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Abstract

We discuss cosmology in the context of Liouville strings, characterized by a central-charge
deficit Q2, in which target time is identified with (the world-sheet zero mode of the) Liouville
field: Q-Cosmology. We use a specific example of colliding brane worlds to illustrate the
phase diagram of this cosmological framework. The collision provides the necessary initial
cosmological instability, expressed as a departure from conformal invariance in the underlying
string model. The brane motion provides a way of breaking target-space supersymmetry, and
leads to various phases of the brane and bulk Universes. Specifically, we find a hot metastable
phase for the bulk string Universe soon after the brane collision in which supersymmetry is
broken, which we describe by means of a subcritical world-sheet σ model dressed by a space-
like Liouville field, representing finite temperature (Euclidean time). This phase is followed
by an inflationary phase for the brane Universe, in which the bulk string excitations are cold.
This is described by a super-critical Liouville string with a time-like Liouville mode, whose
zero mode is identified with the Minkowski target time. Finally, we speculate on possible ways
of exiting the inflationary phase, either by means of subsequent collisions or by deceleration
of the brane Universe due to closed-string radiation from the brane to the bulk. While phase
transitions from hot to cold configurations occur in the bulk string universe, stringy excitations
attached to the brane world remain thermalized throughout, at a temperature which can be
relatively high. The late-time behaviour of the model results in dilaton-dominated dark energy
and present-day acceleration of the expansion of the Universe, asymptoting eventually to zero.
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1 Introduction

Formal developments in string theory [1] over the past decade, in particular the discovery of
a consistent way of studying quantum domain wall structures (D-branes) [2], have opened up
novel ways of looking at both the microcosmos and the macrocosmos. In the microcosmos, there
are novel ways of compactification, either via the observation [3] that extra dimensions that are
large compared to the string scale may be consistent with the foundations of string theory, or
by viewing our four-dimensional world as a brane embedded in a bulk space-time, allowing for
large extra dimensions that might even be infinite in size [4], in a manner consistent with a large
hierarchy between the Planck scale and the electroweak or supersymmetry breaking scale. In
this modern approach, fields in the gravitational (super)multiplet of the (super)string, or more
generally those neutral under the Standard Model (SM) group, are allowed to propagate in the
bulk. This is not the case for non-Abelian gauge fields, nor fields charged under the SM group,
which are attached to the brane world. In this approach, the weakness of gravity compared to
the rest of the interactions is a result of the large compact dimensions, the compactification not
necessarily being achieved through conventional means, i.e., closing up the extra dimensions in
spatial compact manifolds, but perhaps also through the involvement of shadow brane worlds
with special reflecting properties, such as orientifolds, which restrict the bulk dimension [5]. In
such approaches the string scale Ms is not necessarily identical to the four-dimensional Planck
mass scale MP . Instead, the two scales are related through the large compactification volume
V6:

M2
P =

8M2
s V6

g2
s

. (1)

As for the macrocosmos, this modern approach has offered new insights into the cosmic evolution
of our Universe. Novel ways of discussing cosmology in brane worlds have been discovered over
the past few years, which may revolutionize our way of approaching issues such as inflation [6, 7]
and the present acceleration of the expansion of the Universe [8].

In parallel, mounting experimental evidence from diverse astrophysical sources presents
some important puzzles that string theory must address if it is to provide a realistic descrip-
tion of Nature. Observations of distant Type-1a supernovae [9], as well as detailed studies of
the cosmic microwave background fluctuations by the WMAP satellite [10], indicate that our
Universe is currently in an accelerating epoch, and that 73% of its energy density consists of
dark energy that does not cluster, but is present in ‘empty space’. These issues are highly sig-
nificant for string theory, motivating a novel perspective on the treatment and understanding
of string dynamics. If the dark energy turns out to be a true cosmological constant, leading to
an asymptotic de Sitter horizon, then the entire concept of the scattering S-matrix, upon which
perturbative string theory is built, breaks down 1. This would cast doubt on the foundations of
string theory, at least as they are conventionally formulated. On the other hand, even if models
for relaxing the vacuum energy are invoked, leading asymptotically to a vanishing vacuum en-
ergy density at large cosmic times and consistency with an S-matrix, there is still the open issue
of embedding such models in (perturbative) string theory. In particular, the formal question
arises how to formulate consistently a world-sheet σ-model description of strings propagating
in such time-dependent space-time backgrounds.

1This is also true in more general scenarios for the vacuum energy with a de Sitter horizon.
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The standard world-sheet conformal invariance conditions of critical string theory [1], which
are equivalent to target-space equations of motion for the background fields on which the string
propagates, are very restrictive, allowing only vacuum solutions of critical strings. The main
problem may be illustrated as follows. Consider the graviton world-sheet β function, which is
simply the Ricci tensor of the target space-time background to lowest order in α′:

βµν = α′Rµν , (2)

in the absence of other fields. Conformal invariance would require that βµν = 0, implying
a Ricci-flat background, which is a solution to the vacuum Einstein equations. A priori, a
cosmological-constant vacuum solution is inconsistent with this conformal invariance in strings,
since it has a Ricci tensor Rµν = Λgµν , where gµν is the metric tensor. The question then
arises how to describe cosmological backgrounds for strings that are not vacuum solutions, but
require the presence of a matter fluid yielding a non-flat Ricci tensor.

One proposal for obtaining a non-zero cosmological constant in string theory was made
in [11], according to which dilaton tadpoles on higher-genus world-sheet surfaces produce ad-
ditional modular infinities, whose regularization leads to extra world-sheet structures in the σ
model. Since they do not appear at the world-sheet tree level, they lead to modifications of
the β function such that the Ricci tensor of the space-time background is now that of an (anti)
de Sitter Universe, with a cosmological constant fixed by the dilaton tadpole graph: JD > 0
(JD < 0). The problem with this approach is the above-mentioned existence of an asymptotic
horizon in the de Sitter case, which prevents the proper definition of asymptotic states, and
hence a scattering matrix. Since the perturbative world-sheet formalism is based on such an
S-matrix, there is a priori an inconsistency in the approach.

It was proposed in [12] that one way out of this dilemma would be to assume a time-
dependent dilaton background, with a linear dependence on time in the so-called σ-model
frame. Such backgrounds, even when the σ-model metric is flat, lead to exact solutions (to
all orders in α′) of the conformal invariance conditions of the pertinent stringy σ-model, and
so are acceptable solutions from a perturbative viewpoint. It was argued in [12] that such
backgrounds describe linearly-expanding Robertson-Walker Universes, which were shown to
be exact conformal-invariant solutions, corresponding to Wess-Zumino models on appropriate
group manifolds.

The pertinent σ-model action in a background with graviton G, antisymmetric tensor B
and dilaton Φ reads [1]:

Sσ =
1

4πα′

∫

Σ

d2ξ[
√−γGµν∂αX

µ∂αXν + iǫαβBµν∂αX
µ∂βX

ν + α′√−γR(2)Φ], (3)

where Σ denotes the world-sheet, with metric γ and the topology of a sphere, α are world-sheet
indices, and µ, ν are target-space-time indices. The important point of [12] was the role of
target time t as a specific dilaton background, linear in that coordinate, of the form

Φ = const − 1

2
Q t, (4)

whereQ is a constant andQ2 > 0 is the σ-model central-charge deficit, allowing this supercritical
string theory to be formulated in some number of dimensions different from the critical number.
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Consistency of the underlying world-sheet conformal field theory, as well as modular invariance
of the string scattering amplitudes, required discrete values of Q2, when expressed in units of
the string length Ms [12]. This was the first example of a non-critical string cosmology, with the
spatial target-space coordinates X i, i = 1, . . .D − 1, playing the rôles of σ-model fields. This
non-critical string was not conformally invariant, and hence required Liouville dressing [13]. The
Liouville field had time-like signature in target space, since the central charge deficit Q2 > 0 in
the model of [12], and its zero mode played the rôle of target time.

As a result of the non-trivial dilaton field, the Einstein term in the effective D-dimensional
low-energy field theory action is conformally rescaled by e−2Φ. This requires a redefinition of
the σ-model-frame space-time metric gσ

µν to the ‘physical’ Einstein metric gE
µν :

gE
µν = e−

4Φ
D−2Gµν . (5)

Target time must also be rescaled, so that the metric acquires the standard Robertson-Walker
(RW) form in the normalized Einstein frame for the effective action:

ds2
E = −dt2E + a2

E(tE)
(
dr2 + r2dΩ2

)
, (6)

where we show the example of a spatially-flat RW metric for definiteness, and aE(tE) is an
appropriate scale factor, which is a function of tE alone in the homogeneous cosmological
backgrounds we assume throughout.

The Einstein-frame time is related to the time in the σ-model frame [12] by:

dtE = e−2Φ/(D−2)dt → tE =

∫ t

e−2Φ(t′)/(D−2)dt′ . (7)

The linear dilaton background (4) yields the following relation between the Einstein and σ-
model frame times:

tE = c1 +
D − 2

Q
e

Q

D−2
t, (8)

where c1,0 are appropriate (positive) constants. Thus, a dilaton background (4) that is linear
in the σ-model time scales logarithmically with the Einstein time (Robertson-Walker cosmic
time) tE :

Φ(tE) = (const.′) − D − 2

2
ln(

Q

D − 2
tE). (9)

In this regime, the string coupling [1]:

gs = exp (Φ(t)) (10)

varies with the cosmic time tE as g2
s(tE) ≡ e2Φ ∝ 1

tD−2
E

, thereby implying a vanishing effective

string coupling asymptotically in cosmic time. In the linear dilaton background of [12], the
asymptotic space-time metric in the Einstein frame reads:

ds2 = −dt2E + a2
0t

2
E

(
dr2 + r2dΩ2

)
(11)

where a0 a constant. Clearly, there is no acceleration in the expansion of the Universe (11).
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The effective low-energy action on the four-dimensional brane world for the gravitational
multiplet of the string in the Einstein frame reads [12]:

Sbrane
eff =

∫
d4x

√−g{R− 2(∂µΦ)2 − 1

2
e4Φ(∂µb)

2 − 2

3
e2Φδc}, (12)

where, as we discuss below, b is the four-dimensional axion field associated with a four-
dimensional representation of the antisymmetric tensor, and δc = Cint − c∗, where Cint is
the central charge of the conformal world-sheet theory corresponding to the transverse (inter-
nal) string dimensions, and c∗ = 22(6) is the critical value of this internal central charge of
the (super)string theory for flat four-dimensional space-times. The linear dilaton configuration
(4) corresponds, in this language, to a background charge Q of the conformal theory, which
contributes a term −3Q2 (in our normalization) to the total central charge. The latter includes
the contributions from the four uncompactified dimensions of our world. In the case of a flat
four-dimensional Minkowski space-time, one has Ctotal = 4−3Q2+Cint = 4−3Q2+c∗+δc, which
should equal 26 (10). This implies that Cint = 22+3Q2 (6+3Q2) for bosonic (supersymmetric)
strings.

An important result in [12] was the discovery of an exact conformal field theory correspond-
ing to the dilaton background (9) and a constant-curvature (Milne) static metric in the σ-model
frame (or, equivalently, a linearly-expanding Robertson-Walker Universe in the Einstein frame).
The conformal field theory corresponds to a Wess-Zumino-Witten two-dimensional world-sheet
model on a group manifold O(3) with appropriate constant curvature, whose coordinates corre-
spond to the spatial components of the four-dimensional metric and antisymmetric tensor fields,
together with a free world-sheet field corresponding to the target time coordinate. The total
central charge in this more general case reads Ctotal = 4−3Q2− 6

k+2
+Cint, where k is a positive

integer corresponding to the level of the Kac-Moody algebra associated with the WZW model
on the group manifold. The value of Q is chosen in such a way that the overall central charge
c = 26 and the theory is conformally invariant. Since such unitary conformal field theories
have discrete values of their central charges, which accumulate to integers or half-integers from
below, it follows that the values of the central charge deficit δc are discrete and finite in number.
From a physical point of view, this implies that the linear-dilaton Universe may either stay in
such a state for ever, for a given δc, or tunnel between the various discrete levels before relaxing
to a critical δc = 0 theory. It was argued in [12] that, due to the above-mentioned finiteness of
the set of allowed discrete values of the central charge deficit δc, the Universe could reach flat
four-dimensional Minkowski space-time, and thus exit from the expanding phase, after a finite
number of phase transitions.

The analysis in [12] also showed, as we discuss below, that there are tachyonic mass shifts
of order −Q2 in the bosonic string excitations, but not in the fermionic ones. This implies the
appearance of tachyonic instabilities and the breaking of target-space supersymmetry in such
backgrounds, as far as the excitation spectrum is concerned. The instabilities could trigger the
cosmological phase transitions, since they correspond to relevant renormalization-group world-
sheet operators, and hence initiate the flow of the internal unitary conformal field theory towards
minimization of its central charge, in accordance with the Zamolodchikov c-theorem [14]. As
we discuss later on, in semi-realistic cosmological models [15] such tachyons decouple from
the spectrum relatively quickly. On the other hand, as a result of the form of the dilaton in
the Einstein frame (9), we observe that the dark-energy density for this (four-dimensional)
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Universe, Λ ≡ e2Φδc, is relaxing to zero with a 1/t
(D−2)
E dependence on the Einstein-frame time

for each of the equilibrium values of δc. Therefore, the breaking of supersymmetry induced by
the linear dilaton is only an obstruction [16], rather than a spontaneous breaking, in the sense
that it appears only temporarily in the boson-fermion mass splittings between the excitations,
whilst the vacuum energy of the asymptotic equilibrium theory vanishes.

In [17] we went one step beyond the analysis in [12], and considered more complicated
σ-model metric backgrounds that did not satisfy the σ-model conformal-invariance condi-
tions, and therefore needed Liouville dressing [13] to restore conformal invariance. Such back-
grounds could even be time-dependent, living in (d+1)-dimensional target space-times. Various
mathematically-consistent forms of non-criticality can be considered, for instance cosmic catas-
trophes such as the collision of brane worlds [18, 19]. Such models lead to supercriticality
of the associated σ models describing stringy excitations on the brane worlds. The Liouville
dressing of such non-critical models results in (d+ 2)-dimensional target spaces with two time
directions. An important point in [17] was the identification of the (world-sheet zero mode of
the) Liouville field with the target time, thereby restricting the Liouville-dressed σ model to a
(d + 1)-dimensional hypersurface of the (d + 2)-dimensional target space and maintaining the
initial target space-time dimensionality. We stress that this identification is possible only in
cases where the initial σ model is supercritical, so that the Liouville mode has time-like signa-
ture [12, 13]. In certain models [18, 19], such an identification was proven to be energetically
preferable from a target-space viewpoint, since it minimized certain effective potentials in the
low-energy field theory corresponding to the string theory at hand.

All such cosmologies require some initial physical reason for the initial departure from the
conformal invariance of the underlying σ model that describes string excitations in such Uni-
verses. The reason could be an initial quantum fluctuation, or, in brane models, a catastrophic
cosmic event such as the collision of two or more brane worlds. Such non-critical σ models re-
lax asymptotically to conformal σ models, which may be viewed as equilibrium points in string
theory space, as illustrated in Fig. 1. In some interesting cases of relevance to cosmology [15],
which are particularly generic, the asymptotic conformal field theory is that of [12] with a linear
dilaton and a flat Minkowski target-space metric in the σ-model frame. In others, the asymp-
totic theory is characterized by a constant dilaton and a Minkowskian space-time [18]. Since,
as we discuss below, the evolution of the central-charge deficit of such a non-critical σ model,
Q2(t), plays a crucial rôle in inducing the various phases of the Universe, including an infla-
tionary phase, graceful exit from it, thermalization and a contemporary phase of accelerating
expansion, we term such Liouville-string-based cosmologies Q-Cosmologies.

The use of Liouville strings to describe the evolution of our Universe has a broad motivation,
since non-critical strings are associated with non-equilibrium situations, as are likely to have
occurred in the early Universe. The space of non-critical string theories is much larger than that
of critical strings. It is therefore remarkable that the departure from criticality may enhance the
predictability of string theory to the extent that a purely stringy quantity such as the string
coupling gs may become accessible to experiment via its relation to the present-era cosmic
acceleration parameter: g2

s = −q0 [8]. Another example arises in a non-critical string approach
to inflation, if the Big Bang is identified with the collision [7] of two D-branes [19]. In such a
scenario, astrophysical observations may place important bounds on the recoil velocity of the
brane worlds after the collision, and lead to an estimate of the separation of the branes at the
end of the inflationary period.
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Figure 1: A schematic view of string theory space, which is an infinite-dimensional manifold
endowed with a (Zamolodchikov) metric. The dots denote conformal string backgrounds. A
non-conformal string flows (in a two-dimensional renormalization-group sense) from one fixed
point to another, either of which could be a hypersurface in theory space. The direction of the
flow is irreversible, and is directed towards the fixed point with a lesser value of the central
charge, for unitary theories, or, for general theories, towards minimization of the degrees of
freedom of the system.

In such a framework, the identification of target time with a world-sheet renormalization-
group scale, the zero mode of the Liouville field [17], provides a novel way of selecting the
ground state of the string theory. This is not necessarily associated with minimization of
energy, but could simply be a result of cosmic chance. It may be a random global event that
the initial state of our cosmos corresponds to a certain Gaussian fixed point in the space of
string theories, which is then perturbed into a Big Bang by some relevant (in a world-sheet
sense) deformation, which makes the theory non-critical, and hence out of equilibrium from
a target space-time viewpoint. The theory then flows, as indicated in Fig. 1, along some
specific renormalization-group trajectory, heading asymptotically to some ground state that
is a local extremum corresponding to an infrared fixed point of this perturbed world-sheet σ-
model theory. This approach allows for many ‘parallel universes’ to be implemented, and our
world might be just one of these. Each Universe may flow between different fixed points, its
trajectory following a perturbation by a different operator. It seems to us that this scenario is
more attractive and specific than the landscape scenario [20], which has recently been advocated
as an framework for parametrizing our ignorance of the true nature of string/M theory.

In this article we describe the main features of such non-critical string cosmological mod-
els. The structure of the article is as follows: in the next Section we review briefly the basic
properties of Liouville strings at zero temperature, emphasizing the rôle of the Liouville mode
as target time [17]. We start in Section 2.1 with a comprehensive description of the generic
properties of Liouville dressing, and proceed in Section 2.2 to present the basic features of
(compactified) cosmological models of non-critical strings upon which we rely later. We give
physical reasons for the departure from conformal invariance,in Section 2.3 to discuss inflation
in this framework, identifying the Hubble parameter with the central-charge deficit Q2 of the
corresponding supercritical σ model describing string excitations in the pertinent non-conformal
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cosmological backgrounds. In Section 2.4 we discuss the late stages of such universes, in partic-
ular the rôle of the (time-dependent) string coupling of the non-critical string in inducing the
present-day acceleration of the Universe. In Section 2.5 we discuss the inclusion of matter in
the late-stage evolution of the Universe, demonstrating the differences of our non-equilibrium
Liouville formalism from standard Friedmann-Robertson-Walker (FRW) Cosmologies.

