ρnA and

finally analytically continue considering |n− 1| ≪ 1, leading us to a conical geometry with

deficit angle 2π(1−n) along the entangling surface r = ℓ. It is then natural to expect that

the extrinsic curvature for the boundaries ΓA will now become different from vanishing, i.e.

K 6= 0. This can be estimated from considering that the boundaries ΓA now changes from

z2+ r2 = ℓ2 to (z− z0)
2+ r2 = ℓ2, with which we can now evaluate the extrinsic curvature

K = −(d− 1)
z0
l
. (8.33)

Also with infinitesimal z0 we obtain r ∼ l + z0
l z + O(z2) near the boundary point

{z, r,Ω(d−2)} = {0, ℓ,Ω(d−2)}. The corner angle at the intersection of ∂Σ
(d−1)
± and the

entangling surface r = ℓ, also becomes π/2 + z0/l. For the n-sheeted conical geometry we

can interpret this corner angle as z0/l = π(1− n) and thus obtain the relation

K = (d− 1)(n− 1). (8.34)

We need to satisfy the Neumann boundary condition K + (d − 1)µB = 0 at ∂Σ
(d−1)
± , and

we implement this by setting

µB = π(1− n). (8.35)

Note that this condition is true for any dimension d.
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The entanglement entropy in 3-d CFT. Now one can explicitly check that the holo-

graphic entanglement entropy can be evaluated for d = 3 by considering µB = π(1− n) in

the boundary action in (8.28) as follows

S
(d=3)
A = −∂n

[

2NµB

∫

∂Σ
(2)
+

e2φ

2
+ 2NµB

∫

∂Σ
(2)
−

e2φ

2

]

= 4Nπ2
[

ℓ

ǫ
− 1

]

(8.36)

where ǫ is the UV cut-off as the range of integration in r has been taken to be ǫ ≤ r ≤ ℓ.

The entanglement entropy in 4-d CFT. Similarly for d = 4 one obtains

S
(d=4)
A = −∂n

[

2NµB

∫

∂Σ
(3)
+

e3φ

3
+ 2NµB

∫

∂Σ
(3)
−

e3φ

3

]

=
8Nπ2

3

[

ℓ2

ǫ2
− log

(

ℓ

ǫ

)

+

(

1

2
+ log 2

)]

(8.37)

Finally, It can be checked that the expressions in both (8.36) and (8.37) do indeed

reproduce the correct behavior for holographic entanglement entropy in higher dimensions,

compare with [15], by choosing the normalization N as in (8.3) and (8.4).

Moreover, we confirm that for the spherical choice of the region the general formula

for entanglement entropy reads

Sd
A =

4πN

d− 1

∫

ΓA

e(d−1)φ. (8.38)

8.5 Evaluation of complexity functional

As we argued for 2D CFTs (see discussions following (2.13)), the Liouville action, SL
when computed on-shell for the solutions gives us a measure of holographic computational

complexity. Here we would like to examine an analogous quantity for the higher dimensional

CFTs. Namely, we evaluate the complexity functional Ibulkd + Ibdyd for optimized solutions

corresponding to the global AdSd+1. We focus on the d = 3, 4 case again.

3D CFT (d=3). Consider the metric obtained by setting d = 3 in the solution of (8.17).

The boundary condition for r = r0 is chosen as in 2D case:

4r20
(1− r20)

2
=

1

ǫ2
⇒ r0 = 1− ǫ+

ǫ2

2
+O(ǫ3) (8.39)

Then the bulk Ibulkd and boundary Ibdyd are evaluated as follows:

Ibulk3 = 4πN

[

1

ǫ2
− 2

ǫ
+

1

2
+ log

(

2

ǫ

)]

,

Ibdy3 = 8πN

[

1

ǫ
+
µB
2ǫ2

]

.

(8.40)

Finally, adding the two contributions we obtain

Itot3 = 4πN

[

1

ǫ2
+

1

2
+ log

(

2

ǫ

)]

+
4πNµB
ǫ2

. (8.41)
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4D CFT (d=4). In the same way, when d = 4, the solution (8.17) leads to

Ibulk4 = 2π2N

[

2

3ǫ3
− 1

ǫ2
+

1

ǫ
− 5

12

]

,

Ibdy4 = 4π2N

[

1

2ǫ2
+ µB

(

1

3ǫ3
+

1

8

)]

.

(8.42)

Totally we obtain

Itot4 = 2π2N

[

2

3ǫ3
+

1

ǫ
− 5

12

]

+ 4π2NµB

(

1

3ǫ3
+

1

8

)

. (8.43)

For the sake of comparing our results with the existing literature, which we do in the

next sub-section, we have to set µB = 0 and the normalization factor N in the above formu-

las should be taken as defined in (8.3) for holographic CFTs. Therefore, by simply setting

RAdS = 1, the complexity CΨ0 of the vacuum state |Ψ0〉 computed from our complexity

functional Itotd , is given as follows

3D CFT: C3
Ψ0

=
1

2GN

[

1

ǫ2
+

1

2
+ log

(

2

ǫ

)]

(8.44)

4D CFT: C4
Ψ0

=
π

8GN

[

2

ǫ3
+

3

ǫ
− 5

4

]

. (8.45)

It is also helpful to remember that for 2D CFTs, according to (6.20), we find the complexity

of the vacuum (if we choose g(z,θ) as the reference metric)

2D CFT: C2
Ψ0

= IL[gAdS, g(z,θ)] =
1

4GN

(

1

ǫ
− 1

)

. (8.46)

Notice that generally the complexity behaves like Cd
Ψ ∼ ǫ−(d−1) in any CFTd+1 and this is

interpreted as the volume law divergence.

8.6 Comparison with earlier conjectures

It is worthwhile to compare our complexity functional Itotd evaluated specifically for dimen-

sions d = 3, 4 in the previous subsection, with those in earlier conjectures.

(1) “complexity = volume” conjecture. Recently there has been exciting develop-

ments in understanding computational complexity in quantum systems holographically, i.e.

some geometric calculation in the gravity side has been proposed to be measuring the com-

putational complexity. The computational complexity of any boundary state at any given

time, i.e. on some spacelike slice, say Σ, of the boundary, was first proposed in [25, 26] to

be identified with the volume of a maximal volume space-like slice, say MΣ, in the bulk

where the bulk space like surface ends on the given boundary slice. We will refer to it as

the CV-conjecture (complexity = volume),

CV (Σ) =
V(MΣ)

GNRAdS
, such that ∂MΣ = Σ (8.47)
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where V(MΣ) denotes the volume of the maximal time slice MΣ, and RAdS is some associ-

ated length scale in the bulk, conveniently taken to be the AdS radius in AdS/CFT. For

TFD states in holographic CFTs, the gravity dual computation of CV shows the linear

growth [25, 26].