In Section 3 we present a concrete example of non-critical strings, that of colliding brane
worlds [18, 21], where the departure from criticality results from the cosmic collision of the
branes. Specific scenarios of this type are discussed in Sections 3.1 and 3.2, relevant aspects
of Type-IIA supergravity are discussed in Section 3.3 and compactification issues in Section
3.4. Then, in Section 3.5 we present within this framework some scenarios for supersymmetry
breaking at zero temperature, associated with either the presence of moving branes or the
existence of magnetic fields in internal manifolds of the compactified space of brane worlds. The
latter is compatible with the present value of the dark energy, as inferred from observations.
In these models the dark energy is viewed as a relaxation energy of the brane world, which was
excited after the collision.

In Section 4 we present a finite-temperature analysis of the early Universe in the context
of Liouville strings. We commence our analysis in Section 4.1 with a review of the hot phase
soon after the brane collision, and give estimates of the bulk and brane excitation energies. In
Section 4.2 we review the Liouville approach to finite-temperature heterotic strings, whereby
the temperature is associated with a space-like Liouville mode in a subcritical string describing
the thermal vacuum of the heterotic string [22]. In Section 4.3 we discuss the finite-temperature
properties of the Type-IIA vacuum which characterises the specific colliding-brane cosmological
model mentioned above. In Section 4.4 we discuss metastability properties of the Type-IIA
thermal supergravity vacuum, which, in contrast to the heterotic string case, is an unstable
vacuum, leading to the exit of our Universe from the hot phase soon after the collision. In
Section 4.5 we describe in some detail the various phases of the colliding brane scenario and
the associated phase transitions, namely the transition from an initial hot phase to a cold
inflationary phase, and its subsequent exit from it. We also pay attention to the fact that in
these models the brane world appears thermalized throughout, leading to decelerating brane
motion in the bulk, as a result of gravitational radiation leading towards thermal equilibrium
between the brane and bulk worlds. This deceleration is the essential mechanism for the exit
from the inflationary phase. We also discuss in Section 4.5 several open questions associated
with this phase, in the context of our colliding-brane models, such as the possibility of a second
collision and some delicate issues concerning nucleosynthesis in these models.

Finally, in Section 5 we present our conclusions and the outlook for future work in Liouville
Q-cosmologies.

2 Non-Critical Liouville String Q-Cosmologies

2.1 Zero-Temperature Liouville Formalism

We consider a σ-model action deformed by a family of vertex operators Vi, corresponding to
‘couplings’ gi, which represent non-conformal background space-time fields from the massless
string multiplet, such as gravitons, Gµν , antisymmetric tensors, Bµν , dilatons Φ, their super-
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symmetric partners, etc.:

S = S0 (X) +
∑

i

gi

∫
d2z Vi (X) , (13)

where S0 represents a conformal σ model describing an equilibrium situation. The non-
conformality of the background means that the pertinent βi function βi ≡ dgi/dlnµ 6= 0,
where µ is a world-sheet renormalization scale. Conformal invariance would imply restrictions
on the background and couplings gi, corresponding to the constraints βi = 0, which are equiv-
alent to equations of motion derived from a target-space effective action for the corresponding
fields gi. The entire low-energy phenomenology and model building of critical string theory is
based on such restrictions [1].

In the non-conformal case βi 6= 0, the theory is in need of dressing by the Liouville field
φ in order to restore conformal symmetry [13]. The field φ acquires dynamics through the
integration over world-sheet covariant metrics in the path integral, and may be viewed as a
local dynamical scale on the world sheet [17]. If the central charge of the (supersymmetric)
matter theory is cm > 25(9) (i.e., supercritical), the signature of the kinetic term of the Liouville
coordinate in the dressed σ-model is opposite to that of the σ-model fields corresponding to the
other target-space coordinates. As mentioned previously, this opens the way to the important
step of interpreting the Liouville field physically by identifying its world-sheet zero mode φ0

with the target time in supercritical theories [17]. Such an identification emerges naturally
from the dynamics of the target-space low-energy effective theory by minimizing the effective
potential [18].

The action of the Liouville mode φ reads [13]:

SL = S0 (X) +
1

8π

∫

Σ

d2ξ
√
γ̂[±(∂φ)2 −QR(2)φ] +

∫

Σ

d2ξ
√
γ̂gi(φ)Vi(X) , (14)

where γ̂ is a fiducial world-sheet metric, and the plus (minus) sign in front of the kinetic term
of the Liouville mode pertains to subcritical (supercritical) strings. The dressed couplings gi(φ)
are obtained by the following procedure:

∫
d2z gi Vi (X) →

∫
d2z gi(φ) eαiφ Vi (X) , (15)

where αi is the “gravitational” anomalous dimension. If the original non-conformal vertex
operator has anomalous scaling dimension ∆i − 2 (for closed strings, to which we restrict
ourselves for definiteness), where ∆i is the conformal dimension, and the central charge surplus
of the theory is Q2 = cm−c∗

3
> 0 (for bosonic strings c∗ = 25, for superstrings c∗ = 9), then the

condition that the dressed operator is marginal on the world sheet implies the relation:

αi(αi +Q) = 2 − ∆i . (16)

Imposing appropriate boundary conditions in the limit φ→ ∞ [13], the acceptable solution is:

αi = −Q
2

+

√
Q2

4
+ 2 − ∆i . (17)
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The gravitational dressing is trivial for marginal couplings, ∆i = 2, as it should be. This
dressing applies also to higher orders in the perturbative gi expansion. For instance, at the
next order, where the deviation from marginality in the deformations of the undressed σmodel is
due to the operator product expansion coefficients cijk in the βi function, the Liouville-dressing
procedure implies the replacement [23]:

gi → gieαiφ +
π φ

Q± 2αi
cijkg

jgkeαiφ, (18)

in order for the dressed operator to become marginal to this order (the ± sign originates in
(14)).

In terms of the Liouville renormalization-group scale, one has the following equation relating
Liouville-dressed couplings gi and β functions in the non-critical string case:

g̈i +Qġi = ∓βi(gj) , (19)

where the - (+) sign in front of the β-functions on the right-hand-side applies to super(sub)critical
strings, the overdot denotes differentiation with respect to the Liouville zero mode, βi is the
world-sheet renormalization-group β function (but with the renormalized couplings replaced
by the Liouville-dressed ones as defined by the procedure in (15), (18)), and the minus sign
on the right-hand side (r.h.s.) of (19) is due to the time-like signature of the Liouville field.
Formally, the βi of the r.h.s. of (19) may be viewed as power series in the (weak) couplings gi.
The covariant (in theory space) Gijβ

j function may be expanded as:

Gijβ
j =

∑

in

〈V L
i V

L
i1
. . . V L

in〉φgi1 . . . gin , (20)

where V L
i indicates Liouville dressing à la (15), 〈. . . 〉φ =

∫
dφd~r exp(−S(φ,~r, gj)) denotes a

functional average including Liouville integration, and S(φ,~r, gi) is the Liouville-dressed σ-
model action, including the Liouville action [13].

In the case of stringy σ models, the diffeomorphism invariance of the target space results in
the replacement of (19 by:

g̈i +Q(t)ġi = ∓β̃i, (21)

where the β̃i are the Weyl anomaly coefficients of the stringy σ model in the background {gi},
which differ from the ordinary world-sheet renormalization-group βi functions by terms of the
form:

β̃i = βi + δgi (22)

where δgi denote transformations of the background field gi under infinitesimal general co-
ordinate transformations, e.g., for gravitons [1] β̃G

µν = βG
µν + ∇(µWν), with Wµ = ∇µΦ, and

βG
µν = Rµν to order α′ (one σ-model loop).

The set of equations (19),(21) defines the generalized conformal invariance conditions, ex-
pressing the restoration of conformal invariance by the Liouville mode. The solution of these
equations, upon the identification of the Liouville zero mode with the original target time, leads
to constraints in the space-time backgrounds [17, 18], in much the same way as the conformal
invariance conditions βi = 0 define consistent space-time backgrounds for critical strings [1]. It
is important to remark [24, 17] that the equations (21) can be derived from an action. This
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follows from general properties of the Liouville renormalization group, which guarantee that the
appropriate Helmholtz conditions in the string-theory space {gi} for the Liouville-flow dynamics
to be derivable from an action principle are satisfied.

To be specific, consider the case of the σ model (3), and the O(α′) Weyl anomaly coef-

ficients [12], assuming that the σ-model target space is a D-dimensional space-time (X0, ~X).
The pertinent β functions are

β̃G
µν = α′

(
Rµν + 2∇µ∂νΦ − 1

4
HµρσH

ρσ
ν

)
,

β̃B
µν = α′

(
−1

2
∇ρH

ρ
µν +Hρ

µν∂ρΦ

)
,

β̃Φ = βΦ − 1

4
GρσβG

ρσ =
1

6

(
C(D) − 26

)
, (23)

C(D) = D − 3

2
α′[R− 1

12
H2 − 4(∇Φ)2 + 42Φ] , (24)

where α′ is the Regge slope [1], the Greek indices are D-dimensional, and Hµνρ = ∂[µBνρ] is the
field strength of the B field.

Dressing this σ model with a Liouville mode results in the appropriate equations (21), and
it is straightforward to show that these can be derived from the following (D+ 1)-dimensional
action in the σ-model (string) frame [23]:

I(D+1) =

∫
dφdDX

√
G
√

|Gφφ|e−2Φ{C(D) − 25 +

3Gφφ[(Φ̇ − 1

2
GµνĠµν)

2 − 1

4
GµνGρλ

(
ĠµρĠνλ + ḂµρḂνλ

)
]} , (25)

where G,B,Φ are all D-dimensional fields, depending in general on X0, φ, ~X, and the overdot
denotes differentiation with respect to the Liouville zero mode φ. In the Liouville dressing
procedure [13] we employ in this work one has the normalization Gφφ = −1. This justifies the
presence of only spatial components of the metric and antisymmetric tensor fields in the terms
inside the [. . . ] in (25). This action may be schematically represented in the form [24]:

I(D+1) =

∫
dφdDXe−ϕ{C(D)(X) − 25 − 3[ϕ̇2 − 1

4

(
λ̇IGIJ λ̇

J
)
]} , (26)

where λI = {G,B}, GIJ = GµρGνλ is a Zamolodchikov metric in λI space 2, and ϕ ≡ 2Φ−ln
√
G

is a rescaled dilaton [23], which guarantees the diagonalization of the appropriate Zamolod-
chikov metric in the string theory space (Φ, λI), with Gϕϕ = 1.

Upon the identification of φ with the target time X0, the (D + 1)-dimensional action is

constrained onto a D-dimensional hypersurface (X0 = φ, ~X). In that case the resulting D-
dimensional target-space-time action reads:

ID = −3

2
α′

∫
dDX

√
Ge−2Φ

(
R + 4(∇Φ)2 − 1

12
H2 − 2

3α′
(D − 25)

)
+ Iφ ,

Iφ ≡
∫
dDX

√
Ge−2Φ

(
−3[(Φ̇ − 1

2
GµνĠµν)

2 − 1

4
GµνGρλ

(
ĠµρĠνλ + ḂµρḂνλ

)
]}
)
. (27)

2Note that this is compatible with the definition of this metric in string space as a two-point correlation
function of appropriate vertex operators, as explicit O(α′) computations have demonstrated [25].
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The extra piece, Iφ, as compared with a standard string theory target-space effective action,
describes the non-equilibrium effects associated with the Liouville flow. In general, one may
have critical target-space dimensionality D = 25, but deviations from conformal invariance, due
for example to the recoil of brane worlds during collisions or other catastrophic cosmic events,
will be the topic of interest to us here. The non-critical central-charge term proportional to∫
dDX

√
Ge−2Φ(D − 25) in the action (27) may then be written in the form

3α′

2

∫
dDX

√
Ge−2Φ 2

α′
Q2 (28)

in the normalization of the Einstein term appearing in (27), where Q2 represents the central
charge deficit (whatever its origin) of the appropriate σ model: Q2 = (C − c∗)/3, describing
closed-string excitations in an appropriate non-conformal background.

2.2 Cosmological Liouville Models: Generic Features

There are many cosmological models that fall in the above category of Liouville strings, notably
models with catastrophic cosmic events such as the collision of two brane worlds [18, 21], which
we concentrate upon later in this work. When one considers a brane moving in a bulk space
in the presence of other brane worlds [21], there are in general non-trivial potentials between
the moving branes: only the static configuration and certain other special configurations are
supersymmetric in target space, with vanishing ground-state energy [21]. When one considers
string theory excitations in such Universes, the corresponding σ model is non-critical. In the
model of [21], as we discuss later, there are various phases for the bulk string Universe, which
involve a passage from subcritical to supercritical strings, due to a change in sign of the pertinent
supersymmetry-breaking potential of the moving brane world.

In such situations, the resulting σ model describing low-energy string excitations in the
bulk lives in a (d + 1)-dimensional space-time, d denoting the number of spatial dimensions,
and is not conformal. As already discussed, to restore the conformal symmetry required for
consistency of the path-integral quantization, one needs Liouville dressing [13], resulting in
equations of the form (21) for the background fields under consideration. Liouville dressing
results in a critical string in (d + 2) dimensions, with restored conformal symmetry expressed
by the vanishing of the (d+ 2)-target-dimensional σ-model β functions. Eventually, dynamics
which we review in due course results in the identification of the Liouville mode in supercritical
situations with the target time, so the final target-space dimensionality of the dressed σ model
remains (d+ 1).

One such model was considered in detail in [15]. The model is based on a specific string
theory, namely ten-dimensional Type-0 [26], which leads to a non-supersymmetric target-space
spectrum as a result of a special projection of the supersymmetric partners out of the spectrum.
Nevertheless, the basic properties of its cosmology are sufficiently generic to be extended to
the bosonic sector of any other effective low-energy string-inspired supersymmetric field theory.
The model also involves flux compactification to four dimensions, which, as was pointed out in
[15], plays an important rôle in ensuring the existence of large stable bulk dimensions.
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The ten-dimensional metric configuration considered in [15] was:

GMN =




g

(4)
µν 0 0

0 e2σ1 0
0 0 e2σ2I5×5



 (29)

where lower-case Greek indices are four-dimensional space-time indices, and I5×5 denotes the
5 × 5 unit matrix. We have chosen two different scales for internal space. The field σ1 sets
the scale of the fifth dimension, while the σ2 parametrize a flat five-dimensional space. In the
context of the cosmological models we deal with here, the fields g

(4)
µν , σi, i = 1, 2 are assumed

to depend on the time t only. Type-0 string theory, as well as its supersymmetric versions
appearing in brane models, contains appropriate form fields with non-trivial gauge fluxes (flux-
form fields), which live in the higher-dimensional bulk space. In the specific model of [26],
just one such field was allowed to be non-trivial. As was demonstrated in [15], a consistent
background choice for the flux-form field has the flux parallel to the fifth dimension σ1. This
implies that the internal space is stabilized in such a way that this dimension is much larger
than the remaining four σ2. This demonstrates the physical importance of the flux fields for
large radii of compactification.

Considering the fields to be time-dependent only, i.e., considering spherically-symmetric
homogeneous backgrounds, restricting ourselves to the compactification (29), and assuming a
Robertson-Walker form of the four-dimensional metric with scale factor a(t), the generalized
conformal-invariance conditions and the Curci-Pafutti σ-model renormalizability constraint [27]
imply the set of differential equations (21), which were solved numerically in [15]. The set of {gi}
contains the graviton, dilaton, tachyon, flux and moduli fields σ1,2 whose vacuum expectation
values control the sizes of the extra dimensions.

The detailed analysis of [15] indicated that the moduli fields σi freeze quickly to their
equilibrium values, so, together with the tachyon field which also decays to a constant value
rapidly, they decouple from the four-dimensional fields at very early stages in the evolution of
this string Universe 3. There is an inflationary phase in this scenario and dynamical exit from
it. The important point to guarantee the exit is the fact that the central charge deficit Q2

is a time-dependent entity in this approach, which obeys specific relaxation laws determined
by the underlying conformal field theory [15, 18, 19]. In fact, the central charge runs with
the local world-sheet renormalization-group scale, the zero mode of the Liouville field, which
is identified [17] with the target time in the σ-model frame. The supercriticality [12] Q2 >
0 of the underlying σ model is crucial, as already mentioned. Physically, the non-critical
string provides a framework for non-equilibrium dynamics, which may be the result of some
catastrophic cosmic event, such as a collision of two brane worlds [7, 18, 19], or an initial
quantum fluctuation [24, 15]. It also provides, as we discuss below, a unified mathematical
framework for analyzing various phases of string cosmology, from the early inflationary phase,
graceful exit from it and reheating, until the current and future eras of accelerated cosmologies.
Interestingly, one can constrain string parameters such as the separation of brany worlds at the

3The presence of the tachyonic instability in the spectrum of the model of [15] is due to the fact that in
Type-0 strings there is no target-space supersymmetry by construction. In other models with supersymmetry
breaking [18, 21], due to either thermalization or other instabilities, e.g., brane motion, there are also tachyonic
modes reflecting the broken supersymmetric spectrum. From a cosmological viewpoint such tachyon fields are
not necessarily bad features, since they may provide the initial instability leading to cosmic expansion.
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end of inflation, as well as the recoil velocity of the branes after the collision, by fits to current
astrophysical data [19].

2.3 Liouville Inflation: the General Picture

As discussed in [24, 18, 19], a constant central-charge deficit Q2 in a stringy σ model may be
associated with an initial inflationary phase with

Q2 = 9H2 > 0 , (30)

where the Hubble parameter H can be fixed in terms of other parameters of the model. One
may consider various scenarios for such a departure from criticality. For example, in the model
of [18, 19] this was due to the collision of two brane worlds. In such a scenario, as we now
review briefly, it is possible to obtain an initial supercritical central charge deficit, and hence
a time-like Liouville mode in the theory. For instance, in the specific colliding-brane model
of [18, 19], Q (and thus H) is proportional to the square of the relative velocity of the colliding
branes, Q ∝ u2 during the inflationary era. As is evident from (30) and discussed in more
detail below, in a phase of constant Q one obtains an inflationary de Sitter Universe.

However, catastrophic non-critical string scenarios for cosmology, such as that in [18], allow
in general for a time-dependent deficit Q2(t) that relaxes to zero. This may occur in such a
way that, although during the inflationary era Q2 is (for all practical purposes) constant, as in
(30), eventually Q2 decreases with time so that, at the present era, one obtains compatibility
with the current accelerating expansion of the Universe. As already mentioned, such relaxing
quintessential scenarios [18, 15, 19] have the advantage of asymptotic states that can be defined
properly as t→ ∞, as well as a string scattering S-matrix 4.

The specific normalization in (30) is due to the identification of the time t with the zero mode
of the Liouville field −ϕ of the supercritical σ model. The minus sign may be understood both
mathematically, as due to properties of the Liouville mode, and physically by the requirement
of the relaxation of the deformation of the space-time following the distortion induced by the
recoil. With this identification, the general equation of motion for the couplings {gi} of the
σ-model background modes is given by (19) [17]:

g̈i +Qġi = −β̃i(g) = −Gij∂C[g]/∂gj , (31)

where the dot denotes a derivative with respect to the Liouville world-sheet zero mode ϕ, i.e.,
target time, and Gij is an inverse Zamolodchikov metric in the space of string theory couplings
{gi} [14]. When applied to scalar, inflaton-like, string modes, (31) would yield standard field
equations for scalar fields in de Sitter (inflationary) space-times, provided the normalization
(30) is valid, implying a ‘Hubble’ expansion parameter H = −Q/3 5. The minus sign in
Q = −3H is due to the fact that, as we discuss below, one identifies the target time t with the
world-sheet zero mode of −ϕ [17].

4As mentioned in the Introduction, another string scenario for inducing a de Sitter Universe envisages
generating the inflationary space-time from string loops (dilaton tadpoles) [11], but in such models a string
S-matrix cannot be properly defined.

5The gradient-flow property of the β functions makes the analogy with the inflationary case even more
profound, with the running central charge C[g] [14] playing the rôle of the inflaton potential in conventional
inflationary field theory.
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The relations (31) replace the conformal invariance conditions βi = 0 of the critical string
theory, and express the conditions necessary for the restoration of conformal invariance by the
Liouville mode [13]. Interpreting the latter as an extra target dimension, the conditions (31)
may also be viewed as conformal invariance conditions of a critical σ model in (D+1) target
space-time dimensions, where D is the target dimension of the non-critical σ model before
Liouville dressing. In most Liouville approaches, one treats the Liouville mode ϕ and time t as
independent coordinates. In our approach [17, 15, 18], however, we take a further step, basing
ourselves on dynamical arguments which restrict this extended (D+1)-dimensional space-time
to a hypersurface determined by the identification ϕ = −t. This means that, as time flows, one
is restricted to this D-dimensional subspace of the full (D+1)-dimensional Liouville space-time.

In the work of [18, 19] which invoked a brane collision as a source of departure from criticality,
this restriction arose because the potential between massive particles, in an effective field theory
context, was found to be proportional to cosh(t + ϕ), which is minimized when ϕ = −t.
However, the flow of the Liouville mode opposite to that of target time may be given a deeper
mathematical interpretation. It may be viewed as a consequence of a specific treatment of
the area constraint in non-critical (Liouville) σ models [17], which involves the evaluation of
the Liouville-mode path integral via an appropriate steepest-descent contour. In this way, one
obtains a ‘breathing’ world-sheet evolution, in which the world-sheet area starts from a very
large value (serving as an infrared cutoff), shrinks to a very small one (serving as an ultraviolet
cutoff), and then inflates again towards very large values (returning to an infrared cutoff). Such
a situation may then be interpreted [17] as a world-sheet ‘bounce’ back to the infrared, implying
that the physical flow of target time is opposite to that of the world-sheet scale (Liouville zero
mode).

We now become more specific. We consider a non-critical σ model in metric (Gµν), antisym-
metric tensor (Bµν), and dilaton (Φ) backgrounds. These have the following O(α′) β functions
(24), where α′ is the Regge slope [1]:

βG
µν = α′

(
Rµν + 2∇µ∂νΦ − 1

4
HµρσH

ρσ
ν

)
,

βB
µν = α′

(
−1

2
∇ρH

ρ
µν +Hρ

µν∂ρΦ

)
,

β̃Φ = βΦ − 1

4
GρσβG

ρσ =
1

6
(C − 26) . (32)

The Greek indices are four-dimensional, including target-space-time components µ, ν, ... =
0, 1, 2, 3 on the D3-branes of [18], and Hµνρ = ∂[µBνρ] is the field strength. We consider
the following representation of the four-dimensional field strength in terms of a pseudoscalar
(axion-like) field b:

Hµνρ = ǫµνρσ∂
σb , (33)

where ǫµνρσ is the four-dimensional antisymmetric symbol. Next, we choose an axion back-
ground that is linear in the time t [12]:

b = b(t) = βt , β = constant, (34)

which yields a constant field strength with spatial indices only: Hijk = ǫijkβ, H0jk = 0. This
implies that such a background is a conformal solution of the full O(α′) β function for the
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four-dimensional antisymmetric tensor. We also consider a dilaton background that is linear in
the time t [12]:

Φ(t, X) = const + (const)′t. (35)

This background does not contribute to the β functions for the antisymmetric tensor and metric.
Suppose now that only the metric is a non-conformal background, due to some initial

quantum fluctuation or catastrophic event, such as the collision of two branes discussed above,
which results in an initial central charge deficit Q2 (30) that is constant at early stages after
the collision. Let

Gij = eκϕ+Hctηij , G00 = eκ′ϕ+Hctη00, (36)

where t is the target time, ϕ is the Liouville mode, ηµν is the four-dimensional Minkowski
metric, and κ, κ′ and c are constants to be determined. As already discussed, the standard
inflationary scenario in four-dimensional physics requires Q = −3H , which partially stems
from the identification of the Liouville mode with time [17]

ϕ = −t. (37)

The restriction (37) is imposed dynamically [18] at the end of our computations. Initially, one
should treat ϕ, t as independent target-space-time components.

The Liouville dressing induces [13] σ-model terms of the form
∫
Σ
R(2)Qϕ, where R(2) is the

world-sheet curvature. Such terms provide non-trivial contributions to the dilaton background
in the (D+1)-dimensional space-time (ϕ, t,X i):

Φ(ϕ, t,X i) =
1

2
Qϕ+ (const)′t+ const. (38)

If we choose

(const)′ =
1

2
Q , (39)

then (38) implies a constant dilaton background during the inflationary era, in which the central
charge deficit Q2 is constant. We justify physically the choices (38) and (39) later in the article,
when we discuss a specific example of non-criticality induced by the collision of brane worlds.

We now consider the Liouville-dressing equations [13] (31) for the β functions of the metric
and antisymmetric tensor fields (32). For a constant dilaton field, the dilaton equation yields no
independent information, apart from expressing the dilaton β function in terms of the central
charge deficit, as usual. For the axion background (34), only the metric yields a non-trivial
constraint (we work in units with α′ = 1 for convenience):

G̈ij +QĠij = −Rij +
1

2
β2Gij , (40)

where the dot indicates differentiation with respect to the (world-sheet zero mode of the)
Liouville mode ϕ, and Rij is the (non-vanishing) Ricci tensor of the (non-critical) σ model

with coordinates (t, ~x): R00 = 0 , Rij = c2H2

2
e(κ−κ′)ϕηij . One should also take into account

the temporal (t) equation for the metric tensor (which is identically zero for antisymmetric
backgrounds):

G̈00 +QĠ00 = −R00 = 0, (41)
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where the vanishing of the Ricci tensor stems from the specific form of the background (36).
We seek metric backgrounds of Robertson-Walker inflationary (de Sitter) form:

G00 = −1 , Gij = e2Htηij. (42)

Then, using (42), (36), (35) and (34), and imposing (37) at the end, we observe that there is
indeed a consistent solution with:

Q = −3H = −κ′, c = 3, κ = H, β2 = 5H2, (43)

corresponding to the conventional form of inflationary equations for scalar fields.

2.4 Current Stages of Cosmic Liouville Evolution: Acceleration,
Dark Energy and the String Coupling

In the generic class of non-critical string models of interest in this work, the σ model always
asymptotes, for long enough cosmic times, to the linear dilaton conformal σ-model field theory
of [12]. But it is important to stress that this is only an asymptotic limit. In this respect, the
current era of our Universe may be viewed as being close to, but still not quite at, the relaxation
(equilibrium) point, in the sense that the dilaton is almost linear in the σ-model-frame time,
and hence varies logarithmically with the Einstein-frame time (9). It is expected that this
slight non-equilibrium will lead to a time-dependence of the unification gauge coupling and
other constants (e.g., the four-dimensional Planck length (1)), that characterize the low-energy
effective field theory, mainly through the time-dependence of the string coupling (10) as a result
of the time-dependent linear dilaton (4).

The asymptotic time regime of the Type-0 cosmological string model of [15] was obtained
analytically, by solving the pertinent equations (19) for the various fields. As already mentioned,
at late times the theory becomes four-dimensional, and the only non-trivial information is
contained in the scale factor and the dilaton, given that the topological flux field remains
conformal in this approach, and the moduli and initial tachyon fields decouple very fast in the
initial stages after inflation in this model. For times long after the initial fluctuations, such as
the present epoch, when the linear approximation is valid, the solution for the dilaton in the
σ-model frame follows from the equations (19) and takes the form:

Φ(t) = −ln

[
αA

F1

cosh(F1t)

]
, (44)

with F1 a positive constant, α a numerical constant of order one, and

A =
C5e

s01

√
2V6

, (45)

where s01 is the equilibrium value of the moduli field σ1, associated with the large bulk dimen-
sion, and C5 the corresponding flux of the five-form flux field. Notice the that A is independent
of this large bulk dimension.

For very large times F1t≫ 1 (in string units) one therefore approaches a linear solution for
the dilaton Φ ∼ const − F1t. From (44), (10) and (1), we thus observe that the asymptotic
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weakness of gravity in this Universe [15] is due to the smallness of the internal space V6 as
compared with the flux C5 of the five-form field. The constant F1 is related to the central
charge deficit of the underlying the non-conformal σ model [15]:

Q = Q0 +
Q0

F1
(F1 +

dΦ

dt
) , (46)

where Q0 is a constant, and the numerical solution of (19), studied in [15], requires that

Q0/F1 = (1 +
√

17)/2 ≃ 2.56 , (47)

which follows from the dilaton equation of motion. This connection of F1 to Q0 supports the
above-described asymptotic conformal theory considerations of [12], where the model relaxes to
for large times. In this spirit, we require that the value of Q0 to which the central charge deficit
(46) asymptotes must be, for consistency of the underlying string theory, one of the discrete
values obtained in [12], for which factorization (unitarity) of the string scattering amplitudes
occurs. Notice that this asymptotic string theory, with a constant (time-independent) central-
charge deficit, Q2

0 ∝ c∗ − 25 (or c∗ − 9 for superstring) is considered an equilibrium situation,
where an S-matrix can be defined for specific (discrete) values of the central charge c∗ [13, 12].

Defining the Einstein frame time tE through (7), we obtain in this case

tE =
αA

F 2
1

sinh(F1t) , F1t = ln

(√
1 + γ2t2E + γtE

)
, (48)

where

γ ≡ F 2
1

αA
. (49)

In terms of the Einstein-frame time, one obtains a logarithmic time dependence [12] for the
dilaton (44) 6:

ΦE = const − ln(γtE) , (50)

For large tE , e.g., present or later cosmological time values, one has [15, 8]

aE(tE) ≃ F1

γ

√
1 + γ2t2E . (51)

At very large (future) times a(tE) scales linearly with the Einstein-frame cosmological time
tE [15], and hence there is no cosmic horizon. From a field theory viewpoint, this would allow
for a proper definition of asymptotic states and thus a scattering matrix. As we mentioned
briefly above, however, from a stringy point of view, there are restrictions in the asymptotic
values of the central charge deficit Q0, and only a discrete spectrum of values of Q0 allow for
a full stringy S-matrix to be defined, respecting modular invariance [12]. The Universe relaxes
asymptotically to its ground-state equilibrium situation, and the non-criticality of the string
caused by the initial fluctuation disappears, yielding a critical (equilibrium) string Universe
with Minkowski metric and a linear-dilaton background. This is the generic feature of the
models we consider here and in [8], allowing the conclusions to be extended beyond the Type-0

6Notice that in this subsection we work in D = 4 space-time dimensions. For higher-dimensional models,
the normalisations given in the Introduction, see (9), should be used.

17



string theory to incorporate also target-space supersymmetric strings/brane models, such as
those in [21, 19].

An important comment is in order at this point, regarding the form of the Einstein metric
corresponding to (51):

gE
00 = −1, gii = a2

E(tE) =
F 2

1

γ2
+ F 2

1 t
2
E . (52)

Although asymptotically, for tE → ∞, the above metric asymptotes to the linearly-expanding
Universe (11), the presence of a constant F 2

1 /γ
2 contribution implies that the solution for large

but finite tE, such as the current era of the Universe, is different from that of [12]. Indeed,
the corresponding σ-model-frame metric (5) is not Minkowski flat, and in fact the pertinent σ
model does not correspond to a conformal field theory. This should come as no surprise since,
for finite tE no matter how large, the σ-model theory requires Liouville dressing. It is only at
the end-point of time/flow tE → ∞ that the underlying string theory becomes conformal, and
the system reaches equilibrium.

The Hubble parameter of such a Universe for large tE is

H(tE) ≃ γ2tE
1 + γ2t2E

=
F 2

1 tE
a2(tE)

. (53)

On the other hand, the Einstein-frame effective four-dimensional ‘vacuum energy density’,
defined through the running central-charge deficit Q2, upon compactification to four dimensions
of the ten-dimensional expression 2

∫
d10x

√−ge2ΦQ2(tE) in the Einstein frame, is [15]:

ΛE(tE) = 2e2Φ−σ1−5σ2Q2(tE) ≃ 2Q2
0γ

2

F 2
1 (1 + γ2t2E)

∼ 13.11γ2

1 + γ2t2E
(54)

in the normalization of (12). Here we used (46) for Q at large tE , approaching its equilibrium
value Q0, and we have also used (47). Thus, the dark energy density relaxes to zero for tE →
∞. Notice an important feature of the relaxation form (54), namely that the proportionality
constants in front are such that, for asymptotically large tE → ∞, Λ(tE → ∞) is independent
of the equilibrium conformal field theory central charge Q0.

Finally, and most importantly for our purposes here, the deceleration parameter in the same
regime of tE becomes:

q(tE) = −(d2aE/dt
2
E) aE

(daE/dtE)2
≃ − 1

γ2t2E
. (55)

As is clear from (50), (10), this expression can be identified, up to irrelevant constant factors
which by normalization are set to one, with the square of the string coupling (10) [8]:

|q(tE)| = g2
s . (56)

To guarantee the consistency of perturbation theory, one must have gs < 1, which can be
achieved in our approach if one defines the present era by the time regime

γ2 ∼ β2t−2
E (57)
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in the Einstein frame. In view of its relation with the deceleration parameter at late epochs
(55), q = −1/β2, the numerical value of β2 is determined by requiring agreement with the
data [10]. As we discuss below, phenomenologically β2 = O(1).

This is compatible with the time tE being large enough (in string units) for

|C5|e−5s02/F 2
1 ∼ |C5|e−5s02/Q2

0 ≫ 1 , (58)

as becomes clear from (45),(49), (47). This condition can be guaranteed either for small radii
of five of the extra dimensions, or for a large value of the flux |C5| of the five-form of the Type-0
string, compared with Q0. We discuss in the next subsection concrete examples of non-critical
string cosmologies, in which the asymptotic value of the central charge Q0 ≪ 1 in string units.
Recalling that the relatively large extra dimension in the direction of the flux s01 decouples
from this condition, we thus observe that there is the possibility of constructing effective five-
dimensional models with a large uncompactified fifth dimension that are consistent with the
condition (57). Notice that, in the regime (57) of Einstein-frame times, the Hubble parameter
and the cosmological constant continue to be compatible with the current observations, and in
fact to depend on γ ∼ t−1

E in the same way as in their large-γtE regime given above (53),(54),
but now the string coupling (56) is kept smaller than one and finite, of order 1/2, as also
suggested by grand unification phenomenology [1].

We next turn to the equation of state of our Universe. As discussed in [15], it resembles
a quintessence model with the dilaton playing the rôle of the quintessence field. Hence the
equation of state for our Type-0 string Universe reads [28]:

wΦ =
pΦ

ρΦ
=

1
2
(Φ̇)2 − V (Φ)

1
2
(Φ̇)2 + V (Φ)

, (59)

where pΦ is the pressure and ρΦ is the energy density, and V (Φ) is the effective potential for the
dilaton, which in our case is provided by the central-charge deficit term. Here the dot denotes
Einstein-frame differentiation. In the Einstein frame, in the normalization of (12), the potential
V (Φ) is given by

V (Φ) =
ΛE

4
∼ 6.56γ2

2(1 + γ2t2E)
, (60)

where ΛE is given in (54) and we have used (47). Defining the present era by the condition
(57), we obtain from (44),(48):

1

2

(
dΦ

dtE

)2

=
1

2
β2 · tanh2ln

(√
1 + β2 + β

)
· 1

t2E(1 + β2)
, V (Φ) ∼ 6.56β2

2(1 + β2)t2E
. (61)

This implies a constant equation of state (59) in the current era:

wΦ(tE ≫ 1) =
tanh2ln

(√
1 + β2 + β

)
− 6.56

tanh2ln
(√

1 + β2 + β
)

+ 6.56
. (62)

We now remark that, if we use as the value of q today the one inferred by best fits of FRW
cosmology to the data on high-redshift supernovae and the CMB [9, 10]:

qFRW,data = − 1

β2
≃ −0.57 (today) , (63)
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this corresponds by (62) to an equation of state with

wΦ = −0.82 , (64)

which is in the region allowed by the data [10, 9, 29] 7. On the other hand, an equation of state
wΦ = −0.78, which is the upper bound given by the WMAP data [10, 29], yields a current-
era deceleration (55),(57) q ∼ −0.25. All such values of |q| < 1 imply via (56) perturbative
values for the string coupling, close to the value used frequently in string-inspired particle
phenomenology: |q| = g2

s ∼ 1/2.
The inclusion of matter modifies the situation, and allows for a more complete expression of

the equation of state in terms of the current acceleration of the Universe for our model. As we
discuss in the next subsection, this is different from the analogous relation in conventional FRW
cosmologies. However, the function q(z) is not yet measurable with sufficient accuracy using
supernovae alone: in order to infer a precise form of q(z) from such measurements, one has to
make certain assumptions about the underlying dynamics. In conventional FRW cosmologies,
q(z) is expressed in terms of the various energy-density components Ωi(z) using the underlying
Einstein cosmology. In a similar vein, in our model q(z) can be expressed in terms of the
various energy-density components, in units of the critical density, using the dynamics encoded
in (78). However, due to the off-shell Liouville modifications, the critical density for a spatially
flat Universe and the relation of q(z) to the various energy-density components are different
from those in conventional FRW models. Thus the above-used values of β2 should not be taken
for granted but only as indicative. For us, β2 = 1/|q| can only be determined properly after
a detailed direct fit of our model to the data. We discuss these issues in the next Section,
where we show that the above considerations can be made compatible with the observations
that suggest there was a past epoch of deceleration at redshifts larger than 0.5 [30].