It may also be useful to mentioned that in the paper [43], it was found that the gravity

dual of the information metric G(Σ) in CFTd, which is equivalent to an integral of two

point functions of a marginal primary operator, is well approximated by G(Σ) ≃ nd · V(MΣ)

Rd
AdS

(nd is a numerical constant). Indeed, the information metric in CFTs also have the linear

growth under the time evolution of a TFD state.

(2) “complexity = action” conjecture. Later, in [32, 33], it was also conjectured

that the complexity is given by the action of a Wheeler-de Witt patch in the bulk bounded

by the given space-like surface. One motivation for this conjecture was to remove the

unpleasant feature about the CV-conjecture that it depends on a the choice of a length

scale RAdS. We will refer to it as the CA-conjecture (complexity = Action)

CA(Σ) =
IWDW

π
(8.48)

where IWDW is given by the Einstein-Hilbert action integrated only over the Wheeler-

DeWitt (WDW) patch MWDW, which extends from the boundary time slice Σ where we

measure the complexity. The WDW patch is defined to be the bulk space-time region in

the bulk which is union of all the space-like surfaces anchored at the boundary at a given

time of the CFT. It is easy to visualize this for the eternal black-hole Penrose diagram (see

figure 1 in [32]). In that case, once we pick two given times at the two boundary CFTs,

say tL and tR respectively, the WDW patch is the bulk space-time region bounded by the

null surfaces and such that it is union of all possible space-like surfaces anchored at the

times tL and tR in the boundary.

Schematically, IWDW can be written as

IWDW =
1

16πGN

∫

MWDW

dd+1x
√−g(R− 2Λ) + IbdyWDW, (8.49)

where IbdyWDW contains the important boundary contributions coming from the null bound-

aries of the WDW patch MWDW, also including the joint contributions coming from the

intersections of the null boundaries [35].

In a related direction a quantity called complexity of formation was defined and studied

in [37]. This quantity computes, following the CA conjecture, the difference of the action

(only the bulk part) between the BTZ and two times that of the AdS (vacuum). The similar

results were reproduced in [40] with a proposal of renormalized holographic complexity.

It is important to mention that, through our proposal we can only learn about the fixed

time behavior of the computational complexity for the dual state in the CFT, whereas, the

original motivation of proposing a holographic measure of complexity was to study it’s

growth with time [32, 33, 35]. In order to compare the evaluation of complexity with our

proposal with the same evaluated using other proposals, we need to therefore look into their
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constant time evaluations. In [30, 38] the authors investigated the constant time behavior

of the holographic complexity. More specifically they studied the divergence structure,

considering both the CV and CA-conjectures. Also a possible prescription to remove an

ambiguity due to different parametrization of the null boundary surfaces in the WDW

patch was found in [35]. This prescription was used to evaluate the holographic complexity

in [38]. In appendix B, we summarize these results of holographic complexity by focusing

on the vacuum states.

Comparisons with our results. We are finally ready to compare the evaluation of

holographic complexity with our proposal against the same computed with the existing

proposals in the literature, presented in appendix B.

First if we follow the “Complexity = Volume” conjecture (8.47), the complexity has

the structure CV ∼ c
(1)
v · ǫ−(d−1) + c

(3)
v · ǫ−(d−3) + · · ·. This behavior agrees with our results

of complexity CΨ0 presented in (8.46), (8.44) and (8.45), though the relative coefficients

do not coincide in general.

Next we turn to the “Complexity = Action” conjecture (8.48). The analysis in [30] eval-

uates it to be divergent, in fact a logarithmically enhanced divergence of the form log ǫ−1 ·
ǫ(d−1) for the CA-conjecture as opposed to the 1/ǫd−1 divergence for the CV-conjecture.

On the other side, the [38] proposal, which introduces an additional boundary contribution,

produces a surprising result for the d = 2 case i.e. bulk AdS3: for both Poincare and global

AdS3, the leading divergence vanishes, leading to a constant holographic complexity. In

higher dimensions d = 3, 4, the holographic complexity has a leading divergence of the form

1/ǫd−1 for both Poincare and global AdSd+1. Therefore the divergence structure in [38]

for d > 2 is the same as ours, whereas, they differ in the numerical coefficients in general.

Nevertheless, in the next subsection, we will point out an interesting relation between our

complexity functional Itotd and the gravity action IWDW in the WDW patch.

Since there is no precise definition of computational complexity in quantum field the-

ories known at present, we cannot decide which of these prescriptions is true by consulting

with rigorous results in field theory. However, notice that our proposal of computational

complexity CΨ0 , defined in (2.4), is based on not any holography but a purely field theoretic

argument as is clear in two dimensional CFT case, where it is related to the normalization

of wave functional.

8.7 Relation to “complexity = action” proposal

We have discussed in the previous subsection that, in [32, 33], it has been conjectured that

the holographic complexity is measured by the bulk action being integrated over the WDW

patch defined above including suitable boundary terms. Here we would like to compare

this quantity with our complexity functional. For simplicity, we set RAdS = 1 and thus

Λ = −d(d−1)
2 below.

Consider the following class of d+ 1 dimensional space-time:

ds2 = −dt2 + cos2 t · e2φ(x)hijdxidxj , (8.50)
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where t takes the range −π/2 ≤ t ≤ π/2 and i, j = 1, 2, · · ·, d. The pure AdSd+1 which is a

solution to the Einstein equation from IWDW, is obtained when the metric e2φ(x)hijdx
idxj

coincides with a hyperbolic space Hd. For example, when d = 2, the Einstein equation

just leads to (∂21 + ∂22)φ = e2φ i.e. the Liouville equation. Note that in this pure AdSd+1

solution, the coordinate covered by (8.50) indeed represents the WDW patch.15 Motivated

by this we identify this space (8.50) with MWDW. However, note that for generic choices

of φ and hij (8.50) does not represent the WDW patch in the original definition in [32, 33].

They coincide only on-shell.