These considerations concern the specific model of [15]. One can be more generic when
considering equations of state for dilatonic dark energy Liouville models, by simply requiring
that the present era is described by a linear dilaton solution (9), asymptotic to a conformal
field theory with central charge deficit Q2. In this case, the dilaton potential and kinetic energy
are given by

V (Φ) =
Q2

2
e2Φ =

2

t2E
e2Φ0 , Φ = Φ0 − ln

QtE
2

,

dΦ

dtE
=

1

tE
, (65)

where Φ0 is a constant, denoting the initial value of the dilaton field in a generic situation. As
we have seen previously (44), this constant is determined in the model of [15] by the values of
the flux field and the frozen moduli. In the general situation, where no microscopic model is
specified, this constant is free to be determined by phenomenology, as we see below. In such
a generic situation, the dilatonic dark-energy equation of state (in the same normalization of
(12), reads:

wΦ(tE ≫ 1) ≃ 1 − 4e2Φ0

1 + 4e2Φ0
. (66)

7Although the data at present are not sufficient for an accurate measurement of w(z), they seem to indi-
cate [29] negative values smaller than −0.6 for z ≃ 1 and w(z → 0) → −1.
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One can easily obtain phenomenologically acceptable values of wΦ [10] by adjusting the value
of the constant Φ0. For instance, for e2Φ0 > 7

4
one obtains:

wΦ ≤ −3/4, (67)

in agreement with the WMAP value [10, 29].
Such linear dilaton models can be made compatible with perturbative string couplings

gs < 1, as required by string-inspired particle-physics phenomenology, provided one chooses
the asymptotic central charge Q in the region

QtE >
√

7. (68)

Notice that the dark energy (65) is independent of the value of the central charge, and its
magnitude today in such models depends only on the age of the Universe. The important
question in such models is the precise form of the scale factor, which should be obtained as
a specific solution of the appropriate dynamical equations (31), whose form depends on the
details of the underlying string theory. To be specific, in what follows we adopt [8] the class of
string models that yield predictions similar to those in [15] as best describing the current era
of our string Universe.

2.5 Inclusion of Matter and Radiation

So far, our model has not included ordinary matter or radiation, as only fields from the gravi-
tational string multiplet have been included. The inclusion of ordinary matter is not expected
to change the results significantly, and we conjecture that the fundamental relation (56) will
continue to hold, the only difference being that probably the inclusion of ordinary matter will
tend to reduce the string acceleration, due to the fact that matter, being subjective to attractive
gravity, resists the acceleration of the Universe.

We now discuss in some detail the formalism that allows the inclusion of matter in the
Liouville framework. The important thing to notice is that, in the absence of matter, the
Liouville-dressing approach of [17], together with the eventual (dynamical) identification of
the Liouville zero mode with the target time, as explained above, leads to the generalized
conformal invariance conditions (31) for the fields of the gravitational multiplet of the string
propagating in a four-dimensional background 8. These are not the ordinary equations of
motion corresponding to a four-dimensional gravitational effective action (12), but describe the
dynamics of an off-shell relaxation process.

Matter coupling to on-shell dilatonic gravity theory has been considered in the past, see,
e.g., [31, 32], but in an on-shell formalism of critical strings, where the various target-space
fields satisfied classical equations of motion derived from a four-dimensional action. As ex-
plained above, this is distinct from our Liouville cosmology approach. Moreover, the analysis
of [32], although dealing with the possibility of a dilaton playing the rôle of a quintessence field
responsible for the current acceleration of the Universe, nevertheless considers models in which
the dilaton as well as its potential increases to positive infinity, as the cosmic time elapses. This
is exactly opposite to our situation here and in [15, 8], where the dilaton Φ → −∞ asymptoti-
cally. In our situation, for large cosmic times, the string coupling eΦ → 0, and this is the reason

8Or five-dimensional, in the case of compactified brane models in a single large bulk dimension.
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why in present and future eras of the Universe the string-tree-level approximation is sufficient.
This is to be contrasted with the case of [32], where one should include asymptotically (all)
higher loop corrections to the string effective action, which are not known at present.

We now discuss in some detail the proper inclusion of matter in our Liouville framework.
The essential formalism is that of [12], in which all physically relevant quantities should be
reduced to the Einstein frame (5) and Einstein cosmic time (7) framework. Examining the
four-dimensional matter action (including radiation fields), we observe that in string theory
this action couples to the dilaton field non-trivially, in a way that is specific to the various
matter species, as a result of purely stringy properties of the effective action [1]. A generic
σ-model-frame effective four-dimensional action with dilaton potential V (Φ), which could even
include higher-string-loop corrections, has the form:

S(4) =
1

2α′

∫
d4x

√
−G[e−Ψ(Φ)R(G) + Z(Φ)(∇Φ)2 + 2α′V (Φ) . . . ] −

1

16π

∫
d4x

√
G

1

α(Φ)
F 2

µν − Im(Φ, G,matter) , (69)

in the notation of [32], with the various factors Ψ, Z, α encoding information about higher
string loop corrections. Also, Fµν denotes the radiation field strength and Im(Φ, G,matter)
represents matter contributions, which couple to the dilaton Φ in a manner dictated by string
theory scaling laws [1] with shifts of the dilaton field Φ → Φ + const. In our situation, where
only the string tree level plays a rôle at late times, the various form factors simplify, e.g.,
Ψ(Φ) = 2Φ, Z(Φ) = 4e−2Φ, etc.. However, for purposes of generality, in this section we keep the
form (69). When higher loop corrections are important, these factors have a complicated form,
for instance one has eΨ(Φ) = c0e

−2Φ + c1 + c2e
2Φ + . . . , with ci constants, and the powers of the

square of the string coupling g2
s = e2Φ count the numbers of closed string loops, as appropriate

for the gravitational multiplet. For simplicity in this subsection we ignore the four-dimensional
antisymmetric tensor field, which, as discussed in [12] and mentioned above, corresponds to an
axion field.

According to our discussion in Section 2.1, the action S(4) coincides with the I(D) −Iφ part
of the D-dimensional action (27), obtained from (26) when D = 4, upon the identification of
the Liouville mode φ with the target time X0:

S(4) = I(4) − Iφ =

∫
d4Xe−ϕ{C(4)(X) − 25}. (70)

In contrast to the critical-string case considered in [31, 32], the field variations of (70) do not
yield zero, but are such that they compensate the variations of the remaining (Liouville) part
of (26), in order to yield the generalized conformal invariance conditions (21), augmented by
the inclusion of matter fields. In particular, the set of couplings λI in (26), as well as the action
C(4)(X) (c.f. (69)), should now include matter fields in addition to the fields of the gravitational
multiplet of the string. For simplicity, however, we may assume that, at least at the late epochs
of the Universe which are of interest to us here, the matter couplings are almost conformal,
and the dominant reason for departure from criticality lies in the fields of the gravitational
multiplet. This is the case, for instance, in the colliding-brane scenario discussed in the next
Section. This leaves the off-shell Liouville part of (26) in the form discussed in the previous
Section. This will be understood in what follows.
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We have:
δS(4)

δgi
= −δIφ

δgi
, (71)

where gi = (Φ, G, . . . ) ≡ (Φ, λI) and we took into account the fact that the action I(4) ≡
I(4+1)|φ=X0 is critical (the identification of the Liouville mode with the target time X0 is done

after the respective variation is taken). Near a fixed point one has δS(4)

δλI = g̈I + QġI , with the
overdot denoting differentiation with respect to the Liouville zero mode. When passing to the
Einstein frame (5), and expressing the time in terms of the cosmic time tE (7), the left-hand
side of (21) in the supercritical string case for the graviton fields Gµν yields:

Ġµν = eΦ

(
2
dΦ

dtE
gE

µν +
dgE

µν

dtE

)
,

G̈µν = 2

(
dΦ

dtE

)2

gE
µν + 2

d2Φ

dt2E
gE

µν + 3
dΦ

dtE

dgE
µν

dtE
+
d2gE

µν

dt2E
,

(0, 0) − component : G̃00 ≡ G̈00 +QĠ00 = −2Q
d

dtE

(
eΦ
)
− 2(

dΦ

dtE
)2 − 2

d2Φ

dt2E
, (gE

00 = −1) ,

(i, i) − component : G̃ii ≡ G̈ii +QĠii =

2a2(tE)

(
(
dΦ

dtE
)2 + 3

dΦ

dtE
H +

d2Φ

dt2E
+ (1 − q)H2

)
+ 2Qa2(tE)eΦ

(
dΦ

dtE
+H

)
,

H ≡ a−1(tE)
da(tE)

dtE
, q ≡ −

a(tE) d2

dt2
E

a(tE)

(da(tE)
dtE

)2
, (72)

with q the deceleration parameter (55). The dilaton variation of the function Iφ of (27), on the
other hand, reads:

δIφ

δΦ
≡ I ′

φ = 6

∫
dD−1X e−ϕ

(
ϕ̇2 − ϕ̈+

1

8
(λ̇I)2

)
=

6V (3){
(

2
dΦ

dtE
+H

)2

− dΦ

dtE

(
2
dΦ

dtE
+H

)
+
dH

dtE
+ 2

d2Φ

dt2E
+ 2

(
dΦ

dtE

)2

+ 3H
dΦ

dtE
+

3

2
H2} ,

(73)

in the notation of (26), where V (3) denotes the three-dimensional spatial volume. A complete
analysis of matter effects requires solving the equations emerging from considering the variations
(71),(72) and (73) with respect to the metric field in the Einstein and cosmic time frames [12].
This depends on the specific form of matter action considered.

At this stage we remind the reader of a few crucial technical details on the equivalence of
the generalized conformal invariance conditions (31) to target-space dynamical equations. The
Zamolodchikov metric in theory space, Gij = z2z2〈Vi(z)Vj(0)〉, where 〈. . . 〉 denotes a σ-model
average including Liouville contributions, acts as a link between the σ-model β functions and
field variations of the target-space effective actions S[g]:

Gijβ
j =

δS[g]

δgi
, (74)
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where, in what follows, the gi denote various background target-space fields other than the
dilaton, which is treated separately. To order α′, standard analysis [33, 17] shows that one can
find a renormalization scheme on the world sheet in which the Zamolodchikov metric, in the
case of the graviton and dilaton backgrounds we are restricting ourselves here, becomes near a
fixed point

Gij = e−2Φ
(
δij + O(g2)

)
, δij →

1

2

(
−GµνGαβ +GµαGνβ +GµβGνα

)
, (75)

where Gµν is a σ-model-frame target-space metric (which, in our case, is four-dimensional
after appropriate compactification or restriction on a three-brane). The exponential dilaton
term arises from world-sheet zero-mode contributions to the σ-model average at tree level, and
includes (linear) Liouville-zero-mode- (φ0-) dependent terms in the non-critical string case. This
Liouville dependence is crucial [17] in ensuring the following property for the Zamolodchikov
metric: dGij/dφ0 = QGij , with Q2 the central-charge deficit, which guarantees the derivation of
the Liouville terms on the left-hand side of (31) from a target-space action, as seen above, and
therefore the canonical quantization of the Liouville-dressed couplings/fields gi in string-theory
space (upon summation over world-sheet topologies).

The form (75) implies that a contraction with a Ricci (or any other symmetric) tensor in
target space, which is contained in the graviton β function to O(α′), results in an Einstein tensor
on the right-hand side of (74), as appropriate for proper target-space dynamics. In a similar
manner, upon contraction with (75), one obtains appropriate Einstein-like tensor structures for
the Liouville modifications apppearing in the left-hand side of (31) for the graviton case. On the
other hand, considering the variation with respect to the four-dimensional graviton gi ≡ Gµν ,
and passing to the Einstein-frame (5), we obtain:

δS[g]

δGµν

= e−2Φ δS[g]

δgE
µν

, (76)

where the precise form of the exponential factor is exclusive to the four target space-time
dimensions we consider here. As a result of (75), (76), the exponential factors cancel out in
(74). The above results and properties will be understood in what follows.

Defining the Einstein-like tensor

Jµν ≡ G̃µν −
1

2
gE

µν

(
gνλ

E G̃νλ

)
, (77)

and assuming a normal fluid form for matter or radiation, with stress tensor T νE
µ = diag

(
−ρ, pδj

i

)

in the Einstein frame (5),(7), we then obtain the following gravitational and dilaton equations
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of motion (in units M2
P = 1/8πGN = 2, where MP is the four-dimensional Planck constant):

6H2 = ρ+ ρΦ + J00 ,

4
d

dtE
H + 6H2 = −p− pΦ − a−2(tE)Jii , i = 1, 2, 3,

d2Φ

dt2E
+ 3H

dΦ

dtE
+ V ′(φ) +

1

2
[Ψ′(Φ)(ρ− 3p) + σ + σφ] = 0 ,

σ ≡ −2
1

V (3)
√−gE

δ(Im +
∫

(16πα(Φ))−1F 2)

δΦ
,

σφ ≡ −2
1

V (3)
√−gE

I ′(Φ) = −12{4
(
dΦ

dtE

)2

+ 6H
dΦ

dtE
+ 2

d2Φ

dt2E
+
dH

dtE
+

5

2
H2} ,

ρΦ ≡ 1

2

(
dΦ

dtE

)2

+ V (Φ) , pΦ ≡ 1

2

(
dΦ

dtE

)2

− V (Φ) , (78)

where the prime denotes differentiation with respect to Φ, I ′
φ(Φ) is defined in (73), and we

use canonically-normalized dilaton fields. Notice that (78) differ from the corresponding on-
shell equations in [32] by the Liouville out-of–equilibrium contributions J and σφ, which are
exclusive to our treatment [17, 24, 15].

The equations (78) lead, after standard manipulations, to the coupled (non-) conservation
equations of matter and dilaton energy density, in the presence of the non-equilibrium contri-
butions:

dρΦ

dtE
+ 3H(ρΦ + pΦ) +

1

2

dΦ

dtE
[Ψ′(Φ)(ρ− 3p) + σ + σφ] = 0 ,

dρ

dtE
+ 3H(ρ+ p) − 1

2

dΦ

dtE
[Ψ′(Φ)(ρ− 3p) + σ + σφ] +

(
d

dtE
+ 3H

)
J00 + 3Ha−2(tE)Jii = 0 ,

(79)

with the values of J00 and Jii (common for all i = 1, 2, 3 in our case) given by (77),(72). As
we see from (79) the covariant conservation of the matter stress tensor (the first three terms
in the second of eqs. (79)) breaks down, due not only to the presence of a dilaton field, but
also to the off-shell Liouville contributions given by the J -dependent terms, which express the
non-equilibrium nature of the Liouville cosmology.

To solve (79) in the various epochs of the Universe, it is convenient first to split the energy
density of matter as well as the function σ into radiation ρr, baryonic ρb and dark-matter ρd

components, and to use the simple equation of state (59) for the dilaton fluid:

ρ = ρr + ρb + ρd ≡ ρr + ρm ,

σ = σr + σb + σd ≡ σr + σm,

pb = pd = 0, pr =
1

3
ρr, pΦ = wΦρΦ . (80)

Using (80), one can split the matter evolution equation (second of eqs. (79)) into various
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components, which for an expanding Universe can be cast in the form:

dρr

dχ
+ 4ρr −

1

2

dΦ

dχ
[σr + σφ] +

d

dχ
J00 + 3(J00 + a−2(tE)Jii) = 0 ,

dρA

dχ
+ 3ρA − 1

2

dΦ

dχ
[Ψ′(φ)ρA + σA + σφ] +

d

dχ
J00 + 3(J00 + a−2(tE)Jii) = 0 , A = b, d ,

dρΦ

dχ
+ 3(1 + wΦ)ρΦ +

1

2

dΦ

dχ
[Ψ′(φ)ρm + σ + σφ] = 0 , (81)

with
χ = ln(a/ainit) = −ln(1 + z) + ln(a(0)/ainit), (82)

where z is the redshift, ainit is an initial scale, and a(0) is the present value of the scale factor,
evaluated at redshift zero.

Solving the above equations rigorously is a complicated task, and depends on the details
of the matter theory. In general, one may relate [32] the various σi, i = r, b, d with the corre-
sponding energy densities ρi, through proportionality factors that depend on the dilaton field Φ.
However, for our purposes we may assume that at the current era of the Universe’s evolution the
dark matter component dominates over ordinary matter and that the dilaton is approximated
by its logarithmic evolution (9) in cosmic Einstein-frame time. We also assume that the current
scale factor is also approximately given by the expression (51). These assumptions guarantee
that the relation (56) between the (square of) the string coupling and the acceleration of the
Universe is valid today.

Using the familiar (model-independent) relation of the scale factor with the redshift z:
a(z) = a(0)(1 + z)−1, we may then determine the region of z for which the approximation (51)
is consistent. Recalling that in our model the current era of the Universe is defined by the
relations (57),(55), with β2 = −1/q(z = 0) where q(z = 0) is the acceleration of the Universe
today at z = 0, it is straightforward to arrive at:

a(0) = (F1/γ)(1 + β2)1/2 . (83)

Making the (wrong) hypothesis that the formula for (51) is valid all the way down to tE = 0,
we would then find that z should lie in the region:

0 < z < zinit ; zinit =
√

1 + β2 − 1 , (84)

in order that the form (51) of the space-time metric be valid. For q(z = 0) = β−2 = −0.57
(c.f., (63)), we would then have zinit ≃ 0.66.

We assume σd ≃ ηρd for the dark matter, with η an approximately constant proportionality
factor η = O(1) for the present and future eras. These assumptions lead to simplifications of
some of the equations. With Ψ ≃ 2Φ (the string tree-level approximation), one obtains after
some elementary algebraic manipulations:

J00 ≃ −7H

tE
+H2(1 − q) ≃ − 6F 2

1

a2(tE)
, Jii ≃ a2(tE)

(
H

tE
−H2(1 − q)

)
≃ 0 , i = 1, 2, 3,

d

dχ
J00 + 3

(
J00 + a−2(tE)Jii

)
≃ − 6F 2

1

a2(tE)
= J00 → |J00| ≃

(
ainit

a(tE)

)2

=

(
ainit

a(0)

)2

(1 + z)2 ,

(85)
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for the configuration (9), (51), (53) and (55), assumed to characterize the current era of the
Universe.

Equation (81) yields, then, for the dark matter energy density, (which is assumed to domi-
nate the matter sector: ρm ≃ ρd, σ ≃ σd):

dρd

dχ
+ 3ρd +

dρΦ

dχ
+ 3(1 + wΦ)ρΦ + J00 = 0 . (86)

This is a rather complicated equation to solve in general 9. Its solution, in conjunction with
the rest of eqs. (78), will provide a scaling for the energy densities of matter and dark energy
with the scale factor, which is modified in general.