Now we would like to evaluate the gravity action (8.49) within the WDW patch, inte-

grating out the time t coordinate. Here we can ignore the contribution from the boundary as

the Gibbons-Hawking term of this boundary turns out to be vanishing. We finally find that

the final action is proportional to our complexity functional Itotd [φ, g] (8.2) with the nor-

malization (8.3) up to surface terms at the AdS boundary z = 0 due to partial integrations:

IWDW
d = (d− 2) · nd · Itotd [φ, g] + (IR Surface Term), (8.51)

where the numerical constant nd is defined by

nd =

∫ π/2

−π/2
dt(cos t)d−2 =

√
πΓ
(

d−1
2

)

Γ
(

d
2

) . (8.52)

In the above computation, by introducing the Gibbons-Hawking term for the d dimensional

boundary time like surface given by z = ǫ, the surface terms on this surface which are

produced by the partial integrations of bulk action are all cancelled with the Gibbons-

Hawking term. Therefore in the surface terms in (8.51) is localized at the IR boundary,

which is at z = ∞ and gives the vanishing contribution for the Poincare AdS coordinate.

For example, when d = 3 with hij = δij (setting x3 = z), so that it fits with the

Poincare AdS4, we find

IWDW
3 =

1

16πGN

∫ ∞

ǫ
dz

∫

d2x

∫ π/2

−π/2
dt

[

6e3φ(cos3 t− cos t cos 2t)

− 2eφ cos t((∂iφ)
2 + 2∂i∂iφ)

]

,

(8.53)

which reproduces (8.51) after we integrate t and perform a partial integration with the

boundary term at z = ǫ cancelled by the Gibbons-Hawking term at z = ǫ.

When d = 2 we find

IWDW
2 =

1

8GN

∫

dzdx[−(∂21 + ∂22)φ], (8.54)

which indeed leads to vanishing action up to partial integrations, where again the boundary

term at z = ǫ is cancelled by the Gibbons-Hawking term at z = ǫ. Therefore we simply

15In Euclidean signature obtained by t → iτ , this leads to the hyperbolic slice of Hd+1 which is precisely

given by (3.19).
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find IWDW
2 = − 1

8GN

∫

dx(∂zφ)z=∞, where note that z = ∞ is the IR boundary. Since we

have φ = − log z and φ = − log sinh z for Poincare and global AdS3, we get

IWDW
2 = 0 for CFT2 vacuum on R1 dual to the Poincare AdS3,

IWDW
2 =

π

4GN
for CFT2 vacuum on S1 dual to the Poincare AdS3.

Interestingly, this agrees with the evaluation of holographic complexity with the prescrip-

tion in [38].

The above relation shows that there is no difference with respect to the equation of

motion for φ between the “Complexity = Action” approach and our proposal. However

in the d = 2 limit they differs significantly due to (d − 2) factor in (8.51). In our pro-

posal, the complexity functional for 2D CFTs is obtained as limd→2(I
tot
d [φ, g]−Itotd [0, g]) =

limd→2

[

(IWDW
d − IWDW

d |φ=0)/(d− 2)
]

, which coincides with the Liouville action IL[φ, g].

On the other hand, there are no bulk contributions in IWDW
2 as clear from (8.54). This is

essential reason why the former have the UV divergence O(ǫ−1), while the latter does not.

8.8 Higher derivative terms and anomalies

In our optimization of two dimensional CFTs, we minimized the overall factor of wave

functional, which is the same as the partition function Z for the region ǫ < z < ∞. The

Liouville action which we minimize is given by the log of this partition function SL = logZ.

Therefore even for higher dimensional CFTs one may naively suspect that the complexity

functional Id may also be written as Id = logZd for d-dimensional CFTs. This indeed

works for d = 3 as the UV divergent terms produces the two terms in the action (8.2).

The situation is different for d = 4 due to the presence of conformal anomaly [86] and we

need to have forth derivative terms in addition to the action (8.2). As we have explained

in appendix C, here we just mention the final form of I4 that correctly reproduces the

anomalies in a four dimensional CFT,

I4 =

∫

d4x
√
g

[

α1 + α2(∂
µφ∂µφ) + α3(∂

µφ∂µφ)
2 + α4(∇µ∂µφ)

2

+ α5(∇µ∂µφ)(∂
µφ∂µφ)

]

,

(8.55)

where the terms with corresponding coefficients α3, α4, α5 denote the fourth derivative

terms, responsible for producing correct anomalies. It should be mentioned that here we

only consider metrics which are of the Weyl scaling type (2.5),

gµν = e2φ hflatµν , (8.56)

with hflatµν corresponding to Euclidean flat space.

In appendix C, we firstly explain in detail how this action in (8.55) produces the correct

anomalies for four dimensional CFT. Next we also explain how the equations of motion

following from this action allows time slice of AdS5, i.e. hyperbolic space H4, as a solution.

Here we should admit that the action (8.55) is not bounded from below and hence

cannot be minimized, therefore we can only extremize it. In this aspect, the action (8.2)

without higher derivatives as we assumed in section 2.3 has an advantage over the modified

action we are discussing here.
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9 Discussions: time evolution of TFD states and phase transitions

So far we have studied stationary quantum states in CFTs. For further understandings

of the dynamics of CFTs, we would like to turn to time dependent states in this section,

focusing on 2D CFTs for simplicity. In particular we consider a simple but non-trivial class

of time-dependent states, given by the time evolution of thermo field double states (TFD

states) in 2D CFTs:

|TFD(t)〉 = 1
√

Zβ(t)

∑

n

e−
β
4
(H1+H2)e−it(H1+H2)|n〉1|n〉2, (9.1)

where the total Hilbert space is doubled Htot = H1 ⊗ H2 (H1 is the original CFT

Hilbert space and H2 is its identical copy). Its density matrix16 is given by

ρ(t) = |TFD(t)〉〈TFD(t)| and if we trace out H2, then the reduced density matrix

ρ1 is time-independent, given by the standard canonical distribution ρ1 ∝ e−βH1 . However

the TFD state |TFD(t)〉 shows very nontrivial time evolution and is closely related to

quantum quenches as pointed out in [89].

9.1 Optimizing TFD state

Motivated by this, let us study the path-integral expression of |TFD(t)〉. First we can

create the initial TFD state |TFD(0)〉 by the Euclidean path-integral for the range of

Euclidean time τ :

− β

4
≤ τ ≤ β

4
. (9.2)

After this path-integration, we can perform the Lorentzian path-integral by it on each

CFT. This integration contour is depicted as the left picture in figure 8. However, as we

will see later, there is an equivalent but more useful contour given by the right picture in

figure 8. This is because we can exchange the Euclidean time evolution e−β(H1+H2)/4 with

the real time one e−it(H1+H2).