A simplification can occur, however, if one concentrates on the epoch of large cosmic time
(present era), and uses the asymptotic behaviour of the dilaton dark energy density ρΦ, dictated
by (60), (61) 10, i.e., ρΦ ∼ ρ0

Φa
−2(tE). Assuming then mixed scaling behaviours

ρd ∼ ρ0
dusta

−3 + ρ0
exotica

−2 , (87)

where the first term is compatible with dust properties, and the second expresses the entangle-
ment with the off-shell Liouville environment, and the value (64) for the equation of state, in
agreement with recent WMAP data [10, 29], we observe that (86) is satisfied, provided

ρ0
exotic = 6F 2

1 + 1.46ρ0
Φ . (88)

Note that, for the model of [15]), ρ0
Φ is in most cases also of order F 2

1 (c.f., (61), which in turn is of
the order of the square of the asymptotic central charge (47). The latter can be very small, e.g.,
of order 10−60 in string units, in models [18] involving compactification on magnetized tori (c.f.
(107), (109) below), which guarantees compatibility of the order of the magnetically-induced
target-space supersymmetry breaking with realistic phenomenological considerations. In this
way, ρ0

exotic can be very small, and hence both terms in ρd may be of comparable magnitude

today. Specifically, from (61) it follows that ρΦ ≃ 3.78
F 2

1

a2 , which implies that ρ0
Φ ≃ 3.78F 2

1 .
Thus, (88) would yield in that case:

ρ0
exotic ≃ 3.25ρ0

Φ . (89)

Thus, we may write for the (dark) matter energy density today

ρ0
d ≃ ρ0

dust + λρ0
Φ , 0 < λ = O(1 − 10). (90)

We stress once more that this mixed scaling in the matter energy density is due not only to
the entanglement with the dilaton, but also to the non-trivial rôle of the off-shell Liouville

9Notice that most of the complications arise from the presence of the off-shell Liouville modifications J00.
In their absence, i.e., in ‘conventional’ dilaton cosmologies, one can solve this equation straightforwardly and
obtain the standard scaling for the various energy-density components ρd ∼ ρ0

d
a−3, ρΦ ∼ ρ0

Φa−3(1+wΦ), with
ρ0

d
+ ρ0

Φ ≃ 1 in the case of dominant dark matter. This is no longer true when J00 6= 0, and, as we shall see
below, one obtains in that case a mixed scaling for the matter energy density.

10Notice that, despite the a−2 scaling of ρΦ and the off-shell Liouville term J00, none of these contributions
is equivalent to a (negative) curvature contribution. This is due to the fact that the dilaton dark energy and
the off-shell Liouville modifications enter the relevant dynamical equations (78) in a different manner than the
curvature term. This is consistent with the fact that our brane/string Universe is spatially flat by construction.
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J -dependent contributions. This is an exclusive feature of our non-equilibrium Liouville-string
approach to cosmology [17, 8, 15], which does not apply in conventional on-shell treatments [31,
32]. It has its roots in viewing target time as a world-sheet renormalization-group dynamical
scale in non-critical string theory, which is a cornerstone of our approach.

As for the dilaton, a form linear in the σ-model frame is assumed throughout, which in turn
determines the time dependences of the quantities σ, σφ via the respective dilaton equation
(78). Since the form of matter action is not in general fully known in our generic low-energy
considerations, and depends on the details of the underlying microscopic string/brane model,
we do not analyse this equation further here. The existence of self-consistent solutions to
the graviton equations (78) including matter and radiation, inferred by the above analysis,
justifies a posteriori our assumption that the important relation (56), which is based on the
solution [8, 15] (52), (50) for the space-time metric and the dilaton fields, survives the inclusion
of matter.

We now present the formalism for fitting our Liouville Cosmology to cosmological data
in a rather model-independent way. Consider the first of the Einstein equations (78) for our
Liouville cosmology. In the present era, we may assume the following asymptotic behaviour for
the Liouville part J (c.f. (85)): J00 ≃ −6H2(1 − q). From the first of eqs. (78), we may then
conclude that, as a result of the Liouville out-of-equilibrium contributions, the critical total
mass (energy) density of the fluid, ρc required to have a spatially flat Universe, is no longer
6H2, as in the conventional on-shell Einstein cosmologies, but

ρc = 6H2(2 − q). (91)

One may then define modified Ω′
i fractions:

Ω′ ≡ ρi

ρc
=

ρi

6H2(2 − q)
, i = matter, dilaton Φ dark energy etc.. (92)

With this definition the first of equations (78) would imply the standard relation for a spatially
flat Universe today:

Ω′
Matter + Ω′

Φ = 1 . (93)

Notice that the critical density (91) scales with a = a(0)(1 + z)−1 as:

ρc(z) =
6F 2

1

a2

(
2 − ξ(1 + z)2

)
, ξ ≡ F 2

1

γ2a2(0)
=

1

1 + β2
, β2 = −1/q(z = 0) , (94)

for the (rather generic) string model of [15] used here, where we took into account (83). The
reader should also recall that 0 < z < 0.66 for the validity of the approximations leading to the
above analysis. Thus, we have the following scaling with the redshift:

Ω′
Φ(z) =

ρ0
Φ

6F 2
1 (2 − ξ(1 + z)2)

≡ Ω′
Φ

0 2 − ξ

2 − ξ(1 + z)2
,

Ω′
Matter =

1

6F 2
1 (2 − ξ(1 + z)2)

(
ρ0

dust

1 + z
+ λρ0

Φ

)
, (95)

where λ = O(1 − 10) depending on model details, and Ω′
Φ

0denotes the corresponding quantity
today, i.e. at z = 0.
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Alternatively, one may use the first of eqs. (78) to express the critical density in terms of the
various energy-density components instead of the parameter ξ. This allows a more convenient
model-independent formalism to be used for comparison with data. In this way, using the
mixed scaling (87) for the matter sector (including the dominant dark matter) of our spatially
flat Universe, ρMatter = ρ0

dust(1 + z)3 + ρ0
exotic(1 + z)2 with ρ0

dust + ρ0
exotic + ρ0

Φ = ρ0
c , one obtains

the following scaling of Ω′
i with the redshift z:

Ω′
Φ(z) =

1

1 + ρMatter/ρΦ
=

1

1 +
Ω′0

dust

Ω′0
Φ

(1 + z) +
Ω′0

exotic

Ω′0
Φ

,

Ω′
Matter(z) = 1 − Ω′

Φ(z) =
1

1 + 1
Ω′0

dust

Ω′0
Φ

(1+z)+
Ω′0

exotic

Ω′0
Φ

. (96)

These expressions can be used to fit the astrophysical data and derive values for the cosmological
parameters of our Q-cosmology model.

Since the dilaton, matter and radiation energy densities scale differently, there is a (past)
era of this Liouville Universe, corresponding to redshifts larger than a critical value, z > z∗, in
which matter effects dominate over the dilaton dark energy, leading to a decelerating phase of
the Universe. In fact, such a past early era when there was deceleration of the Universe was
present also in the model of [15], even in the purely gravitational and moduli sector. Such a
feature is simply pronounced by the inclusion of matter, since the latter feels the attractive
feature of gravity. The critical z∗ is shifted from an early era in the purely gravitational
case of [15]) towards the current epoch: z∗ →∼ O(1), as a result of the inclusion of matter
in the model. The past deceleration in our Universe is a feature confirmed by astrophysical
data [10, 30], which indicate a value z∗ ∼ 1/2. However, our model is too generic, at this stage,
to claim a specific prediction for z∗.

3 Concrete Non-critical String Examples: Colliding Branes

The above considerations are rather generic for models which relax asymptotically to the linear-
dilaton conformal field theory solutions of [12], and from this point of view are physically in-
teresting. We have not yet specified the microscopic theory underlying the deviation from
criticality. For this purpose, one needs specific examples of such deviations from the conformal
invariant points in string theory space. One such example with physically interesting conse-
quences is provided by a colliding-brane-world scenario, in which the Liouville string σ model
describes stringy excitations on the brane worlds for relatively long times after the collision,
so that string perturbation theory is valid. This Section is devoted to a detailed discussion of
such a scenario [18, 21].

3.1 Example I: Colliding Type-IIB Five-Branes

We now concentrate on particular examples of the previous general scenario [24], in which the
non-criticality is induced by the collision of two branes, as seen in Fig. 2. We first discuss the
basic features of this scenario. For our purposes below we assume that the string scale is of the
same order as the four-dimensional Planck scale. However, this is an assumption which can be
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relaxed in view of recent developments in strings with large compactification directions, as was
mentioned in the Introduction.
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Figure 2: A scenario in which the collision of two Type-II five-branes provides inflation and a
relaxation model for cosmological vacuum energy.

Following [18], we consider two five-branes of Type-II string theory, in which the extra two
dimensions have been compactified on tori. On one of the branes (assumed to be the hidden
world), the torus is magnetized with a field intensity H. Initially our world is compactified on
a normal torus, without a magnetic field, and the two branes are assumed to be on a collision
course with a small relative velocity v ≪ 1 in the bulk, as illustrated in Fig. 2. The collision
produces a non-equilibrium situation, which results in electric current transfer from the hidden
brane to the visible one. This causes the (adiabatic) emergence of a magnetic field in our world.

The instabilities associated with such magnetized-tori compactifications are not a problem
in the context of the cosmological scenario discussed here. In fact, as discussed in [18], the
collision may also produce decompactification of the extra toroidal dimensions at a rate much
slower than any other rate in the problem. As discussed in [18], this guarantees asymptotic
equilibrium and a proper definition of an S-matrix for the stringy excitations on the observable
world. We come back at this issue at the end of this Section.

The collision of the two branes implies, for a short period afterwards while the branes are at
most a few string scales apart, the exchange of open-string excitations stretching between the
branes, where their ends are attached. As argued in [18], the exchanges of such pairs of open
strings in Type-II string theory result in an excitation energy in the visible world. The latter
may be estimated by computing the corresponding scattering amplitude of the two branes,
using string-theory world-sheet methods [34]: the time integral for the relevant potential yields
the scattering amplitude. Such estimates involve the computation of appropriate world-sheet
annulus diagrams, due to the existence of open string pairs in Type-II string theory. This
implies the presence of ‘spin factors’ as proportionality constants in the scattering amplitudes,
which are expressed in terms of Jacobi Θ functions. For the small brane velocities v ≪ 1
we are considering here, the appropriate spin structures start at quartic order in v, for the
case of identical branes, as a result of the mathematical properties of the Jacobi functions [34].
This in turn implies [18, 21] that the resulting excitation energy on the brane world is of
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order V = O(v4), which may be thought of as an initial (approximately constant) value of a
supercritical central-charge deficit for the non-critical σ model that describes stringy excitations
in the observable world after the collision:

Q2 =
(√

βv2 + H2
)2

> 0, (97)

where, in the model of [21, 19], the proportionality factor β, computed using string amplitude
computations, is of order

β ∼ 2
√

3 · 10−8 · gs , (98)

with gs the string coupling, which is of order g2
s ∼ 0.5 for interesting phenomenological mod-

els [1, 5]. The supercriticality, i.e., the positive definiteness of the central charge deficit (97)
of the model, is essential [12] for a time-like signature of the Liouville mode and hence its
interpretation as target time.

At times long after the collision, the branes slow down and the central charge deficit is
no longer constant but relaxes with time t. In the approach of [18], this relaxation has been
computed by using world-sheet logarithmic conformal field theory methods [35], taking into
account recoil (in the bulk) of the observable-world brane and the identification of target time
with the (zero mode of the) Liouville field. In that work it was assumed that the final equilibrium
value of the central-charge deficit was zero, i.e., the theory approached a critical string. This
late-time varying deficit Q2(t) scales with the target time (Liouville mode) as follows (in units
of the string scale Ms):

Q2(t) ∼ (H2 + v2)2

t2
. (99)

Some explanations are necessary at this point. In arriving at (99), one identifies the world-
sheet renormalization group scale T = ln(L/a)2, where (L/a)2 is the world-sheet area, which
appears in the Zamolodchikov c-theorem used to determine the rate of change of Q with T ,
with the zero mode of a normalized Liouville field φ0, such that φ0 = QT . This normalization
guarantees a canonical kinetic term for the Liouville field in the world-sheet action [13]. Thus,
φ0 is identified with −t, where t is the target time. This will always be understood in what
follows.

On the other hand, in other models [15] that we discuss below, the asymptotic value of
the central-charge deficit may not be zero, in the sense that the asymptotic theory is that of
a dilaton field that is linear in time, with a Minkowski metric in the σ-model frame [12]. This
theory is still a conformal model, but the central charge is a constant Q0, and in fact the dilaton
is of the form Φ = Q0t + const, where t is the target time in the σ-model frame. Conformal
invariance, as already mentioned previously, suggests [12] that Q0 takes on one of a discrete
set of values, in the way explained in [12]. In such a case, following the same method as in the
Q0 = 0 case of [18], one arrives at the asymptotic form

Q2(t) ∼ Q2
0 + O

(H2 + v2)

t
Q0

)
(100)

for large times t.
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Figure 3: A model for supersymmetric D-particle foam consisting of two stacks each of sixteen
parallel coincident D8-branes, with orientifold planes (thick dashed lines) attached to them [21].
The space does not extend beyond the orientifold planes. The bulk region of ten-dimensional
space in which the D8-branes are embedded is punctured by D0-branes (D-particles, dark blobs).
The two parallel stacks are sufficiently far from each other that any Casimir contribution to
the vacuum energy is negligible. If the branes are stationary, there is zero vacuum energy,
and the configuration is a consistent supersymmetric string vacuum. To obtain excitations
corresponding to interesting cosmologies, one should move one (or more) of the branes from
each stack, let them collide (Big Bang), bounce back (inflation), and then relax to their original
position, where they collide again with the remaining branes in each stack (exit from inflation,
reheating).

3.2 Example II: Orientifold/Eight-Brane/D-particles Colliding-Brane
Model

The colliding-brane model of [18] can be extended to incorporate proper supersymmetric vac-
uum configurations of string theory [21]. As illustrated in Fig. 3, this model consists of two
stacks of D8-branes with the same tension, separated by a distance R. The transverse bulk
space is restricted to lie between two orientifold planes, and is populated by D-particles. It was
shown in [21] that, in the limit of static branes and D-particles, this configuration constitutes
a zero vacuum-energy supersymmetric ground state of this brane theory.

The bulk low-energy effective theory in such configurations is known to be the ten-dimensional
Type-IIA supergravity, whose bosonic part is given in the string frame by [2]:

S = SNS + SR + SCS, (101)

where

SNS =
1

2κ2
10

∫
d10x

√
−Ge−2Φ

(
R + 4|∇µΦ|2 −

1

2
|H3|2

)
, (102)

SR = − 1

4κ2
10

∫
d10x

√
−G

(
|F2|2 + |F̃4|2

)
, (103)

SCS = − 1

4κ2
10

∫
B2 ∧ dC3 ∧ dC3, (104)

in standard notation. However, in order to incorporate eight-dimensional branes, one needs
actually a modified version of the Type-IIA supergravity, which we now proceed to describe
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briefly, along with its possible compactifications, since we are eventually interested in four
space-time dimensional theories of phenomenological interest.

3.3 Dual Formulation of Type-IIA Supergravity

Type-IIA string theory contains all even-dimension D-branes from zero to eight dimensions
p [2]. Dp-branes couple to R-R p + 1-forms, but the action for Type-IIA supergravity only
contains 1-form (D0-brane) and 3-form (D2-brane) gauge potentials - how are the other D-
branes incorporated into the action? In [36], a dual formulation of Type-IIA supergravity was
constructed, which contains higher-dimensional R-R potentials and hence allows objects like
the D8-brane to be incorporated. The dual Type-IIA supergravity allows for the construction
of Type-IA supergravity, and has the action:

Sbulk = − 1

2κ2
10

∫
d10x

√−g
{
e−2Φ

[
R
(
ω(e)

)
+ 4
(
∂Φ
)2

+ 1
2
H ·H − 2∂µΦχ(1)

µ +H · χ(3)+

+ 2ψ̄µΓµνρ∇νψρ − 2λ̄Γµ∇µλ+ 4λ̄Γµν∇µψν

]
+
∑

n=0,1,2

1
2
G(2n) ·G(2n) +G(2n) · Ψ(2n)+

− ⋆
[

1
2
G(4)G(4)B − 1

2
G(2)G(4)B2 + 1

6
G(2)2B3 + 1

6
G(0)G(4)B3 − 1

8
G(0)G(2)B4+

+ 1
40
G(0)2B5 + e−BGd(A(5) −A(7) + A(9))

]}
+ quartic fermionic terms , (105)

in conventional notation [36]. However, this dual formulation only describes branes of dimension
4, 6 and 8 because of the problem of consistently introducing all of the available R-R forms. A
democratic formulation was also constructed, which contained all potentials, but this version
has no proper action [36]. Since the D-foam model of [21] contains D8-branes, O8-planes and
D0-branes, along with fundamental strings when the D0-branes are between an odd number of
D8-branes, neither the dual nor the democratic action is appropriate. One needs a combined
action, which has been constructed in [37]:

S = − 1

2κ2
10

∫
d10x

√
−G
{
e−2Φ

[
R + 4

(
∂Φ
)2

+ 1
12

(H(3))2
]
+ 1

2
(G(0))2 + 1

2
(G(2))2 − ⋆

[
G(0)dA(9)

]}

− T8(n− 8)

∫
d10x

(
e−Φ
√

|G(9)| + α
1

9!
ǫ(9)A(9)

)[
δ(x9) − δ(x9 − πR)

]

−T2

∫
d10x

[(
e−Φ
√
−Gtt − bAt

)
+

e−φ

√
Gzz

(√
−GttGzz −

a

2!
ǫνλBνλ

)][∑

k

Nkδ
8(~x− ~xk)

]
,

(106)

where ~x denotes an eight-dimensional vector, G(n), A(n) are appropriate gauge flux fields, G
denotes the ten-dimensional σ-model-frame target-space metric, G00, Gzz are the temporal and
bulk components of this metric respectively, and G(9) is a nine-dimensional metric. The second
line describes the D8-branes and orientifold planes and the third the combined action for the
D0-brane and fundamental strings. These brane-bulk actions describe all of the dynamics
relevant to the branes of interest.
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3.4 Towards Realistic Compactifications

To compactify such an action, e.g., on T 4/Z2, the fields which survive the orbifold projection
must be determined. An example of this for D6-O6 branes is given in [38]. Once the remaining
field content is found, calculation of the dimensionally-reduced Bianchi identities then leads to
the lower-dimensional effective potential and corresponding superpotential. Instead of a normal
Kaluza-Klein dimensional reduction, Scherk-Schwarz fluxes [39] can be added [40], which have
the advantage of allowing a greater range of vacua: see [41, 38, 42] and references therein 11.

The overall structure of Type IA string theory/supergravity is M9×S1/Z2I9Ω, correspond-
ing to an orbifold of the Type-IIA theory with an orientifold projection in the ninth dimension.
A realistic compactification would result in either a Randall-Sundrum type scenario [4], i.e., a
3-brane embedded in five dimensions, or a conventional intersecting D-brane model [43], with
the unusual feature of using D8-branes instead of D6-branes [44]. For Randall-Sundrum-II
(RS-II) scenarios, it has been suggested [36] that a metric product of AdS5 and some Euclidean
5-manifold would give 3-branes in 5-dimensional Minkowski space, with the bulk solution being
uplifted from [45] 12.

The range of compactification choices can be summarized as follows:

• Compactify D8-O8 on AdS5 ×M5 to get an RS-II scenario [36],

• Compactify on appropriate torii to get an intersecting brane model [44],

• Compactify on K3 ×Sd, giving another intersecting brane model based upon Calabi-Yau
manifolds [43].