Now we consider an optimization of this path-integral. For the Euclidean part we can

apply the same argument as before and minimize the Liouville action. Next we need to

consider an optimization of the real time evolution. However, we would like to argue that

this Lorentzian path-integral cannot be optimized. A heuristic reason for this is that if the

final state even after a long time evolution, is still sensitive to the initial state as opposed to

the Euclidean path-integral. On the other hand, if we perform an Euclidean time evolution

for a period ∆τ , then the final state is insensitive to the high momentum mode k ≫ 1/∆τ

of the initial state. Once we assume this argument, we can understand the reason why we

place the Lorentzian time evolution in the middle sandwiched by the Euclidean evolution

as this obviously reduces the value of SL. It is an intriguing future problem to verify these

intuitive arguments using the tensor network framework.

16However note that ρ(t) can not be obtained from the analytic continuation τ = it of Euclidean TFD

density matrix ρ(τ) = |TFD(τ)〉〈TFD(τ)| defined by the Euclidean path-integral for the Euclidean time

region −β/4− τ ≤ τ ≤ β/4 + τ . Instead it is obtained from ρ′(τ) = |TFD(τ)〉〈TFD(−τ)|.
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Re[t] 

Im[t] 
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Figure 8. The choices of path-integral contour for the TFD states. We employ the time coordinate

in the first CFT H1. The left and right choices are equivalent.

it
4

it itit
4

0

Optimization 

t2

Figure 9. The optimization of path-integral for the TFD states. The Euclidean path-integral

is optimized by minimizing the Liouville action. We assumed that the Lorentzian one cannot be

optimized.

Assuming that the above prescription of optimization is correct at least semi-

quantitatively, we can find the following solution (remember we set z = −τ):

e2φ =

{

4π2

β2 cos−2
(

2πRe[z]
β

)

, (−β
4 − it < z < −it, it < z < it+ β

4 )

4π2

β2 , (−it < z < it).
(9.3)

This is depicted in figure 9.

It is also intriguing to estimate the complexity. For the Euclidean part, we proposed

that it is given by the Liouville action as we explained before. For Lorentzian part, there

is no obvious candidate. However since we assumed that φ is constant during the real

time evolution, we can make a natural identification: the Liouville potential term gives the

complexity. This is clear from the fact that the complexity should be proportional to the

number of tensors.
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Thinking this way, we find

SL(t) = SL(0) +

(

2π

β

)2

· c
6
· t. (9.4)

This linear t growth is consistent with the basic idea in [26]. Since the energy in our 2D

CFT at finite temperature T = 1/β is given by

ECFT =
π2

3
cT 2, (9.5)

we find
dSL(t)

dt
= 2ECFT. (9.6)

Interestingly this growth is equal to a half of the gravity action IWDW on the WDW

patch for holographic complexity found in [32, 33], where the holographic complexity CA is

conjectured to be CA = IWDW
π (8.48). Note that we are shifting both the time in the first and

second CFT at the time. This relation dIWDW
dt = 2dSL

dt may be natural because the partition

function of CFTs Z ∼ eA is the square of that of wave functional in CFTs |Ψ|2 ∼ e2SL .

It is also intriguing to consider a pure state which looks thermal when we coarse-grain

its total system. One typical such example in CFTs is obtained by regularizing a boundary

state |B〉
|ΨB〉 = NBe

−βH/4|B〉, (9.7)

where NB is the normalization such that 〈ψB|ψB〉 = 1. This can also be regarded as an

approximation of global quenches [87, 88]. This quantum state is dual to a single-sided

black hole [89] shows the linear growth of holographic entanglement entropy which matches

with the 2D CFT result in [87]. This state after our path-integral optimization is clearly

given by a half of TFD (6.28) for 0 < z < β/4− ǫ. The boundary at z = 0 corresponds to

that of the boundary state |B〉 which matches with the AdS/BCFT formulation [90, 91].

Thus the growth of the complexity functional is simply given by a half of the TFD case (9.6).

9.2 Comparison with eternal BTZ black hole

The time evolution of TFD state provides an important class of time-dependent states and

here we would like to discuss possible connections between our optimization procedure and

its gravity dual given by the eternal BTZ black hole. In this section we set β = 2π for

simplicity.

First let us try to assume that the dual geometry for this time-dependent quantum

states has a property that each time slice is given by a space-like geometry which is a

solution to Liouville equation. Any solution to the Liouville equation is always a hyperbolic

space with a constant curvature. Such a hyperbolic space at each time t is obtained by

taking a union of all geodesic which connects two points at the time t with the same space

coordinate in the two different boundaries, given explicitly by

ds2 = e2φ(z)(dz2 + dx2),

e2φ(z) =

(

1
cosh t

)2

sin2
(

z
cosh t

) . (9.8)
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By the transformation

cosh ρ =
1

cosh t

sin
(

z
cosh t

) , (9.9)

the metric is rewritten as

ds2 = cosh2 ρ

(

dx2 +
sinh2 ρ

sinh2 ρ cosh2 ρ+ tanh2 t cosh2 ρ
dρ2
)

. (9.10)

Indeed the whole BTZ metric

ds2 = − sinh2 ρdt2 + dρ2 + cosh2 ρdx2, (9.11)

can be rewritten into the metric

ds2 =
1

sin
(

z
cosh τ

)2 · cosh2 τ

[

−dτ2 + dx2 + (z tanh τ(dτ)− dz)2
]

, (9.12)

via the coordinate transformation

cosh ρ =
1

cosh τ · sin
(

z
cosh τ

) , tanh t =
tanh τ

cos
(

z
cosh τ

) . (9.13)

However if we evaluate its action (as in the computation of (6.31)) we find (we recovered

β dependence)

SL =
8π

ǫ
− 4π3

β cosh t
. (9.14)

Thus there is no linear t growth. In this way, this surface does not seem to have an expected

property which supports the linearly growing complexity argued in many papers [25, 26,

32, 33, 35].

Now we would like to turn to another candidate: maximal time slice, whose volume

was conjectured to be one candidates of holographic complexity [25, 26]. Note that this

maximal time slice is not a solution to Liouville equation as opposed to the previous

hyperbolic space (9.8), which is constructed from geodesics.