The important requirement is to obtain D = 4, N = 1 supersymmetry on the brane, which
in the (compactified) model of [21] would correspond to the static D-brane/D-particle config-
uration. We recall that Type-IIA supergravity has 32 supersymmetries [2]. In the the model
of [21], the bulk space has N = 2, and on the brane there is [36] N = 1. It should be noted that,
for simplicity in this case, we are assuming that all of the branes are located on the orientifolds,
and not in the bulk. Toroidal compactification of supergravity does not break any supersym-
metries, so compactification on T 5 would give D = 5, N = 4 supersymmetry in the bulk, with
N = 2 on the brane. Changing this to T 5/Z2 breaks half of the supersymmetries resulting in
N = 2 in the bulk and N = 1 on the brane. More complicated compactifications would change
the precise way in which the supersymmetries are broken, as in the example suggested by [36],
where the metric is the product of AdS5 and a Euclidean 5-manifold. This would also result in
D = 4, N = 1 on the brane. Inspired by the analysis on the colliding five-brane model of [18],
in which the five-branes were compactified on magnitized tori to yield three-brane worlds with
broken supersymmetry, as a result of internal magnetic fields, it would be desirable to discuss
similar magnetized compactifications for the eight-branes of [21]. This may be subtle due to
the presence of the orientifolds, but some progress has already been made in this direction [49].

In this work we deal no further with the important issue of compactification, but postpone
a detailed analysis to a future publication.

11As we saw in the generic analysis of [15], reviewed above, such flux fields play an important rôle in ensuring
the stabilisation of large bulk dimensions. A similar scenario is envisaged for the compactified version of the
eight-brane model of [21].

12We recall that the strong-coupling limit of Type-IA string theory is equivalent to the solution of Horava
and Witten (HW) [46, 47, 48].
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3.5 Supersymmetry Breaking and Vacuum Energy in the

Post-Inflationary Era

We now discuss briefly issues related to the supersymmetry breaking that would result from
brane motion in the model.

3.5.1 Supersymmetry Breaking via Internal Magnetic Fields

In the colliding-brane scenario of [19], which uses the orientifold configuration of [21] shown
in Fig. 3), one may imagine that the exit from inflation and the reheating phase corresponds
to a second collision, when the moving brane world returns to its initial position and hits the
original stack of branes again. In such a case the recoil velocity of the brane world vanishes,
but one may still have a magnetic field H on the brane world, corresponding to a contribution
to the four-dimensional energy density on the brane of order H2, for compactification radii of
the extra dimensions of order Ms. One may identify therefore

Q2
0 ∼ H2 (107)

in the σ-model frame, leading to a dilaton of the form Φ ∼ Ht + const. For consistency with
the results of [12], one would then discretize H with one of the values dictated by conformal
invariance in this asymptotic σ model.

An important issue that we have already mentioned, but would like to stress again, is that in
the Einstein frame the constants in the expression for the dilaton are such that the dark-energy
density (c.f., (54) below) relaxes to zero with the cosmic time tE in the Einstein frame (c.f. (48
below) as 1/t2E , in a manner independent of the magnitude of Q0. In this way, the magnitude of
the supersymmetry breaking in target space induced by the presence of H [34, 18] may be large
enough to be of phenomenological interest, whilst the observed value of the vacuum energy may
be acceptably small, as we now explain.

The reason why the magnetic field H in the extra dimensions [18] breaks target-space
supersymmetry [34] is that bosons and fermions on the brane worlds couple differently to H.
This is nothing other than a Zeeman-type energy-splitting effect. In our problem, where the
magnetic field is turned on adiabatically, the resulting mass difference between bosonic and
fermionic string excitations is found to be [18]:

∆m2
string ∼ 2qe|H|cosh (ǫϕ+ ǫt) Σ45, (108)

where qe is the electric charge, Σ45 is a standard spin operator in the plane of the torus, and
ǫ→ 0+ is the regulating parameter of the Heaviside operator Θǫ(t) = −i

∫∞
−∞

dω
ω−iǫ

eiωt appearing
in the D-brane recoil formalism [35]. The dependence in (108) implies that the formalism selects
dynamically a Liouville mode which flows opposite to the target time ϕ = −t, as mentioned
earlier, as a result of minimization of the effective field-theoretic potential of the various stringy
excitations.

In the scenario of [18], where the dilaton remains constant asymptotically in time, the mass
splitting (108) with ϕ = −t is the only contribution to supersymmetry breaking as far as
excitations are concerned. Since in that scenario the dark energy in target space relaxes to
zero asymptotically (99) while the mass splittings remain finite, provided H remains constant
one has a supersymmetry obstruction [16], rather than breaking, on the brane world, since the
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cosmological constant of the vacuum state is still zero, as required by a supersymmetric theory,
but the excitation spectrum is not supersymmetric. By choosing appropriately

qe|H| ∼ 10−30 (in string − scale units), (109)

we may arrange for the supersymmetry-breaking/obstruction scale to be of the order of a
few TeV. Such contributions would therefore be significantly subdominant, compared with the
velocity contribution, in the expressions (97), (99) during the inflationary era. (We recall
that phenomenological analyses such as those in [19, 21], yield recoil velocities as large as
v ∼ O(10−1) towards the end of inflation.) However, we note here that if the string scale is
itself of the order of a few TeV, then qe|H| in (108) may be chosen of order one in string units
in order to reproduce supersymmetry breaking at TeV scales.

There is an issue with the scenario of [18] concerning the recoil velocity of the brane worlds
after inflation. In [18] it was assumed that the brane worlds eventually stop moving in the
bulk, as a result of gravitational radiation, i.e., emission of closed strings from the brane
towards the bulk. This would imply that there were no velocity-dependent contributions to the
supersymmetry breaking in the bulk asymptotically. We stress that, if the branes are moving
relative to each other, the asymptotic vacuum energies on the brane world are non-zero, but
depend on some power of the recoil velocity (in the case of identical recoiling branes this is
v4 [21]), breaking the (bulk) supersymmetry.

On the other hand, in scenarios with an asymptotically linear dilaton one has [12], as a
result of the presence of the background charge Q, tachyonic shifts −Q2 in the masses of
bosons, while the fermion masses remain unaffected. Such shifts induce additional contributions
to supersymmetry-breaking mass splittings (108) asymptotically 13:

∆m2
susy−br ∼ qe|H| +O

(
H2
)
, (110)

and in this type of breaking one has [34] Strm2 = 0, where Str denotes the supertrace.
In the scenario of [19], one uses the supersymmetric vacuum configuration of Fig. 3, where

one or more of the branes of one stack collide with branes of the other stack before returning
to their original position, where they collide for a second time, and eventually stop. The end
of the inflationary era in this framework corresponds to this second collision. We assume for
simplicity that there is only one collision between the Big Bang and the exit from inflation,
where our brane world collides with its original stack of branes and stops. This second collision
results in a phase transition and reheats the Universe, as a result of entropy production due to
the collision. This second collision is much milder than the initial one, because the recoiling
brane world may lose energy not only via its collisions with D-particles in the foam, but also
due to gravitational radiation, i.e., closed string emission in the bulk. The precise mechanism
for reheating is still open: one possible contribution is the gravitational collapse of the bulk
D-particles in the model of [21] into black holes, due to distortions of their populations following
the second collision. Evaporation of such bulky black holes on the brane worlds would result
in Hawking radiation, represented by open string excitations attached to the brane worlds,
thereby contributing to reheating.

13Note that, since during inflation the dilaton remains constant, there are no extra shifts in the boson masses
due to the central charge deficit in that era.
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In such scenarios, the asymptotic value of Q2 ∼ H2, since there is no recoil velocity of
the brane after the second collision. For the order of magnitude of the magnetic field chosen
above (109), such contributions are negligible compared with the Zeeman mass splittings (108).
Moreover, for such values of the magnetic field, the equilibrium central charge (107) is of order
Q2

0 ∼ 10−60 (in string units), and the value of γ in such a Universe is compatible with the
current-era condition (57), provided (c.f., (49),(45), (58)): |C5|e−5s02 ∼ 1 (in string units),
which is a natural value for the flux field in the model of [15]. This guarantees a present-
era vacuum energy (99) of the observed order, compatible with a phenomenologically-viable
scenario for supersymmetry-breaking mass splittings (110). On the other hand, if the string
scale is of the order of a few TeV, then the age of the Universe today is tE ∼ 1044 in string
units, and since Q2

0 ∼ H2 ∼ 1 in these units, one needs very large five-dimensional fluxes
|C5|e−5s02 ∼ 1044 to ensure the condition (57).

The basic features of the low-energy limit of the non-supersymmetric Type-0 string the-
ory that we used in [19] and in [15], can be extended appropriately to the supersymmetric
brane/orientifold compactification model of [21], without affecting the basic characteristics of
the model, such as the existence of one large extra dimension, the presence of flux bulk fields,
tachyons and extra moduli fields which freeze out quickly, and play no rôle in the phenomenol-
ogy of the Universe in the present era. As far as tachyons are concerned, these fields existed
in Type-0 string theory as a result of the explicit breaking of supersymmetry due to project-
ing the partners out of the string spectrum. In the supersymmetric models of colliding-brane
worlds [21, 19], the motion and collision of the brane worlds breaks supersymmetry explicitly,
both on the branes and in the bulk, as a result of the non-zero relative velocities. This also
results in tachyonic excitations in the string spectrum, reflecting the instability of the configura-
tion. This instability is essential in cosmological situations, such as the one we encounter here.
The same analysis as in [15] can then be performed for the bosonic sector of the low-energy
field theory in this case, to demonstrate the existence of solutions of cosmological relevance, in
which the tachyon fields decouple quickly, leading to a similar late-stage analysis and results
like those in [15, 8], as reviewed in the previous Section.

We would like to call the reader’s attention to one final point. As mentioned above, magne-
tized toroidal compactifications are known to have Nielsen-Olesen instabilities [34]. It may well
happen [18], therefore, that as a result of the collision(s) a decompactification process takes place
at a rate slower than any other time scale in our physical Universe, which implies, however,
that the compactification radius R → ∞ asymptotically in cosmic time, whilst the magnetic
field energy H2Rp, for p compact dimensions on the brane worlds, remains finite. This would
imply vanishing magnetic fields asymptotically, and hence restoration of supersymmetry.

However, the compactification on magnetized internal manifolds is not the only way for
supersymmetry to be broken in such cosmologies. As already mentioned, in the models of [21]
the motion of the brane world constitutes another source of breaking of supersymmetry. Mo-
roever, as we also discuss below, the thermalization of the bulk and brane worlds soon after the
collision could in principle result in yet another (independent) contribution to supersymmetry
breaking. However, the finite recoil velocity of the colliding brane world and the temperature
will be related, and hence there will be only one independent type of supersymmetry breaking
in the scenario of [21] 14.

14Notice that the model of [21] does not involve compactification, and hence the considerations on phases with
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3.5.2 Moving Branes and Supersymmetry Breaking

The colliding-brane scenario can be realized [19] in this framework by allowing (at least one
of) the D-branes to move, keeping the orientifold planes static. One may envisage a situation
in which the two branes collide, at a certain moment in time corresponding to the Big Bang -
a catastrophic cosmological event setting the beginning of observable time - and then bounce
back. The width of the bulk region is assumed to be long enough that, after a sufficiently
long time following the collision, the excitation energy on the observable brane world - which
corresponds to the conformal charge deficit in a σ-model framework [18, 21] - relaxes to tiny
values.

It is expected that a ground state-configuration will be achieved when the branes reach the
orientifold planes again (within stringy length uncertainties of order ℓs = 1/Ms, the string scale).
In this picture, since observable time starts ticking after the collision, the question how the brane
worlds started to move is merely philosophical or metaphysical. The collision results in a kind
of phase transition, during which the system passes through a non-equilibrium phase, in which
one loses the conformal symmetry of the stringy σ model that describes perturbatively string
excitations on the branes. At long times after the collision, the central charge deficit relaxes to
zero [18], indicating that the system approaches equilibrium again. The dark energy observed
today may be the result of the fact that our world has not yet relaxed to this equilibrium
value. Since the asymptotic ground state configuration has static D-branes and D-particles, and
hence has zero vacuum energy as guaranteed by the exact conformal field theory construction
of [21, 19], it avoids the fine-tuning problems in the model of [18].

Thus, the bulk motion of either the D-branes or the D-particles 15 results in non-zero
‘vacuum’ (or, rather, ‘excitation’) energy [21], and hence the breaking of target-space supersym-
metry, proportional to some power of the average (recoil) velocity squared, which depends on
the precise string model used to described the (open) stringy matter excitations on the branes.
Sub-asymptotically, there are several contributions to the excitation energy of our brane world
in this picture. One comes from the interaction of the brane world with nearby D-particles,
i.e., those within distances at most of order O(ℓs), as a result of open strings stretched between
them. The other contribution comes from the collision of the identical D-branes.

A detailed analysis, using world-sheet methods for the computation of the various potentials
felt by the D-branes/D-particles in the colliding-brane model of [21], yields two types of effective
potentials. One is a potential in the bulk space, felt by closed-string excitations from the
gravitational multiplet that are allowed to propagate in the bulk. The bulk potential is given
by:

Vsym ≃ V8
(30R− 64r)v4

213π9α′5
−N

( v
α′

)1/2

, (111)

where the distances R, r are defined in Fig. 3, v is the recoil velocity of our brane world, and
N is the number of D-particles near the moving brane world, which are the only type of D-
particles that contribute significantly to the potential [21]. A symmetric configuration of branes
has been considered in Fig. 3 for concreteness and simplicity. For a sufficiently dilute gas of

broken supersymmetry pertain to eight-dimensional brane worlds, moving in the ninth bulk dimension. Upon
subsequent compactification it is possible to have additional sources of supersymmetry breaking, including the
ones associated with possible internal magnetic fields, as discussed elsewhere.

15The latter could arise from recoil effects following scattering with closed-string states propagating in the
bulk.
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nearby D-particles, one may assume that this latter contribution is the dominant one. In this
case, one may ignore the D-particle/D-brane contributions to the vacuum energy, and hence
apply the previous considerations on inflation, based on the O(v4) central charge deficit, with
v the velocity of the brane world in the bulk.

The other type of potential, generated in the moving-brane scenario of [21], is an effective
potential felt by the brane world itself, as a result of its interactions with the other branes and
D-particles. This second type of potential is felt by the open-string excitations whose ends are
attached to the brane, which constitute the Standard Model matter and radiation, living on
the brane world. The brane potential is [21]:

Vbrane = −V8
31(R− 2r)v4

213π9α′5
, (112)

where r1 = R − 2r denotes the relative separation of the branes in the symmetric situation of
Fig. 3 with r2 = r. Notice that the potential is negative, which expresses the fact that the
brane world feels an attractive force towards its original stack, and the configuration is stabilized
when v → 0. In Section 4 we return to a physical interpretation of the above potentials, which
determine the various phases of our early Q-cosmology.

From the point of view of the low-energy bulk action (102) and (106), the bulk potential
(111) would correspond to a non-zero contribution to the scalar potential of the Type-IIA super-
gravity theory, proportional to a central charge deficit: e−2ΦQ2, expressing the non-criticality
of the associated σ model describing bulk string excitations. The fact that the potential (111)
changes sign, depending on the value of r, will lead to a rich phase structure, as we discuss
in Section 4. However, due to the fact that we consider here a brane excitation, the system
does not sit at a global minimum of the potential, but rather in a local (metastable) extremum.
We return to this important point in Section 4, when we discuss the various phases of the
bulk theory. As we show there, the compactified Type-IIA theory may not be characterized
by such a global minimum as a result of purely stringy properties (lack of certain T-duality
symmetries [22]).

For the effective low-energy of the open-string excitations on the brane, a similar excitation
‘vacuum energy’ is provided by the potential (112), but with subtleties because its value is
always negative. As we discuss in Section 4, this may be interpreted as thermalization of
the brane world, throughout the inflationary period and its exit phase (this mechanism is an
alternative to the usual description of reheating). Moreover, the presence of matter on the brane
world causes back-reaction onto the space-time, along the lines discussed earlier. Matter is
assumed to satisfy classical equations in an effective four-dimensional supergravity field theory
on the brane world. There are of course subtleties associated with specific compactification
scenarios, which we do not discuss here.

A final comment concerns the rôle of the D-particles in the above models. The presence of
these space-time defects, which inevitably cross the D-branes as the latter move in the bulk,
even if the D-particle defects are static initially, distorts slightly [50] the inflationary metric on
the observable brane world at early times after the collision, during an era of approximately
constant central charge deficit. However, this effect does not lead to significant qualitative
changes. Moreover, the existence of D-particles on the branes affects the propagation of string
matter on the branes, in the sense of modifying their dispersion relations by inducing local
curvature in space-time, as a result of recoil following collisions with string matter. However, it
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was argued in [51] that only photons are susceptible to such effects in this scenario, due to the
specific gauge properties of the membrane theory at hand. The dispersion relations for chiral
matter particles, or in general fields on the D-branes that transform non-trivially under the
Standard Model gauge group, are protected by special gauge symmetries in string theory, and
as such are not modified.

4 Finite Temperature in the Liouville Framework

We now discuss thermalized strings in the context of our Liouville formalism, and describe the
thermal phase diagram of our early Universe.

4.1 Brane Collisions and Hot Universes

In our colliding-brane scenario, each brane collision thermalizes the string excitation spectrum
on the brane worlds and in the bulk, as a result of the conversion of the kinetic energy of the
moving branes into thermal energy. In the scenario with two moving colliding branes of [21]
(c.f., Fig. 3), the string excitations may be thermalized immediately after the collision. Indeed,
as the detailed computations of [21] have shown, the effective potential of the configuration
when the two branes lie a distance r1 = R−2r apart (with the symbols as in Fig. 3, restricting
ourselves to the symmetric case r2 = r for simplicity) is given by (111).

We observe from (111) that for a sufficiently dilute gas of D-particles, the potential is positive
for r ≪ R/2. This implies that, for relatively long times after the collision when the distance
of our brane world from its original stack satisfies the above constraint r ≪ R/2, closed-string
excitations in the bulk feel this positive vacuum energy, which means that the corresponding
σ model is supercritical. It must therefore be dressed by a time-like Liouville field, which is
eventually identified with the target time. In fact, in the analysis of [18], for reasons associated
with the convergence of the world-sheet path integral, we considered the initial time coordinate
X0 (before Liouville dressing) as space-like (Euclidean time). This was important, because
dressing with a time-like Liouville field implied a (D + 1)-dimensional target-space metric (in
our normalization here) [18]:

ds2
D+1 = −2(dϕ)2 + (dX0)2 + d~x2. (113)

Upon the identification (37) ϕ = −t, where now t = X0 is a Euclidean target time, one obtains
a Minkowski-signature D-dimensional space-time in a dynamical way. Although in [18] we
viewed the use of Euclidean time merely as a mathematical peculiarity of the world-sheet path
integral, it may be given a physical meaning in the context of the colliding-brane scenarios, as
follows.