The BTZ metric behind the horizon can be obtained by the analytic continuation

ρ = iκ, t̃ = t + πi
2 . Maximal volume surface with boundary time t is determined by the

equation

s2(t) =
cosh2 ρ sinh4 ρ

ρ̇2 − sinh2 ρ
=

cos2 κ sin4 κ

−κ̇2 + sin2 κ
. (9.15)

s(t)2 increases monotonically as t (≥ 0) increases, with boundary value s(0) = 0 and

s(∞) = 1/2. The induced metric on the maximal volume time-slice is

ds2 = cosh2 ρ

[

sinh2 ρ

s(t)2 + sinh2 ρ cosh2 ρ
dρ2 + dx2

]

. (9.16)

The curvature of the maximal volume time slice is not constant, therefore the time slice is

not hyperbolic. Then, we find that the volume term increases linearly in time. Finally we

obtain
c

24π

d(Vol(t))

dt
≈ c

12
, (9.17)
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Microscopic 

Wormhole

Macroscopic 

Wormhole

Low Temperature Phase High Temperature Phase 

x

z

Figure 10. The expected description of confinement/deconfinement phase transition in our op-

timization of path-integral for the TFD states. At low temperature the two CFTs are connected

through a microscopic bridge with entanglement entropy O(1) in the tensor network. At high

temperature the bridge gets macroscopic and has entanglement entropy O(c).

at late time (here we used the same normalization as our proposal for the Liouville ac-

tion). This behavior is in contrast to the previous hyperbolic time slice, where the action

approaches monotonically to some constant value.

In summary, the above arguments imply that for a generic time dependent background,

the assumption that a preferred time slice in a gravity dual is described by Liouville equa-

tion, is not compatible with the requirement that the Liouville action gives a measure of

complexity. Thus an extension of our proposal in this paper to time-dependent backgrounds

looks highly non-trivial and deserves future careful studies.

9.3 Comment on phase transition

It is also intriguing to discuss how we can understand the confinement/deconfinement

phase transition in our approach. For this, we focus on the initial state |TFD(t = 0)〉.
Since our approach is based on pure states we need to consider the wave functional of

TFD state (at temperature T ) and see how the corresponding tensor network changes as a

function of T . It is obvious that at high temperature, the connected network which looks

like macroscopic wormhole is realized and this should be described by the optimized path-

integral on the Einstein-Rosen bridge (3.5). As we make the temperature lower, the neck of

bridge gets squeezed and eventually disconnected in a macroscopic sense. Here we mean by

the macroscopic the quantum entanglement of order O(c) = O(1/GN ). Refer to figure 10.

Since the TFD state has non-zero (but sub-leading order O(1)) entanglement entropy

between the two identical CFTs even at low temperature, there should be a microscopic

bridge or wormhole (following ER=EPR conjecture [92]) which connects the two sides in

the tensor network description. In this low temperature, the bridge is due to the singlet

sector of the gauge theory and is in its confined phase. In large c holographic CFTs, there

should be a phase transition of the macroscopic form of the tensor network at the value

β = 1/T = 2π predicted by AdS3/CFT2. Naturally, we expect that the favored phase of a

given quantum state Ψ is the one which has smaller complexity CΨ.
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However, in the current form of our arguments based on the path-integral optimization,

it is not straightforward to compare the value of the complexity (i.e. Liouville action) for

the confinement/deconfinement phase transition. This is because we can only define the

difference of complexity which depends on the reference metric. In this phase transition,

the topology of the reference space changes and it is difficult to know how to compere them

precisely.

Nevertheless, it might be useful to try to roughly estimate the complexity. For this we

assume that the complexity for the deconfined phase (denoted by Cdec) is estimated by the

bridge solution (6.30) and that for the confined phase (denoted by Ccon) is by the twice of

the vacuum result (6.16), which leads to

Cdec ≈
c

3ǫ
− π2c

6β
, Ccon ≈ c

3ǫ
− c

3
. (9.18)

Qualitatively, this has an expected behavior that Cdec < Ccon for β ≪ 2π and vise versa,

though the phase transition temperature reads β = π2/2, which is slightly different from

the gravity result 2π.

Another interesting interpretation of the phase transition can be found from a property

in the Liouville CFT. It is known that the (chiral) conformal dimension h of any local

operators in Liouville theory has an upper bound (so called Seiberg bound [57]):

h ≤ c− 1

24
, (9.19)

which implies the non-normalizability of the corresponding state. The operator which

violates the bound should be regarded as a (normalizable) quantum state. In the large c

limit, this bound (9.19) agrees with the condition that the conical deficit angle parameter

a given by (3.16), takes a real value, for which the metric is that for confined phase. When

it is violated, a becomes imaginary and the metric changes into that for the deconfined

phase (Einstein-Rosen bridge). This behavior seems to fit very nicely with the gravity dual

prediction and to proceed this further is an important future problem.

10 Conclusions

In this work, we proposed an optimization procedure of Euclidean path-integrals for quan-

tum states in CFTs. The optimization is described by a change of the background metric

on the space where the path integral is performed. The optimization is completed by min-

imizing the complexity functional IΨ for a given state |Ψ〉, which is argued to be given by

the Liouville action for 2D CFTs. The Liouville field φ corresponds to the Weyl scaling of

the background metric. Since this complexity is defined from Euclidean path-integrals, we

propose to call this “Path-Integral Complexity”.

Through calculations in various examples in 2d CFTs, we observed that optimized

metrics for static quantum states coincide with those of time slices of their gravity duals.

Thus we argued that our path-integral optimization offers a continuous version of the

tensor network interpretation of AdS3/CFT2 correspondence. Moreover, we also find a

simple formula to calculate the energy density for each quantum state.
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At the same time, we provide a field theory framework for evaluating the computational

complexity of any quantum states in CFTs. Note however, that in 2D CFTs, due to

the conformal anomaly, the complexity functional (i.e. Liouville action) depends on the

reference metric. Therefore, we proposed to use the difference of the action, which is

expected to give a relative difference of complexity between the optimized network and the

initial un-optimized one. We evaluated this quantity in several examples.

In order to calculate the entanglement entropy, we studied an optimization of reduced

density matrices. After the optimization we find that the geometry is given by two copies

of entanglement wedge and this nicely fits into the gravity dual. The entanglement entropy

is finally reduced to the length of the boundary of the entanglement wedge and precisely

reproduces the holographic entanglement entropy.