Assuming that the adiabatic analysis of [21] is valid soon after the initial collision, and
ignoring again the contributions from D-particles, assuming them sufficiently dilute, we observe
that in that early epoch of the Universe the potential (??) is negative, since in that era 30R/64 <
r < R/2 (c.f., Fig. 3). The closed-string excitations find themselves described by a subcritical σ
model, which can become critical upon Liouville dressing by a space-like Liouville mode. This
correspond to thermalization as a result of the collision, during which the initial kinetic energy
of the D-branes is transformed into thermal energy. In fact, if we assume that the initial relative
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velocity of the D-branes is of the same order as the recoil velocity, which in [21, 19] was estimated
to be of order 10−3 < v < 10−1 in units of c = 1, then we observe that the induced temperature
1
2
Mv2 ∼ kBT , where M is the D-brane mass, could be close to the Hagedorn temperature of

the corresponding string theory, T ≃ TH ∼ 1
2π

√
2α′

in order of magnitude 16. Thus, during the

collision phase, the branes and the bulk (closed) string excitations find themselves at a finite
(high) temperature.

It is interesting to describe the stringy excitations under such conditions. In what follows
we review the rôle of the Liouville formalism in describing generic strings at finite temperature.
We commence our analysis with the heterotic string case, which is the simplest and among the
most interesting cases for phenomenology.

4.2 Liouville Approach to Finite-Temperature Strings: the Case of
Heterotic Strings

Historically [22], there has been interest in obtaining a description of a hot, stable phase of
strings at temperatures beyond the Hagedorn phase transition at TH ∼ 1/2π

√
α′. In our case,

we are interested in the description of strings much below such high temperatures. However,
it is instructive for our purposes to review first the Hagedorn phase, as studied for heterotic
strings in [22]. We then return to the brane model of [21], characterized by a bulk low-energy
Type-IIA effective supergravity theory in the next Section.

The easiest approach to discussing strings at finite temperature T is to compactify the time
direction on a circle of radius R = 1/πT and discuss the mass spectrum of the winding modes
of the string. Using appropriate T-dualities the authors of [22] have discussed the instabilities
arising from the fact that some of these T-winding modes of the string become tachyonic above
the Hagedorn temperature of a gas of strings. This defines the high-temperature phase of
strings, and in our case we could identify it with the epoch soon after the initial collision,
where the separation between the branes is small.

The presence of a non-zero temperature leads in general to additional contributions to
supersymmetry breaking beyond the ones discussed so far. An important result [52] in the
context of strings is that D-dimensional superstrings at finite temperature look like (D − 1)-
dimensional superstrings with spontaneously broken supersymmetry. Restricting our attention
to the (bulk) closed string winding sector, this observation implies [22] that the corresponding
low-energy effective supergravity field theory is characterized by a a non-zero (negative) value
of the (global) minimum of its corresponding scalar potential, proportional to the square of the
gravitino mass:

Vmin = −2m2
3/2κ

−2 = −1/2Sκ−2 , (114)

where S = e−Φ denotes the dilaton field in the supergravity multiplet, and κ is the (ten-
dimensional) gravitational constant. From a stringy σ-model viewpoint, such a minimum corre-
sponds to the propagation of strings in a space-time with a tree-level non-constant cosmological
term, providing a runaway-dilaton potential. A detailed analysis of heterotic superstrings in
high-temperature phases has been performed in [22], where it was shown that there exists a
conformal field theory description of this high-temperature phase, corresponding to a σ model
where the central charge has been lowered by four units.

16Slight differences in the proportionality factors occur between the various string theories.
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Indeed, the conformal field theory is nothing other than the strongly-coupled Liouville
theory [13], which is not yet very well understood. This Liouville conformal theory corresponds
in target space to a subcritical superstring whose σ-model-frame metric is the flat Minkowski
one: Gσ

µν = ηµν , with a dilaton linear in a space-like coordinate, playing the rôle of the Euclidean
compactified time Φ = QX0, where Q is a background charge. The space-like nature of the
Liouville mode (temperature) is due to the fact that there is a central-charge deficit and not a
surplus as in the time-like Liouville case of [12, 17] discussed in previous Sections. The physical
metric, corresponding to a canonically normalized Einstein term in the effective action, is again
given by (5), and the corresponding target-space effective action by (12). From the cosmological
term of this action, and its identification with the the minimum of the supergravity scalar
potential (114), one can compute the central-charge deficit δc ∝ Q2 < 0 of the conformal
theory (paying particular attention to the appropriate normalization factors [22]), essentially
by identifying it with the numerical coefficient of 1/S in the expression (114):

Q2 =
δc

8α′
= − 1

2α′
< 0, (115)

implying a central charge deficit: δc = −4 for the superstring. Taking into account the fact
that for flat σ-model-frame metric backgrounds δc = D − 10, where D is the space-time di-
mensionality of the free superstring, we therefore observe that in the high-temperature phase
the thermalized closed-string system corresponds to a non-critical superstring living in 5+1
dimensions. In such a phase it was remarked in [22] that five-branes condense. Such features
may turn out to be quite important for cosmological model building. For instance, this would
imply that in the original model of colliding five-branes of [18], immediately after the collision
one would have condensation of the five-branes, which does not happen in the model of [21].

An important feature of such finite-temperature superstrings is the existence of a space-like
supersymmetry at a perturbative level which characterizes the hot phase [22]. Indeed, before
Liouville dressing, the finite temperature contributes to supersymmetry breaking mass shifts
between the bosonic (MB) and fermionic (MF ) excitations of the corresponding supergravity
theory:

(MB)2
ij̄ = (MF )2

ij̄ −m2
3/2δij̄ (116)

in the mass-matrix notation of [22]. After the Liouville dressing by the space-like linear dilaton,
the fermion masses remain unaffected, but the boson masses undergo mass shifts [12]. However,
this time, due to the subcriticality of the string, which is to be contrasted with the case of [12],
the mass shifts are not tachyonic, but real:

δ(MB)2 = Q2 = m2
3/2 , δ(MF )2 = 0 (117)

in our normalization. These mass shifts are additive to (116), which implies that at a pertur-
bative level supersymmetry is restored in this hot phase of strings. In our case, therefore, this
means that, at a perturbative level, supersymmetry breaking is still be given by the magnetic
terms as described above.

The supersymmetry is however broken, or rather obstructed [16] at a non-perturbative level,
due to the fact that masses in three space dimensions produce conical singularities, and as
such they break supersymmetry at the level of the excitation spectrum, although the vacuum
may still be supersymmetric. Such non-perturbative breaking has been discussed explicitly
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in [22], and we do not discuss it further here. We mention, though, that this corresponds to an
instability of the high-temperature phase, because this breaking of supersymmetry produces
tachyonic states.

The string must leave this unstable phase and re-enter a phase where such instabilities
eventually disappear, and the string system relaxes to an equilibrium situation (with unbroken
supersymmetry, modulo the effects of the magnetic field, if compactification on magnetized
manifolds is considered). We now discuss how this may be understood from a world-sheet view
point, in the context of our cosmological model of colliding branes presented in [21]. Since the
effective low-energy theory in the bulk in this model is Type-IIA supergravity, we first review
a finite-temperature analysis of this special theory, with the aim of repeating the analysis
of [22] for this case. There are important physical differences, however, associated with the
lack of global minima in Type-IIA theories, which we outline in due course. We commence our
analysis with a finite-temperature study of the effective Type-IIA supergravity theory, which
characterizes the low-energy bulk dynamics in the model of [21].

4.3 Type-IIA Supergravity at Finite Temperature

As already mentioned, in [21] we have a system of D8-branes and orientifolds, in the configu-
ration known as Type-IA string theory. Between the two stacks of D8-branes, the bulk space
corresponds to Type-IIA supergravity. When some of the D8-branes move into the bulk, the
overall bulk potential induced by this motion can become negative [21], which can be inter-
preted as the system moving into a finite-temperature phase. Finite-temperature field theory
is realized by the Euclidean compactification of the time dimension, and its effects can be
calculated using the Scherk-Schwarz mechanism [39].

When one of the D8-branes from each stack moves into the bulk, there are two potentials
which must be taken into account. First there is the bulk potential (??), describing the overall
energy of the system, where the potential is positive as long as the distance between the brane
and its originating stack, r, is less than 15R/32. Secondly there is the potential on the moving
brane itself (as we are dealing with a symmetric case, we consider the left-hand brane). This
case is more complex and will be discussed later on.

As stressed above, the important result when considering-finite temperature supergravity
is that D-dimensional superstrings at finite temperature look like (D − 1)-dimensional super-
strings with spontaneously broken supersymmetry [52, 22]. Thus, spontaneous supersymmetry
breaking via the Scherk-Schwarz mechanism is equivalent to considering the system at finite
temperature. The Scherk-Schwarz mechanism [39] works by generalizing the standard dimen-
sional reduction procedure [53], in which all of the fields are taken to be independent of the
compact coordinates. Instead, the fields are given a specific dependence on the internal co-
ordinates of the compact manifold, namely twisting the boundary conditions of the compact
dimensions by a global symmetry of the action. This twist induces a shift in the mass terms of
the lower-dimensional fields.

In finite-temperature QFT [54], bosons are periodic and fermions anti-periodic in the com-
pact Euclidean time dimension [22]:

Φ(t+ 2LπR) = (−)LaΦ(t), (118)

where for a 2π rotation L = 1, and a = 0, 1 for bosons and fermions respectively. The modular
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invariance of Type II string theory requires further constraints to be placed on the periodicity
conditions [52, 22, 54]:

(−)aL+bn (119)

where m,n are winding numbers and a and b are the fermionic spin structures along the world-
sheet torus. The resulting shift in the lattice momenta along the compact coordinate is 17:

pL,R =
m+ a/2

R
± nR

2
, (120)

with an additional sign factor of (−)ab which reverses the GSO projection in the odd winding-
number sectors. By redefining m, a can be identified with the D-dimensional helicity operator
Q = Z + a/2, so that (D − 1)-dimensional thermal states are mapped to a supersymmetric

theory on S1 without the momentum shift (120). The helicity vector ~Q = (QL,QR) is defined
in terms of the left- and right-moving string helicities, and the vector ~e = (1, 1) for the Type

II string. The inner product is Lorentzian, ~A · ~B = ALBL − ARBR.
Thus there is a mapping between the (D − 1)-dimensional supersymmetric theory with

quantum numbers (n,m,Q) and the (D − 1)-dimensional thermal theory, which results in the
quantum numbers of the supersymmetric theory being shifted:




n
m
Q



 −→




n

m+ Q · e+ 1
2
ne · e

Q− ne



 . (121)

Clearly, all of the previously massless fermionic states with n = m = 0 have their masses shifted
to non-zero values, which means that supersymmetry is broken, with a supersymmetry-breaking
mass

m3/2 =
Q · e
R

. (122)

In the case of Type-IIA string theory, the vector product Q·e = 1/2 [22], giving a supersymmetry-
breaking mass of m3/2 = 1/(2R). As already noted, a D-dimensional theory at finite temper-
ature is equivalent to a (D − 1)-dimensional theory with broken supersymmetry, so the radius
R can be identified with the temperature of the system, 2πR = T−1, giving

m3/2 = πT, (123)

from which it is clear that supersymmetry is restored when R→ ∞, i.e., at zero temperature.

4.4 Effective Potentials in Type-IIA Supergravity

The spontaneously broken (D−1)-dimensional theory can be used in certain cases to determine
the value of the gravitino mass, via minimization of the scalar potential. As discussed in [22],
for the case they considered of D = 5 heterotic theory at temperature, a global minimum was
found which could be used to calculate m3/2 in terms of the dilaton field. For the case of
Type-IIA strings, a similar analysis was performed, but the form of the scalar potential was
such that there was no global minimum.

17The following discussion is taken from [22].
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This is understandable in view of the duality symmetries which occur at finite temperature.
At finite temperature the heterotic string possesses a duality which relates the original Hagedorn
temperature to an upper Hagedorn temperature, above which the tachyon disappears [54, 55]:

R → α′/R, T → (4π2α′T )−1. (124)

This temperature duality of the heterotic string is directly related to a duality in the scalar
potential found by [22], the existence of which appears to determine the existence of the global
minimum. For the five-dimensional Type-IIA string theory considered in [22], there is no such
duality, thus no global minimum. These considerations, however, concern the compactified
theories 18. In the compactified Type-IIA case, the scalar potential assumes the form:

V = − 1

S
· a(Z,Ω, . . . ) ∝ −m2

3/2, (125)

where S = e−Φ is the dilaton, and the (positive) function a(Z,Ω, . . . ), with Z, Ω, . . . appropriate
moduli fields in the supergravity multiplet, is given in [22] for the D=5 case. As discussed in [22],
minimization with respect to the Ω field leads to a runaway potential in the Z direction, thereby
leading to the absence of a global minimum, in accordance with the above-mentioned duality
argument.

The absence of a global minimum is not an unwelcome situation for the cosmological model
of [21], where the collision of branes causes an excitation of the brane world, which no longer
sits at its stable minimum and becomes metastable. The excitation energy is determined in
this case by the bulk potential (??), which in turn is identified with the central charge deficit
of an appropriate non-critical σ model, describing (perturbative) string (bulk) excitations.

4.5 Colliding-Brane Scenario, Non-Critical Strings and Effective Po-
tentials in Type-IIA Theories

We now examine the previous case in some detail, with the aim of understanding from a world-
sheet framework the various hot and cold phases of the theory.

4.5.1 Thermal Type-IIA Phase following the Collision

We return to the colliding brane scenario described in [21], in particular in the phase shortly
after the first collision in the configuration of Fig. 3, when the relative separation r1 of the
colliding branes is

r1 ≤
R

16
. (126)

In this region the bulk effective potential (??) is negative.
In the colliding-brane scenario [21], we are dealing essentially with a non-equilibrium situa-

tion. The bulk potential (??), therefore, should not be viewed as indicating a minimum value
of a superpotential of the low-energy supergravity theory in the bulk. Indeed, as we discussed

18The spontaneously broken supersymmetric 9-dimensional effective theory, representing the ten-dimensional
supergravity at finite temperature, has a scalar superpotential proportional, as usual, to the square of the
gravitino mass.
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in the previous Section, the effective potential of Type-IIA supergravity does not have a global
minimum. Instead, we view the potential (??) as a non-equilibrium excitation energy of the
vacuum due to the collision of the brane worlds. From the point of view of the low-energy
effective theory this is a metastable vacuum (local minimum), which is potentially interesting
in the cosmological context considered here.

Following the analysis in [21], we may associate the negative potential (??) with a central
charge deficit Q2 = C − c∗ < 0 of a subcritical σ model describing (perturbative) string
bulk excitations in this hot phase. The analysis of [21] assumed configurations of the bulk
D-particles that were sufficiently dilute that the dominant contribution to the central-charge
deficit, identified as the ten-dimensional energy density corresponding to the potential (??), is:

|Q2| ≃ 1.2 · 10−8v4g2
s , (127)

where gs is the string coupling, and v is the brane-world recoil velocity, which is constrained
by WMAP [10] data to be at most of order [21, 19]: v ≤ 0.8 for the symmetric model of
colliding branes of [21], as depicted in Fig. 3. This last relation is obtained upon compactifying
(formally) the model into one large dimension along the ninth (bulk) direction, and five small
directions of order

√
α′) 19.

Since, according to [52], D-dimensional strings at finite temperature are equivalent to (D−
1)-dimensional strings with spontaneously broken supersymmetry, we may view the effective
target-space supergravity theory corresponding to the hot phase of the colliding branes of [21]
as living in 9 target dimensions, and corresponding to the effective action of a non-critical
string with an anti-de-Sitter (negative) cosmological constant whose magnitude is given by
(46). The pertinent nine-target-dimensional σ-model theory needs Liouville dressing [13] to
restore conformal symmetry, but with a space-like Liouville mode. The pertinent dressed σ
model is characterized by a flat Minkowski target-space metric Gµν = ηµν and a background
dilaton linear in the Liouville coordinate [12], which is viewed as a Euclidean time X0

E :

Φ = −1

2
QX0

E . (128)

The corresponding target space of the dressed theory is again ten-dimensional: (9, X0
E), and

the corresponding effective action in the σ-model frame is given by

Sσ−frame =

∫ β

0

dX0
E d9X

√
Ge−2Φ

(
R−Q2 + 4(∇µΦ)2 + . . .

)
, (129)

where β = 1/2πT is the inverse temperature, which should be compared with the appropri-
ate parts of (102). We see that the difference from (102) is the presence of a dark energy
term proportional to e−2ΦQ2, which plays the rôle of a non-zero contribution to the appro-
priate scalar potential, and is responsible for supersymmetry breaking. Additional contribu-
tions/modifications will result from compactification, but for the purposes of this Section we
restrict ourselves to the uncompactified thermal case.

19The compactification issue is a non-trivial one in our case, and the resulting four-dimensional supergravity
may present complications. For our purposes here we only present generic qualitative arguments, postponing a
detailed compactification analysis for a future publication.
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The equations of motion obtainable from this action are equivalent to the conformal in-
variance conditions of the Liouville-dressed ten-target-dimensional stringy σ model. The dila-
ton equation (equivalently the vanishing of the ten-euclidean-dimensional dilaton β function)
reads [1]:

R + 4(∂µΦ)(∂µΦ) − 42Φ = Q2, (130)

from which we see that the linear-dilaton background [12] (128) in a flat σ-model-frame target
metric satisfies this equation, as expected from the fact that the Liouville dressing restores the
conformal symmetry. This implies that this background is at least a local minimum of the
action. Upon compactification of the type IIA theory, we know from the work of [22] that there
may be no global minimum, thereby making the above-mentioned extremum of the action a
metastable vacuum. This is a welcome fact, because this will lead to the cosmological evolution
of our brane world, and its eventual exit from this hot phase.

One may go one step further, and derive a relation between the temperature of the hot
phase and the recoil velocity by requiring a perturbative space-like supersymmetry between
bosonic and fermionic degrees of freedom, as in the heterotic string case (116),(117). Indeed,
since we have postulated that the string theory describing the excitations in the bulk of this
situation is a subcritical Liouville string [17, 12], we know from the generic analysis of [12]
that in such a non-critical string the bosonic masses will acquire a shift by Q2, as compared
with the Q = 0 case, while the fermion masses remain unshifted (c.f., (117)). We now require
that there should be no supersymmetry breaking at the perturbative level in the bulk theory,
exactly as happens in the heterotic string case. We base this postulate on duality symmetries
between the heterotic and Type-IIA theories. It means that the finite-temperature mass shift
of the gravitino (116) should compensate the Liouville shift (117). This would result to a
restoration of a bulk space-like supersymmetry, at the perturbative level. From the point of
view of the original model of [21], this supersymmetry restoration would be compatible with
the anti-de-Sitter nature of the bulk geometry in the regime where the effective potential (??)
is negative.