Even though in most parts of this paper our analysis is devoted to static quan-

tum states, we also discussed how our optimization of path-integrals can be applied to

time-dependent backgrounds in 2D CFTs. Especially, we considered the time evolution

of thermo-field states which describe finite temperature states as a basic example. Our

heuristic arguments show that an wormhole throat region linearly grows under the time

evolution, which is consistent with holographic predictions. Moreover, we discussed how to

interpret the confinement/deconfinement phase transition in terms of tensor networks and

our path-integral approach, whose details will be an interesting future problem. However,

a precise connection between Liouville action and time-dependent states in 2D CFTs is

still not clear and this was left as an important future problem.

In the latter half of this paper, we investigated the application of our optimization

method to CFTs in other dimensions than two. In one dimension, we find that 1D ver-

sion of Liouville action naturally arises from the conformal symmetry breaking effect in

NAdS2/CFT1 and this explains the emergence of extra dimension as in the AdS3/CFT2

case.

In higher dimensions, we expect that the optimization procedure gets very complicated

as we need to change not only the scaling mode but also other components of the metric as

opposed to the 2D case. We focused on the Weyl scaling mode and proposed a complexity

functional which looks like a higher dimensional version of Liouville action. However, notice

the crucial difference from the 2D case that the higher dimensional action does not depend

on the reference metric. We confirmed that this reproduces the correct time slice metric

for the vacuum states and correct holographic entanglement entropy when the subsystem

is a round sphere. We pointed out an interesting direct connection to earlier proposal of

holographic complexity [32, 33], which may suggest we should optimize with respect to all

components of the metric. We also analyzed the spherically symmetric excited states and

found that the optimized metric agrees with the AdS Schwarzschild one up to the first order

contribution of the mass parameter. We observed that for CFTs in any dimensions (in-

cluding 2D), in order to take into account higher order back-reactions, we need to treat the

Liouville mode φ in a quantum way. It is also possible to include higher derivative correc-

tions without losing the above properties as we discussed in appendix (C). One advantage

of this is that we can realize the higher dimensional conformal anomaly. However there is

also a disadvantage that the action is no longer positive definite and cannot be minimized

but extremized. These issues on higher dimensional CFTs should deserve further studies.
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Last but not least, our approach based on the optimization of path-integrals is a

modest but important step towards understanding of the basic mechanism of the AdS/CFT

correspondence. For the future, apart from the questions we already mentioned above, there

are many new directions for investigations like e.g. computation of correlation functions,

generalizations to non-conformal field theories and understanding a precise connection to

AdS/CFT including 1/c expansions etc.
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A Comparison with earlier Liouville/3D gravity relation

Here we would like to compare our Liouville theory obtained from an optimization of

Euclidean path-integrals with the earlier relation [61] between 3D gravity and Liouville

theory. For simplicity we set the AdS radius to unit R = 1 below. We employ the Chern-

Simons description of 3D gravity [68], the two SL(2, R) gauge fields A and Ā correspond to

the triad e and spin connection ω via A = ω+ e and Ā = ω− e. If we choose the solution:

A =

(

dr
2r −T++(x

+)dx
+

r

rdx+ −dr
2r

)

, Ā =

(

−dr
2r rdx−

−T−−(x−)
dx−

r
dr
2r

)

, (A.1)
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we obtain a series of solutions which describe gravitational waves on a pure AdS space

(called Banados geometry) [85]:

ds2 =
dr2

r2
−
(

r2 + T++T−−r
−2
)

dx+dx− − T++(dx
+)2 − T−−(dx

−)2. (A.2)

This satisfies the equation of motion iff T++ and T−− are functions of x+ and x− respec-

tively, i.e. ∂−T++ = ∂+T−− = 0. If we set T++ and T−− to be constants, the geometry

becomes a BTZ black hole.

A.1 Review of earlier argument

In the paper [61], motivated by the asymptotic behavior of BTZ black hole solutions, the

following gauge choices are imposed: A = (G1)
−1dG1 and A = (G2)

−1dG2 (note that

there is no bulk degrees of freedom in Chern-Simons gauge theories), where G1 and G2 are

expresses as follows

G1 = g1(x
+, x−) ·

(√
r 0

0 1√
r

)

, G2 = g2(x
+, x−) ·

(

1√
r

0

0
√
r

)

. (A.3)

In the above expression g1 and g2 are SL(2, R) matrices and describe the boundary degrees

of freedom. Note that we can show

Ar = −Ār

(

1
2r 0

0 − 1
2r

)

, A± =

(

a(3) a(+)/r

ra(−) −a(3)

)

, Ā± =

(

ā(3) ā(+)/r

rā(−) −ā(3)

)

,

where we defined a± = (g1)
−1∂+g1 and ā± = (g2)

−1∂−g2. Next we impose the chiral gauge

choices a− = ā+ = 0. In this case the gauge theory for A and Ā becomes equivalent to

the chiral and anti-chiral SL(2, R) WZW model, respectively [61]. Thus, by combining g1
and g2 as g = g−1

1 g2 we obtain a SL(2, R) WZW model. If we describe the SL(2, R) group

element by

g =

(

1 X

0 1

)(

eφ 0

0 e−φ

)(

1 0

Y 1

)

, (A.4)

then the WZW model is described by the action

SWZW =

∫

dx+dx−
[

2∂+φ∂−φ+ 2e−2φ(∂−X)(∂+Y )
]

. (A.5)

We can find the solutions to the equation of motion for SWZW such that

∂+Y = −α(x+) · e2φ, ∂−X = β(x−) · e2φ,
∂+∂−φ = α(x+)β(x−)e2φ. (A.6)

Now we set α(x+) = β(x−) = 1 via a coordinate transformation. Note that the final

equation in (A.6) coincides with the equation of motion of Liouville theory and this provides

the connection between the 3D gravity and Liouville theory. Finally, the gauge field A and

Ā for this solution read

A =

(

1
2r

(

−∂2+φ+ (∂+φ)
2
)

dx+

r

rdx+ − 1
2r

)

, Ā =

(

− 1
2r rdx−

(

−∂2−φ+ (∂−φ)2
)

dx−

r
1
2r

)

.

Thus we find that the serious of the above solutions correspond to the Banados geome-

try (A.2) with the energy stress tensor in the Liouville CFT: T±± = ∂2±φ− (∂±φ)2.
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A.2 Comparison with our approach

Now let us compare the above earlier argument to our metric ansatz (3.19), which fits

naturally with our path-integral optimization argument. We work in Euclidean signature

and consider the Euclidean version of Banados metric (A.2) given by

ds2 =
dz2

z2
+
(

z2 + T (w)T̄ (w̄)z−2
)

dwdw̄ + T (w)dw2 + T (w̄)dw̄2. (A.7)

This metric is mapped into the standard Poincare AdS3 metric ds2 = dη2+dx2+dτ2

η2
via

τ + ix = A(w)− 2A′(w)2B′′(w̄)

4z2A′(w)B′(w̄) +A′′(w)B′′(w̄)
,

τ − ix = B(w̄)− 2B′(w̄)2A′′(w)

4z2A′(w)B′(w̄) +A′′(w)B′′(w̄)
,

η =
4z(A′(w)B′(w̄))3/2

4z2A′(w)B′(w̄) +A′′(w)B′′(w̄)
. (A.8)

Here A and B are holomorphic and anti holomorphic functions, respectively and the energy

stress tensors are expresses as

T (w) =
3A′′(w)2 − 2A′(w)A′′′(w)

4A′(w)2
, T̄ (w̄) =

3B′′(w̄)2 − 2B′(w̄)B′′′(w̄)

4B′(w̄)2
. (A.9)

On the other hand, the metric (3.19) with the general solution to the Liouville equation

e2φ =
4A′(y)B′(ȳ)

(A(y) +B(ȳ))2
, (A.10)

is mapped into the same Poincare AdS3 via the map:

sinh ρ =
τ

η
, A(y) +B(ȳ) = 2

√

τ2 + η2, A(y)−B(ȳ) = 2ix. (A.11)

Note that the energy stress tensor for the Liouville field (A.10) agrees with (A.9) as it

should be.

Therefore, by combining (A.8) and (A.11) we obtain a coordinate transformation be-

tween the Banados metric (z, w, w̄) and our metric (ρ, y, ȳ). Notice that the map is trivial

near the AdS boundary such that y = w+O(z2) and ȳ = w̄+O(z2) when z is very small.

B Holographic complexity in the literature

As mentioned in section 8.5, in this appendix we will consider both CV and CA-conjectures

for the computation of holographic complexity and will explicitly determine them for some

specific cases like Poincare and global AdS in order to compare them with our set-up.

In what follows we will summarize the behavior of holographic complexity in different

situations and with both the CV and CA conjectures.17

17In this appendix, for the sake of convenience, we are using a convention where we put the AdS radius

RAdS = 1.
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1. Poincare AdSd+1: from [38], where the complexity action IWDW is evaluated with

the null boundary term found in [35], we see

CV conjecture: CV =
Vx

(d− 1)GN

1

ǫd−1

CA conjecture: CA =
IWDW

π
,

IWDW =
4Vx

16πGN
log(d− 1)

1

ǫd−1

(B.1)

with Vx =Volume of the (d− 1)-dim spatial extent of CFT(d−1).

2. Global AdSd+1: following the construction in [30] (see appendix C for details) for

global AdSd+1, we note that the leading divergence in CA behaves as

CA ∼ Ωd−1

16π2GN
log

(

1√
α ǫ

)

1

ǫd−1
+ · · · (B.2)

where ǫ is the UV cut-off and Ωd−1 being the volume of unit sphere Sd−1. The sub-

leading contributions include terms starting from 1/ǫd−1, but strikingly enough the

leading term has an additional and stronger logarithmic divergence. As explained

in [30] this comes from one of the joint contributions but suffers from the ambiguity

of a parametrization of the null boundary of the WDW patch, and is denoted by the

free parameter α. In [38], a prescription to resolve this ambiguity was proposed and

following their construction we see

CV conjecture: CV =
Ωd−1

GN

∫ θcut

0

dθ

cos θ
tand−1 θ

CA conjecture: CA =
IWDW

π
,

IWDW =
1

16πGN

[

− 4Ωd−1

∫ θcut

0
dt′ tand t′

+ 4Ωd−1

(

ln(d− 1) +
1

d− 1

)

tand−1 θcut

]

(B.3)

with θcut = π/2− ǫ. For some explicit cases, we see that

d=2 ⇒ CV =
Ω1

GN

(

1

ǫ
− 1

)

, IWDW =
Ω1

8GN

d=3 ⇒ CV =
Ω2

GN

(

1

2ǫ2
− 1

2
log(2/ǫ)− 1

12

)

,

IWDW =
Ω2

16πGN

[

4 log 2

ǫ2
− 4 log(ǫ)− 8 log 2

3

]

,

d=4 ⇒ CV =
Ω3

GN

(

1

3ǫ3
− 5

6ǫ
+

2

3

)

,

IWDW =
Ω3

16πGN

(

4 log 3

ǫ3
+

4− 4 log 3

ǫ
− 2π

)

.

(B.4)

– 46 –



J
H
E
P
1
1
(
2
0
1
7
)
0
9
7

C Higher derivatives in complexity functional and anomalies

As was mentioned in section 8.8, in this appendix we would like to explore the possibility

of working with complexity functional Id such that it correctly produces the anomalies for

even dimensional CFTs and hence can be considered as the partition function Id = logZd

for d-dimensional CFTs.

Motivated by this, we analyze the AdS5/CFT4 case assuming the relation I4 = logZ4.

We will confirm that the equation of motion for the new action again produces the hy-

perbolic time slice H4 and moreover its first order perturbation agrees with the AdS5
Schwarzschild black hole solution. The possibility of having extra higher derivative terms

in the action functional can be related to the trace anomaly in CFT4

δφI4 =

∫

d4x
√
g φ

(

cW 2 − aE4 + b∇µ∇µR
)

(C.1)

where W 2 is the square of Weyl tensor and E4(= R2
µνρσ − 4R2

µν + R2) is the topological

Euler density in 4-dimensions and µ = z, x1, x2, x3. Also, note the last term can be taken

care of through a local counter term, see [86].

As mentioned before, we restricts ourselves here only to the metrics which are of the

Weyl scaling type (2.5),

gµν = e2φ hflatµν . (C.2)

with hflatµν corresponding to Euclidean flat space. It can be shown that the action I4, which

correctly reproduces (C.1), becomes

I4 =

∫

d4x
√
g

[

α1 + α2(∂
µφ∂µφ) + α3(∂

µφ∂µφ)
2

+ α4(∇µ∂µφ)
2 + α5(∇µ∂µφ)(∂

µφ∂µφ)

] (C.3)

such that α3 = 6a− 3b, α4 = −3b, α5 = −4a+ 6b and g is the determinant of the metric

gµν in (C.2).