From (123) and (117), then, we may determine a relationship between the central charge
deficit Q2 of the Liouville σ model, describing bulk string excitations, and the temperature T .
Furthermore, as we mentioned above, the analysis of [21] relates the central charge deficit to
the brane recoil velocity v (127). The result of such an analysis is therefore:

m2
3/2 = π2T 2 = Q2 ≃ 1.2 · 10−8v4g2

s . (131)

From the point of view of the spontaneously-broken nine-dimensional target-space theory, this
gravitino mass is proportional to the scalar potential at a local minimum. Upon compactifica-
tion of the theory, this minimum is not a global one, as can be seen by an analysis similar to
that of [22], mentioned previously. The metastable vacuum state of the thermal vacuum of the
compactified Type IIA theory can then be found by solving the appropriate dilaton equation.
The cleanest method is to use the equation of motion in the Einstein frame (5), where the grav-
itational curvature term in the effective action has a canonical normalization. The pertinent
dilaton equation in a conformally flat target-space background reads:

42Φ = −Q2e2Φ. (132)

The solution of such equations (of the compactified theory), together with the Einstein equa-
tions, determines the metastable thermal Type-IIA vacuum corresponding to our case, with
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an excitation energy proportional to Q2 < 0, given in (in magnitude) by (127). Notice that a
dilaton of the form (9) in the Euclidean-time Einstein frame satisfies the above equation for
D = 4 uncompactified dimensions. The non-trivial issue in the higher-dimensional case of [21]
is to find, upon compactification, the dependence of a dilaton satisfying (132) on the radii of
the compact dimensions/moduli [22]. We do not consider this issue further here.

We now remark that the equality (131) allows us to determine a recoil-velocity dependence
of the temperature of the early phase of the brane Universe after the collision, in the adiabatic
situation considered here:

T ∼ 10−42
√

2gsv
2/(2π

√
2α′) ≤ 1.28 · 10−4 TH , (133)

where TH = 1/2π
√

2α′ is the respective Hagedorn temperature, and we assumed standard
weakly-coupled strings with g2

s ∼ 1/2. The fact that the temperature turns out to be propor-
tional to v2 is in agreement with the arguments given above on the transformation of most of
the (non-relativistic) kinetic energy of the colliding branes into thermal energy, in the adiabatic
approximation we use here.

We see from (133) that this early phase of the brane Universe, soon after the collision, could
be characterized by quite a high temperature, up to 1013 GeV, if we accept that a typical string
scale corresponds to an energy of 1018 GeV [1]. Of course, the above estimate has been obtained
by saturating the upper bounds for the recoil velocity that fit the WMAP data [21, 19], and
in practice one may have somewhat lower temperatures. In fact, lower temperatures may be
required in order to avoid massive gravitino overproduction. Such constraints would restrict
further the upper bound on the recoil velocities in the (compactified version of the) model
of [21].

However, despite the perturbative supersymmetry restoration, one would have non-perturb-
ative thermal instabilities, for the same reason as in the heterotic case examined above [22],
associated with supersymmetry obstruction. Such non-perturbative instabilities would result
in the presence of tachyonic states in the string spectrum, which could provide the initial
cosmological instability. As discussed in [15], it seems to be a generic feature of such tachyonic
states to decouple quickly in the cosmological Liouville evolution. In addition to these non-
perturbative instabilities, compactification of Type-IIA theories leads to extra instabilities, due
to the above-mentioned lack of a global minimum in the low-energy effective scalar potentials
arising from thermal supersymmetry breaking. The metastable nature of the hot phase of the
Type-IIA vacuum leads to an exit from this phase, which is succeeded by a cold inflationary
phase that we now proceed to discuss.

4.5.2 Inflationary Phase

Some time after the initial collision, the recoiling D-brane world’s bulk potential (??) becomes
positive. From a conformal field theory point of view, and in the adiabatic approximation
we assumed in [21], this phase might be described by an analytic continuation of the above
linear-space-like dilaton solution:

Q→ iQ , X0
E → i t. (134)
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The corresponding σ-model-frame metric, which in the hot phase was a flat Minkowski metric,
becomes now conformally flat:

Gµν = e−2Φηµν , Φ =
1

2
Q t. (135)

In the model of [21] this could be the full ten-dimensional metric, although appropriate com-
pactifications can restrict the indices to the four dimensions relevant for a three-brane, as seen
in Fig. 2, which represents the inflationary model [19] reviewed in Section 2.3 above. The nor-
malizations in (135) pertain to the four-dimensional case of the three-branes, and would change
for higher-dimensional branes [21].

It is a curiosity that, setting Q = −3H , the physical (Einstein-frame) dilaton and metric
fields (5) of the hot phase, which remain real under (134), become equivalent to the correspond-
ing Liouville-undressed fields (135) (c.f., (36),(38)) when one sets the Liouville field ϕ = 0.
However, this is only a coincidence, since in the inflationary phase it is the σ-model-frame met-
ric that acquires the conformally-flat form. As a σ-model-frame metric, (135) is not conformal
invariant, since its one-loop β function is non-vanishing: βG

µν = Rµν = Q2Gµν 6= 0. The central
charge deficit Q2 in this case is given by the potential (??) in the regime in which is positive,
which is treated as a constant in the adiabatic approximation.

Because of the positive central charge deficit, the string system requires Liouville dressing
by a time-like field, ϕ, which is an extra time-like coordinate, in addition to t. The eventual
identification (37), which in this scenario is dictated by dynamical reasons [18], ensures that
there is only one time variable in the formalism, and leads to an eventual constant dilaton
during the inflationary phase. This phase in which the Universe cools down is nothing other
than the inflationary phase, described in Section 2.3 above. The analytic continuation procedure
(134) describes simply a phase transition of the bulk superstrings from the hot phase to a cold
inflationary one, within the colliding-brane system of Fig. 3.

We recall that, as a result of the non-perturbative breaking of target-space supersymmetry in
the hot phase, there are tachyonic states in the spectrum, which trigger the initial cosmological
instability. However, as discussed in [15], such states decouple relatively quickly in the cosmic
evolution.

4.5.3 Exit from the Inflationary Phase: Reheating and Possible Subsequent Col-
lision(s)

In a similar vein, one may discuss the phase transition associated with the second collision, and
the subsequent reheating of the Universe. However, the physics of reheating is not understood
at a satisfactory level in this framework. In the context of the model of [21], one has to
understand technical details associated with internal magnetic fields in the respective orientifold
compactification [49], as well as issues with the potential felt by open-string excitations on a
brane world. These issues still raise many open questions, but, for completeness, we now present
some relevant speculations.

The potential Vbrane felt by our brane world in the model of [21], in the configuration of
Fig. 3, is by itself negative even during the inflationary phase [17],

Vbrane = −V8
31(R− 2r)v4

213π9α′5
, (136)
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where r1 = R − 2r denotes the relative separation of the branes in the symmetric situation of
Fig. 3 with r2 = r. This negative value can be understood by recalling that the brane world
feels an attractive force towards its original stack, and the configuration is stabilized when
v → 0.

An issue arises at this point, concerning the boundary conformal field theory of open-string
excitations, with their ends attached to the brane. In view of this negative potential, one may
think of dressing the open-string σ model with a space-like Liouville mode to restore conformal
symmetry, already during the inflationary phase. In view of the corresponding situation in the
closed string sector [22], discussed above, one is tempted to take the view that such a negative
brane potential represents some sort of thermalization of open string excitations on the brane
world during the inflationary era.

Indeed, for r < R/2, i.e., very soon after the initial brane collision both the brane and bulk
Universes are hot and in thermal equilibrium. As the two bouncing brane worlds of Fig. 3
move further apart, the closed-string excitations in the bulk cool down, since the available
space becomes larger and their collisions rarer, whilst the brane Universe remains initially hot,
because the inflationary expansion is only a ‘mirage’ due to the brane motion.

The order of magnitude of the brane potential (136) is the same as the bulk one (??),
which implies that, after the exit from the inflationary phase, our brane Universe remains
thermalized with a temperature at intermediate energy scales ∼ 1013 GeV, according to the
calculation above 20. This may provide an alternative to conventional reheating scenarios
in the following sense: although the bulk cools down significantly, and the Universe exits
from inflation, undergoing an appropriate phase transition, expressed by the change in sign of
the bulk potential (??), the brane world remains thermalized after the exit from inflation at
temperatures of order 1013 GeV. This is simply a result of the initial collision, without the need
for other reheating mechanisms.

The usual constraints on gravitino overproduction in spontaneously-broken supergravity
models, such as those pertaining to the brane Q-cosmologies of [21], restrict the allowed tem-
perature to values much smaller than 1013 GeV. This in turn implies an upper bound on the
brane recoil velocities, according to the discussion following (133). However, one should bear
in mind that in brane models the produced gravitino will escape in the bulk, since it is an
excitation of the closed superstring multiplet, and therefore these constraints may not be so
strict as in conventional supergravity cosmologies.

This approach may provide an explicit realization of the ideas in the ekpyrotic scenario for
inflation and reheating of the Universe [7]. Immediately after inflation there is a difference
in temperature between the bulk and the brane worlds. As time passes, this difference in
temperature will cause significant closed string (gravitational) emission from the brane to the
bulk, in order to equilibrate the situation with a common (low) temperature in both brane and
bulk worlds.

Due to energy conservation, this causes non-adiabatic motion, with the brane world decel-
erating towards an eventually zero velocity. This would correspond to the exit phase from the
inflationary epoch, given that the central charge deficit of the pertinent stringy σ model would
vanish asymptotically and, according to the discussion in Section 2.3, the space-time metric
would tend to that of a static flat Minkowski space-time. In some models, however, e.g., those

20Such temperatures may characterize no-scale supergravity models [56].
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with internal magnetic flux contributions, such as the Type-0 models discussed previously, the
asymptotic state may be that of a linear dilaton, leading to a linearly expanding Einstein-
frame Universe. In addition, as a result of brane recoil effects also discussed above, one would
have contributions to the dark energy, relaxing asymptotically either to zero or to a constant
contribution (set, for instance, by the internal magnetic field contributions in magnetized com-
pactifications [34]), as in (99) or (100), (107). In all such models, current-era cosmology can be
made compatible with observations by fixing the various stringy parameters [15, 19, 8].

4.5.4 Open Issues: a Second Collision? Nucleosynthesis? ...

There are several open issues regarding the fate of the inflationary Universe. It is an open, and
certainly model-dependent question whether the gravitational radiation from the brane to the
bulk makes the brane world stop before the second collision takes place (in which case the latter
will never occur). Indeed, if the brane gravitational radiation causes a significant reduction of
the brane velocity v before the second collision with the stack of D-branes in Fig. 3, it is possible
that the velocity contribution to the bulk potential (??) diminishes significantly, in such a way
that the D-particle term overcomes the positive v4 term. In such a case the bulk potential
becomes unstable (negative) and the bulk string system may thermalize in the way described
earlier. The thermalization may also have a conformal field theory description, with the bulk
background central charge deficit being given by −Nv1/2. If the second collision takes place
before the brane stops due to radiation, there may be a local disturbance in the population of
the D-particles near the brane worlds during the (second) collision, such that N is significantly
higher than before, when the brane was moving in the bulk. Such local disturbances may even
cause the massive D-particles to collapse forming black holes, whose Hawking evaporation leads
to additional thermal contributions to the brane world after the second collision.

It is an open issue whether the potential energy of these re-thermalized bulk closed strings
becomes of similar order as the brane potential (136). If such were the case, one would reach
thermal equilibrium between brane and bulk worlds, the gravitational radiation towards the
bulk could counterbalance the breaking up of bulk closed strings on the brane, and the brane
world would stop decelerating before the second collision take place. The brane world could
then either move again adiabatically in the bulk with a very small velocity, in which case there
could still be a long time before it starts accelerating again due to the influence of the other
branes, either until the second collision takes place, or until it stops. The low (equilibrium)
temperature in either case could be identified with the CMB temperature of the present era of
the Universe.

Another open issue concerns the mechanism for nucleosynthesis in such a scenario. Nucle-
osynthesis requires a delicate balance between the expansion of the Universe and the rate of
nuclear reactions for the formation of the light elements, which appears to work very well in
scenarios with a negligible cosmological constant. It may therefore be desirable that the reduc-
tion in brane velocity due to radiation occurs around the nucleosynthesis era, so that in such
a case the brane Universe has only a very small vacuum energy. For instance, in the class of
models with compactified branes in magnetized internal manifolds [18] it could be that only the
magnetic field supersymmetry-breaking contributions to the vacuum energy are present during
the nucleosynthesis era. At the end of nucleosynthesis a second collision of the brane world with
the stack of branes in Fig. 3 takes place, resulting in an increase of the central-charge deficit
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Figure 4: A nucleosynthesis-friendly Liouville cosmology scenario, according to which the second
collision of a moving brane world with the (left) stack of branes in Fig. 3 occurs after the phase
where the brane almost stops due to radiation. This scenario provides a relaxation model for
the cosmological vacuum energy (central-charge deficit of the Liouville σ model), which passes
first through a metastable phase where it almost vanishes (up to magnetic field contributions)
during the nucleosynthesis era, and then raises again, as a result of the second collision, but at
a much lesser height than in the initial collision.

(vacuum energy), but at a much lesser height than in the initial collision (due to the much
smaller velocities involved), as seen in Fig. 4). Eventually the central charge relaxes again to
zero asymptotically, providing the vacuum energy in the present epoch.

The question then arises as to what precisely causes the current energy density of the
Universe in such a case. So far we have argued that a linear (in the string frame) dilaton may
act as a quintessence field, in accordance with current cosmological phenomenology. However,
it is our opinion that, in order to answer this question completely, one should also incorporate
in the above discussion the recoil fluctuations on the brane world, which echo the initial brane
collision. As mentioned above, such effects would provide positive contributions to the present-
era central charge deficit of the corresponding stringy σ model, for asymptotically long times
after the initial collision. The recoil contributions depend on the recoil velocity of the branes
during the (adiabatic) bouncing inflationary phase, but they diminish with the cosmic time,
relaxing towards either zero or some other small positive (equilibrium) value, determined for
instance by the internal magnetic field (c.f., (99) or (100), (107) respectively). These recoil
contributions may be responsible for parts of the dark energy density of the observable Universe,
which exceed those due to the linear-dilaton quintessence. They could also be in accordance
with current astrophysical observations [9, 10]. Such recoil contributions may overcome any
negative thermal contributions in the bulk, so that the bulk energy never becomes negative, in
contrast to the negative brane energy for non-zero velocities.

These and other related issues are currently under investigation, and we hope to be able to
report some more complete results soon.
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5 Conclusions and Outlook

We have examined in this work various cosmological models based on non-critical Liouville
strings - Q-Cosmologies - with various asymptotic configurations of the dilaton, and have spec-
ulated on the inflationary phase, on the possibility of exit from it and reheating, as well as the
large-times eras of the Universe (current and future). A particularly interesting case from a
physical point of view is that of a linear dilaton that is asymptotically linear in cosmic time,
which is known to correspond to a true conformal field theory [12]. In such a model we have
observed that the string coupling is identified (up to irrelevant constants of order one) [8] with
the deceleration parameter of the Universe, through equation (56). We have argued that the
present-era phenomenology of the model, including matter, is compatible with the astrophysical
data in a quite natural way, for suitable values of the adjustable parameters in the model.

We stress once more the importance of being non-critical in order to arrive at (56). In
critical strings, which usually assume the absence of a four-dimensional dilaton, such a relation
cannot be obtained, and the string coupling is not directly measurable with cosmological data.
The logarithmic variation with the cosmic time of the dilaton field at late times implies a slow
variation of the string coupling (56), ġs/gs = 1/tE ∼ 10−60 in the present era, and hence a
corresponding variation of the gauge coupling constants. However, this variation is too small
to be seen currently.

The use of Liouville strings to describe the evolution of our Universe is natural, since non-
critical strings are associated with non-equilibrium situations which undoubtedly occurred in
the early Universe. We have discussed in this framework the phase diagram of a Liouville
cosmological string model of two colliding-brane worlds. We have seen that, immediately after
the collision, the bulk string Universe passes through a hot, metastable phase, before entering an
inflationary cold phase. On the other hand, the brane Universe (our world) remains thermalized
throughout the two phases, at a relatively high temperature, causing gravitational radiation
from the brane to the bulk, which tends to equilibrate the temperature, which eventually
decelerates the motion of the brane world in the bulk. From the point of view of an observer
on the brane, however, the brane Universe may at present seem to be accelerating, with the
acceleration provided by the dilaton field of the string multiplet, as mentioned above.

Exit from the inflationary phase is still an unresolved issue, although scenarios have been
conjectured, involving for instance a second collision of the brane world of the model of [21]
with the stack of D-branes in Fig. 3. This could provide extra contributions to the reheating
of the brane world, as a result of the gravitational collapse of D-particle populations to form
bulk black holes, which subsequently emit Hawking radiation.

There are many phenomenological tests of this class of cosmologies that can be performed,
which the generic analysis presented here is not sufficient to encapsulate. Tensor perturbations
in the cosmic microwave background radiation is one of them. The emission of gravitational
degrees of freedom from the hot brane to the cold bulk, during the inflationary and post-
inflationary phases is something to be investigated in detail. A detailed knowledge of the
dependence of the equation of state on the redshift is something that needs to be looked at in the
context of specific models. The constant equation of state obtained here is only an asymptotic
feature of an era where the gravitational sector dominates. Moreover, issues regarding the
delicate balance of the expansion of the Universe and nucleosynthesis, which requires a very
low vacuum energy, must be resolved in specific, phenomenologically semi-realistic models, after
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proper compactification to three spatial dimensions, in order that the conjectured cosmological
evolution has a chance of success.

Finally, the compactification issue per se is a most important part of a realistic stringy
cosmology. In our discussion above, we have presented a rather simplified compactification on
magnetized internal manifolds, in Type-II five-brane models, which also provided phenomeno-
logically realistic ways of breaking target-space supersymmetry in cold Universes, compatible
with the very small value of the vacuum energy that has been reported in the Universe to-
day. However, in the context of the model of [21], involving eight-branes and orientifolds, such
compactifications may present subtleties that require extra attention [49].

We hope to be able to report on these and other related issues in future work. We are far
from claiming a detailed understanding in this framework of several important facts of modern
cosmology, such as the Universe’s current acceleration, dark energy, the various phase transi-
tions in the past history of the cosmos, etc.. Nevertheless, we believe that Liouville strings
are probably the only viable way, in the context of string theory, to discuss rigorously cos-
mological string backgrounds, especially those involving accelerated Universes and, in general,
dark-energy contributions to the Universe’s energy budget.

In this last respect, we stress once more that the non-equilibrium Liouville approach to
cosmology advocated in this article is based exclusively on the treatment of target time as an
irreversible dynamical renormalization-group scale on the world sheet of the Liouville string
(the zero mode of the Liouville field itself). This irreversibility is associated with fundamental
properties of the world-sheet renormalization group, which lead in turn to the loss of information
carried by two-dimensional degrees of freedom with world-sheet momenta beyond the ultraviolet
cutoff [14] of the world-sheet theory. This fundamental microscopic time irreversibility may have
other important consequences, associated with fundamental violations of CPT invariance [24,
17, 57] in both the early Universe and the laboratory, providing other tests of these ideas.
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