Next we will extremize the action (C.3) for the Poincare and global AdS5 respectively.

C.1 Poincaré AdS5 with higher derivatives

For the time slice of Poincare AdS5 we consider the form of the metric as given in (8.10),

and with that the action in (C.3) becomes (upto some total derivatives)

I4 =

∫

dz

[

α1e
4φ + α2e

2φ(∂zφ)
2 − b̃(∂zφ)

4 − 3b(∂2zφ)
2

]

, (C.4)

where we defined b̃ = 3b+2a and also assumed that φ is a function of z only. Extremizing

the action in (C.4) we demand that the time slice of Poincare AdS5 is a solution to that.

In other words, eφ = ℓ/z extremizes the action if the following condition is satisfied

α1ℓ
4 = α2ℓ

2 − 6a. (C.5)
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C.2 Global AdS5 with higher derivatives

For time slice of global AdS5 we again consider the metric as in (8.11) and the corresponding

action functional (C.3), turns out to be

I4 =

∫

drr3
[

α1e
4φ + α2e

2φφ′2 − b̃φ′4 + 4b̃φ′2φ′′ − 6bφ′′2 − 3bφ′φ′′′
]

(C.6)

where φ′ = ∂rφ and we have also assumed that φ is a function of r only.

It is straightforward to check that eφ = 2ℓ/(1 − r2) is a solution to the equation of

motion for φ obtained by extremizing (C.6), provided

α1ℓ
4 = α2ℓ

2 − 6a, (C.7)

which is same as (C.5) and hence we prove that the time slice of global AdS5 is indeed

obtained by extremizing (C.6).

C.3 Excitation in global AdS5 with higher derivatives

Consider excited states in CFT4 dual to AdS5 Schwarzschild black holes (8.18). In Eu-

clidean path integral analysis, we consider a spherically symmetry excitation and write its

metric perturbation as

eφ =
2

(1− r2)

(

1 +M β(r)
)

. (C.8)

Working up to linear order in M , we substitute (C.8) in the equation of motion for φ

that follows from the action in (C.6) and solve for β(r). We use the restriction on the

parameters as in (C.5) for the zeroth order solution. Also demanding that the solution be

regular at r = 1 we check that

β(r) = η(r) (C.9)

is indeed a allowed solution, where η(r) is given in (8.24). Therefore we conclude that even

in the presence of the higher derivative terms in (C.6), once the condition (C.5) is main-

tained the first order perturbed metric of the AdS BH agrees with the extremization of I4.

D Entanglement entropy and Liouville field

In our approach with the Liouville action and the metric

ds2 = e2φ(z)
(

dz2 + dx2
)

, (D.1)

we compute entanglement entropy as a line integral along the geodesic γ in the hyperbolic

plane that is attached to the endpoints of the interval l

Sl =
c

6

∫

γ
eφ(z)ds (D.2)

and for a general geodesic parametrized by (z(t), x(t)), we have

ds =
√

x′2 + z′2dt. (D.3)
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Moreover, it is important to note that all our “optimized” vacuum solutions not only satisfy

the Liouville equation but also

∂xφ(z) = ∂zφ(z) + eφ(z) = 0. (D.4)

Notice also, that because we are interested in the regularized curve, we can just compute

the entanglement entropy by (twice) the integral from the boundary to some distance in

the bulk (turning point of the geodesic). That implies, using (D.4)

Sl ≃
c

3

∫ L̃

ǫ
eφ(z)dz = − c

3

∫ L̃

ǫ
∂zφ(z)dz = − c

3
[φ(z)]L̃ǫ (D.5)

This is clear for the vacuum solution

φ0(z) = − log (z) (D.6)

and for L̃ = l we obtain the usual result for the entropy.

In general we can consider an arbitrary conformal transformation of the Liouville field

of the “vacuum” by chiral and anti chiral functions (w, w̄) → (f(w), g(w̄)). Under such

transformation, Liouville field itself transforms as

φ(f, g) = φ(w, w̄)− 1

2
log
(

f ′(w)g′(w̄)
)

. (D.7)

This is still a solution of the Liouville equation with negative curvature (hyperbolic) and,

in our approach, leads to a particular CFT state. Interestingly, we can then compute the

entanglement entropy for such solution and after the line integral (D.2), we obtain

Sl =
c

12
log

(

(f(w1)− f(w2))
2

f ′(w1)f ′(w2)ǫ2

)

+
c̄

12
log

(

(g(w̄1)− g(w̄2))
2

g′(w̄1)g′(w̄2)ǫ2

)

. (D.8)

Curiously, from the general solution of the Liouville equation, we can now see that this

result itself can also be written as a Liouville field and satisfies the Liouville equation but

with positive curvature [76] and the space described by the end-points of the interval. It

appears that these two Liouville fields can obtained form each other by simple analytic

continuation (see also [56]) but the physical significance of this fact is far from obvious and

remains to be elucidated.

Nevertheless, given (D.8), we can still apply the first law and compute the stress-tensor.

Namely, if we set w2 = w1 + l and w̄2 = w̄1 + l, we can expand for small interval l

Sl =
c+ c̄

6
log

l

ǫ
− l2

6

( c

12
{f(w1), w1}+

c̄

12
{g(w̄1), w̄1}

)

+O(l3) (D.9)

where the expressions in the brackets are the Schwarzian derivatives

{f(w), w} =
f ′′′(w)

f ′(w)
− 3

2

(

f ′′(w)

f ′(w)

)2

. (D.10)
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On the other hand, we would like to extract this date from the original Liouville field

(hyperbolic) that enters in the optimization procedure. This can be done as follows: note

that the entropy in the new geometry is computed by

Sl =
c

6

∫

γ
eφ(w,w̄)e−

1
2
log(f ′(w)g′(w̄))ds. (D.11)

If we then consider the exponent of the change in the Liouville field, the stress tensor

(Schwarzian derivative) can be read of from the simple equation

∂2we
− 1

2
log(f ′(w)g′(w̄)) = −1

2
{f(w), w}e− 1

2
log(f ′(w)g′(w̄)), (D.12)

and analogously for g.
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